• Non ci sono risultati.

Limits on the effective quark radius from inclusive ep scattering at HERA

N/A
N/A
Protected

Academic year: 2021

Condividi "Limits on the effective quark radius from inclusive ep scattering at HERA"

Copied!
5
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Limits

on

the

effective

quark

radius

from

inclusive

ep scattering

at HERA

ZEUS

Collaboration

H. Abramowicz

y

,

31

,

I. Abt

t

,

L. Adamczyk

h

,

M. Adamus

ae

,

S. Antonelli

b

,

V. Aushev

q

,

O. Behnke

j

,

U. Behrens

j

,

A. Bertolin

v

,

S. Bhadra

ag

,

I. Bloch

k

,

E.G. Boos

o

,

I. Brock

c

,

N.H. Brook

ac

,

R. Brugnera

w

,

A. Bruni

a

,

P.J. Bussey

l

,

A. Caldwell

t

,

M. Capua

e

,

C.D. Catterall

ag

,

J. Chwastowski

g

,

J. Ciborowski

ad

,

33

,

R. Ciesielski

j

,

16

,

A.M. Cooper-Sarkar

u

,

M. Corradi

a

,

11

,

R.K. Dementiev

s

,

R.C.E. Devenish

u

,

S. Dusini

v

,

B. Foster

m

,

23

,

G. Gach

h

,

E. Gallo

m

,

24

,

A. Garfagnini

w

,

A. Geiser

j

,

A. Gizhko

j

,

L.K. Gladilin

s

,

Yu.A. Golubkov

s

,

G. Grzelak

ad

,

M. Guzik

h

,

C. Gwenlan

u

,

W. Hain

j

,

O. Hlushchenko

q

,

D. Hochman

af

,

R. Hori

n

,

Z.A. Ibrahim

f

,

Y. Iga

x

,

M. Ishitsuka

z

,

F. Januschek

j

,

17

,

N.Z. Jomhari

f

,

I. Kadenko

q

,

S. Kananov

y

,

U. Karshon

af

,

P. Kaur

d

,

12

,

D. Kisielewska

h

,

R. Klanner

m

,

U. Klein

j

,

18

,

I.A. Korzhavina

s

,

A. Kota ´nski

i

,

U. Kötz

j

,

N. Kovalchuk

m

,

H. Kowalski

j

,

B. Krupa

g

,

O. Kuprash

j

,

19

,

M. Kuze

z

,

B.B. Levchenko

s

,

A. Levy

y

,

S. Limentani

w

,

M. Lisovyi

j

,

20

,

E. Lobodzinska

j

,

B. Löhr

j

,

E. Lohrmann

m

,

A. Longhin

v

,

30

,

D. Lontkovskyi

j

,

O.Yu. Lukina

s

,

I. Makarenko

j

,

J. Malka

j

,

A. Mastroberardino

e

,

F. Mohamad Idris

f

,

14

,

N. Mohammad Nasir

f

,

V. Myronenko

j

,

21

,

K. Nagano

n

,

T. Nobe

z

,

R.J. Nowak

ad

,

Yu. Onishchuk

q

,

E. Paul

c

,

W. Perla ´nski

ad

,

34

,

N.S. Pokrovskiy

o

,

A. Polini

a

,

M. Przybycie ´n

h

,

P. Roloff

j

,

22

,

M. Ruspa

ab

,

D.H. Saxon

l

,

M. Schioppa

e

,

U. Schneekloth

j

,

T. Schörner-Sadenius

j

,

L.M. Shcheglova

s

,

R. Shevchenko

q

,

27

,

28

,

O. Shkola

q

,

Yu. Shyrma

p

,

I. Singh

d

,

13

,

I.O. Skillicorn

l

,

W. Słomi ´nski

i

,

15

,

A. Solano

aa

,

L. Stanco

v

,

N. Stefaniuk

j

,

A. Stern

y

,

P. Stopa

g

,

D. Sukhonos

q

,

J. Sztuk-Dambietz

m

,

17

,

E. Tassi

e

,

K. Tokushuku

n

,

25

,

J. Tomaszewska

ad

,

35

,

T. Tsurugai

r

,

M. Turcato

m

,

17

,

O. Turkot

j

,

21

,

T. Tymieniecka

ae

,

A. Verbytskyi

t

,

W.A.T. Wan Abdullah

f

,

K. Wichmann

j

,

21

,

M. Wing

ac

,

,

32

,

S. Yamada

n

,

Y. Yamazaki

n

,

26

,

N. Zakharchuk

q

,

29

,

A.F. ˙Zarnecki

ad

,

L. Zawiejski

g

,

O. Zenaiev

j

,

B.O. Zhautykov

o

,

D.S. Zotkin

s

aINFNBologna,Bologna,Italy1

bUniversityandINFNBologna,Bologna,Italy1

cPhysikalischesInstitutderUniversitätBonn,Bonn,Germany2

dPanjabUniversity,DepartmentofPhysics,Chandigarh,India eCalabriaUniversity,PhysicsDepartmentandINFN,Cosenza,Italy1

