• Non ci sono risultati.

Measurement of the D -> K- pi(+) strong phase difference in psi(3770) -> D-0(D)over-bar(0)

N/A
N/A
Protected

Academic year: 2021

Condividi "Measurement of the D -> K- pi(+) strong phase difference in psi(3770) -> D-0(D)over-bar(0)"

Copied!
7
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Measurement

of

the

D

K

π

+

strong

phase

difference

in

ψ (

3770

)

D

0

D

0

BESIII

Collaboration

M. Ablikim

a

,

M.N. Achasov

h

,

1

,

X.C. Ai

a

,

O. Albayrak

d

,

M. Albrecht

c

,

D.J. Ambrose

ar

,

F.F. An

a

,

Q. An

as

,

J.Z. Bai

a

,

R. Baldini Ferroli

s

,

Y. Ban

ac

,

D.W. Bennett

r

,

J.V. Bennett

r

,

M. Bertani

s

,

J.M. Bian

aq

,

E. Boger

v

,

5

,

O. Bondarenko

w

,

I. Boyko

v

,

S. Braun

an

,

R.A. Briere

d

,

H. Cai

az

,

X. Cai

a

,

O. Cakir

ak

,

A. Calcaterra

s

,

G.F. Cao

a

,

S.A. Cetin

al

,

J.F. Chang

a

,

G. Chelkov

v

,

2

,

G. Chen

a

,

H.S. Chen

a

,

J.C. Chen

a

,

M.L. Chen

a

,

S.J. Chen

aa

,

X. Chen

a

,

X.R. Chen

x

,

Y.B. Chen

a

,

H.P. Cheng

p

,

X.K. Chu

ac

,

Y.P. Chu

a

,

D. Cronin-Hennessy

aq

,

H.L. Dai

a

,

J.P. Dai

a

,

D. Dedovich

v

,

Z.Y. Deng

a

,

A. Denig

u

,

I. Denysenko

v

,

M. Destefanis

av

,

ax

,

W.M. Ding

ae

,

Y. Ding

y

,

C. Dong

ab

,

J. Dong

a

,

L.Y. Dong

a

,

M.Y. Dong

a

,

S.X. Du

bb

,

J.Z. Fan

aj

,

J. Fang

a

,

S.S. Fang

a

,

Y. Fang

a

,

L. Fava

aw

,

ax

,

C.Q. Feng

as

,

C.D. Fu

a

,

O. Fuks

v

,

5

,

Q. Gao

a

,

Y. Gao

aj

,

C. Geng

as

,

K. Goetzen

i

,

W.X. Gong

a

,

W. Gradl

u

,

M. Greco

av

,

ax

,

M.H. Gu

a

,

Y.T. Gu

k

,

Y.H. Guan

a

,

L.B. Guo

z

,

T. Guo

z

,

Y.P. Guo

u

,

Z. Haddadi

w

,

Y.L. Han

a

,

F.A. Harris

ap

,

K.L. He

a

,

M. He

a

,

Z.Y. He

ab

,

T. Held

c

,

Y.K. Heng

a

,

Z.L. Hou

a

,

C. Hu

z

,

H.M. Hu

a

,

J.F. Hu

an

,

T. Hu

a

,

G.M. Huang

e

,

G.S. Huang

as

,

H.P. Huang

az

,

J.S. Huang

n

,

L. Huang

a

,

X.T. Huang

ae

,

Y. Huang

aa

,

T. Hussain

au

,

C.S. Ji

as

,

Q. Ji

a

,

Q.P. Ji

ab

,

X.B. Ji

a

,

X.L. Ji

a

,

L.L. Jiang

a

,

L.W. Jiang

az

,

X.S. Jiang

a

,

J.B. Jiao

ae

,

Z. Jiao

p

,

D.P. Jin

a

,

S. Jin

a

,

T. Johansson

ay

,

A. Julin

aq

,

N. Kalantar-Nayestanaki

w

,

X.L. Kang

a

,

X.S. Kang

ab

,

M. Kavatsyuk

w

,

B. Kloss

u

,

B. Kopf

c

,

M. Kornicer

ap

,

W. Kuehn

an

,

A. Kupsc

ay

,

W. Lai

a

,

J.S. Lange

an

,

M. Lara

r

,

P. Larin

m

,

M. Leyhe

c

,

C.H. Li

a

,

Cheng Li

as

,

Cui Li

as

,

D. Li

q

,

D.M. Li

bb

,

F. Li

a

,

G. Li

a

,

H.B. Li

a

,

J.C. Li

a

,

Jin Li

ad

,

K. Li

ae

,

K. Li

l

,

Lei Li

a

,

P.R. Li

ao

,

Q.J. Li

a

,

T. Li

ae

,

W.D. Li

a

,

W.G. Li

a

,

X.L. Li

ae

,

X.N. Li

a

,

X.Q. Li

ab

,

Z.B. Li

ai

,

H. Liang

as

,

Y.F. Liang

ag

,

Y.T. Liang

an

,

D.X. Lin

m

,

B.J. Liu

a

,

C.L. Liu

d

,

C.X. Liu

a

,

F.H. Liu

af

,

Fang Liu

a

,

Feng Liu

e

,

H.B. Liu

k

,

H.H. Liu

o

,

H.M. Liu

a

,

J. Liu

a

,

J.P. Liu

az

,

K. Liu

aj

,

K.Y. Liu

y

,

P.L. Liu

ae

,

Q. Liu

ao

,

S.B. Liu

as

,

X. Liu

x

,

Y.B. Liu

ab

,

Z.A. Liu

a

,

Zhiqiang Liu

a

,

Zhiqing Liu

u

,

H. Loehner

w

,

X.C. Lou

a

,

3

,

G.R. Lu

n

,

H.J. Lu

p

,

H.L. Lu

a

,

J.G. Lu

a

,

Y. Lu

a

,

Y.P. Lu

a

,

C.L. Luo

z

,

M.X. Luo

ba

,

T. Luo

ap

,

X.L. Luo

a

,

M. Lv

a

,

X.R. Lyu

ao

,

,

F.C. Ma

y

,

H.L. Ma

a

,

Q.M. Ma

a

,

S. Ma

a

,

