• Non ci sono risultati.

Stress response to cadmium and manganese in Paracentrotus lividus developing embryos is mediated by nitric oxide

N/A
N/A
Protected

Academic year: 2021

Condividi "Stress response to cadmium and manganese in Paracentrotus lividus developing embryos is mediated by nitric oxide"

Copied!
11
0
0

Testo completo

(1)

See discussions, stats, and author profiles for this publication at:

https://www.researchgate.net/publication/265253179

Stress response to cadmium and manganese in

Paracentrotus lividus developing embryos is

mediated by nitric oxide

ARTICLE

in

AQUATIC TOXICOLOGY · NOVEMBER 2014

Impact Factor: 3.45 · DOI: 10.1016/j.aquatox.2014.08.007 CITATIONS

2

READS

112

4 AUTHORS:

Oriana Migliaccio

Stazione Zoologica Anton Dohrn di Napoli

8

PUBLICATIONS

19

CITATIONS

SEE PROFILE

Immacolata Castellano

Stazione Zoologica Anton Dohrn di Napoli

31

PUBLICATIONS

285

CITATIONS

SEE PROFILE

Giovanna Romano

Stazione Zoologica Anton Dohrn di Napoli

86

PUBLICATIONS

2,138

CITATIONS

SEE PROFILE

Anna Palumbo

Stazione Zoologica Anton Dohrn di Napoli

96

PUBLICATIONS

1,983

CITATIONS

SEE PROFILE

All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.

Available from: Immacolata Castellano Retrieved on: 07 January 2016

(2)

AquaticToxicology156(2014)125–134

ContentslistsavailableatScienceDirect

Aquatic

Toxicology

jo u r n al h om ep ag e :w w w . e l s e v i e r . c o m / l o c a t e / a q u a t o x

Stress

response

to

cadmium

and

manganese

in

Paracentrotus

lividus

developing

embryos

is

mediated

by

nitric

oxide

Oriana

Migliaccio

a

,

Immacolata

Castellano

a

,

Giovanna

Romano

b

,

Anna

Palumbo

a,∗

aLaboratoryofCellularandDevelopmentalBiology,StazioneZoologicaAntonDohrn,VillaComunale,80121Naples,Italy bLaboratoryofFunctionalandEvolutionaryEcology,StazioneZoologicaAntonDohrn,VillaComunale,80121Naples,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received14July2014

Receivedinrevisedform8August2014 Accepted12August2014

Availableonline20August2014 Keywords: Cadmium Development Manganese Nitricoxide Paracentrotuslividus Stress

a

b

s

t

r

a

c

t

Increasingconcentrationsofcontaminants,oftenresultingfromanthropogenicactivities,havebeen reportedtooccurinthemarineenvironmentandaffectmarineorganisms.Amongthese,themetalions cadmiumandmanganesehavebeenshowntoinducedevelopmentaldelayandabnormalities,mainly reflectingskeletonelongationperturbation,intheseaurchinParacentrotuslividus,anestablishedmodel fortoxicologicalstudies.Here,weprovideevidencethatthephysiologicalmessengernitricoxide(NO), formedbyl-arginineoxidationbyNOsynthase(NOS),mediatesthestressresponseinducedby cad-miumandmanganeseinseaurchins.WhenNOlevelswereloweredbyinhibitingNOS,theproportion ofabnormalpluteiincreased.Quantitativeexpressionofapanelof19genesinvolvedinstressresponse, skeletogenesis,detoxificationandmultidrugeffluxprocesseswasfollowedatdifferentdevelopmental stagesandunderdifferentconditions:metalsalone,metalsinthepresenceofNOSinhibitor,NOdonor andNOSinhibitoralone.Thesedataallowedtheidentificationofdifferentclassesofgeneswhose metal-inducedtranscriptionalexpressionwasdirectlyorindirectlymediatedbyNO.Theseresultsopennew perspectivesontheroleofNOasasensorofdifferentstressagentsinseaurchindevelopingembryos.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Seaurchinsarekeyspeciesinstructuringmarineecosystems throughtheirgrazingactivity.Amongthem,Paracentrotuslividus, thedominantseaurchin intheMediterraneanSea, locally con-trollingthedynamicsofseaweedandseagrasses(Boudouresque and Verlaque, 2013), was considered a good model systemto studytheresponseofmarineorganismstoenvironmentalstress. Indeed,thetransparencyofembryos/larvae,aswellastheir sen-sitivitytopollutants,madethisorganismparticularlysuitablefor embryotoxicitytestsandformonitoringorriskassessment pro-grams(Beirasetal.,2003).P.lividusactivatesdifferentprotection strategiesagainstavarietyofstress-inducingagents,suchasheat shock(Giudiceetal.,1999),metals(RoccheriandMatranga,2009; Pinsinoetal.,2010),UVBradiation(Bonaventuraetal.,2006), X-rays(Matrangaetal.,2010;Bonaventuraetal.,2011),naturaltoxins (Romanoetal.,2010;Varrellaetal.,2014)andendocrinedisrupter compounds(Sugnietal.,2010).Thesestrategiesincludeactivation ofMAPkinases(Bonaventuraetal.,2005),inductionof metallothi-oneins(Ragusaetal.,2013),caspase3(Agnelloetal.,2007)and

∗ Correspondingauthor.Tel.:+390815833293;fax:+390817641355. E-mailaddress:anna.palumbo@szn.it(A.Palumbo).

differentheatshockproteins(hsps)(Roccherietal.,2004;Romano etal.,2011;Marroneetal.,2012).

ContinuousexposureofP.lividusembryostosubacute/sublethal cadmium concentrations causes abnormal development with defectsinskeletonelongationandpatterning(Russoetal.,2003), coupledwithageneralreductionofproteinsynthesis,increased levelsofspecifichsps(Roccherietal.,2004)anddifferential metal-lothioneinexpression(Ragusaetal.,2013).Parallelexperiments haverevealedthat theamountofincorporatedcadmium insea urchinembryoshighlyincreasedwithtime(Agnelloetal.,2007). Reduction and lack of arms and skeleton elongation were also observedinchroniclong-termexposuresatlowercadmium con-centrations,mimickingmoderatelyandhighlypollutedseawaters (Filostoet al.,2008).Cadmiumtreatmentalso induced apopto-sis (Agnello et al., 2007; Filosto et al., 2008) and authophagy (Chiarelli et al., 2011). A functional relationship between the two processeshasrecentlyalsobeensuggested(Chiarellietal., 2014).

Manganesetreatmentresultedindevelopmentalabnormalities, especiallyattheskeletonlevel,directlycorrelatedtomanganese accumulationindevelopingembryos.Anincreaseofspecifichsps withoutinductionofapoptosiswasreported(Pinsinoetal.,2010). Manganeseoverloadcaused interferencewithcalciumand per-turbationof phosphorylationof the MAPkinases ERKand P38, http://dx.doi.org/10.1016/j.aquatox.2014.08.007

(3)

resultingintheformationofembryoswithoutskeletons(Pinsino etal.,2011,2013).

Recently,it hasbeenshown that inseaurchin embryosthe physiologicalmessengernitricoxide(NO),producedbyl-arginine oxidationbyNOsynthase(NOS),isinvolvedinthestressresponse inducedbythediatomaldehydedecadienal(Romanoetal.,2011). Atlowdecadienalconcentrations,NOprotectedembryosfromthe toxiceffectofthealdehyde,contributingtotheactivationofhsp70 geneexpression,whereasathighconcentrationsNOmediated ini-tialapoptoticeventsthroughthegenerationofperoxynitrite.The involvementofNOinthestressresponsehasalsobeenreportedin otherorganisms.HeatstressactivatedNOproductioninsponges (Giovineetal.,2001),andsalinityandlightstressgaverisetoNO burstsinculturemediaofmarinemicroalgae(Zhangetal.,2006). NOwasalsoacentralplayerinthesurveillancesysteminamarine diatominresponsetodecadienaltreatment(Vardietal.,2006)and incoralbleaching(BouchardandYamasaki,2008).

