• Non ci sono risultati.

CW-complex Nagata idealizations

N/A
N/A
Protected

Academic year: 2021

Condividi "CW-complex Nagata idealizations"

Copied!
23
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Advances

in

Applied

Mathematics

www.elsevier.com/locate/yaama

CW-complex

Nagata

idealizations

Armando Capassoa,Pietro De Poib, Giovanna Ilardic,∗

a

ScuolaPolitecnicaedelleScienzediBase, UniversitàdegliStudidiNapoli “FedericoII”,corsoProtopisaniNicolangelo70,Napoli,C.A.P.80146,Italy bDipartimentodiScienzeMatematiche,InformaticheeFisiche,Universitàdegli StudidiUdine,viadelleScienze206, Udine,C.A.P.33100,Italy

cDipartimentodiMatematicaedApplicazioni“R.Caccioppoli”,Universitàdegli StudidiNapoli“FedericoII”,viaCintia21,Napoli,C.A.P.80126,Italy

a r t i c l e i n f o a b s t r a c t

Articlehistory:

Received23June2020

Receivedinrevisedform25June 2020

Accepted25June2020 Availableonlinexxxx

MSC:

primary13A30,05E40

secondary57Q05,13D40,13A02, 13E10

Keywords:

Lefschetzproperties ArtinianGorensteinalgebra Nagataidealization CW-complex

Weintroduce aconstructionwhichallowsusto identifythe elements of the skeletons of a CW-complex P (m) and the monomialsinm variables.Fromthis,weinferthatthereisa bijectionbetweenfiniteCW-subcomplexesofP (m),whichare quotientsoffinitesimplicialcomplexes,andcertainbigraded standardArtinianGorensteinalgebras,generalizingprevious constructionsofFaridiandourselves.

Weapplythisto ageneralization ofNagataidealizationfor levelalgebras.Thesealgebras arestandard gradedArtinian algebras whose Macaulay dual generator is given explicitly as a bigraded polynomial of bidegree (1,d). We consider thealgebra associated to polynomials of thesame bidegree (d1,d2).

©2020TheAuthor(s).PublishedbyElsevierInc.Thisisan openaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

P.D.P.&G.I.aremembersofINdAM- GNSAGAandP.D.P.issupportedbyPRIN2017“Advancesin

ModuliTheoryandBirationalClassification”.

* Correspondingauthor.

E-mailaddresses:[email protected](A. Capasso),[email protected](P. De Poi),

[email protected](G. Ilardi).

https://doi.org/10.1016/j.aam.2020.102079

0196-8858/©2020TheAuthor(s). PublishedbyElsevierInc. ThisisanopenaccessarticleundertheCC BYlicense(http://creativecommons.org/licenses/by/4.0/).

(2)

0. Introduction LetX = V (f )⊂ PN

K beahypersurface,wheretheunderlyingfieldK hascharacteristic

0;theHessian determinantoff (which wecall theHessian off ortheHessianofX)is thedeterminant oftheHessian matrixof f .

Hypersurface with vanishing Hessian were studied for the first time in 1851 by O. Hesse; hewrote two papers([10,11]) accordingto which these hypersurfacesshouldbe necessarilycones.In1876GordanandNoether([7])provedthatHesse’sclaimistruefor N ≤ 3, anditisfalseforN ≥ 4.TheyandFranchettaclassifiedallthecounterexamples toHesse’sclaiminP4(see [7,3,4,6]).In1900,Perazzoclassifiedcubichypersurfaceswith

vanishing Hessianfor N ≤ 6 ([14]). This work wasstudied and generalizedin [5], and theproblem isstillopeninspacesofhigherdimension.

Hessians of higher degreewere introduced in [13] and used to controlthe so called Strong LefschetzProperties (forshort,SLP).TheLefschetzpropertieshaveattracteda great attentioninthe last years.Thebasic papersof the algebraic theory ofLefschetz properties were the original ones of Stanley [15–17] and the book of Watanabe and others [8].

AnalgebraictoolthatoccursfrequentlyinthesepapersistheNagataIdealization:it is atool toconvertany moduleM overa(commutative)ring(withunit)R toanideal ofanotherringRM.Thestartingpointistheisomorphismbetweentheidealizationof anidealI = (g0,. . . ,gn) ofK[u1,. . . ,um] anditslevelalgebrasee [8,Definition2.72].In

thisway,thenewringisaStandardGradedArtinianGorensteinAlgebra (SGAGalgebra, forshort). Anexplicitformula fortheMacaulaygeneratorf is:

f = x0g0+· · · + xngn∈ K[x0, . . . , xn, u1, . . . , um](1,d).

A generalizationofthisconstructionistoconsider polynomialsoftheform: f = xd0g0+· · · + xdngn ∈ K[x0, . . . , xn, u1, . . . , um](d,d+1);

thesearecalledNagatapolynomialsofdegreed.TheLefschetzpropertiesfortherelevant associated algebrasA,thegeometryofNagatahypersurfacesof degreed,theinteraction betweenthecombinatoricsoff andthestructureofA werestudiedin [1],wherethegi’s

are squarefreemonomials,usingasimplicialcomplexassociatedto f .

In this paper we use the CW-complexes, to study Nagata polynomials of bidegree (d1,d2).We study theHilbertvectorand we giveacomplete descriptionofthe idealI

foreverycase,alsoifthegi’sarenotsquarefreemonomials.

The geometry of the Nagata hypersurface is very similar to the geometry of the hypersurfaceswithvanishing Hessian.

Moreprecisely,weintroduceanewConstruction3.10whichallowsustoidentifyeach (monic) monomial of degree d in m variables with an element of the (d− 1)-skeleton of aCW-complex thatwe call P (m).This CW-complex is constructedby generalizing

(3)

the construction introduced in[2] which associates to a(monic) square-free monomial inm variablesof degreed a unique(d− 1)-cellof thesimplexofdimensionm− 1,and vice versa. We consider an h-power uh

i as a product of h linear forms: ˜u1· · · ˜uh; this

correspondstoa(h− 1)-simplex,andweidentifyalltheδ-faces,withδ < h− 1,ofthis simplexto just oneδ-face, recursively,starting from δ = 0 to δ = h− 2: forδ = 0 we identify all the points to one, then if δ = 1 we obtain a bouquet of h-circles, and we identify allthese circles, and so on. Generalizing this construction to a general monic monomialandattachingthecorrespondingCW-complexesalongthecommonskeletons, weobtainP (m).

Thepaperisorganizedasfollows:inSection1werecallsomegeneralitiesaboutgraded ArtinianGorensteinAlgebrasandLefschetzProperties,withtheirconnectionswiththe vanishingsofhigherorderHessians.InSection2werecallwhattheNagataidealization is,whatweintendforahigherNagataidealizationandweshowitsconnectionwiththe Lefschetz Properties for bihomogeneous polynomials.Section3 isthe core ofthis arti-cle.After recalling generalities about bigradedalgebras and thetopological definitions thatweneed, we givetheconstruction oftheCW-complex P (m);then, weapply it to the Nagata polynomials (Definition 2.5) inTheorems 3.16 and 3.18, which give Theo-rem3.16aprecisedescriptionoftheArtinianGorensteinAlgebraassociatedtoaNagata polynomialand Theorem 3.18the generatorsof the annihilatorof the polynomial.We show that from these theorems a generalization of the principal results of [1] follows: Corollaries3.17and3.19.

