• Non ci sono risultati.

Compensatory networks to counteract the effects of ageing on language

N/A
N/A
Protected

Academic year: 2021

Condividi "Compensatory networks to counteract the effects of ageing on language"

Copied!
6
0
0

Testo completo

(1)

ContentslistsavailableatSciVerseScienceDirect

Behavioural

Brain

Research

jo u r n al hom e p ag e :w w w . e l s e v i e r . c o m / l o c a t e / b b r

Research

report

Compensatory

networks

to

counteract

the

effects

of

ageing

on

language

Rosa

Manenti

a,∗

,

Michela

Brambilla

a,b

,

Michela

Petesi

a

,

Carlo

Miniussi

a,c

,

Maria

Cotelli

a

aIRCCSCentroSanGiovannidiDioFatebenefratelli,Brescia,Italy

bCenterforCognitiveScience,DepartmentofPsychology,UniversityofTurin,Turin,Italy

cDeptofClinicalandExperimentalSciences,NationalInstituteofNeuroscienceUniversityofBrescia,Brescia,Italy

h

i

g

h

l

i

g

h

t

s

•rTMSwasusedtoinfluencethefunctionoftheprefrontalcortex.

•TMSeffectsonnamingabilitydifferedaccordingtothesubject’sperformance. •Lessprefrontalasymmetryisastrategytocounteractage-relatednamingdecline.

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received21February2013 Receivedinrevisedform8April2013 Accepted11April2013

Available online 17 April 2013 Keywords: TMS Compensation Naming DLPFC Elderly

a

b

s

t

r

a

c

t

Background:Word-retrievaldifficultiesareacommonconsequenceofhealthyageingandareassociated withareductioninasymmetricalrecruitmentofthedorsolateralprefrontalcortex(DLPFC),althoughthe significanceofthisreductionhasnotyetbeenclarified.Usingrepetitivetranscranialmagneticstimulation (rTMS)ithasbeendemonstratedthatanasymmetricalinvolvementoftheDLPFCduringactionnamingin youngsubjects,whereasbilateralinvolvementwasshowninelderlyparticipants.ByusingrTMSduring anamingtaskinagroupofelderlysubjects,theaimofthepresentworkwastoinvestigatewhether themagnitudeofDLPFCasymmetry(left–rightrTMSeffect)duringactionnamingcorrelateswithtask performance,provingthepresenceofacompensationstrategyinsomebutnotallelderlyparticipants. Methods:WeaimedtotestiftherewasacorrelationbetweenDLPFCasymmetry(left–rightrTMSeffect) andnamingperformanceinagroupofelderlysubjects.

Results:TheresultsshowthatrTMSaffectsactionnamingdifferentlyaccordingtoindividualnaming ability.Inparticular,thepredominanceofaleftvs.rightDLPFCeffectwasobservedonlyinthe low-performingolderadults,whileanasymmetricreductionwasselectivelyshowninthehigh-performing group.Interestingly,high-performingolderadultsalsodisplayedbetterperformancesonaphonemic fluencytest.

Conclusion:Thepresentdatasuggestthatsuccessfulageingislinkedtolessprefrontalasymmetry,an efficientstrategyforcounteractingage-relateddeclinesincognitivefunction.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Ample evidence has illustrated the relationship between age-relatedchangesinthebrainandalterationsincognitive per-formance[1].Studiesattheneuronallevelhavedemonstratedthat duringphysiologicalageing,dopaminergicdeclineaswellasgrey andwhitematteratrophyarebothcorrelatedwithspecific cog-nitivechanges[2,3].Arecentreview[4]concludedthatthebrain shrinksinvolumeandthattheventricularsystemexpandsinthe ageingbrain(withhighheterogeneity).Thevolumetricreductions

∗ Correspondingauthorat:IRCCSCentroSanGiovannidiDioFatebenefratelli,Via Pilastroni4,25125Brescia,Italy.Tel.:+390303501593;fax:+390303533513.

E-mailaddress:rmanenti@fatebenefratelli.it(R.Manenti).

arelikely related,toa minorextent,toneurallossbecausethe shrinkageofneurons,reductionofsynapticspinesandlower num-bersofsynapsesprobablyaccountforthereductioningreymatter [4].However,reductionsinprocessingspeed,memory,executive functionsandlanguageproductionhavebeenshownduring physi-ologicalageing.Suchreductionsaremediatedbyneuroanatomical changes,withincreasedageoftenassociatedwithlower perfor-manceonawide varietyofcognitivetasks[4,5].Accordingly,it isclearthatageingisinfluencedbyalargenumberoffactorsthat varyfromindividualtoindividual,and,todate,itisunclearhow dif-ferencesinbrainactivityrelatetocognitiveperformanceinelderly participants[5,6].Becausethemeanageofthepopulationincreases thenumberofpeoplethatwillexperienceanage-relatedreduction incognitiveabilitieswillincrease;despitethis,althoughsome indi-vidualswillshowpronouncedcognitivedeficits, otherswillnot. 0166-4328/$–seefrontmatter © 2013 Elsevier B.V. All rights reserved.

(2)

Understandingthebasisofminorvs.majorage-relatedcognitive declineisofgreatinterest,andsomeinvestigationshaveassessed thepredictivevalueofseveralfactorsforsuccessfulageing[7,8], andnon-pharmacologicalinterventionsforcognitivedifficultiesin healthyolderadultshavegainedmuchattentioninrecentyears [9–11].Relevant studieshave suggested thatcerebral plasticity andcognitivereserveplayimportantrolesinphysiologicalageing [9,10,12,13].