Our continuing interest in thebiological functions of NO in marineinvertebrates(Mattielloetal.,2010,2012;Ercolesietal., 2012;Castellanoetal.,2014;Migliaccioetal.,2014)hasprompted usto investigateif NOalso mediates theresponse of P.lividus embryos toother stress agents, such as metal ions. We chose cadmiumand manganese,two metals withdifferentproperties andknowntoaffectseaurchindevelopment(Russoetal.,2003; Filostoetal.,2008;Pinsinoetal.,2010).Cadmiumisanon-essential metal,without anybiological role and it is a potentpollutant, whereasmanganeseisanessentialelement,naturallyoccurring metalwhich becomes toxic athigh concentrations(Flicket al., 1971;CICAD,2004).

Here, we show that NO is produced in seaurchin embryos inresponse tocadmiumand manganeseandits levelsregulate directlyorindirectlythetranscriptionalexpressionofsome metal-inducedgenesinvolvedinstressresponse,skeletogenesis,aswell asindetoxificationandmultidrugeffluxprocesses.

2. Materialsandmethods 2.1. Ethicsstatement

P.lividus(Lamarck)seaurchinswerecollectedfromalocation that is not privately-owned norprotected in any way, accord-ing to the authorization of Marina Mercantile (DPR 1639/68, 09/19/1980confirmedon01/10/2000).Thefield studiesdidnot involveendangeredorprotected species.Allanimal procedures wereincompliance withtheguidelines oftheEuropeanUnion (directive609/86).

2.2. Gametecollection

SeaurchinswerecollectedduringthebreedingseasonbySCUBA diversintheGulfofNaples,transportedinaninsulatedboxtothe laboratorywithin1haftercollectionandmaintainedintankswith circulatingseawater.Theanimalswereacclimatedforaminimum of10daysuntiluseandkeptat18±2◦Cinacontrolledtemperature chamberata12:12light:darkcycle.Thedensityofthe individ-ualsinthetankswasmaximally1animal/5L.Every3daysanimals werefedusingfreshmacroalgae(Ulvasp.).Feedingwasinterrupted for2·daysbeforeexperimentalsampling.Veryrarespontaneous spawningor mortalitieswere observed during the acclimation period.Toinducegameteejection,seaurchinswereinjectedwith 0.5MKClsolutionthroughtheperibuccalmembrane.Eggsfrom individualfemaleswerewashedthreetimeswith0.22␮mfiltered seawater.Concentratedspermwascollecteddry,mixingsamples fromatleastthreedifferentmalesandkeptundilutedat+4◦C.Ten ␮Lofspermmixwasdilutedin10mLSWjustbeforefertilization

andanaliquot(100␮L)ofthissolutionwasaddedto100mLof eggsuspension.Spermtoeggratiowas100:1forbothcontrolsand treatedembryos.Thefertilizationsuccesswasapproximately90%. 2.3. Embryoculture,treatmentsandmorphologicalanalysis

Eggs (150eggs/mL) were fertilized as described above and allowed to develop at 18±2◦C in a controlled temperature chamber ata 12:12light:dark cycle. After5minfrom fertiliza-tion, the metals at different concentration were added under carefulagitation.Nominalmetalconcentrationswere5×10−7M (0.09mg/L),10−6M(0.18mg/L),5.2×10−6M(0.96mg/L),10−5M (1.83mg/L), 2×10−5M (3.66mg/L), 3×10−5M (5.49mg/L) for cadmium (cadmium chloride, Sigma–Aldrich, Milan, Italy) and 1.8×10−5M (3.6mg/L), 3.6×10−5M (7.2mg/L), 7.8×10−5M (15.4mg/L),15.5×10−5M(30.8mg/L),31.2×10−5M(61.6mg/L), 62.4 ×10−5M(123.2mg/L)formanganese(manganesechloride tetrahydrate, Sigma–Aldrich, Milan, Italy). Stock solutions of 10−4M cadmium and 31.2×10−4M manganese in sea water werepreparedanddilutedtothefinal experimental concentra-tion. The same protocol was followed for treatments withthe slow releasing NO donor (Z)-1- {N-(3-Aminopropyl)-N-(4-(3-aminopropylammonio)butyl)-amino}-diazen-1-ium-1,2-diolate)

(spermine NONOate, sperNO) (Alexis, San Diego, California) and spermine (Sigma–Aldrich, Milan, Italy). Incubations with 1-(2-trifluoromethylphenyl)imidazole(TRIM) (Alexis,SanDiego, California)wereperformed20minbeforefertilization.Stock solu-tionsof2×10−4MTRIM(in10−6MDMSO),4×10−4MsperNO(in 10−2MNaOH),4×10−4Mspermine(inseawater)wereprepared anddilutedtothefinalexperimentalconcentrationsof2×10−5M, 5×10−5Mand10−4MTRIM,4×10−5MsperNOand 4×10−5M spermine. Experiments were performed in triplicate using the eggscollectedfromthreedifferentfemales.Thedevelopmentwas followed usingan inverted microscope(Zeiss Axiovert135TV) andpicturesweretakenusingaZeissAxiocamconnecteddirectly tothemicroscope.Morphological observationswereperformed approximately48hpostfertilization(hpf)onpluteicollectedand fixed in 4% formalin. The percentage of normal and abnormal pluteiwas determinedby counting at least300 embryosfrom each well. Abnormalities were recorded following the criteria reportedinPaganoetal.(1986).Embryoswereconsiderednormal iftheysatisfiedallthemorphologicalcriteriadefinedelsewhere (Radenac et al., 2001;Kobayashi and Okamura,2005), namely: (1) reachedthe pluteus stage of development,(2) exhibited a good body symmetry,(3) showedfully developed skeletalrods and(4)displayedawelldifferentiatedgut.Allthemorphologies thatdidnotsatisfytheabove-mentionedcriteriaweregrouped and referred to as abnormal. In particular, the abnormalities wereclassifiedin twodifferentlevelsaccording totheseverity ofthealterations,takingintoaccounttheclassificationreported inCarballeiraetal.(2012)withsomemodifications.ThelevelA wasrepresentedbypluteicharacterizedbyincorrectarrangement of skeletal rods, such as larvae withcrossed tip,separated tip andfusedarms.ThelevelBwasrepresentedbylarvaeshowing incomplete or absent skeletal rods and development blocked, such as plutei with folded tip, fractured ectoderm, fertilized eggsandblastula,gastrula,exogastrula, prismaandpre-pluteus stages.

2.4. Nitricoxide(NO)determination

The endogenous NO levels were measured by monitoring nitriteformationbytheGriessreaction(Greenetal.,1982). Fer-tilized eggs were treated as described above. Samples (about 15,000embryos/larvae) were collected at 2-cell stage, 8-cell stage,earlyblastula, swimmingblastula,prismaandpluteusby

(4)

O.Migliaccioetal./AquaticToxicology156(2014)125–134 127

centrifugationat1800rcffor10mininaswingoutrotorat4◦C. Thepelletwaswashedwithphosphatebufferedsalineandthen frozeninliquidnitrogenandkeptat−80◦C.Sampleswere

homog-enizedinphosphatebuffer(1:2,w/v)andcentrifuged(12,000rcffor 30minat4◦C),andthesupernatantswereanalyzedfornitrite con-tent.Aliquots(300␮L)wereincubatedfor2h,atroomtemperature (25◦C)withnitratereductase(1U/mL)andenzymeco-factorsFAD (100␮M)andNADPH(0.6mM).Sampleswereincubatedfor10min inthedarkwith300␮Lof1%(w/v)sulphanilamidein5%H3PO4

and then for 10minwith 300␮L of 0.1% (w/v) N-(1-naphthy)-ethylenediaminedihydrochloride.Theabsorbanceat540nmwas determinedandthemolarconcentrationofnitriteinthesample wascalculatedfromastandardcurvegeneratedusingknown con-centrationsofsodiumnitrite(0–100␮M).NOineachsamplewas determinedintriplicate.Theefficacyofnitratereductionbynitrate reductasewasdeterminedonknownconcentrationsofnitrateand nitrite recoverywas 90–100% over the entire range of sodium nitrite.Thecoefficientofvariationbetweenthedifferent experi-mentswaslessthan5%.