WethinkthatthestudyoftheNagatahypersurfacescanbe—amongotherthings—a usefultoolfortheclassificationofthehypersurfaceswithvanishing HessianinPn.

Notations.Inthisthepaperwefixthefollowing notationsandassumptions: • K isafieldofcharacteristic 0.

• R := K[x0,. . . ,xn] willalwaysbetheringofpolynomialsinn+1 variablesx0,. . . ,xn.

• Q:= K[X0,. . . ,Xn] will bethe ringofdifferentialoperators ofR,where Xi= ∂xi

. • Thesubscript ofagradedK-algebra willindicatethepartof thatdegree;Rd isthe

K-vector space of the homogeneous polynomials of degreed, and the K-vector

spaceofthehomogeneousdifferentialoperators oforderδ. 1. GradedArtinianGorensteinalgebrasandLefschetzproperties 1.1. Graded Artinian Gorensteinalgebrasare Poincaré algebras

Definition 1.1. Let I be a homogeneous ideal of R such that A = R/I =

d



i=0

Ai is a

graded ArtinianK-algebra, where Ad = 0. The integerd isthe socle degree of A. The

(4)

Hilb(A)= (1,h1,. . . ,hd) is called Hilbert vectorof A. Since I1= 0, thenh1 = n+ 1 is

called codimensionof A.

Wealsorecallthefollowing definitions.

Definition1.2.AgradedArtinianK-algebraA=i=0d AiisaPoincaréalgebra if·: Ai× Ad−i→ Ad isaperfect pairing fori∈ {0,. . . ,d}.

Definition1.3.AgradedArtinianK-algebraA isGorenstein if(andonlyif)dimKAd= 1

and itisaPoincaréalgebra.

Remark 1.4. The Hilbert vector of a Poincaré algebra A is symmetric with respect to hd

2

,thatisHilb(A)= (1,h1,h2,. . . ,h2,h1,1). 

1.2. GradedArtinian Gorenstein quotientalgebrasofQ

Foranyd≥ δ ≥ 0 thereexistsanaturalK-bilinearmapB : Rd× Qδ → Rd−δ defined

bydifferentiation

B(f, α) = α(f )

Definition1.5. LetI =f1,. . . ,f —wheref1,. . . ,f areformsinR—beafinite

dimen-sionalK-vector subspaceofR.Theannihilatorof I in Q is thefollowing homogeneous ideal

Ann(I) :={α ∈ Q | ∀f ∈ I, α(f) = 0}.

Inparticular,ifI isgeneratedbyahomogeneouselementf ,wewriteAnn(I)= Ann(f ). LetA= Q/Ann(f ),wheref ishomogeneous.ByconstructionA isastandardgraded ArtinianK-algebra;moreoverA isGorenstein.

Theorem 1.6 ([12], §60ff, [13], theorem 2.1 ).Let I be ahomogeneous ideal of Q such thatA= Q/I isastandardArtiniangradedK-algebra.ThenA isGorensteinifandonly if thereexistd≥ 1 and f ∈ Rd suchthat A∼= Q/Ann(f ).

Remark1.7.Usingthenotationas above,A iscalledtheSGAGK-algebraassociatedto f .Thesocledegreed ofA isthedegreeoff andthecodimensionisn+ 1,sinceI1= 0.

1.3. LefschetzpropertiesandtheHessiancriterion

LetA=

d



i=0

(5)

Definition1.8.Ifthere existsanL∈ A1 suchthat:

(1) Themultiplication map·L: Ai→ Ai+1 isofmaximalrankforalli,then A hasthe WeakLefschetz Property (WLP,forshort);

(2) The multiplicationmap ·Lk: A

i → Ai+k isofmaximal rankforalli andk, thenA

hastheStrongLefschetz Property (SLP,forshort);

Definition1.9.LetA betheSGAGK-algebra associatedto anelementf ∈ Rd, andlet Bk={αj ∈ Ak | j ∈ {1,. . . ,σk}} beanorderedK-basisofAk.Thek-th Hessianmatrix

off withrespectto Bk is

Hesskf = (αiαj(f ))σi,j=1k .

Thek-thHessian off withrespect toBk is

hesskf = det 

Hesskf 

.

Theorem 1.10([18] Theorem 4). Anelement L = a0X0+· · · + anXn ∈ A1 is a strong

LefschetzelementofA if andonlyifhesskf(a0,. . . ,an)= 0 forallk∈

 0, . . . , d 2 .In particular,if forsomek onehas hesskf = 0,thenA does nothave SLP.

2. HigherorderNagataidealization 2.1. Nagataidealizations

Definition 2.1.Let A be a ring and let M be an A-module. The Nagata idealization A M of M istheringwithunderlyingset A× M andoperationsdefinedasfollows:

(r, m) + (s, n) = (r + s, m + n), (r, m)· (s, n) = (rs, sm + rn). 2.1.1. BigradedArtinian Gorenstein algebras

LetA=

d



i=0

Ai be aSGAGK-algebra,itis bigraded if:

Ad= A(d1,d2)∼= K, Ai= i



h=0

A(i,h−i) for i∈ {0, . . . , d − 1},

sinceA isaGorensteinring,andthepair(d1,d2) issaidthesoclebidegreeof A.Inthis

casewecallA anSBAG algebra.

Remark 2.2.By Definition 1.3, Ai ∼= A∨d−i = HomK(Ad−i,K) and since the duality

(6)

Wefix notationasinTheorem 2.4:

• S := R⊗KK[u1,. . . ,um]= K[x0,. . . ,xn,u1,. . . ,um] is thebigradedringof

polyno-mialsinm+ n+ 1 variablesx0,. . . ,xn,u1,. . . ,um;

• WehavechosenthenaturalbigradingofS:xihasbidegree(1,0) andujhasbidegree

(0,1);

• DefineS(d1,d2)tobetheK-vectorspaceofbihomogeneouspolynomialsf ofbidegree

(d1,d2);thatis, f canbewrittenas

p

i=0

aibi,where ai∈ Rd1 = K[x0,. . . ,xn]d1 and bi ∈ K[u1,. . . ,um]d2.

• T := Q⊗K K[U1,. . . ,Um] = K[X0,. . . ,Xn,U1,. . . ,Um] is the (bigraded) ring of

differential operators of S, where Xi = ∂xi and Uj = ∂uj ; Xi has bidegree (1,0)

andUj hasbidegree (0,1).

A homogeneousidealI ofS isabihomogeneousideal if:

I =



i,j=0

I(i,j), where∀i, j ∈ N≥0, I(i,j)= I∩ S(i,j).