One method used to investigate age-related modifications in cognition is neuroimaging, and neuroimaging data from somecognitivemodelsonageinghavebeenacquired.A recent review highlightsthat theapplication offunctional neuroimag-ingtohealthyageingparticipantssuggestsfunctionalage-related changesduringtheexecutionofseveralcognitivetasks,despite the many discrepancies in this literature [14]. Alterations in hemisphericasymmetryhavebeenreportedinstudiesof physi-ologicalandpathologicalageing[15–17].Frontalasymmetrywas significantlyreducedduringacognitivetaskinhealthyelderly par-ticipantsascomparedtoyoungparticipants[16].Asoneofthe majorcognitivedeclinesinbothhealthyandpathologicalageing isareductioninmemoryperformance,mostoftheneuroimaging studieson healthy ageingparticipants have investigated mem-oryprocessesandsuggestthepresenceoffunctionalage-related reductionsintheleftprefrontalcortex(PFC)andtemporo-occipital regionsandincreasesinactivityintheinsularregions.Generally, thesestudieshave shown a reduction in functionalasymmetry intheprefrontalcortex[18]andhaveledtodevelopmentofthe hemisphericasymmetryreductioninolderadults(HAROLD)model [16], subsequentlyconfirmed byrTMS [16,19–24]. Additionally, over-activationofthePFCinolderadultsrepresentsthestarting pointoftheposterior–anteriorshiftinageing(PASA)model,which implicatesage-relatedincreasesinfrontalactivityanddecreasesin occipitallobeactivity[25].

Languagerepresentsanotherexampleofacognitiveabilitythat dramaticallychangesduringageing.Evidencefrombothlesionand imagingstudiessuggestsacentralrolefortheleftprefrontal, tem-poralandparietalareasduringnaming,althoughsomedifferences existfor object(noun)vs.action(verb)naming[26–28].A pro-gressivereductioninlexicalretrievalhasbeenwell-documented in older adults [29–31]. Unlike word-meaning retrieval, which appearstobepreservedorevenenhancedwithageing[32,33],the abilitytoretrievethesoundorphonologyofwordsseemstodecline inolderadults.Moreover,thefrequencyoftip-of-the-tongue expe-riencessignificantlyincreaseswithageing,andolderadultsreport an inabilityto produce well-known wordsas one of themost annoyingcognitive“symptoms”thattheyexperience[34,35].Afew imagingstudieshavereportedonaneuralage-relatedchangethat correlateswiththeincreaseofthisdisturbanceinhealthyageing. Theresultsofthesestudiessupportaneuralcauseofwordretrieval difficulties(tip-of-tongueeffect)inphysiologicalageing, highlight-ingtheeffectsofageingontheactivityoftheinsula[36]andin thewhitematterintegrityoftheposterioraspectofthesuperior longitudinalfasciculus[37].

Evenifnamingisanabilitythatshowsadaptationduringageing, onlyafewstudieshaveinvestigatedhowage-relatedchangesin activityrelatetoperformanceduringnamingtasksinolderadults. Differenthypotheseshavebeenconsideredtoexplainthe sig-nificance of these age-related changes. First, thecompensation hypothesis[25,38–41] proposesthat increasedfunctional hemi-sphericsymmetryinolderadultsiscounteractedbyage-related neurocognitivedeficits. Second,thededifferentiationhypothesis explainsthereducedasymmetryasadifficultyinrecruiting spe-cialisedneuralnetworks[42,43].Last,thedefaultnetworktheory postulatesthatthemajorcomponentsofthedefaultmodenetwork remainstableinhealthy,olderindividuals, whereastheactivity ina number ofdiscrete corticalareaslocatedin theprefrontal,

temporal,andoccipitalregionschangesovertime[44].Thereisa largedegreeofoverlapamongthesehypotheses,butallofthemat leastpartiallyunderlinetheabilityofcerebraltissuetochangeits structureandfunctioncontinuouslyinresponseto environmen-taldemands.Tocomparethesehypotheses,severalstudieshave investigatedwhetherPFCfunctionalsymmetryislinkedtoa reduc-tionorenhancementofmemoryperformance,buttheresultsare stillinconclusive.Regardingnamingtasks,onlyafew neuroimag-ingstudieshaveshownage-inducedincreasesincorticalactivation inthebrainareastypicallyassociatedwithlanguageprocessing (Broca’sandWernicke’sareas)[45,46].Interestingly,onlyonefMRI studyhasexaminedtheroleoffunctionalage-relatedchangesin namingabilitiesandfoundapositivecorrelationbetweenBOLD responses,namingaccuracyandresponselatenciesinthefrontal areasofolderadults[46],verifyingthepresenceofcompensatory mechanismsinthefrontalcortexthatareinvokedtomaintain per-formanceinhealthyageing.Arecentreviewofthefunctionalbrain imaging correlatesof successful cognitiveageing found frontal cortex responsesinolder,as compared toyounger,individuals, independentoftask[41].

However,functionalneuroimagingdatacannotprovethe neces-sityofanareaduringacognitivetaskbecauseanactivatedarea maysimplybecorrelatedwith, ratherthanresponsiblefor,task performance.Incontrast,repetitivetranscranialmagnetic stimula-tion(rTMS)caninduceatemporaryimpairmentinperformance onlyifthestimulatedareaiscausallyengagedin thetask[47]. Basedonthisassumption,TMShasbeenusedinmanydifferent cognitivedomainstoestablishcausalityinbrain–behaviour rela-tionshipsand,specifically,toverifyasymmetricalinvolvementof thePFCduringselectedtasks.Hemisphericspecialisationsofthe dorsolateralPFC(DLPFC)duringepisodicmemoryhavepreviously beendemonstratedusingrTMSinyoungsubjects[19,21–23,48–52] andinelderlyadults[20,53].Foranextensivereviewofthis lit-erature,pleaserefertoManentietal.[24].Regardingnaming,an rTMSstudyofyoungparticipantsshowedaleftpredominanceof theDLPFCduringactionnaming[54].Auniquestudythat inves-tigatedtheeffects ofphysiological ageingonDLPFCasymmetry duringactionandobjectnamingshowedaselectivebilateral facil-itatory effectduringaction naming,namelya decreaseinvocal reactiontime,inagroupofolderadults[55].

