• Non ci sono risultati.

Multi-scale laboratory routine in the efficacy assessment of conservative products for natural stones

N/A
N/A
Protected

Academic year: 2021

Condividi "Multi-scale laboratory routine in the efficacy assessment of conservative products for natural stones"

Copied!
7
0
0

Testo completo

(1)

Method

article

Multi-scale

laboratory

routine

in

the

ef

ficacy

assessment

of

conservative

products

for

natural

stones

S.

Raneri

a,b

,

G.

Barone

a

,

P.

Mazzoleni

a,

*

,

I.

Al

fieri

c

,

L.

Bergamonti

d

,

T.

De

Kock

e

,

V.

Cnudde

e

,

P.P.

Lottici

f

,

A.

Lorenzi

c

,

G.

Predieri

c

,

E.

Rabot

g

,

J.

Teixeira

g

a

UniversityofCatania,DepartmentofBiological,GeologicalandEnvironmentalSciences,C.soItalia57, 95129,Catania,Italy

b

UniversityofPisa,DepartmentofEarthScience,ViaSantaMaria53,53126,Pisa,Italy

c

UniversityofParma,DepartmentofChemistry,LifeSciencesandEnvironmentalSustainability,ParcoArea delleScienze17/A,43124,Parma,Italy

dUniversityofParma,DepartmentofEngineeringandArchitecture,ParcoAreadelleScienze187/A,43124,

Parma,Italy

e

GhentUniversity,DepartmentofGeology,Krijgslaan281/S8,B-9000,Ghent,Belgium

f

UniversityofParma,DepartmentofMathematical,PhysicalandComputerSciences,ParcoAreadelleScienze 7/A,43124,Parma,Italy

g

LaboratoireLéonBrillouin(CNRS/CEA),CEASaclay,F-91191,Gif-sur-Yvette,France ABSTRACT

Theevaluationofconservativetreatments’efficacyonnaturalbuildingstonesareusuallybasedonstandard

recommendation routinesfinalized to evaluate compatibility and harmfulness of products in turn of the

substrate.However,thevisualizationandthequantificationofproductsinsideporestructureofnaturalstonesis

notimmediatethrough standardtests,so thatimagingand advancedtechniques arerecentlyproposed in

materialconservationfieldtoimproveknowledgeonpenetrationdepth,modificationofpore-airinterfaceat

differentscaleandmonitordynamicabsorptionprocesses.Moreover,naturalstonesareusuallycharacterizedby

complexstructure,whichchangesduetoconservativetreatmentshavetobeinspectedatdifferentscale(from

micrometertonanometer).

Inthisprospective,theassessmentoflaboratorypracticesabletointegratemultiscalemethodsandgivebacka

completeoverviewoninteractionbetweennewconservativeformulatesandnaturalstonesisofhighinterest.

In this paper, we propose a methodological routine for efficacy assessment of conservative products,

incorporatingclassicalandinnovativenondestructivetechniques.Validationoftheworkflowhasbeenverifiedon

ahighporousnaturalstonetreatedwithnewhybridformulatesappropriatelycustomizedforconservation

issues.

*Correspondingauthor.

E-mailaddresses:[email protected](S. Raneri),[email protected](G. Barone),[email protected](P. Mazzoleni), ilaria.alfi[email protected](I. Alfieri),[email protected](L. Bergamonti),[email protected](T. DeKock), [email protected](V.Cnudde),[email protected](P.P. Lottici),[email protected](A. Lorenzi), [email protected](G. Predieri),[email protected](E. Rabot),[email protected](J. Teixeira).

https://doi.org/10.1016/j.mex.2018.08.013

2215-0161/©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

ContentslistsavailableatScienceDirect

MethodsX

(2)

 Thestudyintendstoaddnewinsightsonproblemsrelatedtoconsolidationofhighporouscarbonatestone,

applicationmethodsinconsolidatingnaturalstonesandmethodstoevaluateefficacyofnewproducts.

 A multi-scale laboratory investigation procedure is proposed by integrating standard and innovative

nondestructivemethods.Meritsandlimitsofeachappliedmethodarediscussedduringvalidation.