T. Ma

a

,

X.Y. Ma

a

,

F.E. Maas

m

,

M. Maggiora

av

,

ax

,

Q.A. Malik

au

,

Y.J. Mao

ac

,

Z.P. Mao

a

,

J.G. Messchendorp

w

,

J. Min

a

,

T.J. Min

a

,

R.E. Mitchell

r

,

X.H. Mo

a

,

Y.J. Mo

e

,

H. Moeini

w

,

C. Morales Morales

m

,

K. Moriya

r

,

N.Yu. Muchnoi

h

,

1

,

H. Muramatsu

aq

,

Y. Nefedov

v

,

F. Nerling

m

,

I.B. Nikolaev

h

,

1

,

Z. Ning

a

,

S. Nisar

g

,

X.Y. Niu

a

,

S.L. Olsen

ad

,

Q. Ouyang

a

,

S. Pacetti

t

,

M. Pelizaeus

c

,

H.P. Peng

as

,

K. Peters

i

,

J.L. Ping

z

,

R.G. Ping

a

,

R. Poling

aq

,

M. Qi

aa

,

S. Qian

a

,

C.F. Qiao

ao

,

L.Q. Qin

ae

,

N. Qin

az

,

X.S. Qin

a

,

Y. Qin

ac

,

Z.H. Qin

a

,

J.F. Qiu

a

,

K.H. Rashid

au

,

C.F. Redmer

u

,

M. Ripka

u

,

G. Rong

a

,

X.D. Ruan

k

,

A. Sarantsev

v

,

4

,

K. Schoenning

ay

,

S. Schumann

u

,

W. Shan

ac

,

M. Shao

as

,

C.P. Shen

b

,

X.Y. Shen

a

,

H.Y. Sheng

a

,

M.R. Shepherd

r

,

W.M. Song

a

,

X.Y. Song

a

,

S. Spataro

av

,

ax

,

B. Spruck

an

,

G.X. Sun

a

,

J.F. Sun

n

,

S.S. Sun

a

,

Y.J. Sun

as

,

Y.Z. Sun

a

,

Z.J. Sun

a

,

Z.T. Sun

as

,

C.J. Tang

ag

,

X. Tang

a

,

I. Tapan

am

,

E.H. Thorndike

ar

,

M. Tiemens

w

,

D. Toth

aq

,

M. Ullrich

an

,

I. Uman

al

,

http://dx.doi.org/10.1016/j.physletb.2014.05.071

0370-2693/©2014TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/3.0/).Fundedby SCOAP3.

(2)

G.S. Varner

ap

,

B. Wang

ab

,

D. Wang

ac

,

D.Y. Wang

ac

,

K. Wang

a

,

L.L. Wang

a

,

L.S. Wang

a

,

M. Wang

ae

,

P. Wang

a

,

P.L. Wang

a

,

Q.J. Wang

a

,

S.G. Wang

ac

,

W. Wang

a

,

X.F. Wang

aj

,

Y.D. Wang

s

,

Y.F. Wang

a

,

Y.Q. Wang

u

,

Z. Wang

a

,

Z.G. Wang

a

,

Z.H. Wang

as

,

Z.Y. Wang

a

,

D.H. Wei

j

,

J.B. Wei

ac

,

P. Weidenkaff

u

,

S.P. Wen

a

,

M. Werner

an

,

U. Wiedner

c

,

M. Wolke

ay

,

L.H. Wu

a

,

N. Wu

a

,

Z. Wu

a

,

L.G. Xia

aj

,

Y. Xia

q

,

D. Xiao

a

,

Z.J. Xiao

z

,

Y.G. Xie

a

,

Q.L. Xiu

a

,

G.F. Xu

a

,

L. Xu

a

,

Q.J. Xu

l

,

Q.N. Xu

ao

,

X.P. Xu

ah

,

Z. Xue

a

,

L. Yan

as

,

W.B. Yan

as

,

W.C. Yan

as

,

Y.H. Yan

q

,

H.X. Yang

a

,

L. Yang

az

,

Y. Yang

e

,

Y.X. Yang

j

,

H. Ye

a

,

M. Ye

a

,

M.H. Ye

f

,

B.X. Yu

a

,

C.X. Yu

ab

,

H.W. Yu

ac

,

J.S. Yu

x

,

S.P. Yu

ae

,

C.Z. Yuan

a

,

W.L. Yuan

aa

,

Y. Yuan

a

,

A. Yuncu

al

,

A.A. Zafar

au

,

A. Zallo

s

,

S.L. Zang

aa

,

Y. Zeng

q

,

B.X. Zhang

a

,

B.Y. Zhang

a

,

C. Zhang

aa

,

C.B. Zhang

q

,

C.C. Zhang

a

,

D.H. Zhang

a

,

H.H. Zhang

ai

,

H.Y. Zhang

a

,

J.J. Zhang

a

,

J.Q. Zhang

a

,

J.W. Zhang

a

,

J.Y. Zhang

a

,

J.Z. Zhang

a

,

S.H. Zhang

a

,

X.J. Zhang

a

,

X.Y. Zhang

ae

,

Y. Zhang

a

,

Y.H. Zhang

a

,

Z.H. Zhang

e

,

Z.P. Zhang

as

,

Z.Y. Zhang

az

,

G. Zhao

a

,

J.W. Zhao

a

,

Lei Zhao

as

,

Ling Zhao

a

,

M.G. Zhao

ab

,

Q. Zhao

a

,

Q.W. Zhao

a

,

S.J. Zhao

bb

,

T.C. Zhao

a

,

X.H. Zhao

aa

,

Y.B. Zhao

a

,

Z.G. Zhao

as

,

A. Zhemchugov

v

,

5

,

B. Zheng

at

,

J.P. Zheng

a

,

Y.H. Zheng

ao

,

B. Zhong

z

,

L. Zhou

a

,

Li Zhou

ab

,

X. Zhou

az

,

X.K. Zhou

ao

,

X.R. Zhou

as

,

X.Y. Zhou

a

,

K. Zhu

a

,

K.J. Zhu

a

,

X.L. Zhu

aj

,

Y.C. Zhu

as

,

Y.S. Zhu

a

,

Z.A. Zhu

a

,

J. Zhuang

a

,

B.S. Zou

a

,

J.H. Zou

a a

InstituteofHighEnergyPhysics,Beijing100049,People’sRepublicofChina bBeihangUniversity,Beijing100191,People’sRepublicofChina

