Method
article
Multi-scale
laboratory
routine
in
the
ef
ficacy
assessment
of
conservative
products
for
natural
stones
S.
Raneri
a,b,
G.
Barone
a,
P.
Mazzoleni
a,*
,
I.
Al
fieri
c,
L.
Bergamonti
d,
T.
De
Kock
e,
V.
Cnudde
e,
P.P.
Lottici
f,
A.
Lorenzi
c,
G.
Predieri
c,
E.
Rabot
g,
J.
Teixeira
ga
UniversityofCatania,DepartmentofBiological,GeologicalandEnvironmentalSciences,C.soItalia57, 95129,Catania,Italy
b
UniversityofPisa,DepartmentofEarthScience,ViaSantaMaria53,53126,Pisa,Italy
c
UniversityofParma,DepartmentofChemistry,LifeSciencesandEnvironmentalSustainability,ParcoArea delleScienze17/A,43124,Parma,Italy
dUniversityofParma,DepartmentofEngineeringandArchitecture,ParcoAreadelleScienze187/A,43124,
Parma,Italy
e
GhentUniversity,DepartmentofGeology,Krijgslaan281/S8,B-9000,Ghent,Belgium
f
UniversityofParma,DepartmentofMathematical,PhysicalandComputerSciences,ParcoAreadelleScienze 7/A,43124,Parma,Italy
g
LaboratoireLéonBrillouin(CNRS/CEA),CEASaclay,F-91191,Gif-sur-Yvette,France ABSTRACT
Theevaluationofconservativetreatments’efficacyonnaturalbuildingstonesareusuallybasedonstandard
recommendation routinesfinalized to evaluate compatibility and harmfulness of products in turn of the
substrate.However,thevisualizationandthequantificationofproductsinsideporestructureofnaturalstonesis
notimmediatethrough standardtests,so thatimagingand advancedtechniques arerecentlyproposed in
materialconservationfieldtoimproveknowledgeonpenetrationdepth,modificationofpore-airinterfaceat
differentscaleandmonitordynamicabsorptionprocesses.Moreover,naturalstonesareusuallycharacterizedby
complexstructure,whichchangesduetoconservativetreatmentshavetobeinspectedatdifferentscale(from
micrometertonanometer).
Inthisprospective,theassessmentoflaboratorypracticesabletointegratemultiscalemethodsandgivebacka
completeoverviewoninteractionbetweennewconservativeformulatesandnaturalstonesisofhighinterest.
In this paper, we propose a methodological routine for efficacy assessment of conservative products,
incorporatingclassicalandinnovativenondestructivetechniques.Validationoftheworkflowhasbeenverifiedon
ahighporousnaturalstonetreatedwithnewhybridformulatesappropriatelycustomizedforconservation
issues.
*Correspondingauthor.
E-mailaddresses:[email protected](S. Raneri),[email protected](G. Barone),[email protected](P. Mazzoleni), ilaria.alfi[email protected](I. Alfieri),[email protected](L. Bergamonti),[email protected](T. DeKock), [email protected](V.Cnudde),[email protected](P.P. Lottici),[email protected](A. Lorenzi), [email protected](G. Predieri),[email protected](E. Rabot),[email protected](J. Teixeira).
https://doi.org/10.1016/j.mex.2018.08.013
2215-0161/©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http:// creativecommons.org/licenses/by-nc-nd/4.0/).
ContentslistsavailableatScienceDirect
MethodsX
Thestudyintendstoaddnewinsightsonproblemsrelatedtoconsolidationofhighporouscarbonatestone,
applicationmethodsinconsolidatingnaturalstonesandmethodstoevaluateefficacyofnewproducts.
A multi-scale laboratory investigation procedure is proposed by integrating standard and innovative
nondestructivemethods.Meritsandlimitsofeachappliedmethodarediscussedduringvalidation.
Thepossibilitytoincorporatestandardroutinesand/orsubstitutedestructivetestingwithnon-destructive
onesseem to beavalid alternativetoevaluate efficiencyand monitorbehaviorof stonestreatedwith
consolidatingproducts.
©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
ARTICLE INFO
Methodname:Advancedandmulti-scalelaboratoryinvestigation Keywords:Naturalstones,Conservativetreatments,Consolidants,Efficacy
Articlehistory:Received11June2018;Accepted29August2018;Availableonline5September2018
SpecificationsTable
Subjectarea EarthandPlanetarySciences Chemistry Physic Engineering MaterialsScience Morespecific subjectarea Masonry Polymers Conservation
Methodname Advancedandmulti-scalelaboratoryinvestigation
Methoddetails
A multi-scale laboratory investigation procedure finalized to inspect consolidants’ efficacy is proposed;itisbasedontheintegrationofinnovativenondestructivemethodstostandardwellknown laboratorytests.