 Thepossibilitytoincorporatestandardroutinesand/orsubstitutedestructivetestingwithnon-destructive

onesseem to beavalid alternativetoevaluate efficiencyand monitorbehaviorof stonestreatedwith

consolidatingproducts.

©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

ARTICLE INFO

Methodname:Advancedandmulti-scalelaboratoryinvestigation Keywords:Naturalstones,Conservativetreatments,Consolidants,Efficacy

Articlehistory:Received11June2018;Accepted29August2018;Availableonline5September2018

SpecificationsTable

Subjectarea EarthandPlanetarySciences Chemistry Physic Engineering MaterialsScience Morespecific subjectarea Masonry Polymers Conservation

Methodname Advancedandmulti-scalelaboratoryinvestigation

Methoddetails

A multi-scale laboratory investigation procedure finalized to inspect consolidants’ efficacy is proposed;itisbasedontheintegrationofinnovativenondestructivemethodstostandardwellknown laboratorytests.

Theroutineincludestwooperativesteps,namelytheapplicationof(a)standardrecommendation proceduresand(b)thenoninvasiveadvancedtestingbyX-rayandneutronsources(Fig.1).Alltests havetobeperformedonlaboratorysampleswhichdimensionandshapeisdeterminedinaccordance withstandardguidelines,whenapplicable.

Conditioninglaboratorysamples

ArtificiallyagedvsUnweatheredfreshlaboratorysamples

Asafunctionofgeneralproprietiesofthenaturalstonetotest,preliminaryagingprocedureaimed tomimethenaturalweatheringstatecanbeperformedbeforethetreatment[1].Theselectionof agingmethodcanbecriticalandhastobeselectedinfunctionofsubstratepropertiesandusualdecay phenomena. Generally, salt crystallization is the most used one to mime the real weathering conditions;however,limitationandpossibleby-productsduetothetesthavetobeevaluated,aswell thekindofsinglesaltand/orsaltmixestouse[2].

(3)

Treatmentmethod

Inordertopossibleevaluatemeritsoftechniquesandefficacyofproductsinfunctionoftreatment method(i.e.:immersion,brushing,poultice)[3],laboratorysamplescanbetreatedbyfollowingone onmoreapplicationprocedures.

Curing

Aftertreatmentwiththenewproducttotest,laboratorysampleshavetobedriedat60Cuntil

constantmass,accordingtoUNI10921[4].Appropriatecuringoflaboratorysampleshastobeassured, infunctionofemployedformulate(usually,almostonemonthatroomtemperatureandhumidity). Quantityofproduct

Calculatethequantityofproductabsorbedbylaboratorysamplesasweightpercentgain(WPG%): WPG%=100[(Mt–M0)/M0),withM0,themassofdrysamplebeforetheproductapplication,andMt, themassofdrysampleafterproductapplication.

(4)

Standardrecommendation

Performphysicalandmechanicalstandardtests(UNIEN15886[5],UNIEN15801[6],NORMAL7/ 81[7],NORMAL29/88[8],artificialweatheringtests[9,10]DRMS[11])toevaluatewaterabsorption anddesorptionatenvironmentalpressure,colordifference,resistancetoartificialweathering,and microdrillingresistanceonreferenceuntreatedandtreatedlaboratory samples.Perform mercury intrusionporosimetry(MIP)measurementsonvolumesof1cm3sampledatthesurfaceoftreated samples where coated is created. Collect intrusion curves and compare results with untreated referencesamples.Performatleastthreemeasurementsforeachcase,toverifyrepeatabilityofdata. Comparemodal porevalues and average cumulativevolumes beforeand afterthe treatmentto evaluatewhereproductislocated.Limitsininspectedrangeisrelatedtoinstrumentalcharacteristics; usually,MIPallowstoinspectporesintherange10nm0.1/1mm[12].