Letf ∈ S(d1,d2),thenI = Ann(f ) isabihomogeneousidealandusingTheorem1.6,A= T /(Ann(f )) isaSBAGK-algebraofsoclebidegree(d1,d2) (andcodimensionm+ n+ 1).

Remark2.3.Usingtheabovenotations,onehas:

∀i > d1, j > d2, I(i,j)= T(i,j).

Indeed,forallα∈ T(i,j)with i> d1,j > d2,α(f )= 0;asaconsequence:

∀k ∈ {0, . . . , d1+ d2}, Ak =  0≤i≤d1 0≤j≤d2 i+j=k A(i,j).

Moreover, the evaluation map α∈ T(i,j) → α(f)∈ A(d1−i,d2−j) provides the following short exactsequence:

0 I(i,j) T(i,j) A(d1−i,d2−j) 0.  (1) Thefollowingtheorem,whichlinksNagataidealizationswithbihomogeneous polyno-mials, holds.

Theorem 2.4 ([8], Theorem 2.77). Let S := K[u1,. . . ,um] and S := R⊗KS be rings

(7)

differential operators, where Xi = ∂xi and Uj = ∂uj . Let g0,. . . ,gn be homogeneous elementsof S ofdegree d,letI betheT-submoduleofS generatedby{∂(gi)∈ R | ∂ ∈ T,i∈ {0,. . . ,n}} and letA := T/Ann(I). Define f = x0g0+· · · + xngn ∈ R, itis a bihomogeneous polynomial of bidegree(1,d), andlet A:= T /Ann(f ).Considering I as anA-module,A I ∼= A.

2.2. Lefschetzpropertiesforhigher Nagataidealizations Definition2.5.A bihomogeneouspolynomial

f = n i=0 xd1 i gi ∈ S(d1,d2)

is called aCW-Nagata polynomial of degree d1 ≥ 1 if gi ∈ K[u1,. . . ,um], i = 0,. . . ,n,

arelinearlyindependentmonomialsofdegreed2≥ 2.

Remark2.6.Oneneedsn≤

m + d2− 1

d2



otherwisethegi cannotbelinearly

indepen-dent.

Fromnowon,we assumethatn satisfiesthiscondition. Wewillneedthefollowingpropositions.

Proposition 2.7 ([4] Proposition 2.5).Let n+ 1 ≥ m ≥ 2,d2 > d1 ≥ 1 and s >

m + d1− 1

d1



; for any j ∈ {1,. . . ,s}, let fj ∈ S(d1,0), gj ∈ S(0,d2). Then the form f = f1g1+· · · + fsgs ofdegree d1+ d2 satisfies

hessd1 f = 0;

that is,A= T /Ann(f ) doesnothave theSLPcondition.

Proposition2.8([1] Proposition 2.7).Letn+ 1≥ m≥ 2,d1≥ d2.ThenL=

n

i=0 Xi isa

WeakLefschetzElement;that is, A= T /Ann(f ) has theWLPcondition. 3. CW-complexNagataidealizationofbidegree(d1,d2)

LetS andT beas intheprevioussubsection.

Definition3.1.A bihomogeneousCW-Nagatapolynomial

f = n i=0 xd1 i gi ∈ S(d1,d2)

(8)

iscalledasimplicialNagatapolynomialof degreed1ifthemonomialsgi aresquarefree.

Remark3.2.Oneneedsn≤

m d2



otherwisethegi cannot besquarefree.

3.1. CW-complexesandbihomogeneouspolynomials 3.1.1. Abstractfinite simplicialcomplexes

Definition 3.3. LetV = {u1,. . . ,um} be afinite set. Anabstract simplicial complex Δ with vertexset V isasubsetof 2V suchthat

(1) ∀u∈ V ⇒ {u}∈ Δ,

(2) ∀σ ∈ Δ,τ  σ,τ = ∅⇒ τ ∈ Δ.

Theelements σ ofΔ arecalled faces orsimplices;aface withq + 1 verticesiscalled q-face orfaceofdimensionq andonewritesdim σ = q;themaximalfaces(withrespect to theinclusion) arecalled facets;ifall facetshavethesamedimensiond≥ 1 then one saysthatΔ isof puredimensiond.ThesetΔk offacesofdimensionat mostk iscalled k-skeleton of Δ.2V is calledsimplex (ofdimensionm− 1).

Remark3.4.

(1) (cfr. [1, Remark 3.4]) There is a natural bijection, introduced in [2], between the squarefreemonomials,ofdegreed,inthevariablesu1,. . . ,umandthe(d− 1)-faces

ofthesimplex2V,withvertexsetV ={u1,. . . ,um}.Infact,asquarefreemonomial g = ui1· · · uid corresponds to the subset {ui1,. . . ,uid} of 2

V. Vice versa, to any

subsetF ofV withd elementsoneassociatesthefreesquaremonomialmF =

 ui∈F ui ofdegreed. (2) Letf = n i=0 xd1

i gi ∈ S(d1,d2)be asimplicialNagatapolynomial;byhypothesisthere isbijectionbetweenthemonomialsgi andtheindeterminatesxi.From this,wecan

associatetof asimplicialcomplexΔf withverticesu1,. . . ,umwherethefacetwhich

corresponds togi isidentifiedwith xdi1. 3.1.2. CW-complexes

Forthetopologicalbackground, wereferto [9]. Westartbyfixingsomenotations. Definition3.5.Letk∈ N≥1.Atopologicalspaceekhomeomorphictotheopen(unitary)

ball {(x1,. . . ,xk)∈ Rk | x12+· · · + x2k < 1} of dimensionk (withthe naturaltopology

induced by Rk+1) is called a k-cell. Its boundary, i.e. the (k− 1)-dimensional sphere will be denoted bySk−1 ={(x1,. . . ,xk)∈ Rk | x21+· · · + x2k = 1} and itsclosure, i.e.

(9)

theclosed (unitary) k-dimensionaldisk will be denotedby Dk := {(x1,. . . ,xk)∈ Rk | x21+· · · + x2k≤ 1}.

Wereallthefollowing

Definition3.6. ACW-complex isatopologicalspaceX constructedinthefollowingway: (1) There exists afixed and discrete set of points X0 ⊂ X,whose elements are called

0-cells;

(2) Inductively,thek-skeletonXkofX isconstructedfromXk−1byattachingk-cellsek α

(with index set Ak)viacontinuous maps ϕαk: Sαk−1 → Xk−1 (the attachingmaps).

This means thatXk is aquotient of Yk = Xk−1 

α∈Ak

Dαk under theidentification x ∼ ϕα(x) for x ∈ ∂Dαk; the elements of the k-skeleton are the (closure of the)

attached k cells; (3) X = 

k∈N≥0

Xk andasubsetC ofX isclosedifandonlyifC∩ Xk isclosed forany k (closed weaktopology).

Definition3.7.AsubsetZ of aCW-complexX isaCW-subcomplex ifitistheunionof cellsofX,suchthattheclosure ofeachcellisinZ.

Definition3.8.A CW-complexisfinite ifitconsists ofafinitenumberofcells. Wewillbeinterestedmainlyinfinite CW-complexes.

