• Non ci sono risultati.

Dete tors for IR Computation over Channels Ae ted

2.4 IR of CPMs over Channel Ae ted by Phase Noise

2.4.3 Dete tors for IR Computation over Channels Ae ted

in the MAP sense. Moreover, it is interesting also to evaluate the IR by a

DP-BCJR operatingovera CT orST hannel generation, sin e we derive the

maximumperforman ewe ana hieve,whenemploying adete tionalgorithm

arried out by starting from a single rst order PN model (Wiener or AR1),

overa hannel ae tedby SATMODEPN.Finally,thethird typeof dete tor

is parti ularly suitable to ompute the IR for double-AR1 PN generation at

low baudrate values. Looking to the double-AR1 parameters in Table 2.3 at

64

kBaud, for example,we see that thefast omponents exhibits a

b

valueso

lose tozerothatinthedete torderivation, we an onsiderits orresponding

PN samples as almost independent. In su h a way, in the dete tion

deriva-tion, we take into a ount both the two AR1 omponent but we also a hieve

a redu tioninthedete tor omplexity.

trialphase value

θ n

,we dene thesample

r n (x n , σ n , θ n )

as

r n (x n , σ n , θ n ) ,

Z (n+1)T

nT r(t)es (t − nT ; x n , σ n )e −jθ n dt

= y n (x n , σ n )e −jθ n

(2.36)

where the ve tor

y

olle ting

y n (x n , σ n )

(2.12) represents a set of su ient

statisti of the re eived signal.

3

Finally we all

r

the ve tor olle ting the

sample

r n (x n , σ n , θ n )

for ea h trial symbol

x n

,ea h trial CPMstate

σ n

, and

phasevalue

θ n

,and ea h dis rete-time instant.

We now derive the MAP symbol dete tion through FG and SPA. To this

purpose, we rstfa torize the joint distribution

p(x, σ, θ|r)

as

p(x, σ, θ|r) ∝ p(r|x, σ, θ)P (σ|x)P (x)p(θ)

(2.37)

= P (σ 0 )P (θ 0 )

N −1 Y

n=0

F n (x n , σ n , θ n )T (x n , σ n , σ n+1 )P (x n )p(θ n+1 |θ n )

where

θ

olle ts

θ n

samples (

n

from

0

to

N

),

T (x n , σ n , σ n+1 )

is an indi ator

fun tion, equal to one if

x n , σ n

and

σ n+1

satisfy the CPM trellis onstraints andtozerootherwise,and

F n (x n , σ n , θ n )

isthebran hmetri fun tion,dened

as

F n (x n , σ n , θ n ) = exp

 1 N 0 Re n

y n (x n , σ n )e −jθ n o

.

(2.38)

Finally,asstated inSe tion 2.4.1,

p(θ n+1 |θ n )

in(2.37) is aGaussian pdf4

p(θ n+1 |θ n ) = 1

q 2πσ 2

exp



− (θ n+1 − θ n ) 2 2



.

(2.39)

In orderto have a nitestate representation for su h a hannel, we dis retize

thevalues thatsamples

θ n

mayassume. Obviously,weare approximatingthe 3

Notethatalsointhis ase, aswellas inthe oherent optimaldete tor,theve tor

y

is

obtainedfromasetofjust

M L

lters.

4

Notethat,sin ethe hannelphaseisdenedmodulo

,theprobabilitydensityfun tion

p(θ n+1 |θ n )

anbeapproximatedasGaussianonlyif

σ ∆ ≪ 2π

.

x n η f,n+1 η b,n

P (x n ) (σ n , θ n )

P (x n )

n+1 , θ n+1 ) F n T P θ

P e (x n )

Figure2.7: Fa tor graphofDP-BCJR inthe

n

-thtime-interval.

real hannel and, by in reasing thenumber of quantization levels, better

ap-proximations anbea hievedatthepri eofagreater hannelstate ardinality.