Noninvasiveadvancedtesting X-rayimaging

Beforeapplyingthis methodverifythat productshavea differentattenuationcoefficientwith respecttostone[13];otherwise,useatracertodopetheproductandassureitsvisualization.Insome studies,3-bromopropyltrimethoxysilanehasbeensuccessfullyemployedtobettervisualizeproducts intotheporousstructureofthestone[14–16],inthecaseofbothwaterrepellentsandsilane-based consolidants;however,somemetals(suchasAg)canbealsousedastracer,exhibitingnointeraction withthepropertiesofthetestedproducts[17].

Use X-ray

m

-CT[18] toinvestigate the internalstructure of untreated andtreated laboratory samplesandcharacterizetheir3Dporestructure.Tosetthebettermeasurementconditionsevaluate thespatialresolutionrequiredtoquantifytheprocessestoobserve.Rememberthatcriticalpointsare theobjectsourcedistanceandthesamplesize[19];forthelatterone,keepinmindthatvoxelsize(and thusyourresolutionintermofsmallestfeaturesdetectableandquantifiable)isafunctionofsample size.

Imagesofproductsinsidetheporestructureofinvestigatedmaterialcanbeobtainedbycollecting scansbeforeandafterthetreatmentsoncylinder(whichdiameterhasbeendeterminedinfunctionof texturalfeaturesofstudiedstone).

Thequantificationofporestructurebeforeandafterthetreatmentcanbethereforeobtainedby subtractingimagesbeforetreatmentfromimagesaftertreatment,afterregistrationofbothvolumes; inthiswaychangesintheporestructureduetoconsolidantpenetrationcanbeinspected.Inorderto workwithdifferentialimagesitiscrucialtoacquirethedatabyusingthesameparametersbeforeand aftertheapplication.

Thereconstructionofporestructurecanbeeasilyachievedbyusingdifferentdedicatedsoftware [19]allowingtovisualizeandquantifyscannedobjects.

Neutronimaging

Useneutronradiography[20]tovisualize thedistributionoforganicproductsinside thepore structure and monitormovement of water under dynamic conditions in untreated and treated laboratorysamples.

Asitiswellknown,byusingneutronsthegoodcontrastbetweenwater(andwatercontaining products,suchasorganicprotectivesandconsolidants)andstoneallowsthevisualizationofproducts containinghydrogenaswellaswaterintothesamples.Inthecaseofdynamicmeasurements,consider thepossibilitytouseheavywater[21].Theuseofneutronsasinvestigationprobeallowstoavoidthe dopingoftheproducts.

Collectneutronradiographsbyusingcoldneutronsource[21].

SDD(sample-detectordistance)andSSD(sample-sourcedistance)canbeselectedinfunctionof experimentalsetupandresolutionrequired[20].

(5)

Collectimagesindryconditiontovisualizethedistributionofproductinsidethenaturalstone; rememberthatneutronsaresensitivetopolymer/organic–basedproductscontaininghydrogen.

Forthefurthercorrectionsandquantitativeevaluation,collectdarkfieldandopenbeamimages. Acquirescansatregulartimeintervalduringcapillaryabsorptiontomonitorwaterbehaviorof consolidated stones; manual or automatic filling of water container can beused in function of experimentalsetup.Itisadvisabletocollectpreliminaryscansontestsamples,toevaluatethespeed oftheobservedprocessandassesthebesttimeintervalstoapply.

Ideally, capillary tests might be performed until saturation; however, carefully consider the possibleevaporationprocessesoccurringduringtheexperiments,especiallyiftheyarecarriedoutin environmentalconditions(TC.RH%).Afterthesepreliminaryevaluations,selectfixedtimeintervals andamaximummonitoringtimeforallthestonesubstratesandallthestudiedproductsallowingthe successivecomparisonevaluation.

Aquantificationofwatercontentcanbeobtainedbyperformingcalibrationmeasurementsatthe beginningofyourexperiments[22].

Processimagesfirstlybycorrectingandnormalizingbydarkfieldandopenbeamimages.Quantify watercontentdistributionaccordingtoKimetal.[23]anddeterminesorptivityparameter(B)[24] fromtheradiographs.