Example3.9 (Geometricrealization of an abstract simplicial complex).It isan obvious factthattoany simplicialcomplexΔ onecanassociateafinite CW-complexΔ via the geometricrealization ofΔ asasimplicialcomplex(asatopologicalspace)Δ. 

Inwhatfollows wewill always identifyabstract simplicialcomplexes withtheir cor-respondingsimplicialcomplexes.

Construction 3.10.InRemark 3.4, we saw that to any degreed square-free monomial ui1· · · uid∈ K[u1,. . . ,um]donecanassociatethe(d−1)-face{ui1,. . . ,uid} oftheabstract

(m− 1)-dimensionalsimplexΔ(m):= 2{u1,...,um},andviceversa:ifwecall

ρd:={f ∈ K[u1, . . . , um]d| f = 0 is a square-free monic monomial} D(m)d:= Δ(m)d\ Δ(m)d−1,

wehaveabijection

(10)

ui1· · · uid → {ui1, . . . , uid} .

Alternatively, we can associate to ui1· · · uid the element of the (d − 1)-skeleton

{ui1, . . . , uid} ∈ Δ(m) d−1 ,so wehaveabijection σd: ρd→ Δ(m) d−1 ui1· · · uid→ {ui1, . . . , uid}

between the square-free monomials and the (d− 1)-faces of the (topological) simplex 

Δ(m).

Using CW-complexes,we willextendthis constructionto thenon-square-free monic monomials.Weproceedasfollows.Letg := uj1

1 · · · ujmmbeagenericdegreed:= j1+· · ·+

jmmonomial.Considerthefollowingfiniteset:W :=



u11, . . . , uj1

1 , . . . , u1m, . . . , ujmm

 ,and ifΔ(d):= 2W istheabstractassociated (finite)simplex,we considerthecorresponding

(topological)simplex(whichisaCW-complex)Δ(d).

If jk ≤ 1 we do nothing, while ifjk ≥ 2, we recursivelyidentify, for varying from

0 to jk− 2, the -facesofthesubsimplex

 2  u1 k,...,ujkk 

⊂ Δ(d):start with = 0, andwe identifyallthejk pointstoonepoint—callituk.Then,for = 1,weobtainabouquetof

jk+1

2



circles,andweidentifythem injustonecircleS1passingthroughu

k,andsoon, upto thefacetsof2   u1 k,...,ujkk 

,i.e.itsjk+ 1 (jk− 1)-faces,which,bytheconstruction,

havealltheirboundaryincommon,andweidentifyallofthem.

Make allthese identifications for all j1,. . . ,jm; in this way, we obtain afinite

CW-complexX = Xgofdimensiond− 1,with0-skeletonX0={ui| ji= 0}⊂ {u1,. . . ,um},

obtainedfrom the(d− 1)-dimensionalsimplexΔ(d), withtheaboveidentification. Inthisway,weobtainafiniteCW-complexX = Xgofdimensiond−1,with0-skeleton X0={ui| ji= 0}⊂ {u1,. . . ,um},obtainedfromthe(d− 1)-dimensionalsimplexΔ(d),

with the above identification. Under this identification each closure of a (jk − 1)-cell

 u1 k, . . . , u jk k 

becomesapoint ifjk = 1, acircleS1 ifjk = 2,atopological spacewith

fundamentalgroupZ3ifjk = 2 (i.e.itisnotatopologicalsurface),etc.Wewilldenote

these spacesinwhatfollowsbyjk−1

k ,i.e. jk−1

k correspondstou jk

k ,and viceversa:

Proposition 3.11.Everypowerin uj1

1 · · · ujmm (uptoa permutationofthevariables) cor-responds toajk−1

k ,andviceversa.

WecanseeXg asa(d− 1)-dimensionaljoin betweenthesespacesjkk−1 andthespan

of the 0-skeleton X0 i.e. the simplex S

X ⊂ Δ(m) associated to it; SX = Δ( ), where = #X0≤ m.

(11)

Remark 3.12.This last observation suggests we consider an alternative construction: recallthatthecellulardecomposition ofthereal projective spaceis obtainedattaching asinglecellateachpassage;indeed,Pn

R isobtainedfrom PRn−1 byattachingonen-cell

withthequotientprojectionϕn−1: Sn−1→ PRn−1 as theattaching map. Then,toeachpowerujk

k weassociatearealprojectivespaceofdimensionjk−1 Pkjk−1

andimmersionsik−1: Pjk−1

k → P jk

k ;soPk0= uk∈ Pkjk−1.

Finally,tog = uj1

1 · · · ujmm weassociatethejoinbetweentheP jk−1

k andtheSXdefined

above;ifwecallthisjoinbyXg,wecanproceedinanequivalentway,bychangingjkk−1

withPjk−1

k . 

It is clear how to glue two of these finite CW-complexes—say X = Xuj1

1 ···ujmm and

Y = Yuk1

1 ···ukmm , of degree d= j1+· · · + jm and d

 = k

1+· · · + km—along Δ(m): we

simplyattachX andY viatheinclusionmapsSX⊂ Δ(m) andSY ⊂ Δ(m), whereSX

andSY arethesimplexes associatedto,respectively,X andY .

Finally, taking allthese finite CW-complexestogether, we obtain aCW-complex P inthefollowing way:

C :=



uj11 ···ujmm ∈K[u1,...,um]

Xuj1

1 ···ujmm P (m) := C/∼

where∼ istheequivalencerelationinducedbytheabovegluing.

Proposition3.13.Thereisbijectionbetweenthemonomialsofdegree d inK[u1,. . . ,um] andtheelements ofthe(d− 1)-skeleton of P (m).

Inotherwords,ifwedefine

ρd:={f ∈ K[u1, . . . , um]d| f = 0 is a monic monomial}

wehaveabijection,using theabovenotation

σd: ρd → P (m)d−1 uj1

1 · · · ujmm → Xuj11 ···ujmm .

Proposition3.14.Xuj1

1 ···ujmm ⊂ Xuk11 ···ukmm ifandonly ifu

j1 1 · · · ujmm divides u k1 1 · · · ukmm. Letf = n i=0 xd1

i gi ∈ S(d1,d2)beaCW-Nagatapolynomial;byhypothesisthereis bijec-tionbetweenthemonomialsgi andtheindeterminatesxi.Fromthis,wecanassociateto f afinite(d2−1)-dimensional,CW-subcomplexofP (m),Δf wherethe(d2−1)-skeleton

isgivenbytheXgi’sgluedtogetherwiththeaboveprocedure.EachXgicanbeidentified

withxd1

(12)

Thepreviousconstructiongeneralizestheanalogousonegivenin [1]. 3.2. TheHilbert functionofSBAG algebras

Thefirstmain resultofthispaperisthefollowinggeneraltheorem. Remark3.15.Inordertostateit,weobserve thatthecanonicalbasesof

S(d1,d2)= K[x0, . . . , xn]d1⊗ K[u1, . . . , um]d2 and

T(d1,d2)= K[X0, . . . , Xn]d1⊗ K[U1, . . . , Um]d2 given bymonomialsaredualbaseseachother, i.e.