Theroutineincludestwooperativesteps,namelytheapplicationof(a)standardrecommendation proceduresand(b)thenoninvasiveadvancedtestingbyX-rayandneutronsources(Fig.1).Alltests havetobeperformedonlaboratorysampleswhichdimensionandshapeisdeterminedinaccordance withstandardguidelines,whenapplicable.
Conditioninglaboratorysamples
ArtificiallyagedvsUnweatheredfreshlaboratorysamples
Asafunctionofgeneralproprietiesofthenaturalstonetotest,preliminaryagingprocedureaimed tomimethenaturalweatheringstatecanbeperformedbeforethetreatment[1].Theselectionof agingmethodcanbecriticalandhastobeselectedinfunctionofsubstratepropertiesandusualdecay phenomena. Generally, salt crystallization is the most used one to mime the real weathering conditions;however,limitationandpossibleby-productsduetothetesthavetobeevaluated,aswell thekindofsinglesaltand/orsaltmixestouse[2].
Treatmentmethod
Inordertopossibleevaluatemeritsoftechniquesandefficacyofproductsinfunctionoftreatment method(i.e.:immersion,brushing,poultice)[3],laboratorysamplescanbetreatedbyfollowingone onmoreapplicationprocedures.
Curing
Aftertreatmentwiththenewproducttotest,laboratorysampleshavetobedriedat60Cuntil
constantmass,accordingtoUNI10921[4].Appropriatecuringoflaboratorysampleshastobeassured, infunctionofemployedformulate(usually,almostonemonthatroomtemperatureandhumidity). Quantityofproduct
Calculatethequantityofproductabsorbedbylaboratorysamplesasweightpercentgain(WPG%): WPG%=100[(Mt–M0)/M0),withM0,themassofdrysamplebeforetheproductapplication,andMt, themassofdrysampleafterproductapplication.
Standardrecommendation
Performphysicalandmechanicalstandardtests(UNIEN15886[5],UNIEN15801[6],NORMAL7/ 81[7],NORMAL29/88[8],artificialweatheringtests[9,10]DRMS[11])toevaluatewaterabsorption anddesorptionatenvironmentalpressure,colordifference,resistancetoartificialweathering,and microdrillingresistanceonreferenceuntreatedandtreatedlaboratory samples.Perform mercury intrusionporosimetry(MIP)measurementsonvolumesof1cm3sampledatthesurfaceoftreated samples where coated is created. Collect intrusion curves and compare results with untreated referencesamples.Performatleastthreemeasurementsforeachcase,toverifyrepeatabilityofdata. Comparemodal porevalues and average cumulativevolumes beforeand afterthe treatmentto evaluatewhereproductislocated.Limitsininspectedrangeisrelatedtoinstrumentalcharacteristics; usually,MIPallowstoinspectporesintherange10nm0.1/1mm[12].
Noninvasiveadvancedtesting X-rayimaging
Beforeapplyingthis methodverifythat productshavea differentattenuationcoefficientwith respecttostone[13];otherwise,useatracertodopetheproductandassureitsvisualization.Insome studies,3-bromopropyltrimethoxysilanehasbeensuccessfullyemployedtobettervisualizeproducts intotheporousstructureofthestone[14–16],inthecaseofbothwaterrepellentsandsilane-based consolidants;however,somemetals(suchasAg)canbealsousedastracer,exhibitingnointeraction withthepropertiesofthetestedproducts[17].
Use X-ray
m
-CT[18] toinvestigate the internalstructure of untreated andtreated laboratory samplesandcharacterizetheir3Dporestructure.Tosetthebettermeasurementconditionsevaluate thespatialresolutionrequiredtoquantifytheprocessestoobserve.Rememberthatcriticalpointsare theobjectsourcedistanceandthesamplesize[19];forthelatterone,keepinmindthatvoxelsize(and thusyourresolutionintermofsmallestfeaturesdetectableandquantifiable)isafunctionofsample size.Imagesofproductsinsidetheporestructureofinvestigatedmaterialcanbeobtainedbycollecting scansbeforeandafterthetreatmentsoncylinder(whichdiameterhasbeendeterminedinfunctionof texturalfeaturesofstudiedstone).