2.5. RNAextractionandcDNAsynthesis

About1500fertilizedeggsweretreatedasdescribedaboveand collectedbycentrifugation asreportedin theabove paragraph. TotalRNA wasextracted from each developmental stageusing RNAqueous-Microkit (Ambion) according to themanufacturer’s instructions. Theamountof total RNAextracted wasestimated by the absorbance at 260nm and the purity by 260/280 and 260/230nm ratios by Nanodrop (ND-1000 UV–Vis Spectropho-tometer; NanoDrop Technologies). The integrity of RNA was evaluatedbyagarosegelelectrophoresis.IntactrRNAsubunits(28S and18S)wereobservedonthegelindicatingminimaldegradation oftheRNA.Foreach sample,600ngoftotal RNAextractedwas retrotranscribedwithiScriptTMcDNA Synthesiskit(Biorad),

fol-lowingthemanufacturer’sinstructions.cDNAwasdiluted1:5with H2OpriortouseinRealTimeqPCRexperiments.

2.6. GeneexpressionbyrealtimeqPCR

Inthisarticlethetermgeneexpressionreferstotranscriptional expression,althoughitisacknowledgedthatgeneexpressioncan alsobe regulated, e.g., at translation or mRNA/protein stability level.ForrealtimeqPCRexperimentsthedatafromeachcDNA sam-plewerenormalizedusingPl-Z12-1asendogenouscontrol.Itslevel remainedconstantduringdevelopment(Costaetal.,2012;Ragusa etal.,2013).TheprogramsgeNormVBAappletforMicrosoftExcel andNormFinderversion19(2009)wereusedtoconfirmPl-Z12-1 asthereferencegene.Theanalyzedgenesandthespecificprimers, usedforamplification,arereportedinsupplementaryTable1.For Pl-Z12-1,hsp70,hsp60,hsp56,sm30,sm50,p16,p19,msp130, bmp5-7,fg9/16/20,mt4,mt5,mt6,mt7andmt8weusedprimersreported intheliterature.InthecaseofNOS,abc1a,abc4a,abc1b,abc8b, spe-cificprimersweredesignedonthebasisofnucleotidesequence withthehelpofPrimer3.TheamplifiedfragmentsusingTaqHigh FidelityPCRSystem(Roche)werepurifiedfromagarosegelusing QIAquickGelextractionkit(Qiagen)andspecificityofPCR prod-uctswascheckedbyDNAsequencing.Specificityofamplification reactionswasverifiedbymeltingcurveanalysis.Theefficiencyof eachprimer pairwascalculatedaccordingtostandardmethods curvesusingtheequationE=10−1/slope.Fiveserialdilutionswere setuptodetermineCtvaluesandreactionefficienciesforallprimer pairs.Standardcurvesweregeneratedforeacholigonucleotidepair usingtheCtvaluesversusthelogarithmofeachdilutionfactor.PCR efficiencieswerecalculatedforcontrolandtargetgenesandwere foundtobeabout2.DilutedcDNAwasusedasatemplateina reac-tioncontainingafinalconcentrationof0.3␮Mforeachprimerand

1×FastStartSYBRGreenmastermix(totalvolumeof10␮L).PCR amplificationswereperformedinaViiATM7RealTimePCRSystem

(AppliedBiosystems)thermalcyclerusingthefollowingthermal profile:95◦Cfor10min,onecycleforcDNAdenaturation;95◦Cfor 15sand60◦Cfor1min,40cyclesforamplification;72◦Cfor5min, onecycleforfinalelongation;onecycleformeltingcurve analy-sis(from60◦Cto95◦C)toverifythepresenceofasingleproduct. Eachassayincludedano-templatecontrolforeachprimerpair.To captureintra-assayvariabilityallRealTimeqPCRreactionswere carriedoutintriplicate.FluorescencewasmeasuredusingViiATM

7Software(AppliedBiosystems).Theexpressionofeachgenewas analyzedandinternallynormalizedagainstPl-Z12-1usingRelative ExpressionSoftwareToolsoftware(REST)basedonthemethodby

Pfaffletal.(2002).Relativeexpressionratiosabovetwocycleswere consideredsignificant.

2.7. Statisticalanalysis

Data arepresentedasmeans±SD andanalyzedbyOne-way ANOVA(P<0.05)withTukey’sMultipleComparisonTestand Two-wayANOVA(P<0.05),withBonferroniposthoctestasreportedin figurelegends.StatisticswasperformedwithGraphPadPrism4.0 forWindows(GraphpadSoftware,SanDiego,CA,USA).

3. Results

3.1. InvolvementofNOintheabnormaldevelopmentinducedby cadmiumandmanganese

PreviousstudieshavereportedthattreatmentofP.lividus fer-tilizedeggswithcadmiumandmanganeseresultedinabnormal development.An increase in thenumber of pluteiwith abnor-malskeletalpatterninganddevelopmentaldelaywasdependent onmetalconcentration(Russo etal.,2003; Filostoet al.,2008; Pinsinoetal.,2010).Wetreatedfertilizedeggsofseaurchinwith cadmiumandmanganeseattheconcentrationsreportedin Sec-tion2.After48h,morphologicalobservationswereperformedin ordertoassesstheproportionofnormalandabnormalplutei.In detail,cone-shapedlarvaewithfourfullydevelopedarmsand com-pleteskeletalrodswereconsiderednormal,whereaslarvaewith defectsinarmandskeletonelongation,larvaewithareductionof rudimentgrowthanddevelopmentallydelayedlarvaewere con-sideredabnormal,followingthecriteriareportedinSection2.The exposuretoincreasingconcentrationsofcadmiumresultedinan increaseofpercentageofabnormalplutei(Fig.1)whichreached values of 20±1.87%, 28±0.86% and 38±2.98% at 5×10−7M, 10−6Mand5.2×10−6Mcadmium,respectively,comparedto con-trol(8±1.33%)intheabsenceofcadmium.Atthehighestcadmium concentrationsof10−5M,2×10−5Mand3×10−5Mthe percent-ageofabnormallarvaewas62±4.27%,78±3.12%and100±1.15%, respectively(datanotshown).Defectswerefoundmainlyinthe arms,whichappearedmalformedorabsent.Oftenlarvaeshowed somearmsshorterthantheothersorinmanycasesthepost-oral armswereabsent.Moreover,adelayindevelopmentcomparedto controlpluteiwasobserved:treatedlarvaeweremuchsmallerin sizeandwereoftenatgastrulaorprismastage.