Xk0 0 · · · XnknU 1 1 · · · Umm(x i0 0 · · · xinnu j1 1 · · · ujmm) = δ i0,...,in,j1,...,jm k0,...,kn,1,...,m where i0+· · · + in = k0+· · · + kn = d1, j1+· · · + jm = 1 +· · · + m = d2 and δi0,...,in,j1,...,jm

k0,...,kn,1,...,m istheKroneckerdelta.

This simpleobservation allows us to identify—given aCW-Nagata polynomialf = n

r=0 xd1

r gr ∈ S(d1,d2)— the dual differential operator Gr of the monomial gr—i.e. the monomial Gr ∈ K[U1,. . . ,Um]d2 such that Gr(gr) = 1 and Gr(g) = 0 for any other monomial g ∈ K[u1,. . . ,um]d2—with the sameelement of the (d2− 1)-skeleton of Δf associatedtogr.Inotherwords,weassociatetogr= u1j1· · · ujmm andtoGr= U1j1· · · Umjm

theCW-subcomplexofΔf ⊂ P (m),Xuj1 1 ···ujmm . Theorem 3.16. Let f = n r=0 xd1 r gr ∈ R(d1,d2), with gr = u j1 1 · · · ujmm, be a CW-Nagata polynomialof(positive)degreed1,wheren≤

m d2



,letΔf betheCW-complexassociated to f andletA= Q/Ann(f ). Then

A = d=d1+d2 h=0 Ah where Ah= A(h,0)⊕ · · · ⊕ A(p,q)⊕ · · · ⊕ A(0,h), p≤ d1, q≤ d2, Ad= A(d1,d2) and moreover,∀j ∈ {0,1,. . . ,d2},

(13)

dim A(i,j)= ai,j = ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ fj i = 0 n r=0 fj,r i∈ {1, . . . , d1− 1}, fd2−j i = d1 where:

• fj isthenumberoftheelementsofthe(j− 1)-skeletonoftheCW-complexΔf (with theconvention that f0= 1);

• fj,r is the number of theelements of the (j− 1)-skeleton of the CW complex XGr

(with theconvention thatf0,r= 1,sothat dim A(i,0)= n+ 1).

Moreprecisely,abasisforA(i,j),∀j ∈ {0,1,. . . ,d2}, isgivenby

(1) If i = 0, 1,. . . ,Ωfj}, where any Ωs := U

s1

1 · · · Umsm, with s1+· · · + sm = j, is associatedtotheelement Xus1

1 ···usmm ofthe(j− 1)-skeletonof Δf;

(2) Ifi= 1,. . . ,d1− 1,  Ωi,s1,...,sm s  s∈{0,...,n} sk≤,rk,k=1,...,m ksk=j where Ωi,s1,...,sm s := Xsi· U1s1· · · Umsm isassociated totheelementXus1

1 ···usmm ofthe(j− 1)-skeletonof Xgs;

(3) If i = d1,  Xd1 0 Ω1(f ), . . . Xndfd2−j(f )  , where Ω1, . . . Ωfd2−j 

is the basis for A(0,d2−j) ofcase(1).

In the cases (1) and (2) thebasis are given by monomials, in the case (3), in general, not.

Proof. Wedividethe proofinto computing thedimensionof A(i,j) andfind abasisfor

it,asi varies:

i = 0: A(0,0)∼= K.

Then,bydefinition,ifj ∈ {1,. . . ,d2},A(0,j) isgenerated bythe(canonical

images of the)monomials Ωs∈ Qj = K[U1,. . . ,Um]j ∼= Q(0,j) thatdo not

annihilatef .Thismeansthat,ifwewrite

Ωs= U1s1· · · Umsm s1+· · · + sm= j,

there exists an rs ∈ {0,. . . ,n} such thatgrs = u

s1

1 · · · usmmgrs, where g

 rs

Rd2−j isa(nonzero)monomial; thismeansthatXus11 ···usmm isanelement of

the(j− 1)-skeletonoftheCW-complexΔf byProposition3.14.

We need to prove that these monomials are linearly independent over K: let 1,. . . ,Ωfj} be a system of monomials of Q(0,j), where any Ωs =

Us1

(14)

−1)-skeleton of the CW-complex Δf; take a linear combination of them and apply ittof : 0 = fj s=1 csΩs(f ) = fj s=1 cs n r=0 xd1 r Ωs(gr) = n r=0 xd1 r fj s=1 csΩs(gr).

Bythelinearindependenceofthexd1 r ’s fj

s=1

csΩs(gr) = 0, ∀r ∈ {0, . . . , n}. (2)

By hypothesis, for any index s there exists an rs ∈ {0,. . . ,n} such that

Ωs(grs)= grs ∈ Rd2−j\ {0},then foranyindex s onehascs= 0, sincethe linearcombinationsin(2) areformedbylinearlyindependentmonomials(gr

isfixed ineachlinearcombination!).Inotherwords,dim A(0,j) = fj.

0 < i < d1: ObservethatXaXb(f )= 0 ifa= b.ThereforeA(i,j)isgeneratedbytheonly

(canonical images of) the monomials Ωi,s1,...,sm

s := XsiU s1

1 · · · Umsm ∈ Q(i,j),

with s1+· · · + sm= j, thatdo notannihilate f . Inparticular, abasis for A(i,0) is givenby X0i,. . . ,Xni and wecansuppose from now onthatj > 0.

Since

Ωi,s1,...,sm

s (f ) = xds1−i(U1s1· · · Umsm) (gs),

inordertoobtainthatthisisnotzero,wemusthavethatgs= us11· · · usmmgs,

where gs ∈ Rd2−j is anonzeromonomial. This meansXus11 ···usmm ⊂ Xgs by

Proposition3.14.

Asabove,wecanprovethatthese monomialsarelinearlyindependentover K:let  Ωi,s1,...,sm s  s∈{0,...,n} sk≤,rk,k=1,...,m ksk=j

be asystemofmonomialsofQ(i,j),whereanyΩsi,s1,...,sm = Xsi· U1s1· · · Umsm

is associatedto theelementXus1

1 ···usmm ofthe(j− 1) skeletonof Xgs ⊂ Δf,

i.e.Xus1

1 ···usmm ⊂ Xgs ⊂ Δf byProposition3.14.