fNationalCentreforParticlePhysics,UniversitiMalaya,50603KualaLumpur,Malaysia3

gTheHenrykNiewodniczanskiInstituteofNuclearPhysics,PolishAcademyofSciences,Krakow,Poland4

hAGH—University ofScienceandTechnology,FacultyofPhysicsandAppliedComputerScience,Krakow,Poland4

iDepartmentofPhysics,JagellonianUniversity,Krakow,Poland jDeutschesElektronen-SynchrotronDESY,Hamburg,Germany kDeutschesElektronen-SynchrotronDESY,Zeuthen,Germany

lSchoolofPhysicsandAstronomy,UniversityofGlasgow,Glasgow,UnitedKingdom5

mHamburgUniversity,InstituteofExperimentalPhysics,Hamburg,Germany6

nInstituteofParticleandNuclearStudies,KEK,Tsukuba,Japan7

oInstituteofPhysicsandTechnologyofMinistryofEducationandScienceofKazakhstan,Almaty,Kazakhstan pInstituteforNuclearResearch,NationalAcademyofSciences,Kyiv,Ukraine

qDepartmentofNuclearPhysics,NationalTarasShevchenkoUniversityofKyiv,Kyiv,Ukraine rMeijiGakuinUniversity,FacultyofGeneralEducation,Yokohama,Japan7

sLomonosovMoscowStateUniversity,SkobeltsynInstituteofNuclearPhysics,Moscow,Russia8

http://dx.doi.org/10.1016/j.physletb.2016.04.007

0370-2693/©2016CERNforthebenefitoftheZEUSCollaboration.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

(2)

tMax-Planck-InstitutfürPhysik,München,Germany

uDepartmentofPhysics,UniversityofOxford,Oxford,UnitedKingdom5

vINFNPadova,Padova,Italy1

wDipartimentodiFisicaeAstronomiadell’UniversitàandINFN,Padova,Italy1

xPolytechnicUniversity,Tokyo,Japan7

yRaymondandBeverlySacklerFacultyofExactSciences,SchoolofPhysics,TelAvivUniversity,TelAviv,Israel9

zDepartmentofPhysics,TokyoInstituteofTechnology,Tokyo,Japan7

aaUniversitàdiTorinoandINFN,Torino,Italy1

abUniversitàdelPiemonteOrientale,Novara,andINFN,Torino,Italy1

acPhysicsandAstronomyDepartment,UniversityCollegeLondon,London,UnitedKingdom5

adFacultyofPhysics,UniversityofWarsaw,Warsaw,Poland aeNationalCentreforNuclearResearch,Warsaw,Poland

afDepartmentofParticlePhysicsandAstrophysics,WeizmannInstitute,Rehovot,Israel agDepartmentofPhysics,YorkUniversity,Ontario,M3J1P3,Canada10

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received23February2016

Receivedinrevisedform31March2016 Accepted2April2016

Availableonline12April2016 Editor:L.Rolandi

The high-precision HERA data allows searches up to TeV scales for beyond the Standard Model contributionstoelectron–quarkscattering.Combinedmeasurementsoftheinclusivedeepinelasticcross sectionsinneutralandchargedcurrentep scatteringcorrespondingtoaluminosityofaround1 fb−1have beenusedinthisanalysis.AnewapproachtothebeyondtheStandardModelanalysisoftheinclusive ep data ispresented;simultaneousfits ofpartondistributionfunctions togetherwithcontributionsof “new physics” processeswere performed. Results are presented considering afinite radius ofquarks withinthequarkform-factormodel.Theresulting95% C.L.upper limitontheeffectivequarkradiusis 0.43·10−16cm.

©2016CERNforthebenefitoftheZEUSCollaboration.PublishedbyElsevierB.V.Thisisanopenaccess articleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

*

Correspondingauthor.

E-mailaddress:m.wing@ucl.ac.uk(M. Wing).