Smallangleneutronscattering

Usesectionsofuntreatedandtreatedsamples(alsobyusingdifferenttreatmentmethods)which thickness avoids multiple scatteringeffects (usually, < 1mm). Select Q ranges as a function of experimentalsetupandresolutionrequiredintermofscalerangetoinvestigate.

Themethodallowstoobtaininformationaboutthesize,thenumberdensityandthecorrelation betweencomponentsofasample,especiallylookingatpore-airinterfaces.Inthisprospective,the existence of different arrangements inside the porous structure of the solid matrix can be demonstrated,evaluatinghowtheoccurrenceofproductsmodifythepore-airinterfaceofthepore system inthestudiedsubstrate.The measuredparameter(i.e.Q(I))hasinfact relationwiththe formalismassociatingroughnessandfractaldimensionofasurface.Inthisprospective,byusingthe followingcorrelationIðQÞ/Qð6DsÞ theroughnessoftheporessurfaceintermsofsurfacefractal

dimension Ds [25] canbe determined and obtained values ondifferent treated samplescan be comparedtoevaluateefficacyinpenetrationofproductsaswellastheassessmentofhomogenous productlayersontoporesurfaces.Toobtainnumericalparameters,correcttwo-dimensionalintensity distributions for the background and normalize by measuring the incident beam intensity, transmission,andsamplethicknessfromtheI(Q)distributions.Then,determinefractaldimension foreachanalysedspecimen

Incorporationoftheresults

Changesinporestructure:

m

-CTvsMIPvswaterabsorptionvsSANS

Evaluatedifferencesin termof porosityand poreradiusdetermined byMIP,

m

-CTand water absorption.Compareresultstakinginconsiderationdiscrepanciesamongthemethods[12].

IntegrateMIP,

m

-CTandSANSdatatoevaluateporestructurecharacteristics(beforeandafter conservativetreatments)intherangefromnanometertomillimeter.

Waterbehavior:Absorptiontestsvsneutronimaging

Quantifywaterabsorptionchangesbygravimetrictests;evaluate sorpivityandquantifywater contentatsubsequenttimestepfromneutronimages.Compareresultsanddescribewaterbehavior, and possiblepreferentialpathwayinwaterabsorptiondue todistributionof consolidantinpore network.

(6)

Penetrationdepth:DRMSvsneutronimagingvs

m

-CTvsSANS

Compareobtainedresultsobtainedbydrillingresistancemeasurementsystem withimagescollected indryconditionbyneutronsource;takeadvantagefromvisualizationofproductdistributiontoexplain possiblediscrepanciesinindirectDRMSvalues.Use

m

-CT3Dreconstructionstovisualizein3Dthe productdistribution,improvinginformationobtainedbyDRMSandneutronimaging.

Finally, evaluatethesmallscalestructuralchangesandpenetrationinnano-sizedpores onthe basisoffractaldimensiondeterminedbyQ(I)scatteringdata.Rememberthatideallythepresenceof productsatpore-airinterfaceshoulddetermineasmoothingofporesurface,withaconsequential changeinfractaldimensioncalculatedrespecttountreatedsamples.

Methodvalidation

Inordertovalidatetheproposedroutine,wepresentanexampleappliedonhighporouslimestone. Thecompletecharacterizationofthestone,thedescriptionoftestedproductsaswelltheevaluationof theirsuitabilityandcompatibilitywithsubstrateisoutofthescopeofthepresentpaper;detailsabout stone,consolidantsandefficacyofproductsarereportedin[17].Briefly,thestoneusedforconsolidating testexhibitsaporosityofabout27%,withatotalporevolumeof0.14cm3g1andamodalporeradiusof about 8.5

m

m. Compositionally, it is constitutes mainly by calcite, with low amount of dolomite; the stone suffersmainlyofgranulardisintegration,forwhichitrequiresconsolidationactions.Theusedproducts consistin newhybrids formulationscustomizedforculturalheritageconservation;theyincludea patented consolidant modified by amine to promote interaction with limestone and inorganic commercialproductswhichshrinkageprocesswasimprovedbytheadditionoforganicchains.