Take alinearcombinationofthem andapplyittof :

0 = s∈{0,...,n} sk≤,rk,k=1,...,m ksk=j ci,s1,...,sm s Ωi,ss 1,...,sm(f ) = n s=0 xd1−i sk≤,rk,k=1,...,m ksk=j ci,s1,...,sm s gi,ss 1,...,sm (3)

(15)

where gi,s1,...,sm

s ∈ Rd2−j is the nonzero monomial such that gs = us1

1 · · · usmmgsi,s1,...,sm.From (3) wededuce,as intheprecedingcase,that

sk≤,rk,k=1,...,m ksk=j

ci,s1,...,sm

s gsi,s1,...,sm = 0 s = 0, . . . , n; (4)

asbefore, givenonechoiceofs1,. . . ,sm there existsans∈ {0,. . . ,n} such gi,s1,...,sm

s (f ) isanonzeromonomial,andthe(nonzero)gsi,s1,...,sm’sin(4) are

linearlyindependent sinceareobtainedbyafixed gs.

i = d1: By duality, see Remark2.2, A(d1,j) ∼= A∨(0,d2−j) so dim A(d1,j) = fd2−j. To findabasisforA(d1,j),weconsidertheexactsequence(1) givenbyevaluation atf ,whichinthiscasereads

0→ I(0,d2−j)→ Q(0,d2−j)→ A(d1,j)→ 0, (5) thena basisfor A(d1,j) is obtainedinthefollowing way: if1,. . . Ωfd2−j}

isthebasisforA(0,d2−j)∼= Q(0,d2−j)/I(0,d2−j)ofthecasei= 0,thenabasis forA(d1,j)is  Xd1 0 Ω1, . . . , Xndfd2−j(f )  . 

AsacorollaryofTheorem3.16weseethatwecandeducethegeneralcaseofthe sim-plicialNagatapolynomial,whichisaslightimprovementofthefirstpartof[1,Theorem 3.5]. Corollary 3.17. Let f = n r=0 xd1 r gr ∈ R(d1,d2), with gr = xr1· · · xrd2, be a simplicial

Nagata polynomial of (positive) degree d1, where n

m d2



, let Δf be the simplicial complex associatedtof andletA= Q/Ann(f ). Then

A = d=d1+d2 h=0 Ah where Ah= A(h,0)⊕ · · · ⊕ A(p,q)⊕ · · · ⊕ A(0,h), p≤ d1, q≤ d2, Ad= A(d1,d2) andmoreover,∀j ∈ {0,1,. . . ,d2},

dim A(i,j)= ai,j =

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ fj i = 0 n r=0 fj,r i∈ {1, . . . , d1− 1}, fd2−j i = d1

(16)

where:

• fj isthenumber of(j− 1)-cells oftheΔf (withtheconvention that f0= 1);

• fj,r isthenumberof(j−1)-subcellsofΔgr,i.e.the(d2−1)-celloftheΔf associated

togr (with theconventionthat f0,r= 1,sothat dim A(i,0)= n+ 1).

Moreprecisely,a basisforA(i,j),∀j ∈ {0,1,. . . ,d2},isgiven by

(1) Ifi= 0,{Ω1,. . . ,Ωfj},whereanyΩs:= Us1· · · Usj isassociatedtothe(j−1)-subcell

{us1,. . . ,usj} of Δf; (2) If i = 1,. . . ,d1− 1,  Ωi,s1,...,sj s  s∈{0,...,n} s1,...,sj∈  r1,...,rd2  where Ω i,s1,...,sj s := XsiUs1· · · Usj

isassociatedtothe(j− 1)-subcell {us1,. . . ,usj} ofΔgs(⊂ Δf);

(3) If i = d1,

 Xd1

0 Ω1(f ), . . . Xndfd2−j(f )



, where 1,. . . Ωfd2−j} is the basis for

A(0,d2−j) of case(1).

In thecases (1) and(2) the bases are given by monomials, in the case (3), in general, not. Theorem3.18.Letf = n r=0 xd1 r gr∈ S(d1,d2),withgr= x r1 1 · · · xrmm suchthatr1+· · ·+rm= d2,beaCW-NagatapolynomialwhoseassociatedCW-complexisΔf,asinthepreceding theorem.

Then I := Ann(f ) isgeneratedby:

(1) XiXj and Xkd1+1,fori,j,k∈ {0,. . . ,n},i< j;

(2) U1,. . . ,Um d2+1,i.e. allthe(monic) monomialsofdegree d2+ 1;

(3) The monomials Us1

1 · · · Umsm such that s1+· · · + sm = j, where Xus11 ···usmm is a

(minimal) element of the (j− 1)-skeleton of P (m) not contained in Δf (for j {1,. . . ,d2});

(4) The monomialsXrUi, where ui does not divide gr (i.e. {ui} is not an element of the0-skeletonof Xgr);

(5) The monomials XsU1r1· · · Umrm such that r1 +· · · + rm = j, where ur11· · · urmm is minimalamongthosethatdonotdividegs(i.e.the(minimal)elementofthe(j −1)-skeletonof P (m),Xur1

1 ···urmm ,isnotcontainedin Xgs),forj ∈ {1,. . . ,d2};

(6) ThebinomialsXd1 r U

ρ1

1 · · · Umρm−Xsd1U1σ1· · · Umσmwithρ1+· · ·+ρm= σ1+· · ·+σm= j suchthatgr,s= GCD(gr,gs) andgr= uρ11· · · umρmgr,s,gs= u1σ1· · · uσmmgr,s(i.e.Xgr,s

istheelement ofthe(d2− j − 1)-skeletonofΔf whichrepresentstheintersectionof Xgr andXgs:Xgr,s= Xgr∩ Xgs).

(17)

By Theorem 3.16, (1) a basis for A(0,j), ∀j ∈ {1,. . . ,d2}, is 1,. . . ,Ωfj}, where

Ωs:= U1s1· · · Umsm,withs1+· · · + sm= j,isassociated totheelement Xus11 ···usmm ofthe

(j− 1)-skeleton of Δf. Therefore, using the identification introduced inRemark 3.15,

a basis for I(0,j) is given by the monomials U1s1· · · Umsm such that s1+· · · + sm = j,

whereXus1

1 ···usmm is anelement ofthe(j− 1)-skeletonofP (m) notcontainedinΔf (for

j∈ {1,. . . ,d2});

ObservethatXiXj(f )= 0 ifi= j andXkd1+1(f )= 0= U i1

1 · · · Umim(f ) with

m j=1ij= d2+ 1,fordegreereasons.Set

β := (X0X1, . . . , Xn−1Xn, X0d1+1, . . . , Xnd1+1,U1, . . . , Um d2+1);

thisisahomogeneousidealsuchthatβ⊂ I andA∼= T β/

I β.

ByTheorem 3.16, (2),ifi= 1,. . . ,d1− 1,abasisforA(i,j) ∀j ∈ {1,. . . ,d2},is given

by  Ωi,s1,...,sm s  s∈{0,...,n} sk≤,rk,k=1,...,m ksk=j whereΩi,s1,...,sm

s := Xsi·U1s1· · · Umsm isassociatedtotheelementXus11 ···usmm ofthe(j

−1)-skeletonof Xgs.

AgainusingtheidentificationintroducedinRemark3.15,abasisfor I β  (i,j) isgiven by • The monomials Xi

rU1s1· · · Umsm such that s1+· · · + sm = j, with r = s, where us1

1 · · · usmm dividesgs(i.e.Xus11 ···usmm isanelementofthe(j− 1)-skeletonofXgs),for

i= 1,. . . ,d1− 1,and

• The monomials XsiUr1

1 · · · Umrm such thatr1+· · · + rm = j, where ur11· · · urmm does

not divide gs (i.e. the element of the (j− 1)-skeleton of P (m), Xur11 ···urmm , is not

containedinXgs),

forj∈ {1,. . . ,d2}.