Thepurposeofthisstudywastoexamineifthemagnitudeof DLPFClateralisation(left–rightrTMSeffect)duringactionnaming wascorrelatedwithtaskperformance,provingthepresenceofa compensationstrategyinsomebutnotallelderlyparticipants.In thepresentreport,were-analyseddataacquiredinourprevious study[55]tothoroughlyinvestigatethisissue.Basedonprevious studies[20,46,56],wepredictedthatDLPFChemispherical symme-tryduringactionnamingwouldonlybepresentinhigh-performing olderadults.If identified,this resultwould provethata reduc-tioninDLPFCasymmetryinsomebutnotallelderlyparticipants representsacompensationstrategyusedtocounteractage-related changes,resultinginbettertaskperformance.

2. Materialsandmethods 2.1. Participants

Priortobeingenrolledintheexperiment,participantswereadministereda standardhealthhistoryquestionnaireandcompletedaMiniMentalState Exam-ination(MMSE)[57].Potentialparticipantswereexcludediftheyreportedahistory ofneurologicaldisease,cardiovasculardisease,psychiatricdisordersoralcoholor othersubstanceabuse.Individualswhoreportedsubjectivememorycomplaintsor scoredbelow27outof30ontheMMSEwerealsoexcluded.Inaddition,a neuro-psychologicalbatterywasapplied,andapathologicalscoreinatleastoneofthe testswasafurtherexclusioncriterion.Thirteen(4male,9female)healthyolder adults(age:65–78years,mean=70.2years,education:mean=13.8years) partici-patedintherTMSexperiment.AllparticipantswerenativeItalianspeakersandhad normalorcorrected-to-normalvision.Allparticipantswereright-handed[58]and hadnocontraindicationsforrTMS[59].Thisstudywasapprovedbythelocalethics

(3)

committee,andparticipantswereinformedaboutthepossiblerisksofrTMSbefore informedconsentwasobtained.

Theneuropsychologicaltestbatteryincludedmeasuresusedtoassess non-verbalreasoning(Raven’sColouredProgressiveMatrices),languagecomprehension (TokenTest),verbalfluency(phonemicandsemantic),memory(StoryRecall, Rey-OsterriethComplexFigureRecall,DigitSpan,SpatialSpan),visuo-spatialabilities (Rey-OsterriethComplexFigure,Copy),attentionandexecutivefunctions (Trail-MakingTestAandB).Allthetestswereadministeredandscoredaccordingto standardprocedures[60].Inaddition,somesubtestsoftheBatteryforAnalysisof AphasicDeficits(BADA)wereapplied[61].Theresultsofthecognitiveassessments arepresentedinTable1.

2.2. Stimuli

Thestimuliusedintheactionandobjectpicture-namingtaskswereprovided bytheCentreforResearchinLanguage-InternationalPictureNamingProject (CRL-IPNP)[62].Weselected84items(42actionsand42objects)inapreviousexperiment [55],andnoneoftheactionstimuliincludedinthistaskwereassociatedwith theselectedobjects.Thenounsandverbscorrespondingtothesetsofobjectsand actionswerematchedfortargetwordfrequencyandlength.

Theitemsweredividedintothreeblocksdesignedforthethreestimulation conditions(leftDLPFC,rightDLPFCandsham).Thefrequenciesandlengthsofthe targetwordswerecounterbalancedineachexperimentalblock.Thevisual com-plexityandimageabilityofthepictureswerealsomatchedbetweenblocks.Ten additionalobjectsandactionswereusedasapracticeblock(5actionsand5objects). Thepresentationorderwascounterbalancedacrosssubjects.

2.3. Procedure 2.3.1. Namingtask

Subjectssatinfrontofa17-in.monitorcontrolledbyapersonalcomputer run-ningthePresentationsoftware(www.neurobs.com).Afteraframethatindicated thecategoryofthestimulustothesubject(“ACTION”or“OBJECT”)wasdisplayed, a50mssoundwaspresentedupontheonsetofacentrallylocatedfixationcross. Thefixationcrosswaspresentfor1000ms.Afterthefixationcrossdisappeared,the stimuluswaspresentedandremainedonthescreenfor1000ms.Ablankscreen followedforanywherefrom4000to5000ms.Thesubject’staskwastoaccurately

namethestimuliappearingonthecomputerscreenasquicklyaspossible.Verbal responseswererecordedanddigitisedat44.1kHzusingtheGoldWaveprogram (V.5.12,www.goldwave.com).Theresponseswerethenanalysedoff-linetoobtain accuracyandvocalreactiontimes(vRTs).Foreachstimulus,wecalculatedthemean vRTandthemeanresponseaccuracypercentage.

2.3.2. Transcranialmagneticstimulation

ForleftandrightDLPFCstimulation,theTalairachcoordinatesofthecortical sitesunderlyingthecoilwereestimatedforeachsubjectusingaSofTaxicEvolution Navigatorsystem(V.2.0;www.emsmedical.net)andbyidentifyingthestimulation siteonthescalpaboveBrodmannarea8(TalairachcoordinatesX=±35,Y=24,Z=48, middlefrontal).Weuseda70mmfigure-eightcoilplacedabovethetargetpoint todeliverrTMSfor500msfromtheonsetofthevisualstimulusatafrequency of20Hz.Thestimulationintensityusedduringtheexperimentwassetat90%of eachsubject’srestingmotorthreshold.Fortheshamcontrolcondition,a 3-cm-thickpieceofplywoodwasappliedtothecoilsothatnomagneticfieldsreached thecortexandthejunctionofthetwocoilwingswasplacedabovethevertex(CZ intheEEG10/20internationalsystem).Theseparametersareinlinewiththesafety recommendationsforrTMS[59],andnoneofthesubjectsshowedsideeffectsof stimulation.

2.4. Analysisofthelinkbetweenhemisphericasymmetryandactionnaming performance

Weonlyanalysedactionnamingtaskperformance,followingtheresultsofour previousstudythatshowedsignificantrTMS-inducedeffectsexclusivelyduring actionnaming[55].BoththevRTsandaccuracywereanalysed.Oneindexof inter-hemisphericasymmetrywascomputedatthesingle-subjectlevelbyexaminingthe differencebetweenthevRTsobtainedintherightandleftstimulationconditions.