1 Supported bytheItalianNationalInstituteforNuclearPhysics(INFN). 2 Supported bytheGermanFederalMinistryofEducationandResearch (BMBF),

undercontractNo.05H09PDF.

3 Supported byHIR grantUM.C/625/1/HIR/149and UMRGgrants RU006-2013,

RP012A-13AFRandRP012B-13AFRfromUniversitiMalaya,andERGSgrant ER004-2012AfromtheMinistryofEducation,Malaysia.

4 Supported bythe National ScienceCentre under contract No.DEC-2012/06/

M/ST2/00428.

5 Supported bytheScienceandTechnologyFacilitiesCouncil,UK.

6 Supported bytheFederalMinistry ofEducationand Research (BMBF),under

contractNo.05h09GUF,andtheSFB676oftheDeutscheForschungsgemeinschaft (DFG).

7 Supported bytheJapaneseMinistryofEducation,Culture,Sports,Science,and

Technology (MEXT)anditsgrantsforScientificResearch.

8 Supported byRFPresidentialgrant N3042.2014.2 for theLeading Scientific

Schools.

9 Supported bytheIsraelScienceFoundation.

10 Supported bytheNaturalSciencesandEngineeringResearchCouncilofCanada

(NSERC).

11 Now atINFNRoma,Italy.

12 Now atSantLongowalInstituteofEngineeringandTechnology,Longowal,

Pun-jab,India.

13 Now atSriGuruGranthSahibWorldUniversity,FatehgarhSahib,India. 14 Also atAgensiNuklearMalaysia,43000Kajang,Bangi,Malaysia.

15 Partially supportedbythe PolishNationalScienceCentreprojectsDEC-2011/

01/B/ST2/03643andDEC-2011/03/B/ST2/00220.

16 Now atRockefellerUniversity,NewYork,NY10065,USA.

17 Now atEuropeanX-rayFree-ElectronLaserfacilityGmbH,Hamburg,Germany. 18 Now atUniversityofLiverpool,UnitedKingdom.

19 Now atTelAvivUniversity,Isreal.

20 Now atPhysikalischesInstitut,UniversitätHeidelberg,Germany. 21 Supported bytheAlexandervonHumboldtFoundation. 22 Now atCERN,Geneva,Switzerland.

23 AlexandervonHumboldtProfessor;alsoatDESYandUniversityofOxford. 24 Also atDESY.

25 Also atUniversityofTokyo,Japan. 26 Now atKobeUniversity,Japan.

27 Member ofNationalTechnicalUniversityofUkraine,KyivPolytechnicInstitute,

Kyiv,Ukraine.

28 Now atDESYCMSgroup. 29 Now atDESYATLASgroup. 30 Now atLNF,Frascati,Italy.

1. Introduction

Precision measurements ofdeepinelastic e±p scattering (DIS) crosssectionsathighvaluesofnegativefour-momentum-transfer squared, Q2,allowsearchesforcontributionsbeyondtheStandard

Model (BSM), even far beyond the centre-of-mass energy of the

e±p interactions.Formany“newphysics”scenarios,crosssections canbeaffectedbynewkindsofinteractionsinwhichvirtualBSM particles are exchanged. The cross sections would also be influ-encedwerequarkstohaveafiniteradius.AstheHERAkinematic rangeisassumedtobefarbelowthescaleofthenewphysics,all suchBSMinteractionscanbeapproximatedascontactinteractions (CI).Inallcases,deviationsoftheobservedcrosssectionfromthe Standard Model(SM) predictionare searchedforin ep scattering

at thehighest available Q2. The predictions are calculated using partondistributionfunction(PDF)parameterisationsoftheproton. The H1andZEUScollaborations measuredinclusivee±p

scat-teringcrosssectionsatHERAfrom1994to2000(HERAI)andfrom 2002to2007(HERAII),collectingtogetheratotalintegrated lumi-nosityofabout1 fb−1.Allinclusivedatawere recentlycombined

[1]tocreateoneconsistentsetofneutralcurrent(NC)andcharged current(CC) cross-section measurements fore±p scatteringwith unpolarised beams.The inclusivecross sectionswere used as in-put to a QCD analysis within the DGLAPformalism, resulting in a PDFsetdenoted asHERAPDF2.0. Duetothehighprecision and consistencyoftheinputdata,HERAPDF2.0canbeusedtocalculate SM predictionswithsmalluncertainties.Asearch forBSM contri-butions in the data should take into account thepossibility that the PDF setmay alreadyhave beenbiasedby partially ortotally absorbingpreviouslyunrecognisedBSMcontributions.