It remains to find thegenerators of I of bidegree (d1,j), with j ∈ {1,. . . ,d2}.This

is more complicated since the generators of A(d1,j) are not monomials. Let γ be the homogeneous idealgenerated by the monomials of the cases(1),(2), (3), (4) and (5), i.e.thegeneratorsthatwehavefoundsofar.Wehaveβ⊂ γ ⊂ I andtheexactsequence (1) givenbyevaluationatf becomes

0 I γ  (d1,j) T γ  (d1,j) → A(0,d2−j)→ 0,

(18)

sinceweidentifyA∼=T γ/ I γ.Then,ifρ1+· · ·+ρm= σ1+· · ·+σm= j,X d1 r U ρ1 1 · · · Umρm− Xd1 s U1σ1· · · Umσm  T γ  (d1,j) is in I γ  (d1,j) if and only if Xd1 r U ρ1 1 · · · Umρm = Xd1 s U1σ1· · · Umσm ∈ A(0,d2−j), which means U ρ1 1 · · · Umρm(gr) = U1σ1· · · Umσm(gs). Since A(0,d2−j)isgeneratedbythemonomialsΩs:= U

s1

1 · · · Umsm,withs1+· · · + sm= d2− j,

associated totheelementsof the(d2− j − 1)-skeletonofΔf,weobtaincase(6). 

As wehavedoneforTheorem 3.16,wegive, asacorollary ofTheorem 3.18thecase of the simplicial Nagata polynomial, giving an improvement of the second part of [1, Theorem 3.5]; we also correct that statement, since the authors forgot the generators XiXj,i= j. Corollary 3.19.Let f = n r=0 xd1 r gr ∈ R(d1,d2), with gr = xr1· · · xrd2, be a simplicial

Nagata polynomial whose associated simplicialcomplex is Δf,as inthe preceding theo-rem.

Then I := Ann(f ) isgeneratedby:

(1) XiXj and Xkd1+1,fori,j,k∈ {0,. . . ,n},i< j; (2) U2

1,. . . ,Um2;

(3) The monomials Us1· · · Usj, where {us1,. . . ,usj} is a (minimal) (j − 1)-cell of

2{u1,...,um} notcontainedin Δ

f (forj∈ {1,. . . ,d2});

(4) The monomialsXrUi,whereui doesnotdivide gs (i.e.{ui}∈ Δg/ r); (5) The binomials Xd1

r 1· · · Uρj − X

d1

s 1· · · Uσj such that gr,sGCD(gr,gs), gr =

1· · · uρjgr,s, gs = uσ1· · · uσjgr,s (i.e. gr,s represents the (d2 − j − 1)-face

given by the intersection Δgr ∩ Δgs of the facets of gr and gs: Δgr,s = Δgr

Δgs).

Proof. We note only that we have to add the squares of case (2) although they do not correspond to cells,sincethe polynomials gi are square-free. Therest follows from

Theorem 3.18.Weobservethatthesesquaresareincase(2) ofTheorem3.18.  Example 3.20.Let

f = xd0u1u2u3+ xd1u1u2u4+ xd2u1u4u5+ xd3u1u3u5+ xd4u2u3u6+ x5du2u4u6+ xd6u4u5u6

+ xd7u3u5u6

be a bihomogeneous bidegree (d,3) polynomial with d ≥ 1; it is a simplicial Nagata polynomial,whoseassociated simplicialcomplexisinthefollowingfigure:

(19)

u1 u2 u3 u4 u5 u6 xd0 xd1 xd 2 xd 3 xd 4 xd 5 xd6 xd7 Wehave: A = A0⊕ A1⊕ . . . ⊕ Ad+3.

Wewantfirstlyto computetheHilbertvectorbyapplyingCorollary 3.17;firstofall, a1,0= 8 a0,1= 6,

andtherefore

h0= hd+3= 1

h1= hd+2= a1,0+ a0,1= 8 + 6 = 14.

Then,weanalyzethepossiblecasesdependingonthedegreed: • Ifd= 1,then

a1,1= 8· 3 = 24

a0,2= 12

h2= a1,1+ a0,2= 36

andtheHilbertvectoris(1,14,36,14,1).

• Ifd= 2,then,recallingbigradedPoincaréduality,

a2,0= a0,3= 8 a2,1= a0,2= 12

andtherefore

h2= a2,0+ a1,1+ a0,2= 8 + 8· 3 + 12 = 44,

(20)

in accordance with Poincaré duality; so the Hilbert vector is (1,14,44,44,14,1) (cfr. [1,Example3.6]).

• Ifd= 3,then, againbybigradedPoincaréduality,

a3,0= a0,3= 8, a2,1= a1,2= 8· 3 = 24, a3,1= a0,2= 12, a2,2= a1,1= 24, a1,3= a2,0= 8, therefore h2= a2,0+ a1,1+ a0,2= 44, h3= a3,0+ a2,1+ a1,2+ a0,3= 64 h4= 0 + a3,1+ a2,2+ a1,3= 44

h2= h4inaccordancewithPoincarédualityandtheHilbertvectoris(1,14,44,64,44,

14,1).

• Ingeneral,letd≥ 4;byhypothesis

hd+1 = h2= a2,0+ a1,1+ a0,2= 44,

and

hk = ak,0+ ak−1,1+ ak−2,2+ ak−3,3 ∀k ∈ {3, . . . , d},

where

ak,0= 8 ak−1,1= 8· 3 = 24 ak−2,2= 8· 3 = 24 ak,3= 8.

AgainusingthePoincarédualitywehave:

hd+3−k= hk = 64 ∀k ∈  3, . . . , d + 3 2

andtheHilbertvectoris(1,14,44,64,. . . ,64,44,14,1).

Now,wewanttofindthegeneratorsofAnn(f ),byapplyingCorollary3.19.Behavior depends ond:

• Ifd= 1,byCorollary 3.19Ann(f ) is(minimally)generatedby: (1) X0,. . . ,X7 2= X02,X0X1,. . . ;

(2) U2

1,. . . ,U62;

(21)

(4) X0U4,X0U5,X0U6,X1U3,X1U5,X1U6,X2U2,X2U3,X2U6,X3U2,X3U4,X3U6,

X4U1,X4U4,X4U5,X5U1,X5U3,X5U5,X6U1,X6U2,X6U3,X7U1,X7U2,X7U4;

(5) X0U3−X1U4,X0U2−X3U5,X0U1−X4U6,X1U2−X2U5,X1U1−X5U6,X2U4

X3U3,X2U1 − X6U6,X3U1 − X7U6,X4U3 − X5U4,X4U2 − X7U5, X5U2

X6U5,X6U4− X7U3.