Statisticalanalyses wereperformedusing Statistica(version 10) software (www.statsoft.com).Totestthecompensationhypothesis,wecalculatedthe z-pointsofthevRTsduringactionnamingintheshamconditionbydividingour participantsintotwogroups:high-performing(N=7)andlow-performing(N=6). Performanceachievedintheshamconditionwasusedtodividetheparticipantsinto twogroupsbecauseitrepresentstheparticipants’baselineabilities.Thedistribution ofz-pointsischaracterisedbyaminimumof−1.1andamaximumof+2.0andthe meanofthisdistribution(i.e.,0)isusedascut-offinordertodistinguishbetween

Table1

Demographiccharacteristics,neuropsychologicalandexperimentalassessmentoftheolderadultgroupasawholeandofthehigh-andlow-performinggroupsseparately. p:p-value;ns:notsignificant.

Demographiccharacteristics Allgroup(N=13) High-performing(N=7) Low-performing(n=6) p

Age(years) 70.2±4.0 70.6±4.3 69.8±3.5 ns

Education(years) 13.8±4.9 13.9±4.8 13.8±4.9 ns

EdinburghHandednessInventory +99.6±1.4 +100±0.0 +99.2±2.0 ns

Gender(female/male) 9/4 4/3 5/1 ns

Neuropsychologicalassessment Allgroup(N=13) High-performing(N=7) Low-performing(N=6) Cut-off p Screeningfordementia

MMSE 29.5±0.8 29.6±0.8 29.5±0.8 ≥24 ns

Non-verbalreasoning

Raven-ColouredProgressiveMatrices 30.9±2.3 31.7±2.8 30.0±1.4 >17.5 ns Memory

StoryRecall 15.2±2.0 14.6±2.0 15.8±1.8 >7.5 ns

Rey-OsterriethComplexFigure,Recall 14.6±4.4 15.9±4.5 13.2±4.1 >9.46 ns

DigitSpan 5.7±0.9 5.4±1.0 6.0±0.6 >3.5 ns

SpatialSpan 4.9±0.5 4.7±0.5 5.2±0.4 >3.5 ns

Praxia

Rey-OsterriethComplexFigure,Copy 33.1±1.7 33.1±2.0 33.1±1.5 >28.87 ns Executivefunction Trail-MakingTestA(s) 40.2±9.1 43.3±8.2 36.5±9.3 <93 ns Trail-MakingTestB(s) 117.1±41.6 128.7±44.1 103.5±37.6 <282 ns Language TokenTest 33.6±1.3 33.7±1.5 33.5±1.0 >26.25 ns Fluency,Phonemic 39.6±8.2 43.6±7.3 35.0±7.0 >16 0.05 Fluency,Semantic 45.3±7.6 45.0±10.0 45.7±4.1 >24 ns

ObjectOralComprehension(BADA) 99.6±1.4 100.0±0.0 99.2±2.0 ns ActionOralComprehension(BADA) 99.6±1.4 100.0±0.0 99.2±2.0 ns ObjectWrittenComprehension(BADA) 99.8±0.7 100.0±0.0 99.6±1.0 ns ActionWrittenComprehension(BADA) 99.6±1.4 99.3±1.9 100.0±0.0 ns

OralObjectNaming(BADA) 97.2±2.3 97.6±2.5 96.7±2.1 ns

OralActionNaming(BADA) 96.4±2.9 95.9±2.5 97.0±3.5 ns

ExperimentalassessmentduringShamcondition Actionnaming

Correctness,% 87.4±13.7 88.4±10.0 85.7±18.1 ns

Vocalreactiontimes,ms 1077.5±129.3 978.9±35.1 1192.4±95.9 0.0001 Rawscoresarereported.Cut-offscoresreferredtoItaliannormativedata.Boldscoreshighlightsignificantdifferencesbetweenhigh-andlow-performinggroups.

(4)

thetwogroups.Weusedt-testscomparisonsinordertocompareperformances achievedinthetwoelderlygroups.Accordingly,wedeterminedifanystandard neuropsychologicaltestwasabletodifferentiatebetweenparticipantswith bet-terperformanceandparticipantswithreducedaccuracy(seeTable1).Importantly, weinvestigateddifferencesinthetwogroupsusingourindexofinterhemispheric asymmetry.

Consideringthetwogroups,wecomparedtheindexofinterhemispheric asym-metryofthetwoolderparticipantgroupswiththemeanleft–rightasymmetry (mean=−120ms)ofyoungindividuals[54].Asimilaranalysiswasconductedto comparethevRTsduringactionnaminginthehigh-andlow-performinggroupsof olderadults(shamconditionasbaseline)withthemeanvRTsduringactionnaming inyoungparticipants(mean=911ms).

Finally,theindexofinterhemisphericasymmetrywasregressedagainstthevRTs andaccuracyintheshamcondition(i.e.,individualabilities).Alinearalgorithmwas appliedtoinvestigatewhethergreaterasymmetrycorrespondedtobetterorworse performanceontheactionnamingtask.

Thelevelofsignificancewassetatp<0.05.

3. Results

3.1. High-andlow-performingelderlygroups

Thehigh-performing(N=7)andlow-performing(N=6)groups didnotdifferinageoreducation(p>0.05).Thetwogroups did notdifferinactionnamingaccuracy,althoughtheaccuracywas slightly lower in thelow-performing group. Independent sam-plet-testsontheresultsoftheneuropsychologicaltestshighlight betterscoresinphonemicverbalfluencyinthehigh-performing group(t=2.17,p=0.05).Theindexofinterhemisphericasymmetry wasdifferentbetweenthetwogroups,withasignificantlylower score(higherasymmetry)forthelow-performinggroup(t=5.04, p=0.002).Fig.1Ashowsagraphicalrepresentationofmeanscoreat phonemicverbalfluencytest(y-axis)plottedseparatelyforthetwo groups(meanindexofinterhemisphericasymmetryonthex-axis). Noneoftheothertestsshowedsignificance.