As that with cadmium, manganese treatment resulted in a significant increase in the percentage of abnormal plutei withincreasingmanganese concentration(Fig. 1).Inparticular, the effect was significant starting from 1.8×10−5M at which 17±1.29%ofthelarvaeappearedabnormal.Atthisconcentration, defectsmainlyconcernedthesizeofthelarvaeandthearm elon-gationandnolethaleffectswereobserved,asshownbythenormal swimmingbehaviorofthelarvae.Athighermanganese concentra-tionsof3.6×10−5Mand7.8×10−5M,thepercentageofabnormal

(5)

Fig.1.Effectsofcadmiumandmanganeseonseaurchindevelopment.Fertilized eggsweretreatedwiththeindicatedcadmiumandmanganeseconcentrationsin theabsenceandpresenceofTRIM,asdescribedinSection2.Developmentwas monitoredafter48hpf.Significantdifferencescomparedtothecontrol:*P<0.05, **P<0.01,***P<0.001.Significantdifferencescomparedtothecorresponding cad-miumandmanganeseconcentrations:#P<0.05,##P<0.01,###P<0.001.One-way ANOVA(P<0.05),withTukey’sMultipleComparisonTest.Darkgreen:normalplutei. Lightgreen:abnormalplutei.N=3.

larvaewas29±3.36and 43±2.64%, respectively.At concentra-tionvaluesof15.5×10−5M,31.2×10−5Mand62.4×10−5M,an increaseinthemalformationsregardingarmelongation,skeletal abnormalities,developmentaldelayandmortalitywasobserved andthepercentageofabnormallarvaewas58±3.17%,69±4.22% and98±5.11%,respectively(datanotshown).

Basedontheseresults, furtherexperimentswereperformed toinvestigatethepossibleinvolvementofNOintheresponseof developingseaurchin embryostocadmiumandmanganese.To this aim, metaltreatments were performed in the presence of theNOSinhibitor,1-(2-trifluoromethylphenyl)imidazole (TRIM), which interferes with the binding of both l-arginine and the cofactorBH4totheenzyme.Todetectanymorphologicalvariation

due toa reduction inthe endogenous NOlevels,we chosethe

Fig.2. Morphologicalanalysisoftheabnormalpluteifollowingdifferenttreatments. Abnormalpluteiobtainedfromcadmiumormanganeseexposureintheabsence andpresenceofTRIM,wereexaminedatthemorphologicallevel.Theseverityof themalformationswereindicatedasAandB,accordingtothecriteriareportedin Section2.Significantdifferencescomparedtothecontrol:**P<0.01,***P<0.001. Significantdifferencescomparedtothecorrespondingcadmiumandmanganese concentration:#P<0.05,##P<0.01,###P<0.001.Two-wayANOVA,Bonferroni’s posttest(P<0.05).White:levelA.Black:levelB.N=3.

metalconcentrationswhichcausedtheformationoflessthan50% ofabnormallarvae.Thesewere5×10−7M,10−6M,5.2×10−6M cadmiumand1.8×10−5M,3.6×10−5M,7.8×10−5Mmanganese. ThecombinedtreatmentsofTRIMwithcadmiumormanganese (Fig.1)resultedinanincreaseinthepercentageofabnormallarvae comparedtothetreatmentwithmetalalone,atallconcentrations tested.TRIMaloneat2×10−5M,5×10−5Mand10−4Mdidnot affectpluteimorphology.ThissuggestedtheinvolvementofNOin thestressresponseinducedbythesemetals.

(6)

O.Migliaccioetal./AquaticToxicology156(2014)125–134 129

Fig.3.TotalNOconcentrationinseaurchindevelopingembryos.Embryostreatedwithcadmium10−6Mandmanganese3.6×10−5MintheabsenceandpresenceofTRIM,

wereexaminedatdifferentdevelopmentalstagesfornitritecontent,asreportedinSection2.Significantdifferencecomparedtothecontrol:*P<0.05,**P<0.01,***P<0.001. Significantdifferencecomparedtothecadmiumtreatment:###P<0.001.Significantdifferencecomparedtothemanganesetreatment:§§§P<0.001.Two-wayANOVA, Bonferroni’sposttest(P<0.05).N=3.

A further morphological analysis of the abnormal plutei, obtained under these experimental conditions, was performed (Fig.2).Theabnormalitieswereclassifiedintwodifferentlevels, AandB,asdescribedinSection2.Theydifferedonthebasisofthe severityofthealterations.AandBwereabnormalpluteiwithmild andseveremalformations,respectively.Theexposuretoincreasing cadmiumandmanganeseconcentrationsledtoanincreaseofboth levelsofmalformations,althoughwithdifferentratiosbetweenthe twolevels(Fig.2).ThecombinedtreatmentsofmetalswithTRIM resultedinasignificantincreaseofabnormalitiesatbothlevelsat lowermetalconcentrationandatthelevelBathighermetal con-centrations.Nosignificantdifferencesbetweenthetwolevelswere foundinlarvaetreatedwithTRIMalone(datanotshown).

Tofurtherinvestigatetherole ofNOintheresponse to cad-miumandmanganese,theNOcontentoftreatedP.lividusembryos wasexaminedatdifferentdevelopmentalstages.Indetail,fertilized eggswereincubatedwithmetalconcentrationsresultingina per-centageofabnormallarvaeofabout30%,i.e.10−6Mcadmiumand 3.6×10−5MmanganeseintheabsenceandpresenceofTRIM.Then, theembryosatthefollowingstageswerecollected:2cell,4cell, earlyblastula,swimmingblastula,prismaandpluteus.NOlevels weremeasuredastotalnitriteusingtheGriessassay.Asignificant increaseinnitritewasobservedafter48htreatmentofembryos withcadmiumormanganese(Fig.3).Asexpected,NOlevelswere reducedinthepresenceofTRIM.TheNOSinhibitoralsodecreased NOlevelsofcontrolsamplesatalldevelopmentalstages.

3.2. NO-mediatedabnormaldevelopment:Geneexpression

Thequantitativeexpressionlevelsofaseriesofgenesimplicated indifferentfunctionalresponsesinseaurchins,includingstress, skeletogenesis,detoxificationandmultidrugefflux,wasfollowed. Thegenesencodingheatshockproteinshsp70,hsp60andhsp56 wereexaminedasstressgenes.Thegenesinvolvedin skeletoge-nesisincludedgenesencodingthespiculematrixproteinssm30, sm50, msp130,the twoproteinsinvolved in skeleton formation p16,p19,thefibroblastgrowthfactorfg9/16/20,codingfora pro-teininvolvedinprimarymesenchymecellmigrationandskeletal morphologyandthegrowthfactorbmp5–7.Thegenesencoding metallothioneinsmt4,mt5,mt6,mt7andmt8wereinvestigatedas genesinvolvedinmetaldetoxification,whereasthegenes encod-ingabctransportersabc1a,abc1b,abc4aandabc8bwereexamined formultidrugeffluxintheprotectionsystem.Moreover,the expres-sionofNOSwasfollowedinrelationtoNOproduction.Pl-Z12-1was usedasacontrolgeneforRealTimeqPCRexperimentsbecauseits expressionremainedapproximatelyconstantinalldevelopmental

stagesof seaurchin(Ragusaetal.,2013)and indifferentmetal exposures(datanotshown).Fig.4showedtherelativeexpression ratiosofthegenesinvolvedinthestressresponse(a), skeletogen-esis(b),detoxification(c)andmultidrugefflux(d)aftercadmium (A)andmanganese(B)treatmentwithrespecttocontrolembryos whichdevelopedinseawaterwithoutmetals.