• Ifd≥ 2,byCorollary3.19Ann(f ) is(minimally)generated by (1) X0,. . . ,X7 d+1 and XhXk whereh,k∈ {0,. . . ,7},h< k; (2) U2 1,. . . ,U62; (3) U1U6,U2U5,U3U4; (4) Xd 0U4,X0dU5,X0dU6,X1dU3,X1dU5,X1dU6,X2dU2,X2dU3,X2dU6,X3dU2,X3dU4,X3dU6, X4dU1,X4dU4,X4dU5,X5dU1,X5dU3,X5dU5,X6dU1,X6dU2,X6dU3,X7dU1,X7dU2,X7dU4; (5) Xd 0U3 − X1dU4,X0dU2 − X3dU5,X0dU1 − X4dU6,X1dU2 − X2dU5,X1dU1 − X5dU6, Xd 2U4 − X3dU3,X2dU1 − X6dU6,X3dU1 − X7dU6,X4dU3 − X5dU4,X4dU2 − X7dU5, Xd 5U2− X6dU5,X6dU4− X7dU3. Example3.21.Let f = xd0u1u2+ xd1u21+ xd2u2u3

beabihomogeneousbidegree(d,2) polynomial,withd≥ 1;itisaCW-Nagatapolynomial whoseCW-complexisthefollowing:

xd 0 xd 1 u1 u2 u3 xd 2 Wehave: A = A0⊕ A1⊕ . . . ⊕ Ad+2

andwewanttofinditsHilbertvector;firstofall, a1,0= 3 a0,1= 3

andtherefore

(22)

Therefore, ifd= 1,thenHilbertvectoris(1,6,6,1). Ifd= 2,wehave

a1,1= 2 + 1 + 2 = 5,

so

h2= dim A2= a2,0+ a1,1+ a0,2= 3 + 5 + 3 = 11

and theHilbertvectoris(1,6,11,6,1). Ifd= 3 then,bybigradedPoincaréduality

a3,0= a0,2= 3 a0,3= 3

so

h2= a2,0+ a1,1+ a0,2= 11

h3= a3,0+ a2,1+ a1,2+ a0,3= 3 + 5 + 3 = 11

and theHilbertvectoris(1,6,11,11,6,1). Ingeneral,letd≥ 4;byhypothesis

hd = h2= a2,0+ a1,1+ a0,2= 11,

and

hk = dim A(k,0)+ dim A(k−1,1)+ dim A(k−2,2) ∀k ∈ {3, . . . , d},

so,since

ak,0= 3 ak−1,1= 5 ak−2,2= 3

using Poincarédualitywehave:

hd+2−k= hk = ak,0+ ak−1,1+ ak−2,2= 11 ∀k ∈  3, . . . , d + 2 2 , and theHilbertvectoris(1,6,11,. . . ,11,6,1).

Letd= 1,byTheorem3.18Ann(f ) is(minimally)generated by: • X0,X1,X2 2,U22,U32,U1U3,U13;

• X0U12,X0U3,X1U2,X1U3,X2U1;

(23)

Letd≥ 2,byTheorem3.18Ann(f ) is(minimally)generatedby: • X0,X1,X2 d+1,X0X1,X0X2,X1X2,U22,U32,U1U3,U13; • Xd 0U12,X0dU3,X1dU2,X1dU3,X2dU1; • Xd 0U2− X1dU1,X0dU1− X3dU3. References

[1]A.Cerminara,R.Gondim,G.Ilardi,F.Maddaloni,Lefschetzpropertiesfor higherNagata ideal-izations,Adv.Appl.Math.106(2019)37–56.

[2]S.Faridi,Thefacetidealofasimplicialcomplex,Manuscr.Math.109(2002)159–174.

[3]A.Franchetta,SulleformealgebrichediS4 aventil’hessianaindeterminata,Rend.Mat.13(1954)

1–6.

[4]R.Gondim,OnhigherHessiansandtheLefschetzproperties,J.Algebra219(2017)241–263. [5]R.Gondim,F.Russo,CubichypersurfaceswithvanishingHessian,J.PureAppl.Algebra219(2015)

779–806.

[6]R.Gondim, F.Russo,G.Staglianò, HypersurfaceswithvanishingHessianviadualCayleytrick, J. PureAppl.Algebra224 (3)(2020)1215–1240.

[7]P.Gordan,M.Noether,UeberdiealgebraischenFormen,derenHesse’scheDeterminanteidentisch verschwindet,Math.Ann.10(1876)547–568.

[8]T.Harima,T.Maeno,H.Morita, Y.Numata,A.Wachi,J.Watanabe,TheLefschetzProperties, Springer,2013.

[9]A.E.Hatcher,AlgebraicTopology,CambridgeUniversityPress,2002.

[10]O. Hesse,Überdie Bedingung,unterwelcheeine homogeneganzeFunctionvonn unabhängigen

Variabeln durchLineäre Substitutionen vonn andernunabh¨ngigenVariabeln aufeinehomogene Functionsichzurückführenlässt,dieeineVariablewenigerenthält,J.ReineAngew.Math.42(1851) 117–124.

[11]O.Hesse,ZurTheoriederganzenhomogenenFunctionen,J.ReineAngew.Math.56(1859)263–269. [12]F.H.S.Macaulay,TheAlgebraicTheoryofModularSystems,CambridgeUniv.Press,Cambridge U.K., 1916,reprinted witha forewordby P. Roberts, CambridgeUniv. Press,London andNew York,1994.

[13]T.Maeno,J.Watanabe,LefschetzelementsofArtinianGorensteinalgebrasandHessiansof homo-geneouspolynomials,Ill.J.Math.53(2009)593–603.

[14]U. Perazzo, Sulle varietàcubiche la cui hessiana svanisce identicamente, G. Mat.Battaglini 38 (1900)337–354.

[15]R.Stanley,Hilbertfunctionsofgradedalgebras,Adv.Math.28(1978)57–83.

[16]R.Stanley,Weylgroups,thehardLefschetztheorem,andtheSpernerproperty,SIAMJ.Algebraic DiscreteMethods1(1980)168–184.

[17]R.Stanley,Log-concaveandunimodalsequencesinalgebra,combinatorics,andgeometry,Graph TheoryAppl.(1986)500–535.

[18]J.Watanabe,AremarkontheHessianofhomogeneouspolynomials,PureAppl.Math.119(2000) 171–178.

Riferimenti

Documenti correlati

We will relate the transmission matrix introduced earlier for conductance and shot noise to a new concept: the Green’s function of the system.. The Green’s functions represent the

Cartesian reference system belonging to the triangle

An Australian study noted over a decade ago that evaluations in the 1990s did not establish if that country’s science awareness programme “caused Australians to become more or

The quantification of quantumness is necessary to assess how much a physical system departs from a classical behaviour and thus gauge the quantum enhancement in opera- tional tasks

Concerning the plasma expansion dynamics three different regimes were identified: free expansion, shock wave formation and plasma stopping depending on the experimental con-

In the case of COVID in Italy, our estimate – based on a fit of the epidemiological data by the model, see Sec- tions VII and VIII below – is that only 10% of infec- tives

In [16], the notion of C ∞ -pure-and-full almost-complex structures arises in the study of the symplectic cones of an almost-complex manifold: more precisely, [16, Proposition

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,