3.2. High-andlow-performingelderlygroupsvs.younggroup Acomparisonofthetwooldergroupswiththeyounggroup showedsimilarDLPFCasymmetryin thelow-performinggroup (p>0.05)anda significantdifferenceinasymmetryinthe high-performinggroup(t=5.04,p=0.002) ascompared totheyoung group[54].Furthermore,thisanalysisshowedfastervRTsinthe younggroupascomparedtoboththehigh-(t=5.1,p=0.002)and low-(t=7.2,p=0.0008)performingolderadults,eventhoughthe high-performingoldergroupshowedshortenedvRTsascompared to the low-performing older group (t=−5.5, p=0.0001). These resultssuggestthatthehigh-performingolderadultssignificantly reducedDLPFCfunctionalasymmetrytoobtainbetterperformance. Fig.1BshowsagraphicalrepresentationofmeanvRTsduringthe experimentalnamingtask(y-axis)plottedseparatelyforthetwo elderlygroupsandfortheyounggroup[54](meanindexof inter-hemisphericasymmetryonthex-axis).

3.3. Correlations

A significant negative correlation (R=0.68, t=3.07, p=0.01) betweentheindexofinterhemisphericasymmetryandthevRTs intheshamconditionsuggeststhattheslowerparticipantswere characterised by greater involvement of the left hemisphere. Accordingly, a significant positive correlation (R=0.54, t=2.17, p=0.05)betweentheindexofinterhemisphericasymmetryand accuracyintheshamconditionindicatesthattheparticipantsthat achievedbetterperformanceshowedreducedinvolvementofthe lefthemisphere.Fig.2presentsadetailedrepresentationofthese results(vRTsandaccuracyony-axisandtheindexof interhemi-sphericasymmetryonx-axis).

Fig.1. (A)Meanphonemicverbalfluencyscoreinolderparticipantswithhigh (N=7)orlow(N=6)actionnamingperformance.Interestingly,high-performing elderlyparticipantsshowedlesslefthemisphereinvolvementandbetter phone-micverbalfluencyscores,whereastheresultsfromthelow-performingelderly participantsshowedtheoppositepattern.(B)Meanvocalreactiontimes(vRTs)in young([54];N=9)andolderparticipantswithhigh(N=7)orlow(N=6)action namingperformance.Higherinvolvementofthelefthemisphere(i.e.,negative dif-ferencesbetweenvRTsintheleftandrightrTMSconditions)isevidentinyoung participantsandinolderparticipantswithlowperformances,whereasolder par-ticipantswithhighperformancesshowrightorbilateralinvolvementoftheDLPFC. Interestingly,thevRTsofthehigh-performingelderlyparticipantsaremuchmore similartothoseofyoungparticipants,buttheasymmetryinthehigh-performing elderlyparticipantsissignificantlydifferentthanthatofyoungindividuals.Inorder toobtainbetterperformance,functionalreorganisationisneeded.Low-performing olderadultsshowthesameDLPFCasymmetryasyoungindividualsbutwith signif-icantlyhighervRTs.

4. Discussion

Theprimarygoalofthepresentstudywastoexamineifthe asymmetricreductionshowninolderadults,ascomparedtoyoung individuals,couldbeacompensationstrategyusedtocounteract ageing.Accordingly,weinvestigatedtheinfluenceofleftandright DLPFCrTMSonperformanceduringactionnaming.

WeappliedrTMSduringactionnaminginhealthy,high-or low-performing,olderparticipantsandfoundthatgreaterdifferences between left and right DLPFCinvolvement during action nam-ingresultedinhigheraccuracyandfasterresponsesinthistask. Theseresultssuggestselectiveasymmetricalrecruitmentof the DLPFC(left>right)duringactionnaminginlow-performingolder adults,aspreviouslydescribedinyoungindividuals,whereas high-performingolderadultsdidnotshowpredominance(left=right). Low-performingolderadultsrecruitedasimilarnetworkofbrain regions as theyoung adults but used them inefficiently.These findingshave tobediscussedinterms offunctional changesin

(5)

Fig.2. Correlationsbetweentheindexofinterhemisphericasymmetry(verbal reac-tiontimesduringleftDLPFCstimulationminusverbalreactiontimesduringright DLPFCstimulation)inactionnamingandtheverbalreactiontimes(A)oraccuracy (B)duringshamconditions.

successfulageing[41].Inarecentreviewofthefunctionalbrain imagingcorrelatesofsuccessfulcognitiveageing,Eyleretal.[41] concluded that augmented brain responses, particularly in the frontalcortex,servea compensatoryrole inolderadults,but in somecases,extraneousactivationmight bedetrimental(i.e.,in theposteriorregions).OurresultsareinlinewiththoseofEyler etal.[41],asfrontalcortexfunctionalrecruitmentwasselectively modifiedduringsuccessfulageing(i.e.,inhigh-performingolder adults).

Our results seem to be in agreement with the compensa-tion hypothesis, which has been investigated in the memory domain[63],becauseDLPFCrecruitmentwasmodifiedonlyinthe high-performingparticipants,ascomparedtoyoungparticipants. However,thisresultdoesnotfitthededifferentiationhypothesis [42,43].Ifreducedlateralisationismerelyanotherexampleofthe deleteriouseffectsofageingonthebrain,thenitshouldhavebeen foundinthelow-performingelderlygroupofadultsbecausethey displayedmorepronouncedage-relatedcognitivedeficits; how-ever,thatwasnotthecase.Onthecontrary,reducedlateralisation wasfoundinthegroupofhigh-performingparticipants,suggesting thatthisfeaturemightbeconsideredasabeneficialchange. More-over,thehigh-performingparticipantsachievedhigherscoresin phonemicfluency,underlingbetterwordfindingabilitiesinthese participants.

Ourgroupfoundsimilarresultsinapreviousstudythatalsoused brainstimulationduringanepisodicmemorytask[20].We veri-fiedthatduringtheencodingofwordpairs,onlyhigh-performing olderadultsshowedbilateralDLPFCinvolvement,whereasaleft predominance,asobservedinyoungindividuals,waspresentin thelow-performing participants.Asreported fornaminginthe present work, functional modification of the DLPFC was posi-tivelycorrelatedwithbettermemoryperformance,suggestingthat thesechangesrepresentacompensatorystrategyinsuccessful age-ing.Importantly,agreementintheresultsregardingthedifferent cognitiveabilitiesstrengthensthecompensationhypothesis.We acknowledgethattherelativelysmallnumberofelderly partici-pantsincludedinourstudyrepresentalimitation.However,the findingofthisstudycouldpavethewaytofurtherstudieswitha largersample.