Amongstressgenes,hsp70andhsp60wereup-regulatedatthe pluteusstageof2.5-and2.4-fold,respectively,bycadmiumand manganesetreatments(Fig.4Aa,Ba).Theexpressionofthe skele-togenicgenessm30,p16andmsp130increasedattheearlyblastula stage2.8-,2.2-and3.8-fold,respectively,aftercadmiumtreatment (Fig.4Ab).Incontrast,theexpressionlevelsofthegenesinvolved in skeletogenesiswerenot affectedatthis stageby manganese exposure(Fig.4Bb).Attheswimmingblastulastage,inthe pres-enceofcadmium,theexpressionofsm30wasdown-regulated(2.4 fold),whereasmsp130andfg9/16/20expressionwasup-regulated, showinga6-foldincreaseforbothgenes(Fig.4Ab).Atthesame stage,manganesetreatmentinducedtheexpressionofp16,msp130 and fg9/16/20 of 2.2-, 5.8- and 5.7-fold, respectively (Fig. 4Bb). At theprisma stage,no variation in the expressionof skeleto-genicgeneswasobservedwitheithercadmiumormanganese.At thepluteusstage,followingcadmiumtreatment,wefounda 3.2-and 3.9-foldup-regulationofsm30andp19,respectively,and a down-regulationofmsp130of3.9-fold(Fig.4Ab).Inthepresence ofmanganese,theexpressionofsm30andp19wasup-regulated by3.8-and3.9-fold,respectively(Fig.4Bb).Theexpressionofthe detoxifyinggenesstartedtochangeattheprismastageaftermetal treatment.Duringcadmiumexposure,theexpressionofmt4,mt5, mt6andmt8wasup-regulatedby2.9-,4.3-,4.1-,2.3-fold, respec-tively(Fig.4Ac).Manganeseexposurecauseda2.8-and2.7-fold up-regulationofmt5andmt8,respectively(Fig.4Bc).Atthepluteus stage,cadmiumtreatmentinducedanup-regulationofmt4,mt5 andmt8by2.3-,4.9-and2.4-fold,respectively,whereasmanganese causeda2.6-folddown-regulationofmt6expression(Fig.4Ac,Bc). Regardinggenesencodingabctransportersinvolvedinmultidrug efflux,theexpressionofabc4awasup-regulated(2.6-fold)by cad-miumattheswimmingblastulastage(Fig.4Ad).Cadmiumalso caused down-regulationof abc8b(2.9fold)and abc1a(3.3-fold) attheprismaandpluteusstages,respectively(Fig.4Ad).In con-trast,manganesetreatmentresultedonlyinthedown-regulation (3.3-fold)ofabc1aatthepluteusstage(Fig.4Bd).Nosignificant variationswerefoundfortheexpressionofNOS,atany develop-mentalstageoraftercadmiumandmanganesetreatments(data notshown).

Toinvestigatetheinvolvement ofNOin thetranscriptionof the genesaffected by cadmium or manganese treatment, their

(7)

Fig.4. Geneexpressionanalysisindevelopingembryosaftermetaltreatment.Fertilizedeggsweretreatedwithcadmium10−6M(A)andmanganese3.6×10−5M(B)and

differentdevelopmentalstages(2-cell,8-cell,earlyblastula,swimmingblastula,prismaandpluteus)wereexaminedforthetranscriptionalexpressionofgenesinvolvedin stress(a),skeletogenesis(b),detoxification(c)andmultidrugefflux(d)byRealTimeqPCR.Dataarereportedasafolddifferenceintheexpressionlevelsoftheanalyzed genes,comparedtocontrol(mean±SD),embryosdevelopedinseawaterwithoutmetals.Folddifferencesgreaterthan±2(seedottedhorizontalguidelinesatvaluesof2 and−2)wereconsideredsignificant.

(8)

O.Migliaccioetal./AquaticToxicology156(2014)125–134 131

Fig.5. Geneexpressionanalysisindevelopingembryostreatedwithmetalsunder lowlevelsofNO.Fertilizedeggsweretreatedwith10−6Mcadmium+TRIM10−4M (A)and3.6×10−5Mmanganese+TRIM 10−4M(B).Samplescollectedatearly blastula,swimmingblastula,prismandpluteusstagewereexaminedforgene expressionbyRealTimeqPCR.Dataarereportedasafolddifferenceinthe expres-sionlevelsoftheanalyzedgenes,comparedtocontrol(mean±SD),embryosinsea waterwithoutmetals.Folddifferencesgreaterthan±2(seehorizontalguidelines atvaluesof2and−2)wereconsideredsignificant.

expressionwasanalyzed underreducedlevelsofNO,i.e.inthe presenceoftheNOSinhibitorTRIM.Theexpressionofthesegenes wasreportedwithrespecttothatofthemetalalone(Fig.5).During cadmium+TRIMexposure,sm30wasup-regulated(2.6-fold)atthe swimmingblastulastage.Atthepluteusstage,mt4(2.5-fold)and mt6(4.3-fold)wereup-regulated,whereashsp70(3.6-fold),sm30 (2.5-fold),p19(2.9-fold)andabc1a(2.9-fold)weredown-regulated (Fig.5A).Inthecaseofmanganese,additionofTRIMcaused down-regulation(3.8-fold)offg9/16/20attheswimmingblastulastage (Fig.5B).

TofurtherdemonstratethatNOaffectedhsp70,mt4,mt6,sm30, p19,fg9/16/20andabc1aexpression,theirmRNAlevelswere mea-suredaftermodifyingendogenousNOlevelswiththeNOSinhibitor TRIMand theNO donorsperNO(Fig.6).Ascontrol forsperNO treatment,weusedspermine,theproductderivedfromsperNO afterNO release.Under low levelsof NO withTRIM,we found a down-regulationof sm30(2.2-fold)atthe swimmingblastula stageand anup-regulationofsm30(3.2-fold)andp19(3.6-fold) anddown-regulationofabc1a (3.1-fold)atthepluteusstage.In thepresenceofsperNO,attheswimmingblastulastage,sm30was up-regulated(4.4-fold)and fg9/16/20 wasdown-regulated (3.6-fold).Atthepluteusstage,hsp70,mt4andabc1awereup-regulated 4.2-,3.7-,2-fold,respectively,whereas mt6,sm30andp19were down-regulated2.3-,4.3-and3.6-foldrespectively.

Additional experiments were performed to detect if the expression of some genes was affected only by the combined treatment of metal+TRIM and not by metal or TRIM alone.

Fig.6.GeneexpressionanalysisindevelopingembryosunderdifferentNOlevels. Fertilizedeggsweretreatedwith10−4MTRIMor4×10−5MsperNO.Samples, col-lectedatswimmingblastulaandpluteusstage,wereexaminedforgeneexpression byRealTimeqPCR.Dataarereportedasafolddifferenceintheexpressionlevels oftheanalyzedgenes,comparedtocontrol(mean+SD),embryosinseawateror inthepresenceofspermineinthecaseofsperNO.Folddifferencesgreaterthan±2 (seehorizontalguidelinesatvaluesof2and−2)wereconsideredsignificant.

Duringcadmium+TRIMexposure,hsp60andfg9/16/20were down-regulated(2.6-and2.3-fold)attheswimmingblastulaandpluteus stage,respectively. Inthecase ofmanganese,theexpressionof hsp60(3.8-fold),sm30(5.7-fold),sm50(3.5-fold)andp16(2.49-fold) increasedasaresponsetothemetal+TRIMexposureattheearly blastulastage,whereasmt8(2.48-fold)andabc1b(3.7-fold)were down-regulated.Attheprismastage,anup-regulationoffg9/16/20 (2.5-fold)wasobserved.

4. Discussion

Theresultsofthisstudyexpandedpreviousinvestigationson theeffectsofcadmiumandmanganeseonseaurchindevelopment (Filostoetal.,2008;Pinsinoetal.,2010),providingnewinsights atphenotypicandgenelevelsandhighlightingtheinvolvementof NOinthestressresponsecausedbythesemetals.