In thecasestudy,waterabsorption,mercuryintrusionporosimetry,and

m

CTmethods offered togetheranoverviewonthechangesinporestructureofthestudiedstoneintherange0.007–200

m

m after the application of consolidating products. They provided consistent results, even if some discrepanciesduetotheintrinsicdifferencesamongtheappliedmethodswerehighlighted.

Neutronimagingwasdemonstratedasapowerfultechniqueforinvestigatingthepresenceandthe distributionofproductsintothestone,evenifpossiblelimitsduetothelowinteractionbetween neutron beam and polymeric consolidants were evidenced; the obtained data were indirectly confirmedbymicrodrilling,indicatingaverysharpincreaseoverthefirstmillimetersunderneaththe surface. As regards water behavior, neutron imaging provided also measurements of thewater absorptiondynamic,quiteinaccordancewithgravimetrictests;advantageswererepresentedbythe possibilityto visualizethe waterdistribution inside thestone, highlighting possiblepreferential uptake pathsdue to presence/absence of products.SANS data provided information onproduct penetrationinnano-pores.Thetechniquewas alsousefultoevidencesurfaceroughnesschanges relatedtotreatmentmethod;inthecasestudy,relevantchangeswereobservedforproductsapplied byimmersion,suggestingthatthismethodispreferablebecauseitensureshigherbondingofthe producttotheporesurfaceandthecompletepenetrationofconsolidantsintonano-sizedpores.

Overall,stone-productinteraction wasinvestigatedfrommicrometrictonanometricscale(byintegrating

m

-CT-MIP-waterabsorption-SANS),bondingabilitywasverifiedandevaluated(byintegratingDRMSvs neutronimagingvs

m

-CTvsSANS),waterbehaviorwasquantifiedandvisualized(byintegratingabsorption testsvsneutronimaging),andpreferableapplicationmethodswasassessed(bySANS).

Conclusions

Inthiswork,alaboratorymultiscalemethodologyforassessingconsolidant’sefficacyonnatural stoneshasbeenpresentedanddescribed.Theroutineishighlycustomizable;infact,setupofstandard andnon-destructivetestingcanbeestablishedcasebycasetakinginconsiderationsubstratefeatures, productscharacteristicsandpotentialofdifferentmethodstoinspectthewholerangeoftexturaland porosimetric properties. The methodology has been demonstrated to be suitable in better understandinginteractionsbetweenconsolidatingproductsandnaturalstones,supplying quantita-tivedataaboutporerangesinwhichconsolidantsinteractwithstone,andadequatelysupportingthe interpretationofmaterialbehaviorespeciallyagainstwater.

(7)

Themethodologicalroutinecanbeeasilyincorporatedintostudiesaboutconservativetreatments, claimingtheadvantagesinintegratingorevensubstitutingnondestructivetestingtoclassicalmethods. Acknowledgments

Thisresearchhasbeensupportedby:UniversityfundsbestowedbyDept.ofBiological,Geological and EnvironmentalSciences of theUniversity ofCatania, Universityfunds bestowedby Dept. of ChemistryoftheUniversityofParma,andFinancingFundofbasicresearchactivities(FFABR)ofMIUR. References

[1]M.Ban,A.Baragona,E.Ghaffari,J.Weber,A.Rohatsch,Artificialagingtechniquesonvariouslithotypesfortestingofstone consolidants,in:J.Hughes,T.Howind(Eds.),Sci.ArtAFutur.Stone.Proc.13thInt.Congr.Deterior.Conserv.Stone, UniversityoftheWestofScotland,Paisley,2016,pp.253–260.

[2]B.Lubelli,V.Cnudde,T.Diaz-Goncalves,E.Franzoni,R.P.J.vanHees,I.Ioannou,B.Menendez,C.Nunes,H.Siedel,M. Stefanidou,V.Verges-Belmin,H.Viles,Towardsamoreeffectiveandreliablesaltcrystallizationtestforporousbuilding materials:stateoftheart,Mater.Struct.51(2018)55,doi:http://dx.doi.org/10.1617/s11527-018-1180-5.