In parti ular, we propose an uniform dis retization, bywhi h samples

θ n

are

onsidered belongingto thebelowalphabet

θ n

 0, 2π

D , 2 2π

D , . . . , (D − 1) 2π D



(2.40)

where

D

isthenumberofquantizationlevels.Hen e,thepdf

p(θ n+1 |θ n )

in(2.39)

mustrepla edbythepmf

P θn+1 |θ n )

,whi h an be hosenfor example as:

P θn+1 |θ n ) =

Z θ n+1 + π

D

θ n+1 − D π

q 1 2πσ 2

exp



− (x − θ n ) 2 2



dx .

(2.41)

The FG orrespondingto (2.37) has y les.However, by lustering [7℄the

variables

θ n

and

σ n

,weobtain theFGinFig.2.7.Thus, byapplyingto itthe

SPAbyusinga non-iterative forward-ba kward s hedule, we obtaintheexa t

a posteriori probabilities

P (x n |r)

ne essary to implement the MAP symbol

dete tion strategy. With referen e to the messages in Fig. 2.7, the resulting

forwardba kward algorithm is hara terized by the following re ursions and

ompletion:

η f,n+1n+1 , θ n+1 ) = X

σ n

X

θ n

X

x n

P (x n )F n (x n , σ n , θ n )T (x n , σ n , σ n+1 ) P θn+1 |θ n )η f,nn , θ n )

(2.42)

η b,n+1n , θ n ) = X

σ n+1

X

θ n+1

X

x n

P (x n )F n (x n , σ n , θ n )T (x n , σ n , σ n+1 ) P θn+1 |θ n )η b,n+1n+1 , θ n+1 )

(2.43)

P e (x n ) ∝ X

σ n

X

σ n+1

X

θ n

X

θ n+1

F n (x n , σ n , θ n )T (x n , σ n , σ n+1 )P θ (θ n+1 |θ n ) η f,nn , θ nb,n+1n+1 , θ n+1 )

(2.44)

with the following initial onditions for the two re ursions:

η f,00 , θ 0 ) = P (σ 0 )/(2π)

and

η b,NN , θ N ) = P (σ N )/(2π)

. Itis lear thata better

approx-imation of the real hannel, whi h is a hieved by in reasing the number of

quantizationlevels

D

,determinesalsoanin reaseddete tion omplexity,sin e

the ardinality ofthe trellisstate

n , θ n )

isproportionalto

D p M L−1

.

Finally, we an extend the DP-BCJR algorithm to all ases in whi h the

dis rete-time PNpro ess isaGaussian AR1model(2.25).Insu ha ase, itis

su ient to repla ethepmf

P θn+1 |θ n )

in(2.41) by

P θn+1 |θ n ) =

Z θ n+1 + π

D

θ n+1 − D π

p 1

2π(1 − a 2a 2 exp



− (x − a θ n ) 2 2(1 − a 2a 2



dx .

(2.45)

Double-DP-BCJR (D-DP)

Wenow onsiderthedouble-AR1phasenoisemodeldes ribedinSe tion2.4.2.

Thus,theaboveDP-BCJRalgorithmderivation anbegeneralizedto the ase

ofa hannelwhosePNmodelisgivenbythesumoftwodis rete-timepro esses

θ (a) n

and

θ n (b)

for whi h the following re ursive denitions exist

θ n+1 (a) = a θ (a) n + v n (a)

(2.46)

θ n+1 (b) = b θ n (b) + v n (b)

(2.47)

x n η f,n+1

P (x n ) P (x n )

n , θ (a) n , θ n (b) ) η b,n F n T P θ (a) P θ (b)n+1 , θ (a) n+1 , θ (b) n+1 )

P e (x n )

Figure 2.8:FGofDouble-DP-BCJR dete torinthe

n

-th time-interval.

where

v (a) n

and

v (b) n

areindependent andidenti allydistributedGaussian zero-meanrandomvariablesofvarian e

(1−a 2 ) σ a 2

and

(1−b 2 ) σ b 2

,respe tively.Also inthis ase, the two phase values an be uniformly dis retized inthedomain

and we denote by

D a

and

D b

the number of quantization levels for

θ n (a)

and

θ (b) n

,respe tively.