In this paper, a vis-a-vis comparison of the effects of cad-miumandmanganeseonthedevelopingembryosofP.lividuswas performedforthefirsttime, thusallowingustoidentify analo-giesanddifferencesbetweenthetwometals.In bothcases,the percentage of abnormal plutei increasedwith increasing metal concentrations. However, some differences were evident. Cad-miumexposureledtoimportantskeletalmalformationswithhigh levelsoflarvaewithdelayeddevelopment,whereas manganese treatmentcausedmorespecifictypesofmalformations, particu-larlyinthearms,withalowerpercentageoflarvaewithgeneral delayindevelopment,thusrevealingalowertoxicitycompared tocadmium,inagreementwithpreviousexperimentsinArbacia crassispina(KobayashiandOkamura,2005).Moreover,aseriesof genesencoding proteinsinvolved in thestressresponse, skele-togenesis,detoxificationandmultidrugeffluxweredifferentially modulatedbythesemetalsatenvironmentallyrelevant concentra-tions.Indetail,theconcentrationofcadmium(10−6M)usedinthis studycorrespondstohighlypollutedseawaterandthatof man-ganese(3.6×10−5M=7124␮gL−1)isclosetothemaximumvalue (10,000␮gL−1)reportedin naturalwaterfor thismetal(CICAD, 2004).Thedifferentresponseofseaurchinembryostocadmium andmanganeseisprobablycorrelatedtothedifferentroleofthese metals. Cadmiumis apotentpollutant(Flicket al.,1971),toxic evenatverylowconcentrations(Foulkes,2000);itdoesnothave anybiologicalroleanditspresenceintheenvironmenthasgrown

(9)

inthelast yearsbecauseofitslargeuseinsomeindustrial and agriculturalactivities(Ruleetal.,2006).Manganese,ontheother hand,isanaturallyoccurringmetalrequiredintraceamountsby theorganismswhereitplaysanumberofessentialrolesinmany metabolicfunctions,incellularprotection,replicationmechanisms andinbonemineralizationprocesses(ATSDR,2008;Daly,2009; Santamaria,2008).However,theexposuretohighmanganese lev-elscancausetoxicity(CICAD,2004;Gerberetal.,2002;Limaetal., 2008)and,duetothemassiveproductionofmanganese-containing compounds,this metalisbeingconsideredasanemergent pol-lutant,especiallyintheaquaticenvironment(Satyanarayanaand Saraf,2007).

Animportantoutcomeofthisstudyisthedemonstrationthat NOwasproducedinresponsetocadmiumandmanganese treat-ments.Moreover,theexaminationofgeneexpressionaftermetal treatments,aswellasunderdifferentNOlevels,hasallowedusto getaninsightintotheinvolvementofNOinmediatingtheeffects ofcadmiumandmanganeseontranscriptionalgeneexpression.An overallpictureofourresultsisschematicallysummarizedin sup-plementaryTable2.Ourfindingthattheexpressionofthegenes sm30,hsp70andp19followingcadmiumtreatmentandfg9/16/20 aftermanganeseincubationwasreversedbyNOSinhibitionwith TRIMatsomedevelopmentalstages,revealedthatNOmediated theeffect of the metals onthe expression of thesegenes. The oppositeeffect ofsperNOand TRIMontheexpression ofthese genesindicates that NO levelscould play a role in their regu-lation.Afurtherinsightwasprovidedbythecomparisonofthe effectsofsperNOandmetalalone.Inparticular,cadmium treat-ment for 48h induced theexpression of hsp70,similar to that observedwiththeNOdonorsperNO.Thisresult,togetherwith dataonNOdetermination,suggeststhatNOformedaftercadmium treatmentcandirectlyup-regulatehsp70expression(Fig.7A).The involvementofNOininducingtheexpressionofhsp70hasbeen previouslyreportedinseaurchinembryosinthecaseofanother stressagent,thediatomtoxindecadienal(Romanoetal.,2011). Contrarytohsp70,theexpressionofsm30andp19regulatedby cadmium,aswellasfg9/16/10bymanganese,showedanopposite trendcomparedtosperNOtreatmentalone.Thisfindingsuggests thatthemetalsaffecttheexpressionofthesegenesnotdirectly butthroughax-factor,whichisregulatedbychangesinNO lev-elsaftermetaltreatment(Fig.7B).ThelackofeffectofTRIMon theexpression of mt4 and abc1a after cadmium treatment for 48hsuggestedthatNOisnotinvolvedintheregulationofthese genesbycadmium(supplementaryTable2).Thepicture emerg-ingfromthisstudywasfurthercomplicatedconsideringthatthe expression of some genes(hsp60, mt8, sm30, sm50, p16,abc1b andfg9/16/20)atcertaindevelopmentalstageswasaffectedonly bythecombinedtreatmentofthemetalswithTRIMandnotby sperNOor TRIM alone (Fig. 7C). This result suggests that dur-ingmetaltreatmentanalreadyunknownx-factorwasexpressed, which,inresponsetochangesinNOlevels,regulatedthe expres-sionofthestudiedgenes.Thelackofeffectof sperNOorTRIM indicatedthatthisfactorispresentonlywhenseaurchinembryos areexposed tometals. Overall thesefindings demonstrate that NOdifferentially regulatesgene expressionin response to cad-miumandmanganesetreatments.Inconclusion,withcadmium, NOdirectlyactivatedhsp70andindirectlyregulatedsomestress (hsp60) and skeletogenic (sm30, p19, fg9/16/20) genes. On the otherhand,withmanganese,NOindirectlyaffectedthe expres-sionofstress(hsp60),skeletogenic(sm30,sm50,p16,fg9/16/20)as wellasmultidrugeffluxgenes(abc1b)anddetoxification genes (mt8).

Theability ofNO toregulate gene expressionhasalsobeen demonstratedindifferentcellsandorganisms(Heemskerketal., 2007;Nakayaetal.,2000;Rossigetal.,2000).Thekineticsofgene activationbyNOwasinvestigatedinculturedfibroblastsexposedto

Fig.7. SchematicrepresentationoftheNOinvolvementinthemodulationofgene expressionindevelopingembryosofseaurchinexposedtocadmiumand man-ganese.(A)DirectinvolvementofNO:metalinducesanincreaseofNOlevelswhich up-regulateshsp70expression.(B)IndirectinvolvementofNO:metaltreatment causesavariationinNOlevelswhichaffectsanunknownfactor,regulatinggene expression.(C)IndirectinvolvementofNO:metaltreatmentaffectsanunknown factorwhichregulatesgeneexpressionthroughNO.

NOdonorandthreedistinctwavesofgeneactivitywereidentified (Hemishetal.,2003).Thefirstonewasgeneratedwithin30min oftreatmentandrepresentedtheprimarygenetargets,whereas thesubsequentwaveswereduetofurthercascadesofNO-induced geneexpression.SpecificsignalingpathwaysusedbyNOtoactivate geneexpressionhavebeenidentified,includingPI3-kinase,PKC, NF-kappaBandp53.IthasbeenreportedthatNOaffectedgene expressiondirectlyinfluencingtheactivityoftranscriptionfactors ormodulatingupstreamsignalingcascades,ormRNAstabilityand translationortheprocessingoftheprimarygeneproducts(Bogdan etal.,2001).

Inconclusion,ourfindingthatNOmediatedthestressresponse inducedby differentstress agents, suchascadmium and man-ganese(thiswork)anddecadienal(Romanoetal.,2011),pointed toNOasamediatorofdifferentenvironmentalstressagentsinsea urchins.

(10)

O.Migliaccioetal./AquaticToxicology156(2014)125–134 133

Acknowledgements

ThisworkhasbeenpartiallyfundedbytheFlagshipRITMARE – TheItalian Research for theSea –coordinated bythe Italian NationalResearch Counciland fundedbytheItalianMinistryof Education,UniversityandResearchwithintheNationalResearch Program2011–2013.OrianaMigliacciohasbeensupportedbya SZNPhDfellowship.ImmacolataCastellanohasbeensupportedby aSZNpostdocfellowship.

We thank the Molecular Biology Service for gene sequenc-ing and Davide Caramiello and the service Marine Resources forResearch forassistance withliving organisms.We acknowl-edge Valeria Matranga for her helpful advice and discussion as external supervisor of Oriana Migliaccio PhD program. We acknowledge Thierry La Page for the use of the web site

http://octopus.obs-vlfr.fr/blast/blastoursin.html. AppendixA. Supplementarydata

Supplementary data associated with this article can be found,intheonlineversion,athttp://dx.doi.org/10.1016/j.aquatox. 2014.08.007.