Althoughfurtherstudiesareneededtoconfirmpresentresults and clarify the basis of these effects, the possibility to better definethepresenceofageingstrategiesresponsibleforimpairedor maintainedcognitiveabilityitisalsoimportantfordesigning reha-bilitationprotocolsinapatientwithlanguagedisabilities[64–69]. Methods to reduce or magnify inter-individual differences in performance, and theintegration of thesemechanisms with functionalage-relatedplasticity,mayhavepracticalandsocietal implications.A greater understandingof howthese patternsof compensatorystrategiesdevelopandhelptomaintaincognitive functioninageingisanimportantgoalforfutureresearch.

References

[1]SalthouseTA.Effectsofageontime-dependentcognitivechange.Psychological Science2011;22:682–8.

[2]KramerJH,MungasD, ReedBR,WetzelME,BurnettMM,MillerBL,etal. LongitudinalMRIandcognitivechangeinhealthyelderly.Neuropsychology 2007;21:412–8.

[3]Sullivan EV, Rohlfing T, Pfefferbaum A. Longitudinal study of callosal microstructureinthenormaladultagingbrainusingquantitativeDTIfiber tracking.DevelopmentalNeuropsychology2010;35:233–56.

[4]FjellAM,WalhovdKB.Structuralbrainchangesinaging:courses,causesand cognitiveconsequences.ReviewsintheNeurosciences2010;21:187–221. [5]Reuter-LorenzPA,ParkDC.Humanneuroscienceandtheagingmind:anew

lookatoldproblems.JournalsofGerontologySeriesB,PsychologicalSciences andSocialSciences2010;65:405–15.

[6]GradyC.Thecognitiveneuroscienceofageing.NatureReviewsNeuroscience 2012;13:491–505.

[7]FormigaF,FerrerA,AlburquerqueJ,Fernandez-QuevedoM,RoyoC,PujolR, etal.Thechallengeofmaintainingsuccessfulagingat87yearsold:theoctabaix studytwo-yearfollow-up.RejuvenationResearch2012;15:584–9.

[8]HowiesonDB,CamicioliR,QuinnJ,SilbertLC,CareB,MooreMM,etal.Natural historyofcognitivedeclineintheoldold.Neurology2003;60:1489–94. [9]BallK,BerchDB,HelmersKF,JobeJB,LeveckMD,MarsiskeM,etal.Effects

ofcognitivetraininginterventionswitholderadults:arandomizedcontrolled trial.JournalofAmericanMedicalAssociation2002;288:2271–81.

[10]Acevedo A, LoewensteinDA. Nonpharmacological cognitive interventions in aging and dementia. Journal of Geriatric Psychiatry and Neurology 2007;20:239–49.

[11]WillisSL,TennstedtSL,MarsiskeM,BallK,EliasJ,KoepkeKM,etal.Long-term effectsofcognitivetrainingoneverydayfunctionaloutcomesinolderadults. JournalofAmericanMedicalAssociation2006;296:2805–14.

[12]SternY.CognitivereserveandAlzheimerdisease.AlzheimerDiseaseand Asso-ciatedDisorders2006;20:S69–74.

[13]ValenzuelaMJ,SachdevP.Assessmentofcomplexmentalactivityacrossthe lifespan:developmentoftheLifetimeofExperiencesQuestionnaire(LEQ). Psy-chologicalMedicine2007;37:1015–25.

[14]Guidotti Breting LM,Tuminello ER, Duke Han S.Functional neuroimag-ing studies innormal aging. CurrentTopics in BehavioralNeurosciences 2012;10:91–111.

[15]CherbuinN,Reglade-MeslinC,KumarR,SachdevP,AnsteyKJ.Mild cogni-tivedisordersareassociatedwithdifferentpatternsofbrainasymmetrythan normalaging:thePATHthroughlifestudy.FrontPsychiatry2010;1:11. [16]CabezaR.Hemisphericasymmetryreductioninolderadults:theHAROLD

model.PsychologyandAging2002;17:85–100.

[17]Long X, Zhang L, Liao W, Jiang C, Qiu B. The Alzheimer’s Disease Neuroimaging. I. Distinct laterality alterations distinguish mild cognitive impairmentand Alzheimer’sdisease fromhealthyaging: statistical para-metric mappingwith high resolution MRI.Human BrainMapping 2012, http://dx.doi.org/10.1002/hbm.22157,inpress.

(6)

[18]CabezaR,GradyCL,NybergL,McIntoshAR,TulvingE,KapurS,etal.Age-related differencesinneuralactivityduringmemoryencodingandretrieval:apositron emissiontomographystudy.JournalofNeuroscience1997;17:391–400. [19]FloelA,PoeppelD,BuffaloEA,BraunA,WuCW,SeoHJ,etal.Prefrontalcortex

asymmetryformemoryencodingofwordsandabstractshapes.CerebralCortex 2004;14:404–9.

[20]Manenti R, Cotelli M, Miniussi C. Successful physiological aging and episodic memory: a brainstimulation study.BehaviouralBrain Research 2011;216:153–8.

[21]RamiL,GironellA,KulisevskyJ,Garcia-SanchezC,BerthierM,Estevez-Gonzalez A.Effectsofrepetitivetranscranialmagneticstimulationonmemorysubtypes: acontrolledstudy.Neuropsychologia2003;41:1877–83.

[22]RossiS,CappaSF,BabiloniC,PasqualettiP,MiniussiC,CarducciF,etal. Pre-frontalcortexinlong-termmemory:aninterferenceapproachusingmagnetic stimulation.NatureNeuroscience2001;4:948–52.

[23]SandriniM,CappaSF,RossiS,RossiniPM,MiniussiC.Theroleofprefrontal cortexinverbalepisodicmemory:rTMSevidence.JournalofCognitive Neuro-science2003;15:855–61.