In order to apply the MAP symbol dete tion strategy, we fa torize the

globalpmf

P (x, σ, θ (a) , θ (b) |r)

inawaysimilarto (2.37)andwederivetheFG

inFig.2.8.TheSPAallows usto omputethetwo re ursionsand ompletion;

herewereport justtheexpressionfor theforward re ursion:

η f,n+1n+1 , θ (a) n+1 , θ n+1 (b) ) = X

σ n

X

θ (a) n

X

θ (b) n

X

x n

F n (x n , σ n , θ n (a) , θ (b) n )T (x n , σ n , σ n+1 )

P (x n )P θ (a)n+1 (a) |θ n (a) )P θ (b)n+1 (b) |θ n (b)f,nn , θ (a) n , θ (b) n )

(2.48)

where we have dened

F n (x n , σ n , θ n (a) , θ (b) n ) = exp

 1 N 0 Re n

y n (x n , σ n )e −j(θ (a) n (b) n ) o

(2.49)

and

P θ (a)(a) n+1(a) n )

,

P θ (b)(b) n+1(b) n )

arethe pmfsdes ribing the hannelphase

transition, dened asin(2.45).

In su h a ase, the trellis state is

(σ n+1 , θ n+1 (a) , θ (b) n+1 )

and its ardinality results

D a D b pM L

.

Improved-DP-BCJR (I-DP)

Looking at the parameters des ribing the faster PN omponent inTable 2.3,

we see that its

b

parameter is very lose to zero, espe ially for low baudrate

values. In other words, PN samples

θ (b) n

an be onsidered independent from ea h otherand we assumethefollowing model:

θ (b) n = v n (b)

(2.50)

obtained repla ing

b = 0

in(2.46); hen e

P (θ (b) n ) =

N −1 Y

n=0

P θ (b)(b) n ) .

(2.51)

where

P θ (b)(b) n )

expression is equivalent to (2.45) with

a = 0

. By fa torizing the pmf

P (x, σ, θ (a) , θ (b) |r)

, we derive a new dete tion algorithm based on

assumption (2.50), whose fa tor graph is provided in Fig 2.9. The forward

re ursion expressionobtained thought theSPAis

η f,n+1n+1 , θ (a) n+1 ) = X

σ n

X

θ (a) n

X

x n

P (x n )F n (a) (x n , σ n , θ (a) n )T (x n , σ n , σ n+1 )

P θ (a)n+1 (a) |θ n (a)f,n (σ n , θ n (a) ).

(2.52)

where the bran h metri is

F n (a) (x n , σ n , θ n (a) ) , X

θ (b) n

F n (x n , σ n , θ (a) n , θ n (b) )P θ (b)n (b) )

(2.53)

and

F n (x n , σ n , θ n (a) , θ n (b) )

isprovidedin(2.49).Hen e,we anseethatemploying

the assumption in (2.50), the double-DP-BCJR omplexity is redu ed sin e

η f,n+1 η b,n

P (x n ) (σ n , θ n (a) )

P (x n )

(σ n+1 , θ (a) n+1 ) F n T P θ (a)

P (θ (b) n )

x n P (θ (b) n )

θ (b) n

P e (x n )

Figure2.9: FGof I-DP-BCJRdete torinthe

n

-thtime-interval.

here the trellis state is the same of the DP-BCJR, i.e.

n , θ (a) n )

. However,

with respe t to the DP-BCJR algorithm we take into a ount a se ond PN

omponent,

θ n (b)

,independent from ea h interval

n

, and so thebran h metri

omputation isin reased (see (2.53)).