cBochumRuhr-University,D-44780Bochum,Germany dCarnegieMellonUniversity,Pittsburgh,PA 15213,USA

eCentralChinaNormalUniversity,Wuhan430079,People’sRepublicofChina

fChinaCenterofAdvancedScienceandTechnology,Beijing100190,People’sRepublicofChina gCOMSATSInstituteofInformationTechnology,DefenceRoad,OffRaiwindRoad,54000Lahore,Pakistan hG.I.BudkerInstituteofNuclearPhysicsSBRAS(BINP),Novosibirsk630090,Russia

iGSIHelmholtzcentreforHeavyIonResearchGmbH,D-64291Darmstadt,Germany jGuangxiNormalUniversity,Guilin541004,People’sRepublicofChina

kGuangXiUniversity,Nanning530004,People’sRepublicofChina lHangzhouNormalUniversity,Hangzhou310036,People’sRepublicofChina mHelmholtzInstituteMainz,Johann-Joachim-Becher-Weg45,D-55099Mainz,Germany nHenanNormalUniversity,Xinxiang453007,People’sRepublicofChina

oHenanUniversityofScienceandTechnology,Luoyang471003,People’sRepublicofChina pHuangshanCollege,Huangshan245000,People’sRepublicofChina

qHunanUniversity,Changsha410082,People’sRepublicofChina rIndianaUniversity,Bloomington,IN 47405,USA

sINFNLaboratoriNazionalidiFrascati,I-00044,Frascati,Italy tINFNandUniversityofPerugia,I-06100,Perugia,Italy

uJohannesGutenbergUniversityofMainz,Johann-Joachim-Becher-Weg45,D-55099Mainz,Germany vJointInstituteforNuclearResearch,141980Dubna,Moscowregion,Russia

wKVI,UniversityofGroningen,NL-9747AAGroningen,TheNetherlands xLanzhouUniversity,Lanzhou730000,People’sRepublicofChina yLiaoningUniversity,Shenyang110036,People’sRepublicofChina zNanjingNormalUniversity,Nanjing210023,People’sRepublicofChina aaNanjingUniversity,Nanjing210093,People’sRepublicofChina abNankaiuniversity,Tianjin300071,People’sRepublicofChina acPekingUniversity,Beijing100871,People’sRepublicofChina adSeoulNationalUniversity,Seoul,151-747Korea

aeShandongUniversity,Jinan250100,People’sRepublicofChina afShanxiUniversity,Taiyuan030006,People’sRepublicofChina agSichuanUniversity,Chengdu610064,People’sRepublicofChina ahSoochowUniversity,Suzhou215006,People’sRepublicofChina aiSunYat-SenUniversity,Guangzhou510275,People’sRepublicofChina ajTsinghuaUniversity,Beijing100084,People’sRepublicofChina akAnkaraUniversity,DogolCaddesi,06100Tandogan,Ankara,Turkey alDogusUniversity,34722Istanbul,Turkey

amUludagUniversity,16059Bursa,Turkey anUniversitaetGiessen,D-35392Giessen,Germany

aoUniversityofChineseAcademyofSciences,Beijing100049,People’sRepublicofChina apUniversityofHawaii,Honolulu,HI 96822,USA

aqUniversityofMinnesota,Minneapolis,MN 55455,USA arUniversityofRochester,Rochester,NY 14627,USA

asUniversityofScienceandTechnologyofChina,Hefei230026,People’sRepublicofChina atUniversityofSouthChina,Hengyang421001,People’sRepublicofChina

auUniversityofthePunjab,Lahore-54590,Pakistan avUniversityofTurin,I-10125,Turin,Italy

awUniversityofEasternPiedmont,I-15121,Alessandria,Italy axINFN,I-10125,Turin,Italy

ayUppsalaUniversity,Box516,SE-75120Uppsala,Sweden azWuhanUniversity,Wuhan430072,People’sRepublicofChina baZhejiangUniversity,Hangzhou310027,People’sRepublicofChina bbZhengzhouUniversity,Zhengzhou450001,People’sRepublicofChina

(3)

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received18April2014

Receivedinrevisedform16May2014 Accepted23May2014

Availableonline29May2014 Editor:L.Rolandi

Keywords:

BESIII

D0–D0oscillation Strongphasedifference

We study D0D0pairs produced in e+ecollisions at s=3.773 GeV using a data sample of 2.92 fb−1

collected with the BESIII detector. We measured the asymmetry ACP

of the branching fractions of D

K

π

+in CP-odd

and

CP-even

eigenstates to be

(12.7 ±1.3 ±0.7)×10−2. ACP

can be used to extract

the strong phase difference δKπ between the doubly Cabibbo-suppressed process D0→K

π

+and the

Cabibbo-favored process D0K

π

+. Using world-average values of external parameters, we obtain cosδKπ=1.02 ±0.11 ±0.06 ±0.01. Here, the first and second uncertainties are statistical and systematic,

respectively, while the third uncertainty arises from the external parameters. This is the most precise measurement of δKπ to date.

©2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

Withinthe StandardModel,the short-distance contributionto

D0–D0oscillationsishighlysuppressedbytheGIMmechanism[1]

andby the magnitudeofthe CKM matrix elements [2]involved. However,longdistanceeffects,whichcannotbereliablycalculated, will also affect the size of mixing. Studies of D0–D0 oscillation provideknowledge ofthe sizeof theselong-distanceeffects and, given improved calculations, can contribute to searches for new physics[3].Inaddition,improvedconstraintsoncharmmixingare importantforstudiesofCP violation(CPV)incharmphysics.

Charmmixingisdescribedbytwodimensionlessparameters x

=

2M1

M2

Γ

1

+ Γ

2

y

=

Γ

1

− Γ

2

Γ

1

+ Γ

2

,

whereM1,2 and

Γ1

,2 arethemassesandwidthsofthetwomass

eigenstates in the D0-D0 system. The most precise

determina-tion of the mixing parameters comes from the measurement of

the time-dependent decay rateof the wrong-sign process D0

K+

π

−. These analyses are sensitive to y

ycos

δ

xsin

δ

andx

xcos

δ

+

ysin

δ

[4],where

δ

Kπ is thestrong phase

difference between the doubly Cabibbo-suppressed (DCS) ampli-tudeforD0

K

π

+andthecorrespondingCabibbo-favored(CF) amplitudeforD0

K

π

+.Inparticular,



K

π

+

|

D0





K

π

+

|

D0



= −

reiδKπ

,

(1) where r

=







K

π

+

|

D 0





K

π

+

|

D0





.