[24]ManentiR,CotelliM,RobertsonIH,MiniussiC.Transcranialbrainstimulation studiesofepisodicmemoryinyoungadults,elderlyadultsandindividualswith memorydysfunction:areview.BrainStimulation2012;5:103–9.

[25]Davis SW,DennisNA,Daselaar SM,FleckMS,Cabeza R.Que PASA?The posterior–anteriorshiftinaging.CerebralCortex2008;18:1201–9.

[26]DanieleA,GiustolisiL,SilveriMC,ColosimoC,GainottiG.Evidenceforapossible neuroanatomicalbasisforlexicalprocessingofnounsandverbs. Neuropsy-chologia1994;32:1325–41.

[27]PeraniD,CappaSF,SchnurT,TettamantiM,CollinaS,RosaMM,etal.The neuralcorrelatesofverbandnounprocessing.APETstudy.Brain1999;122(Pt 12):2337–44.

[28]PriceCJ,DevlinJT,MooreCJ,MortonC,LairdAR.Meta-analysesofobject nam-ing:effectofbaseline.HumanBrainMapping2005;25:70–82.

[29]BarresiBA,NicholasM,ConnorLT,OblerL,AlbertML.Semanticdegradation andlexicalaccessinage-relatednamingfailures.Aging,Neuropsychologyand Cognition2000;7:169–78.

[30]ConnorLT,SpiroA,3rd,OblerLK,AlbertML.Changeinobjectnamingability duringadulthood.JournalsofGerontologySeriesB,PsychologicalSciencesand SocialSciences2004;59:P203–9.

[31]MorrisonCM,HirshKW,DugganGB.Ageofacquisition,ageing,andverb pro-duction:normativeandexperimentaldata.QuarterlyJournalofExperimental PsychologyA,HumanExperimentalPsychology2003;56:705–30.

[32]GoralM,Spiro3rdA,AlbertM,OblerLK,ConnorLT.Changeinlexical–retrieval skillsinadulthood.TheMentalLexicon2007:215–38.

[33]VerhaeghenP.Agingandvocabularyscores:ameta-analysis.Psychologyand Aging2003;18:332–9.

[34]BurkeDM,ShaftoMA.Agingandlanguageproduction.CurrentDirectionsin PsychologicalScience2004;13:21–4.

[35]ShaftoMA,BurkeDM,StamatakisEA,TamPP,TylerLK.Onthe tip-of-the-tongue:neuralcorrelatesofincreasedword-findingfailuresinnormalaging. JournalofCognitiveNeuroscience2007;19:2060–70.

[36]ShaftoMA,StamatakisEA,TamPP,TylerLK.Wordretrievalfailuresinoldage: therelationshipbetweenstructureandfunction.JournalofCognitive Neuro-science2010;22:1530–40.

[37]StamatakisEA,ShaftoMA,WilliamsG,TamP,TylerLK.Whitematterchanges andwordfindingfailureswithincreasingage.PLoSONE2011;6:e14496. [38]BerlingeriM,BottiniG,DanelliL,FerriF,TraficanteD,SacheliL,etal.With

timeonourside?Task-dependentcompensatoryprocessesingracefulaging. ExperimentalBrainResearch2010;205:307–24.

[39]BerlingeriM,SacheliL,DanelliL,FerriF,TraficanteD,BasilicoS,etal. Neuro-functionalandneuromorphologicalevidenceofthelackofcompensationin pathologicalaging.BehaviouralNeurology2010;23:185–7.

[40]Cabeza R,LocantoreJK,AndersonND.Lateralizationofprefrontalactivity duringepisodicmemoryretrieval:evidencefortheproduction-monitoring hypothesis.JournalofCognitiveNeuroscience2003;15:249–59.

[41]EylerLT,SherzaiA,KaupAR,JesteDV.Areviewoffunctionalbrainimaging correlatesofsuccessfulcognitiveaging.BiologicalPsychiatry2011;70:115–22. [42]CheeMW,GohJO,VenkatramanV,TanJC,GutchessA,SuttonB,etal. Age-relatedchangesinobjectprocessingandcontextualbindingrevealedusing fMRadaptation.JournalofCognitiveNeuroscience2006;18:495–507. [43]VossMW,EricksonKI,ChaddockL,PrakashRS,ColcombeSJ,MorrisKS,etal.

Dedifferentiationinthevisualcortex:anfMRIinvestigationofindividual dif-ferencesinolderadults.BrainResearch2008;1244:121–31.

[44]Beason-HeldLL,KrautMA,ResnickSM.Stabilityofdefault-modenetwork activ-ityintheagingbrain.BrainImagingandBehaviour2009;3:123–31. [45]FridrikssonJ,MorrowKL,MoserD,BaylisGC.Age-relatedvariabilityincortical

activityduringlanguageprocessing.JournalofSpeech,Language,andHearing Research2006;49:690–7.

[46]WierengaCE,BenjaminM,GopinathK,PerlsteinWM,LeonardCM,RothiLJ, etal.Age-relatedchangesinwordretrieval:roleofbilateralfrontaland sub-corticalnetworks.NeurobiologyofAging2008;29:436–51.

[47]MiniussiC,RuzzoliM,WalshV.Themechanismoftranscranialmagnetic stim-ulationincognition.Cortex2010;46:128–30.

[48]EpsteinCM,SekinoM,YamaguchiK,KamiyaS,UenoS.Asymmetriesof pre-frontalcortexinhumanepisodicmemory:effectsoftranscranialmagnetic stimulationonlearningabstractpatterns.NeuroscienceLetters2002;320:5–8. [49]KohlerS,PausT,BucknerRL,MilnerB.Effectsofleftinferiorprefrontal stim-ulationonepisodicmemoryformation:atwo-stagefMRI-rTMSstudy.Journal ofCognitiveNeuroscience2004;16:178–88.

[50]ManentiR,CotelliM,CalabriaM,MaioliC,MiniussiC.Theroleofthe dor-solateralprefrontalcortexinretrievalfromlong-termmemorydependson strategies:arepetitivetranscranialmagneticstimulationstudy.Neuroscience 2010;166:501–7.