[3]E.Franzoni,G.Graziani,E.Sassoni,G.Bacilieri,M.Griffa,P.Lura,Solvent-basedethylsilicateforstoneconsolidation: influenceoftheapplicationtechniqueonpenetrationdepth,efficacyandporeocclusion,Mater.Struct.48(2015)3503– 3515,doi:http://dx.doi.org/10.1617/s11527-014-0417-1.

[4]UNI10921, Cultural Heritage – Natural and Artificial Stones –Water Repellents – Applicationon Samples and DeterminationoftheirPropertiesinLaboratory,(2001).

[5]UNIEN15886,ConservationofCulturalProperty–TestMethods–ColourMeasurementofSurfaces,(2010). [6]UNIEN15801,DeterminationofWaterAbsorptionbyCapillarityImmersion,(2010).

[7]NORMAL7/81NaturalStonesTestMethods:DeterminationofWaterAbsorptionbyTotalImmersion,CNR-ICR,1981. [8]NORMAL29/88DeterminationofDryingIndex,CNR-ICR,1988.

[9]E.Franzoni,E.Sassoni,G.W.Scherer,S.Naidu,Artificialweatheringofstonebyheating,J.Cult.Herit.14(2013)e85–e93, doi:http://dx.doi.org/10.1016/j.culher.2012.11.026.

[10]UNIEN12370,NaturalStonesTestMethods:DeterminationofResistancetoSaltCrystallization,(2001).

[11]J.D.Rodrigues,A.F.Pinto,D.R.daCosta,Tracingofdecayprofilesandevaluationofstonetreatmentsbymeansof microdrillingtechniques,J.Cult.Herit.3(2002)117–125,doi:http://dx.doi.org/10.1016/S1296-2074(02)01172-X. [12]V.Cnudde,A.Cwirzen,B.Masschaele,P.J.S.Jacobs,Porosityandmicrostructurecharacterizationofbuildingstonesand

concretes,Eng.Geol.103(2008)76–83.(Accessed16September2017) https://research.aalto.fi/en/publications/porosity-and-microstructure-characterization-of-building-stones-and-concretes(26bcc18e-bf24-4baf-8a5a-c4ae9ac863d9)/export.html. [13]T.Bultreys,M.A.Boone,M.N.Boone,T.DeSchryver,B.Masschaele,L.VanHoorebeke,V.Cnudde,Fastlaboratory-based micro-computedtomographyforpore-scaleresearch:illustrativeexperimentsandperspectivesonthefuture,Adv.Water Resour.95(2016)341–351,doi:http://dx.doi.org/10.1016/J.ADVWATRES.2015.05.012.

[14]V.Cnudde,M.Dierick,J.Vlassenbroeck,B.Masschaele,E.Lehmann,P.Jacobs,L.VanHoorebeke,Determinationofthe impregnationdepthofsiloxanesandethylsilicatesinporousmaterialbyneutronradiography,J.Cult.Herit.8(2007)331– 338,doi:http://dx.doi.org/10.1016/J.CULHER.2007.08.001.

[15]J.Dewanckele,T.DeKock,G.Fronteau,H.Derluyn,P.Vontobel,M.Dierick,L.VanHoorebeke,P.Jacobs,V.Cnudde,Neutron radiographyandX-raycomputedtomographyforquantifyingweatheringandwateruptakeprocessesinsideporous limestoneusedasbuildingmaterial,Mater.Charact.88(2014),doi:http://dx.doi.org/10.1016/j.matchar.2013.12.007. [16]V.Cnudde,J.P.Cnudde,C.Dupuis,P.J.S.Jacobs,X-raymicro-CTusedforthelocalizationofwaterrepellentsandconsolidants