References

Agnello,M.,Filosto,S.,Scudiero,R.,Rinaldi,A.M.,Roccheri,M.C.,2007.Cadmium inducesanapoptoticresponseinseaurchinembryos.CellStressChaperones 12,44e50.

ATSDR,2008.Draft ToxicologicalProfileforManganese.AgencyforToxic Sub-stances and Disease Registry. Division of Toxicology and Environmental Medicine/AppliedToxicologyBranch,Atlanta,Georgia.

Beiras,R.,Fernandez,N.,Bellas,J.,Besada,V.,Gonzalez-Quijano,A.,Nunes,T.,2003.

IntegrativeassessmentofmarinepollutioninGalicianestuariesusing sedi-mentchemistry,musselbioaccumulation,andembryo-larvaltoxicitybioassays. Chemosphere52,1209–1224.

Bogdan,S.,Senkel,S.,Esser,F.,Ryffel,G.U.,Pogge,V.,Strandmann,E.,2001. Misex-pressionofXsiah-2inducesasmalleyephenotypeinXenopus.Mech.Dev.103, 61–69.

Bonaventura,R.,Poma,V.,Costa,C.,Matranga,V.,2005.UVBradiationprevents skeletongrowthandstimulatestheexpressionofstressmarkersinseaurchin embryos.Biochem.Biophys.Res.Commun.328,150–157.

Bonaventura,R.,Poma,V.,Russo,R.,Zito,F.,Matranga,V.,2006.EffectsofUV-B radiationondevelopmentandhsp70expressioninseaurchincleavageembryos. Mar.Biol.149,79–86.

Bonaventura,R.,Zito,F.,Costa,C.,Giarrusso,S.,Celi,F.,Matranga,V.,2011.Stress responsegeneactivationprotectsseaurchinembryosexposedtoX-rays.Cell StressChaperones16,681–687.

Bouchard,J.N.,Yamasaki,H.,2008.Heatstressstimulatesnitricoxideproductionin Symbiodiniummicroadriaticum:apossiblelinkagebetweennitricoxideandthe coralbleachingphenomenon.PlantCellPhysiol.49,641–652.

Boudouresque,C.F.,Verlaque,M.,2013.Paracentrotuslividus.In:Lawrence,J.M.(Ed.), EdibleSeaUrchins:BiologyandEcology.Elsevier,Amsterdam,pp.297–328.

Carballeira,C.,Ramos-Gómez,J.,Martín-Díaz,L.,DelValls,T.A.,2012.Identificationof specificmalformationsofseaurchinlarvaefortoxicityassessment:application tomarinepiscicultureeffluents.Mar.Environ.Res.77,12–22.

Castellano,I.,Ercolesi,E.,Palumbo,A.,2014.NitricoxideaffectsERKsignaling throughdown-regulationofMAPkinasephosphataselevelsduringlarval devel-opmentoftheascidianCionaintestinalis.PLoSOne9(7),e102907.

Chiarelli,R.,Agnello,M.,Roccheri,M.C.,2011.Seaurchinembryosasamodelsystem forstudyingautophagyinducedbycadmiumstress.Autophagy7,1028–1034.

Chiarelli,R.,Agnello,M.,Bosco,L.,Roccheri,M.C.,2014.Seaurchinembryosexposed tocadmiumasanexperimentalmodelforstudyingtherelationshipbetween autophagyandapoptosis.Mar.Environ.Res.93,47–55.

CICAD,2004.Manganeseanditscompounds:environmentalaspects.Concise Inter-nationalChemicalAssessmentDocument,vol.63.WHO,Geneva,Switzerland.

Costa,C.,Karakostis,K.,Zito,F.,Matranga,V.,2012.Phylogeneticanalysisand expres-sionpatternsofp16andp19inParacentrotuslividusembryos.Dev.GenesEvol. 222,245–251.

Daly,M.J.,2009.AnewperspectiveonradiationresistancebasedonDeinococcus radiodurans.Nat.Rev.Microbiol.7,237–244.

Ercolesi,E.,Tedeschi,G.,Fiore,G.,Negri,A.,Maffioli,E.,d’Ischia,M.,Palumbo,A.,2012.

Proteinnitrationasfootprintofoxidativestress-relatednitricoxidesignaling pathwaysindevelopingCionaintestinalis.NitricOxide.27,18–24.

Filosto,S.,Roccheri,M.C.,Bonaventura,R.,Matranga,V.,2008.Environmentally relevantcadmiumconcentrationsaffectdevelopmentandinduceapoptosisof Paracentrotuslividuslarvaeculturedinvitro.CellBiol.Toxicol.24,603–610.

Flick,D.F.,Krayhill,H.F.,Dimitroff,J.M.,1971.Toxiceffectsofcadmium.Areview. Environ.Res.4,71–85.

Foulkes,E.C.,2000.Transportoftoxicmetalacrosscellmembranes.Proc.Soc.Exp. Biol.Med.223,234–240.

Gerber,G.B.,Leonard,A.,Hantson,P.,2002.Carcinogenicity,mutagenicityand ter-atogenicityofmanganesecompounds.Crit.Rev.Oncol.Hematol.42,25–34.

Giovine,M.,Pozzolino,M.,Favre,A.,Bavestrello,G.,Cerrano,C.,Ottaviani,F., Chiaran-tini,L.,Cerasi,A.,Cangiotti,M.,Zocchi,E.,Scarfì,S.,Sarà,M.,Benatti,U.,2001.Heat stress-activated,calcium-dependentnitricoxidesynthaseinsponges.Nitric Oxide5,427–431.

Giudice,G.,Sconzo,G.,Roccheri,M.C.,1999.Studiesonheatshockproteininsea urchindevelopment.Dev.GrowthDiffer.41,375–380.

Green,L.C.,Wagner,D.A.,Glogowski,J.,1982.Analysisofnitrate,nitriteandnitrate inbiologicalfluids.Anal.Biochem.126,131–138.

Heemskerk,S.,vanKoppen,A.,vandenBroek,L.,Poelen,G.J.,Wouterse,A.C., Dijk-man,H.B.,Russel,F.G.,Masereeuw,R.,2007.Nitricoxidedifferentiallyregulates renalATP-bindingcassettetransportersduringendotoxemia.PflugersArch.454, 321–334.

Hemish,J.,Nakaya, N.,Mittal, V., Enikolopov,G.,2003. Nitricoxide activates diversesignalingpathwaystoregulategeneexpression.J.Biol.Chem.278, 42321–42329.

Kobayashi,N.,Okamura,H.,2005.Effectsofheavymetalsonseaurchinembryo development.Part2.Interactivetoxiceffectsofheavymetalsinsyntheticmine effluents.Chemosphere61,1198–1203.

Lima,P.D.L.,Vasconcellos,M.C.,Bahia,M.O.,Montenegro,R.C.,Pessoa,C.O., Costa-Lotufo,L.V.,Moraes,M.O.,Burbano,R.R.,2008.Genotoxicandcytotoxiceffectsof manganesechlorideinculturedhumanlymphocytestreatedindifferentphases ofcellcycle.Toxicol.InVitro22,1032–1037.

Marrone,V.,Piscopo,M.,Romano,G.,Ianora,A.,Palumbo,A.,Costantini,M.,2012.

DefensomeagainsttoxicdiatomaldehydesintheseaurchinParacentrotus lividus.PLoSOne7,e31750.

Matranga,V.,Zito,F.,Costa,C.,Bonaventura,R.,Giarrusso,S.,Celi,F.,2010. Embry-onicdevelopmentandskeletogenicgeneexpressionaffectedbyX-raysinthe MediterraneanseaurchinParacentrotuslividus.Ecotoxicology19,530–537.