Knowledge of

δ

Kπ is important for extracting x and y from x

and y. In addition, a more accurate

δ

Kπ contributes to

preci-siondeterminations ofthe CKM unitarity angle

φ3

6 via the ADS method[5].

Usingquantum-correlated techniques,

δ

Kπ canbe accessed in

themass-thresholdproductionprocess e+e

D0D0 [6].In this

process,D0 andD0 areinaC -oddquantum-coherentstatewhere

thetwomesonsnecessarilyhaveoppositeCP eigenvalues[3].Thus,

*

Correspondingauthor.

1 AlsoattheNovosibirskStateUniversity,Novosibirsk,630090,Russia. 2 AlsoattheMoscowInstituteofPhysicsandTechnology,Moscow141700,Russia andattheFunctionalElectronicsLaboratory,TomskStateUniversity,Tomsk,634050, Russia.

3 AlsoatUniversityofTexasatDallas,Richardson,TX 75083,USA. 4 AlsoatthePNPI,Gatchina188300,Russia.

5 AlsoattheMoscowInstituteofPhysicsandTechnology,Moscow141700,Russia. 6 γisalsousedintheliterature.

thresholdproductionprovidesa uniquewaytoidentifythe CP of

oneneutralD byprobingthedecayofthepartnerD.BecauseCPV

in D decays isvery smallcomparedwiththe mixingparameters, we will assume no CPV in our analysis. In this paper, we often referto K

π

+onlyforsimplicity,butcharge-conjugatemodesare alwaysimpliedwhenappropriate.

WedenotetheasymmetryofCP-taggedD decayratestoK

π

+

as

A

CP

B

DSKπ+

B

DS+Kπ+

B

DSKπ+

+

B

DS+Kπ+

,

(2)

where S

+

(S

)denotestheCP-even(CP-odd)eigenstate.To low-estorderinthemixingparameters,wehavetherelation[7,8] 2r cos

δ

+

y

= (

1

+

RWS

)

·

A

CPKπ

,

(3)

where RWS is the decay rate ratio of the wrong sign process D0

K

π

+ (includingtheDCS decayandD mixingfollowedby

the CF decay) andthe right sign process D0

K

π

+ (i.e., the CF decay).Here, D0 or D0 referstothestateatproduction.Using external valuesforthe parametersr, y,and RWS,we canextract

δ

Kπ from

A

CPKπ .

WeusetheD-taggingmethod[9]toobtainthebranching frac-tions

B

DS±Kπ+ as

B

DS±Kπ+

=

nKπ+,S± nS±

·

ε

S±

ε

Kπ+,S±

.

(4)

Here, nS± and

ε

S± are yields and detection efficiencies of sin-gle tags (ST) of S

±

final states, while nKπ+,S± and

ε

Kπ+,S±

are yields and efficiencies of double tags (DT) of (S

±

, K

π

+) final states, respectively. Based on an 818 pb−1 data sample collected with the CLEO-c detector at

s

=

3

.

77 GeV and a morecomplexanalysistechnique,theCLEOCollaborationobtained cos

δ

=

0

.

81+00..2218−+00..0705 [8]. Using a global fit method including

external inputs for mixing parameters, CLEO obtained cos

δ

=

1

.

15+00..1917+00..0008 [8].

In this paper, we present a measurement of

δ

Kπ , using the

quantum correlated productions of D0–D0 mesons at

s

=

3

.

773 GeV in e+e− collisions with an integrated luminos-ityof2.92 fb−1 [10]collectedwiththeBESIIIdetector[11]. 2. TheBESIIIdetector

The BeijingSpectrometer (BESIII) viewse+e− collisions in the double-ring collider BEPCII. BESIII is a general-purpose detec-tor[11]with93%coverageofthefullsolidangle.Fromthe interac-tionpoint(IP)totheoutside,BESIIIisequippedwithamaindrift chamber (MDC) consisting of 43 layers of drift cells, a time-of-flight(TOF)counterwithdouble-layerscintillatorinthebarrelpart andsingle-layerscintillatorintheend-cappart,anelectromagnetic

(4)

Table 1

D decaymodesusedinthisanalysis.

Type Mode Flavored Kπ+,K+πS+ K+K+π,K0 0π00π00π0 SK0 0 ,K0 Sη,K 0

calorimeter(EMC)composed of6240CsI(Tl)crystals,a supercon-ductingsolenoidmagnetprovidingamagneticfieldof1.0 Talong the beam direction, and a muon counter containing multi-layer resistiveplatechambersinstalled in thesteel flux-returnyoke of themagnet. TheMDCspatial resolutionisabout135 μm andthe momentumresolutionisabout0.5%forachargedtrackwith trans-versemomentumof1 GeV

/

c.Theenergyresolutionforshowersin theEMCis2.5%at1 GeV.Moredetailsofthespectrometercanbe foundinRef.[11].

3. MCsimulation

MonteCarlo (MC)simulation serves to estimate the detection

efficiency and to understand background components. MC

sam-ples corresponding to about10 times theluminosity ofdata are generatedwitha geant4-based[12]softwarepackage[13],which includessimulationsofthegeometryofthespectrometer and in-teractionsofparticleswiththedetectormaterials. kkmc isusedto modelthebeamenergyspreadandtheinitial-stateradiation(ISR) inthe e+e− annihilations [14]. The inclusiveMC samplesconsist oftheproductionof D D pairswithconsiderationofquantum co-herenceforallmodesrelevanttothisanalysis,thenon-D D decays of

ψ(

3770

)

, the ISR production of low mass

ψ

states, andQED andqq continuum

¯

processes. Knowndecays recordedin the Par-ticleData Group (PDG)[15] are simulated with evtgen [16] and theunknown decayswith lundcharm [17]. Thefinal-state radia-tion(FSR)offchargedtracksistakenintoaccountwiththe photos package[18].MCsamplesofD

S

±,

D

X ( X denotesinclusive decayproducts)processesareusedtoestimatetheSTefficiencies, andMC samplesof D

S

±,

D

K

π

processesareusedto esti-matetheDTefficiencies.