insidenaturalbuildingstones,Mater.Charact.53(2004)259–271,doi:http://dx.doi.org/10.1016/J.MATCHAR.2004.08.011. [17]S.Raneri,G.Barone,P.Mazzoleni,I.Alfieri,L.Bergamonti,T.DeKock,V.Cnudde,P.P.Lottici,A.Lorenzi,G.Predieri,E.Rabot, J.Teixeira,Efficiencyassessmentofhybridcoatingsfornaturalbuildingstones:advancedandmulti-scalelaboratory investigation,Constr.Build.Mater.180(2018)412–424,doi:http://dx.doi.org/10.1016/J.CONBUILDMAT.2018.05.289. [18]V.Cnudde,M.N.Boone,High-resolutionX-raycomputedtomographyingeosciences:areviewofthecurrenttechnology

andapplications,Earth-Sci.Rev.123(2013)1–17,doi:http://dx.doi.org/10.1016/j.earscirev.2013.04.003.

[19]V.Cnudde,T.DeKock,M.Boone,W.DeBoever,T.Bultreys,J.VanStappen,D.Vandevoorde,J.Dewanckele,H.Derluyn,V. Cárdenes,L.VanHoorebeke,Conservationstudiesofculturalheritage:X-rayimagingofdynamicprocessesinbuilding materials,Eur.J.Mineral.27(2015)269–278,doi:http://dx.doi.org/10.1127/ejm/2015/0027-2444.

[20]E.Perfect,C.L.Cheng,M.Kanga,M.Z.Bilheux,J.Lamanna,M.J.Gragg,D.M.Wright,Neutronimagingofhydrogen-richfluids ingeomaterialsandengineeredporousmedia:areview,Earth-Sci.Rev.129(2014)120–135,doi:http://dx.doi.org/10.1016/ J.EARSCIREV.2013.11.012.

[21]J.Vlassenbroeck,V.Cnudde,B.Masschaele,M.Dierick,L.VanHoorebeke,P.Jacobs,Acomparativeandcriticalstudyof X-rayCTandneutronCTasnon-destructivematerialevaluationtechniques,in:R.Prikryl,B.Smith(Eds.),Build.StoneDecay fromDiagnosistoConserv.,TheGeologicalSocietyofLondon,Bath,UK,2007,pp.277–285.

[22]M.Kang,H.Z.Bilheux,S.Voisin,C.L.Cheng,E.Perfect,J.Horita,J.M.Warren,Watercalibrationmeasurementsforneutron radiography:applicationtowatercontentquantificationinporousmedia,Nucl.Instr.MethodsPhys.Res.Sect.AAccel. SpectrometersDetect.Assoc.Equip.708(2013)24–31,doi:http://dx.doi.org/10.1016/J.NIMA.2012.12.112.

[23]F.H.Kim,D.Penumadu,D.S.Hussey,Waterdistributionvariationinpartiallysaturatedgranularmaterialsusingneutron imaging,J.Geotech.Geoenviron.Eng.138(2012)147–154,doi:http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0000583. [24]J.R.Philip,Thetheoryofinfiltration,SoilSci.83(1957)345–358,doi:http://dx.doi.org/10.1097/00010694-195705000-00002. [25]D.BaleHarold,S.Paul,Small-angleX-ray-scatteringinvestigationofsubmicroscopicporositywithfractalproperties,Phys.

Riferimenti

Documenti correlati

The water path is very well known near the Škocjan cave where the water inflow from the Reka river and the rain fall are continuously monitored and also the karst conduits have

The consequence of such an increase of angle (Λ) is that the speed component (Vu) of the wing orthogonal to the said tangent at the leading edge in the considered point

Simultaneously we checked how semivariance analysis and Moran’s I could be applied for identifying zones and forms which supply solutes the stream in the agricultural catchment.. 2

It seems reasonable to require at least one single test of water temperature in fountain basin during period of high air temperatures to determine whether there is a risk

The highest concentration of nutrients was observed during snowmelt in the early spring period, while the lowest concentration was recorded during low water levels in

Discounted Payback Period for the investment involving DWHR unit(s) operating along with gas water heaters and p = 100 min is between almost 2 and more than 4 years. If

Rainwater collected from the roof covered with galvanized sheet was characterized by the lowest pH (about pH 6.0) and the lowest turbidity in relation to the water