Thequantificationofporestructurebeforeandafterthetreatmentcanbethereforeobtainedby subtractingimagesbeforetreatmentfromimagesaftertreatment,afterregistrationofbothvolumes; inthiswaychangesintheporestructureduetoconsolidantpenetrationcanbeinspected.Inorderto workwithdifferentialimagesitiscrucialtoacquirethedatabyusingthesameparametersbeforeand aftertheapplication.
Thereconstructionofporestructurecanbeeasilyachievedbyusingdifferentdedicatedsoftware [19]allowingtovisualizeandquantifyscannedobjects.
Neutronimaging
Useneutronradiography[20]tovisualize thedistributionoforganicproductsinside thepore structure and monitormovement of water under dynamic conditions in untreated and treated laboratorysamples.
Asitiswellknown,byusingneutronsthegoodcontrastbetweenwater(andwatercontaining products,suchasorganicprotectivesandconsolidants)andstoneallowsthevisualizationofproducts containinghydrogenaswellaswaterintothesamples.Inthecaseofdynamicmeasurements,consider thepossibilitytouseheavywater[21].Theuseofneutronsasinvestigationprobeallowstoavoidthe dopingoftheproducts.
Collectneutronradiographsbyusingcoldneutronsource[21].
SDD(sample-detectordistance)andSSD(sample-sourcedistance)canbeselectedinfunctionof experimentalsetupandresolutionrequired[20].
Collectimagesindryconditiontovisualizethedistributionofproductinsidethenaturalstone; rememberthatneutronsaresensitivetopolymer/organic–basedproductscontaininghydrogen.
Forthefurthercorrectionsandquantitativeevaluation,collectdarkfieldandopenbeamimages. Acquirescansatregulartimeintervalduringcapillaryabsorptiontomonitorwaterbehaviorof consolidated stones; manual or automatic filling of water container can beused in function of experimentalsetup.Itisadvisabletocollectpreliminaryscansontestsamples,toevaluatethespeed oftheobservedprocessandassesthebesttimeintervalstoapply.
Ideally, capillary tests might be performed until saturation; however, carefully consider the possibleevaporationprocessesoccurringduringtheexperiments,especiallyiftheyarecarriedoutin environmentalconditions(TC.RH%).Afterthesepreliminaryevaluations,selectfixedtimeintervals andamaximummonitoringtimeforallthestonesubstratesandallthestudiedproductsallowingthe successivecomparisonevaluation.
Aquantificationofwatercontentcanbeobtainedbyperformingcalibrationmeasurementsatthe beginningofyourexperiments[22].
Processimagesfirstlybycorrectingandnormalizingbydarkfieldandopenbeamimages.Quantify watercontentdistributionaccordingtoKimetal.[23]anddeterminesorptivityparameter(B)[24] fromtheradiographs.
Smallangleneutronscattering
Usesectionsofuntreatedandtreatedsamples(alsobyusingdifferenttreatmentmethods)which thickness avoids multiple scatteringeffects (usually, < 1mm). Select Q ranges as a function of experimentalsetupandresolutionrequiredintermofscalerangetoinvestigate.
Themethodallowstoobtaininformationaboutthesize,thenumberdensityandthecorrelation betweencomponentsofasample,especiallylookingatpore-airinterfaces.Inthisprospective,the existence of different arrangements inside the porous structure of the solid matrix can be demonstrated,evaluatinghowtheoccurrenceofproductsmodifythepore-airinterfaceofthepore system inthestudiedsubstrate.The measuredparameter(i.e.Q(I))hasinfact relationwiththe formalismassociatingroughnessandfractaldimensionofasurface.Inthisprospective,byusingthe followingcorrelationIðQÞ/Qð6DsÞ theroughnessoftheporessurfaceintermsofsurfacefractal
dimension Ds [25] canbe determined and obtained values ondifferent treated samplescan be comparedtoevaluateefficacyinpenetrationofproductsaswellastheassessmentofhomogenous productlayersontoporesurfaces.Toobtainnumericalparameters,correcttwo-dimensionalintensity distributions for the background and normalize by measuring the incident beam intensity, transmission,andsamplethicknessfromtheI(Q)distributions.Then,determinefractaldimension foreachanalysedspecimen
Incorporationoftheresults
Changesinporestructure:
m
-CTvsMIPvswaterabsorptionvsSANSEvaluatedifferencesin termof porosityand poreradiusdetermined byMIP,
m
-CTand water absorption.Compareresultstakinginconsiderationdiscrepanciesamongthemethods[12].IntegrateMIP,
m
-CTandSANSdatatoevaluateporestructurecharacteristics(beforeandafter conservativetreatments)intherangefromnanometertomillimeter.Waterbehavior:Absorptiontestsvsneutronimaging
Quantifywaterabsorptionchangesbygravimetrictests;evaluate sorpivityandquantifywater contentatsubsequenttimestepfromneutronimages.Compareresultsanddescribewaterbehavior, and possiblepreferentialpathwayinwaterabsorptiondue todistributionof consolidantinpore network.