4. Dataanalysis

ThedecaymodesusedfortaggingtheCP eigenstatesarelisted in Table 1, where

π

0

γ γ

,

η

γ γ

, K0

S

π

+

π

− and

ω

π

+

π

π

0.Foreachmode,D candidatesarereconstructedfromall

possiblecombinationsoffinal-stateparticles,accordingtothe fol-lowingselectioncriteria.

Momenta and impact parameters of charged tracks are

mea-suredbytheMDC.Chargedtracksarerequiredtosatisfy

|

cos

θ

|

<

0

.

93, where

θ

is the polar angle withrespect to the beam axis, andhave a closest approach to the IP within

±

10 cm alongthe beamdirectionand within

±

1 cm in the plane perpendicular to the beamaxis.Particle identification isimplemented by combin-ing the information of normalized energy deposition (dE

/

dx) in

the MDC andthe flight time measurements fromthe TOF. Fora

charged

π

(

K

)

candidate,theprobabilityofthe

π

(

K

)

hypothesisis requiredtobelargerthanthatoftheK

(

π

)

hypothesis.

Photonsare reconstructedasenergydepositionclustersinthe

EMC. The energies of photon candidates must be larger than

25 MeVfor

|

cos

θ

|

<

0

.

8 (barrel)and50 MeVfor0

.

84

<

|

cos

θ

|

<

0

.

92 (end-cap).Tosuppressfakephotonsduetoelectronicnoiseor beambackgrounds,theshowertimemustbelessthan700 nsfrom the event start time [19]. However, in the case that no charged trackisdetected, theeventstarttime is notreliable,andinstead the shower time must be within

±

500 ns from the time ofthe mostenergeticshower.

Table 2

Requirementson E fordifferentD reconstructionmodes.

Mode Requirement (GeV)

K+K− −0.025< E<0.025 π+π− −0.030< E<0.030 K0 0π0 −0.080< E<0.045 π0π0 0 .080< E<0.040 ρ0π0 0.070< E<0.040 K0 0 −0.070< E<0.040 K0 −0.040< E<0.040 K0 −0.050< E<0.030 K±π∓ −0.030< E<0.030

Our

π

0 and

η

candidates are selected from pairs of

pho-tons with the requirement that at least one photon candidate reconstructed in the barrel is used. The mass windows imposed are 0

.

115 GeV

/

c2

<

mγ γ

<

0

.

150 GeV

/

c2 for

π

0 candidates and

0

.

505 GeV

/

c2

<

mγ γ

<

0

.

570 GeV

/

c2 for

η

candidates.Wefurther constrain the invariant mass ofeach photon pairto the nominal

π

0 or

η

mass,andupdate the fourmomentum ofthe candidate

accordingtothefitresults.

The K0S candidates arereconstructed via K0S

π

+

π

− usinga vertex-constrainedfittoallpairsofoppositelychargedtracks,with noparticleidentificationrequirements.Thesetrackshavealooser IP requirement:their closest approachto theIP isrequiredto be lessthan20 cmalongthebeamdirection,withnorequirementin the transverse plane. The

χ

2 of the vertexfit is required to be

lessthan100. Inaddition,a secondfit isperformed,constraining the K0S momentum to point back to the IP. The flight length, L,

obtainedfromthisfitmustsatisfy L

/

σ

L

>

2,where

σ

L isthe esti-matederroronL. Finally,theinvariantmassofthe

π

+

π

−pairis requiredtobewithin

(

0

.

487

,

0

.

511

)

GeV

/

c2,whichcorrespondsto threetimestheexperimentalmassresolution.

4.1. SingletagsusingCP modes

For the CP-even and CP-oddmodes, the two variables beam-constrainedmassMBCandenergydifference

E areusedto

iden-tifythesignals,definedasfollows: MBC



E2beam

/

c4

− |

p

D

|

2

/

c2

,

E

ED

Ebeam

.

Here

pD and ED are the total momentum and energy of the D candidate,andEbeam isthebeamenergy.Signalspeakaroundthe

nominal D mass in MBC and around zero in

E. Boundaries of

E requirementsaresetatapproximately

±

3

σ

,exceptthatthose of modes containing a

π

0 are set as (

4

σ

,

+

3

.

5

σ

) due to the

asymmetric distributions. In each event, only the combinationof

D candidateswiththeleast

|

E

|

iskeptpermode.

In the K+K− and

π

+

π

− modes, backgrounds ofcosmic rays andBhabhaeventsareremoved withthefollowingrequirements. First, the two charged tracks used as the CP tag must have a TOF time difference lessthan 5 nsand they must not be consis-tentwithbeingamuonpairoranelectron–positronpair.Second, there must be at least one EMC shower (other than those from the CP tagtracks) withan energylargerthan50 MeVoratleast one additional charged trackdetected in the MDC. In the K0

S

π

0 mode, backgroundsdueto D0

ρπ

are negligibleafter restrict-ing thedecaylengthof K0

S with L

/

σ

L

>

2.Inthe

ρ

0

π

0 and K0S

ω

modes, massranges of0

.

60 GeV

/

c2

<

+π

<

0

.

95 GeV

/

c2 and 0

.

72 GeV

/

c2

<

+ππ0

<

0

.

84 GeV

/

c2 arerequiredfor identify-ing

ρ

and

ω

candidates,respectively.

(5)

Fig. 1. TheMBCdistributionsofthesingle-tag(ST) CP modes.Dataareshownaspointswitherrorbars.Thesolidlinesarethetotalfitsandthedashed linesarethe backgroundcontribution.

Table 3

Yieldsandefficienciesofallsingle-tag(ST)anddouble-tag(DT)modes.First,welist theST(CP mode)yields(nS±)andcorrespondingefficiencies(εS±)andthentheDT modeyields(nKπ ,S±)andefficiencies(εKπ ,S±).Uncertaintiesarestatisticalonly.