Mattiello,T.,Fiore,G.,Brown,E.R.,d’Ischia,M.,Palumbo,A.,2010.Nitricoxide medi-atestheglutamate-dependentpathwayforneurotransmissioninSepiaofficinalis chromatophoreorgans.J.Biol.Chem.285,24154–24163.

Mattiello,T.,Costantini,M.,DiMatteo,B.,Livigni,S.,Andouche,A.,Bonnaud,L., Palumbo,A.,2012.Thedynamicnitricoxidepatternindevelopingcuttlefish Sepiaofficinalis.Dev.Dyn.241,390–402.

Migliaccio,O.,Castellano,I.,Romano,G.,Palumbo,A.,2014.Responseofseaurchin toenvironmentalstress.In:EdgarRaymondBanks(Ed.),SeaUrchins: Habi-tat,EmbryonicDevelopmentandImportanceintheEnvironment.NovaScience Publishers,Inc.,NewYork,pp.29–51.

Nakaya,N.,Lowe,S.W.,Taya,Y.,Chenchik,A.,Enikolopov,G.,2000.Specificpattern ofp53phosphorylationduringnitricoxide-inducedcellcyclearrest.Oncogene 19,6369–6375.

Pagano,G.,Cipollaro,M.,Corsale,G.,Esposito,A.,Ragucci,E.,1986.TheSeaUrchin: BioassayfortheAssessmentofDamagefromEnvironmentalContaminants. AmericanSocietyforTestingandMaterials,Philadelphia,pp.67–92.

Pfaffl,M.W.,Horgan,G.W.,Dempfle,L.,2002.Relativeexpressionsoftwaretool (REST)forgroup-wisecomparisonandstatisticalanalysisofrelativeexpression resultsinreal-timePCR.NucleicAcidsRes.30,e36.

Pinsino,A.,Matranga,V.,Trinchella,F.,Roccheri,M.C.,2010.Seaurchinembryosas aninvivomodelfortheassessmentofmanganesetoxicity:developmentaland stressresponseeffects.Ecotoxicology19,555–562.

Pinsino,A.,Roccheri,M.C.,Costa,C.,Matranga,V.,2011.Manganeseinterfereswith calcium,perturbsERKsignalingandproducesembryoswithnoskeleton. Toxi-col.Sci.23,217–230.

Pinsino,A.,Roccheri,M.C.,Matranga,V.,2013.Manganeseoverloadaffectsp38 MAPKphosphorylationandmetalloproteinaseactivityduringseaurchin embry-onicdevelopment.Mar.Environ.Res.93,64–69.

Radenac,G.,Fichet,D.,Miramand,P.,2001.Bioaccumulationandtoxicityoffour dissolvedmetalsinParacentrotuslividussea-urchinembryo.Mar.Environ.Res. 51,151–166.

Ragusa,M.A.,Costa,S.,Gianguzza,M.,Roccheri,M.C.,Gianguzza,F.,2013.Effectof cadmiumexposureonseaurchindevelopmentassessedbySSHandRT-qPCR: metallothioneingenesinmarineinvertebrates:focusonParacentrotuslividus seaurchindevelopment.Mol.Biol.Rep.40,2157–2167.

Roccheri,M.C.,Agnello,M.,Bonaventura,R.,Matranga,V.,2004.Cadmiuminduces theexpressionofspecificstressproteinsinseaurchinembryos.Biochem. Bio-phys.Res.Commun.321,80–87.

Roccheri,M.C.,Matranga,V.,2009.Cellular,biochemicalandmoleculareffectsof cadmiumonParacentrotuslividusseaurchindevelopment.In:Parvau,R.G.(Ed.), CadmiumintheEnvironment.NovaSciencePublishers,Inc.,NewYork,pp. 1–30.

Romano,G.,Miralto,A.,Ianora,A.,2010.Teratogeniceffectsofdiatommetabolites onseaurchinParacentrotuslividusembryos.Mar.Drugs8,950–967.

Romano,G.,Costantini,M.,Buttino,I.,Ianora,A.,Palumbo,A.,2011.Nitricoxide mediatesthestressresponseinducedbydiatomaldehydesintheseaurchin Paracentrotuslividus.PLoSOne6,e25980.

Rossig,L.,Haendeler,J.,Hermann,C.,Malchow,P.,Urbich,C.,Zeiher,A.M., Dim-meler,S.,2000.Nitricoxidedown-regulatesMKP-3mRNAlevels:involvement in endothelial cellprotection from apoptosis. J. Biol. Chem.275, 25502– 25507.

Rule,K.L.,Comber,S.D.,Ross,D.,Thornton,A.,Makropoulos,C.K.,Rautiu,R.,2006.

Diffusesourcesofheavymetalsenteringanurbanwastewatercatchment. Chemosphere63,64–72.

(11)

Russo,R., Bonaventura,R.,Zito, F.,Schroeder,H.C., Müller, I.,Müller, W.E.G., Matranga,V.,2003.Stresstocadmiummonitoredbymetallothioneingene inductioninParacentrotuslividusembryos.CellStressChaperones8,232–241.

Santamaria,A.B.,2008.Manganeseexposure,essentialityandtoxicity.IndianJ.Med. Res.128,484–500.

Satyanarayana,Y.V.,Saraf,R.,2007.Ironandmanganesecontamination:sources, adverseeffectsandcontrolmethods.J.Environ.Sci.Eng.49,333–336.

Sugni,M.,Tremolada,P.,Porte,C.,Barbaglio,A.,Bonasoro,F.,Carnevali,M.D.C.,2010.

Chemicalfateandbiologicaleffectsofseveralendocrinedisrupterscompounds intwoechinodermspecies.Ecotoxicology19,538–554.

Vardi,A.,Formiggini,F.,Casotti,R.,DeMartino,A.,Ribalet,F.,Miralto,A.,Bowler,C., 2006.Astresssurveillancesystembasedoncalciumandnitricoxideinmarine diatoms.PLoSBiol.4,e60.

Varrella,S.,Romano,G.,Ianora,A.,Bentley,M.G.,Ruocco,N.,Costantini,M.,2014.

Molecularresponsetotoxicdiatom-derivedaldehydesintheseaurchin Para-centrotuslividus.Mar.Drugs12,2089–2113.

Zhang,Z.B.,Liu,C.Y.,Wu,Z.Z.,Xing,L.,Li,P.F.,2006.Detectionofnitricoxidein culturemediaandstudiesonnitricoxideformationbymarinemicroalgae.Med. Sci.Monit.12,75–85.

Riferimenti

Documenti correlati

We investigated the ingestion and the potential adverse effects induced by 7-days dietary exposure to three environmentally relevant amount (0.03 - 0.3 - 3 g PET-µPs) of

• A spatially explicit approach in ESs assessment and valuation is a must when dealing with management and planning at the landscape level, in order to provide credible information

The phenomenology of the LN as a dark matter candidate crucially depends on its mass and mixing; in particular, the relative weight between its gaugino and Higgsino components

(2019) E-learning (MOODLE) 137 undergraduate biology students from a blended course Learning outcomes (overall grade) Motivated Strategies for Learning Questionnaire

This approach is therefore able to solve many modern structural problems such as the service behaviour of new structural elements made of a pre- cast, prestressed main load

In fact, the percentage of head hair samples with EtG concentration exceeding 30 pg/mg upon application of the milling procedure shows a 40% increase (from 11.3% to 15.8%)

Out of the 14 patients studied, seven (group I) were given anthralin for 15 days before practicing UVB therapy and seven (group II) carried out phototherapy sessions

For all categories Julia obtained zero false negatives: this proves the (practical) soundness of the analysis, meaning that Julia is always able to spot security vulnerabilities if