Penetrationdepth:DRMSvsneutronimagingvs
m
-CTvsSANSCompareobtainedresultsobtainedbydrillingresistancemeasurementsystem withimagescollected indryconditionbyneutronsource;takeadvantagefromvisualizationofproductdistributiontoexplain possiblediscrepanciesinindirectDRMSvalues.Use
m
-CT3Dreconstructionstovisualizein3Dthe productdistribution,improvinginformationobtainedbyDRMSandneutronimaging.Finally, evaluatethesmallscalestructuralchangesandpenetrationinnano-sizedpores onthe basisoffractaldimensiondeterminedbyQ(I)scatteringdata.Rememberthatideallythepresenceof productsatpore-airinterfaceshoulddetermineasmoothingofporesurface,withaconsequential changeinfractaldimensioncalculatedrespecttountreatedsamples.
Methodvalidation
Inordertovalidatetheproposedroutine,wepresentanexampleappliedonhighporouslimestone. Thecompletecharacterizationofthestone,thedescriptionoftestedproductsaswelltheevaluationof theirsuitabilityandcompatibilitywithsubstrateisoutofthescopeofthepresentpaper;detailsabout stone,consolidantsandefficacyofproductsarereportedin[17].Briefly,thestoneusedforconsolidating testexhibitsaporosityofabout27%,withatotalporevolumeof0.14cm3g1andamodalporeradiusof about 8.5
m
m. Compositionally, it is constitutes mainly by calcite, with low amount of dolomite; the stone suffersmainlyofgranulardisintegration,forwhichitrequiresconsolidationactions.Theusedproducts consistin newhybrids formulationscustomizedforculturalheritageconservation;theyincludea patented consolidant modified by amine to promote interaction with limestone and inorganic commercialproductswhichshrinkageprocesswasimprovedbytheadditionoforganicchains.In thecasestudy,waterabsorption,mercuryintrusionporosimetry,and
m
CTmethods offered togetheranoverviewonthechangesinporestructureofthestudiedstoneintherange0.007–200m
m after the application of consolidating products. They provided consistent results, even if some discrepanciesduetotheintrinsicdifferencesamongtheappliedmethodswerehighlighted.Neutronimagingwasdemonstratedasapowerfultechniqueforinvestigatingthepresenceandthe distributionofproductsintothestone,evenifpossiblelimitsduetothelowinteractionbetween neutron beam and polymeric consolidants were evidenced; the obtained data were indirectly confirmedbymicrodrilling,indicatingaverysharpincreaseoverthefirstmillimetersunderneaththe surface. As regards water behavior, neutron imaging provided also measurements of thewater absorptiondynamic,quiteinaccordancewithgravimetrictests;advantageswererepresentedbythe possibilityto visualizethe waterdistribution inside thestone, highlighting possiblepreferential uptake pathsdue to presence/absence of products.SANS data provided information onproduct penetrationinnano-pores.Thetechniquewas alsousefultoevidencesurfaceroughnesschanges relatedtotreatmentmethod;inthecasestudy,relevantchangeswereobservedforproductsapplied byimmersion,suggestingthatthismethodispreferablebecauseitensureshigherbondingofthe producttotheporesurfaceandthecompletepenetrationofconsolidantsintonano-sizedpores.
Overall,stone-productinteraction wasinvestigatedfrommicrometrictonanometricscale(byintegrating
m
-CT-MIP-waterabsorption-SANS),bondingabilitywasverifiedandevaluated(byintegratingDRMSvs neutronimagingvsm
-CTvsSANS),waterbehaviorwasquantifiedandvisualized(byintegratingabsorption testsvsneutronimaging),andpreferableapplicationmethodswasassessed(bySANS).Conclusions
Inthiswork,alaboratorymultiscalemethodologyforassessingconsolidant’sefficacyonnatural stoneshasbeenpresentedanddescribed.Theroutineishighlycustomizable;infact,setupofstandard andnon-destructivetestingcanbeestablishedcasebycasetakinginconsiderationsubstratefeatures, productscharacteristicsandpotentialofdifferentmethodstoinspectthewholerangeoftexturaland porosimetric properties. The methodology has been demonstrated to be suitable in better understandinginteractionsbetweenconsolidatingproductsandnaturalstones,supplying quantita-tivedataaboutporerangesinwhichconsolidantsinteractwithstone,andadequatelysupportingthe interpretationofmaterialbehaviorespeciallyagainstwater.