ST mode nS± εS±(%) K+K− 56 156±261 62.99±0.26 π+π− 20 222±187 65.58±0.26 KS0π0π0 25 156±235 16.46±0.07 π0π0 7610±156 42.77±0.21 ρπ0 41 117±354 36.22±0.21 K0 0 72 710±291 41 .95±0.21 K0 10 046±121 35.12±0.20 K0 31 422±215 17.88±0.10 DT mode nKπ ,S± εKπ ,S±(%) Kπ,K+K− 1671±41 42.33±0.21 Kπ,π+π− 610±25 44.02±0.21 Kπ,K0 0π0 806±29 12.86±0.13 Kπ,π0π0 213±14 30 .42±0.18 Kπ,ρπ0 1240±35 25 .48±0.16 Kπ,K0 0 1689±41 29.06±0.17 Kπ,K0 230±15 24.84±0.16 Kπ,K0 747±27 12.60±0.06

Afterapplyingthecriteriaon

E in

Table 2

inalltheCP modes,

weplot their MBC distributionsin Fig. 1,wherethe peaksatthe

nominal D0 mass are evident. Maximum likelihood fits to the

events in Fig. 1 are performed, where in each mode the signals aremodeledwiththereconstructedsignalshapeinMCsimulation convoluted with a smearing Gaussian function, and backgrounds are modeled with the ARGUS function [20]. The Gaussian func-tions are supposed to compensate for the resolution differences betweendataandMC simulation.Basedonthefitresults,the

es-timated yields of the CP modes are givenin Table 3, along with theirMC-determineddetectionefficiencies.

4.2. DoubletagsoftheK

π

+andCP modes

In the surviving ST CP modes, we reconstruct D

K

π

+

amongtheunusedchargedtracks.TheD

K

π

+candidatemust pass the

E requirement listed in Table 2; in the case of mul-tiple candidates, the one with the smallest

|

E

|

is chosen. The DT signals peak at the nominal D0 mass in both MBC(S

±)

and MBC(K

π

)

.Toextractthesignalyields,two-dimensionalmaximum likelihood fits to the distributions of MBC(S

±)

vs. MBC(K

π

)

are performed. The signal shapes are derived from MC simulations,

and the background shapes contain continuum background and

mis-partitioning background where some final-state particles are interchanged between the D0 and D0 candidates in the recon-structionprocess. Fig. 2 showsan exampleofthe resultsforone sampleDTcombination,(K

π

,K0S

π

0).

Table 3

liststheyieldsofthe

DTmodesandtheircorresponding detectionefficienciesas deter-minedwithMCsimulations.

5. PuritiesoftheCP modes

It is necessary to determine the CP-purity of our ST modes. For the K0

S

π

0

(

K0S

η

)

mode, the issue is the background un-der the K0S peak. We use the sideband regions of the KS0 mass,

[

0

.

470

,

0

.

477

]

GeV

/

c2 and

[

0

.

521

,

0

.

528

]

GeV

/

c2, in the +π− distributions, to estimate the backgrounds from

π

+

π

π

0

(

π

+

π

η

)

.The purityis estimatedtobe 98.5% (almost100%)for the K0S

π

0

(

K0

S

η

)

mode.Forthe K0S

ω

, K0S

π

0

π

0 and

ρ

0

π

0 modes, due to the complexity of the involved non-resonant and reso-nant processes,weevaluate theCP-puritydirectly fromourdata.

(6)

Fig. 2. AnillustrationofourDTyieldanalysis,usingthe, K0

0 mode.Ascatterplot(left)ofthetwoMBC valuesisdisplayed,alongwithprojectionsofthe two-dimensionalfittothesamedata(middleandright).Thesolidlinesarethetotalfitsandthedashedlinesarethebackgroundcontribution.

Table 4

Thesame-CP yieldsandthecorrespondingefficienciesusedinourCP-puritytests. Theuncertaintiesarestatisticalonly.ThelastcolumnpresentstheobtainedfSand

numbersintheparenthesesarethelowerlimitsofthe fSat90%confidencelevel.

Mode (S,S) nS,S εS,S(%) fS(%) K+K,K0 0π0 8±3 11.80±0.11 91.6±16.7(>86.8) K+K0π0 13±8 24.44±0.16 84.0±12.6(>70.6) K0 0,K0 7±3 6.77±0.08 94.6±8.0(>90.6)

We useadditionalDTcombinations,withacleanCP-tagin combi-nationwiththemodewewishtostudy.Welookforsignalswhere bothD mesonsdecaywithequalCP eigenvalue.IfCP isconserved, thesame-CP processisprohibitedinthe quantum-correlated D D

productionatthreshold,unlessourstudiedCP modesarenotpure. Ifwetake fS asthefractionoftherightCP componentsintheCP tagmode,wehavetheyieldsofthesame-CP processwrittenas nS,S

= (

1

fS

)

·

nS

·

B

DS

·

ε

S,S

/

ε

S

,

wheremode Sischosentobe(nearly)pureinitsCP eigenstate.

Wetakethemodes K0S

π

0 (S

)andK+K(S

+

)asourclean CP tags to test the S

and S

+

purities of our ST modes, re-spectively. We analyze our data to find

(

S

,

S

)

events using se-lectioncriteriasimilartothosedescribedinSection 4.2.However, a simplified procedure is used to obtain the yields. We imple-ment a one-dimensional fit to the MBC(S

)

distributions for the signal mode S of interest,while restrictingthe MBC(S

)

distribu-tionsforthetaggingmodesSinthesignalregion1

.

860 GeV

/

c2

<

MBC(K+K

)

<

1

.

875 GeV

/

c2 and 1

.

855 GeV

/

c2

<

MBC(K0

S

π

0

)

<

1

.

880 GeV

/

c2. The DT signals are described with the signal MC shape convolutedwith aGaussian function, andbackgrounds are modeledwiththeARGUSfunction.

Fig. 3

showstheMBC(S

)

distri-butionsinthe DTeventsandthefits tothedistributions.

Table 4

liststheDTyieldsandthecorrespondingdetectionefficiencies.In thetestedCP modes,theobservednumbersofthesame-CP events are quite small and nearly consistent withzero, which indicates that fS iscloseto1.Thisone-dimensionalfitmayletcertain peak-ingbackgroundssurvive;however,anover-estimatednS,S leadsto amoreconservativeevaluationof fS.