[51]ManentiR,TettamantiM,CotelliM,MiniussiC,CappaSF.Theneuralbasesof wordencodingandretrieval:afMRI-guidedtranscranialmagneticstimulation study.BrainTopography2010;22:318–32.

[52]RossiS,PasqualettiP,ZitoG,VecchioF,CappaSF,MiniussiC,etal.Prefrontal andparietalcortexinhumanepisodicmemory:aninterferencestudyby repetitivetranscranialmagneticstimulation.EuropeanJournalofNeuroscience 2006;23:793–800.

[53]RossiS,MiniussiC,PasqualettiP,BabiloniC, RossiniPM,Cappa SF. Age-related functionalchanges of prefrontal cortexin long-term memory: a repetitivetranscranialmagneticstimulationstudy.JournalofNeuroscience 2004;24:7939–44.

[54]CappaSF,SandriniM,RossiniPM,SostaK,MiniussiC.Theroleoftheleftfrontal lobeinactionnaming:rTMSevidence.Neurology2002;59:720–3.

[55]CotelliM,ManentiR,RosiniS,CalabriaM,BrambillaM,BisiacchiPS,etal.Action, andobjectnaminginphysiologicalaging:anrTMSstudy.FrontiersinAging Neuroscience2010;2:151.

[56]Cabeza R, Anderson ND, Locantore JK, McIntosh AR. Aging gracefully: compensatorybrainactivityinhigh-performing olderadults.Neuroimage 2002;17:1394–402.

[57]FolsteinMF,FolsteinSE,McHughPR.Mini-mentalstate.Apracticalmethodfor gradingthecognitivestateofpatientsfortheclinician.JournalofPsychiatric Research1975;12:189–98.

[58]OldfieldRC.Theassessmentandanalysisofhandedness:theEdinburgh inven-tory.Neuropsychologia1971;9:97–113.

[59]RossiS,HallettM,RossiniPM,Pascual-LeoneA,GroupSoTC.Safety,ethical considerationsandapplicationguidelinesfortheuseoftranscranical mag-neticstimulationinclinicalpracticeandresearch.Aconsensusstatementfrom theInternationalWorkshoponPresentandFutureofTMS:safetyandethical guidelines.ClinicalNeurophysiology2009;120(12):2008–39.

[60]LezakM,HowiesonD,LoringDW.Neuropsychologicalassessment.4thed. Oxford:UniversityPress;2004.

[61]MiceliG,LaudannaA,BuraniC,PapassoR.Batteriaperl’AnalisideiDeficit Afa-sici.BADA(BatteryforAnalysisofAphasicDeficits).Milano:CEPSAG,Università CattolicadelSacroCuore;1994.

[62]BatesE,AndonovaE,D’AmicoS,JacobsenT,KohnertK,LuCC,etal. Introduc-ingtheCRLInternationalPicture-NamingProject(CRL-IPNP).In:Centerfor ResearchinLanguageNewsletter.LaJolla:UniversityofCaliforniaSanDiego; 200012.

[63]CabezaR,DennisNA.Frontallobesandaging:deteriorationandcompensation. In:StussDT,KnightsRT,editors.Principlesoffrontallobefunction.NewYork: OxfordUniversityPress;2012.

[64]CotelliM,ManentiR,CappaSF,GeroldiC,ZanettiO,RossiniPM,etal.Effectof transcranialmagneticstimulationonactionnaminginpatientswithAlzheimer disease.ArchivesofNeurology2006;63:1602–4.

[65]CotelliM,ManentiR,CappaSF,ZanettiO,MiniussiC.Transcranialmagnetic stimulation improves naming in Alzheimer disease patients at differ-entstages of cognitivedecline. European Journalof Neurology2008;15: 1286–92.

[66]CotelliM, Calabria M,Manenti R, Rosini S, Zanetti O, Cappa SF, et al. Improved language performance in Alzheimer disease following brain stimulation.Journal ofNeurology, Neurosurgeryand Psychiatry2011;82: 794–7.

[67]CotelliM,ManentiR,AlbericiA,BrambillaM,CossedduM,ZanettiO,etal. Pre-frontalcortexrTMSenhancesactionnaminginprogressivenon-fluentaphasia. EuropeanJournalofNeurology2012;19(11):1404–12.

[68]CotelliM,FertonaniA,MiozzoA,RosiniS,ManentiR,PadovaniA,etal.Anomia trainingandbrainstimulationinchronicaphasia.Neuropsychological Rehabil-itation2011;21:717–41.

[69]SzaflarskiJP,VannestJ,WuSW,DiFrancescoMW,BanksC,GilbertDL.Excitatory repetitivetranscranialmagneticstimulationinducesimprovementsinchronic post-strokeaphasia.MedicalScienceMonitor2011;17:132–9.

Riferimenti

Documenti correlati

Objective: An observational case–control study was designed to analyse the discriminative value of ultrasound (US)-detected joint effusion compared with physical examination in

Gubler et al [27] in a series of 14 patients treated by OTSC clip placement for acute iatrogenic perforations of the GI tract demonstrated closure of the GI defects is possible

Potentially dangerous birds for aviation on the territory of the Omsk Airport marked 8 species: gray partridge, rock dove, gray pigeon, carrion crow, rook, common magpie,

Tutto era iniziato negli anni della prima diffusione della cultura tedesca in Italia e del dibattito sul romanticismo: nel 1818 uscì la traduzione di Pompeo

In particolare, se consideriamo le differenti tipologie di turismo culturale, troveremo testimonianze che richiamano proprio il territorio, come ad esempio i centri

The data collected quasi-simultaneously with XMM–Newton and NuSTAR showed the presence of a modulation with a period of 6680 ± 3 s in the X-ray light curves of the source.. This

strumenti.. Analizziamo ora le conversazioni sostenute dagli utenti prendendo come riferimento il nostro agente conversazionale. Per uniformità con il resto della

A sinistra della suddetta cappella è rappresentato il defunto, in compagnia di Pehsukher (TT88) e seguito da attendenti, di fronte alla madre che attende alle cure