Themethodologicalroutinecanbeeasilyincorporatedintostudiesaboutconservativetreatments, claimingtheadvantagesinintegratingorevensubstitutingnondestructivetestingtoclassicalmethods. Acknowledgments
Thisresearchhasbeensupportedby:UniversityfundsbestowedbyDept.ofBiological,Geological and EnvironmentalSciences of theUniversity ofCatania, Universityfunds bestowedby Dept. of ChemistryoftheUniversityofParma,andFinancingFundofbasicresearchactivities(FFABR)ofMIUR. References
[1]M.Ban,A.Baragona,E.Ghaffari,J.Weber,A.Rohatsch,Artificialagingtechniquesonvariouslithotypesfortestingofstone consolidants,in:J.Hughes,T.Howind(Eds.),Sci.ArtAFutur.Stone.Proc.13thInt.Congr.Deterior.Conserv.Stone, UniversityoftheWestofScotland,Paisley,2016,pp.253–260.
[2]B.Lubelli,V.Cnudde,T.Diaz-Goncalves,E.Franzoni,R.P.J.vanHees,I.Ioannou,B.Menendez,C.Nunes,H.Siedel,M. Stefanidou,V.Verges-Belmin,H.Viles,Towardsamoreeffectiveandreliablesaltcrystallizationtestforporousbuilding materials:stateoftheart,Mater.Struct.51(2018)55,doi:http://dx.doi.org/10.1617/s11527-018-1180-5.
[3]E.Franzoni,G.Graziani,E.Sassoni,G.Bacilieri,M.Griffa,P.Lura,Solvent-basedethylsilicateforstoneconsolidation: influenceoftheapplicationtechniqueonpenetrationdepth,efficacyandporeocclusion,Mater.Struct.48(2015)3503– 3515,doi:http://dx.doi.org/10.1617/s11527-014-0417-1.
[4]UNI10921, Cultural Heritage – Natural and Artificial Stones –Water Repellents – Applicationon Samples and DeterminationoftheirPropertiesinLaboratory,(2001).
[5]UNIEN15886,ConservationofCulturalProperty–TestMethods–ColourMeasurementofSurfaces,(2010). [6]UNIEN15801,DeterminationofWaterAbsorptionbyCapillarityImmersion,(2010).
[7]NORMAL7/81NaturalStonesTestMethods:DeterminationofWaterAbsorptionbyTotalImmersion,CNR-ICR,1981. [8]NORMAL29/88DeterminationofDryingIndex,CNR-ICR,1988.
[9]E.Franzoni,E.Sassoni,G.W.Scherer,S.Naidu,Artificialweatheringofstonebyheating,J.Cult.Herit.14(2013)e85–e93, doi:http://dx.doi.org/10.1016/j.culher.2012.11.026.
[10]UNIEN12370,NaturalStonesTestMethods:DeterminationofResistancetoSaltCrystallization,(2001).
[11]J.D.Rodrigues,A.F.Pinto,D.R.daCosta,Tracingofdecayprofilesandevaluationofstonetreatmentsbymeansof microdrillingtechniques,J.Cult.Herit.3(2002)117–125,doi:http://dx.doi.org/10.1016/S1296-2074(02)01172-X. [12]V.Cnudde,A.Cwirzen,B.Masschaele,P.J.S.Jacobs,Porosityandmicrostructurecharacterizationofbuildingstonesand
concretes,Eng.Geol.103(2008)76–83.(Accessed16September2017) https://research.aalto.fi/en/publications/porosity-and-microstructure-characterization-of-building-stones-and-concretes(26bcc18e-bf24-4baf-8a5a-c4ae9ac863d9)/export.html. [13]T.Bultreys,M.A.Boone,M.N.Boone,T.DeSchryver,B.Masschaele,L.VanHoorebeke,V.Cnudde,Fastlaboratory-based micro-computedtomographyforpore-scaleresearch:illustrativeexperimentsandperspectivesonthefuture,Adv.Water Resour.95(2016)341–351,doi:http://dx.doi.org/10.1016/J.ADVWATRES.2015.05.012.