6. Systematicuncertainties

Incalculating

A

CPKπ ,uncertaintiesofmostofefficiencies cancel out,suchasthosefortracking,particleidentificationand

π

0

/

η

/

K0

S reconstruction. The efficiency differences

S±

= (

εKεπS±,S±

)

of

K

π

+betweendataandMCsimulationarestudiedforthemodes

S

±

.Weusecontrolsamplestostudy

S±.TheK

π

+finalstateis usedforstudying

S±intheK+K−and

π

+

π

−modes;K

π

+

π

0

isused forthe

π

0

π

0,

ρπ

0, K0

S

π

0 and K0S

η

modes; K

π

+

π

0

π

0 isused forthe K0S

π

0

π

0 mode; and K+

π

π

π

+ isusedforthe K0S

ω

mode.Wedetermine

S±indifferentCP-tagmodesby com-paringtheratiooftheDTyieldstotheSTyieldsbetweendataand

MC. Wefindthat

S± areat1%levelfordifferentCP-tagmodes. Intheformulaof

A

CPKπ ,thedependenceof

S±ontheCP modeis not canceledout. Theresultingsystematicuncertaintyon

A

CPKπ is 0

.

2

×

10−2.

Some systematics arise from effects which act among several

CP modessimultaneously.TheefficiencyofthecosmicandBhabha veto(onlyfortheK K and

π π

modes)isstudiedbasedonthe in-clusiveMCsample.Wecomparetheobtained

A

CP

Kπ withand

with-outthisrequirementandtakethedifferenceof0

.

6

×

10−3asa

sys-tematic uncertainty.For the CP modesinvolving K0S, CP-violating K0

L

π

+

π

−decaysarealsoconsidered.Usingtheknown branch-ing fraction, we find this causes the change on

A

CPKπ to be 0

.

8

×

10−3.

Other systematic uncertainties, relevant to

A

CP

Kπ , are listed in Table 5,whichareuncorrelatedamongdifferentCP modes.

The

E requirementsare mode-dependent.Westudypossible biasesofourrequirements bychanging theirvalues; wetake the maximumvariations oftheresultant

B

DS±Kπ as systematic

un-certainties.

Fitting the MBC distributions involves knowledge of detector

smearingandtheeffectsofinitial-stateandfinal-stateradiation.In thecaseofSTfits,wescanthesmearingparameterswithinthe er-rorsdeterminedinournominalfits.ThemaximumchangestonS±

are taken asa systematic uncertainty.For the DT fits, we obtain checksonnKπ,S±withone-dimensionalfitsto MBC(S

)

with inclu-sionoffloatingsmearingfunctions.Theoutcomesof

B

DS±Kπ are

consistent with those determined from the two-dimensional fits, andanysmalldifferencesaretreatedassystematicuncertainties.

SystematiceffectsduetotheCP puritiesarechecked,asstated in Section 5. We introduce the CP purities fS in calculating the

B

DS±Kπ under differentCP tagging modes andobtain the

cor-rected

B

DS±Kπ .We setthelowerlimitsof fS andtakethe cor-respondingmaximumchangesaspartofsystematicuncertainties. 7. Results

We combine the branching fractions

B

DS+Kπ+ and

B

DSKπ+ in Eq. (4) from two kinds of the CP modes based

on the standard weighted least-square method [15]. Following Eq.(2),weobtain

A

CP

= (

12

.

7

±

1

.

3

±

0

.

7

)

×

10−2,wherethefirst

uncertaintyis statisticalandthesecond issystematic. The mode-dependentsystematicsarepropagatedto

A

CPKπ andcombinedwith the mode-correlatedsystematics.The valuesof

A

CPKπ obtainedfor the15differentCP mode combinationsarealsocheckedaslisted in

Table 6

.Withinstatisticaluncertainties,theyareconsistentwith eachother.

With externalinputs ofr2

= (

3

.

50

±

0

.

04

)

×

10−3, y

= (

6

.

7

±

0

.

9

)

×

10−3 fromHFAG[21]andRWS

= (

3

.

80

±

0

.

05

)

×

10−3from

PDG [15],cos

δ

Kπ is determinedto be 1

.

02

±

0

.

11

±

0

.

06

±

0

.

01,

where thethird uncertaintyisdueto theerrorsintroduced from theexternalinputs.

(7)

Fig. 3. TheMBCdistributionsfromourCP-puritytestsusingsame-CP processes(S,S),withfitstothetotal(solid)andbackground(dashed)contributions.BothS andSare CP eigenstatesofD decays.

Table 5

Asummaryofmode-dependentfractionalsystematicuncertainties,inpercent.A“–”meansthesystematicuncertaintyisnegligible.

Source K+Kπ+πK0 0π0 π0π0 ρ0π0 K0 0 K0 K 0 E requirement 0.6 0.5 0.9 0.7 1.8 0.7 0.5 1.5 Fitting 0.9 1.0 1.5 1.7 0.2 0.1 0.8 2.0 CP purity – – 1.8 – 3.5 0.6 – 1.2 Quadratic sum 1.1 1.1 2.5 1.8 3.9 0.9 0.9 2.8 Table 6 ValuesofACP

inunitsof10−2extractedfromthe15differentcombinationsofCPdecaymodes.Theerrorsshownarestatisticalonly.

CPCP+ K+Kπ+πK0 0π0 π0π0 ρπ0 K0 0 13.8±1.8 14.5±2.4 10.0±2.3 8.0±3.7 12.2±2.0 KS0η 15.5±3.5 16.3±3.9 11.8±3.8 9.7±4.8 14.0±3.6 K0 13.5±2.2 14.2±2.8 9.7±2.7 7.7±3.9 11.9±2.4 8. Summary

We employ a CP tagging technique to analyze a sample of

2.92 fb−1 quantum-correlated data of e+e

D0D0 at the

ψ(

3770

)

peak. We measuretheasymmetry

A

CP

= (

12

.

7

±

1

.

3

±

0

.

7

)

×

10−2.Usingtheinputsofr2andy fromHFAG[21]andRWS

fromPDG[15],weobtaincos

δ

=

1

.

02

±

0

.

11

±

0

.

06

±

0

.

01.The

first uncertainty is statistical, the second is systematic, and the third is dueto the external inputs. Our result isconsistent with previous resultsfromCLEO [8].Our resultis themostprecise to date,andhelpstoconstraintheD0–D0mixingparametersandthe angle

φ3

intheunitaritytriangleoftheCKMmatrix.