[14]V.Cnudde,M.Dierick,J.Vlassenbroeck,B.Masschaele,E.Lehmann,P.Jacobs,L.VanHoorebeke,Determinationofthe impregnationdepthofsiloxanesandethylsilicatesinporousmaterialbyneutronradiography,J.Cult.Herit.8(2007)331– 338,doi:http://dx.doi.org/10.1016/J.CULHER.2007.08.001.
[15]J.Dewanckele,T.DeKock,G.Fronteau,H.Derluyn,P.Vontobel,M.Dierick,L.VanHoorebeke,P.Jacobs,V.Cnudde,Neutron radiographyandX-raycomputedtomographyforquantifyingweatheringandwateruptakeprocessesinsideporous limestoneusedasbuildingmaterial,Mater.Charact.88(2014),doi:http://dx.doi.org/10.1016/j.matchar.2013.12.007. [16]V.Cnudde,J.P.Cnudde,C.Dupuis,P.J.S.Jacobs,X-raymicro-CTusedforthelocalizationofwaterrepellentsandconsolidants
insidenaturalbuildingstones,Mater.Charact.53(2004)259–271,doi:http://dx.doi.org/10.1016/J.MATCHAR.2004.08.011. [17]S.Raneri,G.Barone,P.Mazzoleni,I.Alfieri,L.Bergamonti,T.DeKock,V.Cnudde,P.P.Lottici,A.Lorenzi,G.Predieri,E.Rabot, J.Teixeira,Efficiencyassessmentofhybridcoatingsfornaturalbuildingstones:advancedandmulti-scalelaboratory investigation,Constr.Build.Mater.180(2018)412–424,doi:http://dx.doi.org/10.1016/J.CONBUILDMAT.2018.05.289. [18]V.Cnudde,M.N.Boone,High-resolutionX-raycomputedtomographyingeosciences:areviewofthecurrenttechnology
andapplications,Earth-Sci.Rev.123(2013)1–17,doi:http://dx.doi.org/10.1016/j.earscirev.2013.04.003.
[19]V.Cnudde,T.DeKock,M.Boone,W.DeBoever,T.Bultreys,J.VanStappen,D.Vandevoorde,J.Dewanckele,H.Derluyn,V. Cárdenes,L.VanHoorebeke,Conservationstudiesofculturalheritage:X-rayimagingofdynamicprocessesinbuilding materials,Eur.J.Mineral.27(2015)269–278,doi:http://dx.doi.org/10.1127/ejm/2015/0027-2444.
[20]E.Perfect,C.L.Cheng,M.Kanga,M.Z.Bilheux,J.Lamanna,M.J.Gragg,D.M.Wright,Neutronimagingofhydrogen-richfluids ingeomaterialsandengineeredporousmedia:areview,Earth-Sci.Rev.129(2014)120–135,doi:http://dx.doi.org/10.1016/ J.EARSCIREV.2013.11.012.
[21]J.Vlassenbroeck,V.Cnudde,B.Masschaele,M.Dierick,L.VanHoorebeke,P.Jacobs,Acomparativeandcriticalstudyof X-rayCTandneutronCTasnon-destructivematerialevaluationtechniques,in:R.Prikryl,B.Smith(Eds.),Build.StoneDecay fromDiagnosistoConserv.,TheGeologicalSocietyofLondon,Bath,UK,2007,pp.277–285.
[22]M.Kang,H.Z.Bilheux,S.Voisin,C.L.Cheng,E.Perfect,J.Horita,J.M.Warren,Watercalibrationmeasurementsforneutron radiography:applicationtowatercontentquantificationinporousmedia,Nucl.Instr.MethodsPhys.Res.Sect.AAccel. SpectrometersDetect.Assoc.Equip.708(2013)24–31,doi:http://dx.doi.org/10.1016/J.NIMA.2012.12.112.
[23]F.H.Kim,D.Penumadu,D.S.Hussey,Waterdistributionvariationinpartiallysaturatedgranularmaterialsusingneutron imaging,J.Geotech.Geoenviron.Eng.138(2012)147–154,doi:http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0000583. [24]J.R.Philip,Thetheoryofinfiltration,SoilSci.83(1957)345–358,doi:http://dx.doi.org/10.1097/00010694-195705000-00002. [25]D.BaleHarold,S.Paul,Small-angleX-ray-scatteringinvestigationofsubmicroscopicporositywithfractalproperties,Phys.