Acknowledgements

TheBESIIICollaborationthanksthestaffofBEPCIIandthe com-puting center for their strong support. This work is supported in part by the Ministry of Science and Technology of the Peo-ple’s Republic of China under Contract No. 2009CB825200; Na-tional Natural Science Foundation of China (NSFC) under Con-tractsNos.10625524, 10821063, 10825524,10835001, 10935007, 11125525,11235011, 11275266; JointFundsofthe National Nat-uralScienceFoundation ofChina underContractsNos.11079008, 11179007;theChineseAcademyofSciences(CAS)Large-Scale Sci-entificFacility Program;CAS underContractsNos.KJCX2-YW-N29,

KJCX2-YW-N45; 100 Talents Program of CAS; German Research

FoundationDFGunderContractNo. CollaborativeResearchCenter CRC-1044; IstitutoNazionale diFisica Nucleare, Italy; Ministryof DevelopmentofTurkeyunderContractNo.DPT2006K-120470;U.S. Departmentof Energy underContracts Nos.DE-FG02-04ER41291,

DE-FG02-05ER41374,DE-FG02-94ER40823,DESC0010118;U.S.

Na-tionalScienceFoundation;UniversityofGroningen (RuG)andthe HelmholtzzentrumfuerSchwerionenforschungGmbH(GSI), Darm-stadt;WCUProgramofNationalResearchFoundationofKorea un-derContractNo. R32-2008-000-10155-0.

References

[1]S.L.Glashow,J.Illiopoulos,L.Maiani,Phys.Rev.D2(1970)1285; R.L.Kingsley,S.B.Treiman,F.Wilczek,A.Zee,Phys.Rev.D11(1975)1919. [2]N.Cabibbo,Phys.Rev.Lett.10(1963)531;

M.Kobayashi,T.Maskawa,Prog.Theor.Phys.49(1973)652.

[3]S.Bianco,F.L.Fabbri,D.Benson,I.Bigi,Riv.NuovoCimento26 (7)(2003)1. [4]L.M.Zhang,etal.,BelleCollaboration,Phys.Rev.Lett.96(2006),151801;

B.Aubert,etal.,BaBarCollaboration,Phys.Rev.Lett.98(2007),211802; T.Aaltonen,etal.,CDFCollaboration,Phys.Rev.Lett.100(2008),121802. [5]D.Atwood,I.Dunietz,A.Soni,Phys.Rev.Lett.78(1997)3257;

D.Atwood,I.Dunietz,A.Soni,Phys.Rev.D63(2001),036005. [6]D.Atwood,A.A.Petrov,Phys.Rev.D71(2005),054032;

D.M.Asner,W.M.Sun,Phys.Rev.D73(2006),034024; D.M.Asner,W.M.Sun,Phys.Rev.D77(2008)019901(Erratum);

X.-D.Cheng,K.-L.He,H.-B.Li,Y.-F.Wang,M.-Z.Yang,Phys.Rev.D75(2007), 094019.

[7]Z.-Z.Xing,Phys.Rev.D55(1997)196;

H.-B.Li,M.-Z.Yang,Phys.Rev.D74(2006),094016;

M.Gronau,Y.Grossman,J.L.Rosner,Phys.Lett.B508(2001)37. [8]D.M.Asner,etal.,CLEOCollaboration,Phys.Rev.D86(2012),112001. [9]R.M.Baltrusaitis,etal.,MARK-IIICollaboration,Phys.Rev.Lett.56(1986)2140;

J.Adler,etal.,MARK-IIICollaboration,Phys.Rev.Lett.60(1988)89. [10]M.Ablikim,etal.,BESIIICollaboration,Chin.Phys.C37(2013),123001. [11]M.Ablikim,etal.,BESIIICollaboration,Nucl.Instrum.MethodsPhys.Res.,Sect.

A,Accel.Spectrom.Detect.Assoc.Equip.614(2010)345.

[12]S.Agostinelli,etal.,GEANT4Collaboration,Nucl.Instrum.MethodsPhys.Res., Sect.A,Accel.Spectrom.Detect.Assoc.Equip.506(2003)250.

[13]Z.Deng,etal.,PoSACAT(2007),043.

[14]S.Jadach,B.F.L.Ward,Z.Was,Phys.Rev.D63(2001),113009. [15]J.Beringer,etal.,ParticleDataGroup,Phys.Rev.D86(2012),010001. [16]D.J.Lange,Nucl.Instrum.MethodsPhys.Res.,Sect.A,Accel.Spectrom.Detect.

Assoc.Equip.462(2001)152; R.G.Ping,Chin.Phys.C32(2008)599. [17]J.C.Chen,etal.,Phys.Rev.D62(2000),034003. [18]E.Richter-Was,Phys.Lett.B303(1993)163. [19]XiangMa,etal.,Chin.Phys.C32(2008)744;

Y.Guan,X.-R.Lu,Y.Zheng,Y.-F.Wang,Chin.Phys.C38(2014)016201. [20]H.Albrecht,etal.,ARGUSCollaboration,Phys.Lett.B241(1990)278. [21] HeavyFlavorAveragingGroup,http://www.slac.stanford.edu/xorg/hfag/charm/.

Riferimenti

Documenti correlati

con l’Attività di mediazione con l’Asino nasce anche la necessità di individuare e defi- nire un nuovo ruolo professionale. Qualcuno che sia in grado di approcciarsi alla relazione

western margin of this sector, corresponding to the southern side of the lighthouse tip (Punta de la Farola), the slope presents some significant undercutting of the

Come si osserva confrontando il grafico ottenuto attraverso le misurazioni in laboratorio (Fig. 12) il filtro 87 permette alla radiazione infrarossa di passare

Therefore, my studies, which have been carried out over a large temperature range (10 – 300 K), at various pH and ionic strength values, in the presence of exogenous ligands, and

Dopo avere analizzato, nell’ordine, le principali caratteristiche degli investimenti, gli operatori di private equity, le fasi di investimento e i tratti

After adjusting for relevant confounders, there was no association between decreased serum TSH levels and all-cause and cardiovascular mortality in the Pomerania study; on the

In particular, in section 2.1 stabi- lized and referenced single-frequency MIR QCLs are proved as spec- troscopy sources, using frequency locking to a molecular absorption line

(3) where a is the specific absorbance value of the exhaust ribo flavin solution; t is the time elapsed from the beginning of UV-A irradiation (at the instant t = 0); z is the