31 Also atMaxPlanckInstituteforPhysics,Munich,Germany,ExternalScientific

Member.

32 Also supportedbyDESYandtheAlexandervonHumboldtFoundation. 33 Also atŁód ´zUniversity,Poland.

34 Member ofŁód ´zUniversity,Poland. 35 Now atPolishAirForceAcademyinDeblin.

(3)

IntheZEUSCIanalysisofHERAIe±p data[2],the uncertain-tiesonthePDFsusedwereadominantsourceofsystematicerror. Estimateduncertaintiesofthepartondensitieswereusedtosmear modelpredictionsinthelimit-settingprocedure.Suchanapproach wasvalidastheCTEQ5Dparameterisation [3,4]usedfor calculat-ing modelpredictions included only1994 HERAdata inaddition tomanyother datasets.The limitswere dominatedby statistical uncertainties.FortheCIanalysispresentedhere,inwhichthedata areidenticaltothoseusedfortheHERAPDF2.0 determinationand the statistical uncertainties are no longer dominant, a new pro-cedure to setlimitson the BSMmodelcontributions is required. InthisanalysisBSMcontributions andthe QCDevolution are fit-tedsimultaneously.Resultsofasearchforafinitequarkradiusare presentedwithintheformalismofthequarkform-factormodel[5].

2. QCDanalysis

TheQCD analysispresentedinthispaperwas performed sim-ilarly to that for the HERAPDF2.0determination [1]. It was used to predict cross sections without BSM contributions. The HERA combined data on inclusive e±p scattering [1]were used as in-putto the perturbative QCD (pQCD) analysis. Onlycross sections withQ2



3

.

5 GeV2 wereused.Afittothedata,resultinginaset

ofPDFs, was obtainedby solving the DGLAP evolution equations at NLO in the MS scheme. This was done using the programme QCDNUM[6]withintheHERAFitterframework[7].ForthePDF pa-rameterisation,theapproachadoptedintheHERAPDF2.0 study[1]

was followed. The PDFsof theproton were described ata start-ingscaleof1

.

9 GeV2intermsof14parameters.Theseparameters werefittothedatausinga

χ

2method,takingintoaccount

statis-ticaluncertainties, aswell asuncorrelatedandcorrelated system-aticuncertaintiesontheexperimentaldata.Thecorresponding

χ

2

formulais:

χ

2

(

m

,

s

)

=



i



mi

+



j

γ

jimisj

μ

i0



2



δ

i2,stat

+ δ

i2,uncor



(

μ

i 0

)

2

+



j s2j

,

(1) where

μ

i

0 is themeasuredcross-section valueatthepoint i.The

quantities

γ

i

j,

δi

,stat and

δi

,uncor aretherelativecorrelated

system-atic,relativestatisticalandrelativeuncorrelatedsystematic uncer-taintiesoftheinputdata,respectively.Thevector

m represents

the setofpQCDcross-sectionpredictionsmi andthecomponentssjof thevector

s represent

thecorrelatedsystematicshiftsofthecross sections (given in units of

γ

i

j). The summations extend over all datapointsi andallcorrelatedsystematicuncertainties j.

The

χ

2 formula used in this analysis differs from that of

HERAPDF2.0 study[1]inordertofacilitatetheproductionofdata replicaswithin the HERAFitter framework [7], see Section 4.The resultingsetsofPDFs,referred toasZRqPDFinthefollowing,are neverthelessingoodagreementwithHERAPDF2.0.

TheexperimentaluncertaintiesonthepredictionsfromZRqPDF were determined with the criterion



χ

2

=

1. The uncertainties

dueto the choice ofmodel settingsand theform ofthe param-eterisationwereevaluatedasforHERAPDF2.0.

3. Quarkformfactor

One of the possible parameterisations of deviations from SM predictions in ep scatteringis achieved by assigning an effective finite radius to electrons and/or quarks while assuming the SM gauge bosons remain point-like and their couplings unchanged. The expected modification of the SM cross section can be de-scribedusinga semi-classical form-factorapproach [5]. Ifthe

ex-pecteddeviations aresmall, theSMpredictions forthe cross sec-tionsaremodified,approximately,to:

d

σ

d Q2

=

d

σ

SM d Q2



1

R 2 e 6 Q 2

2

1

R 2 q 6 Q 2

2

,

(2)

where R2e and R2q are the mean-square radii of theelectron and the quark, respectively, relatedto newBSMenergyscales. In the presentanalysis,onlythepossiblefinitespatial distributionofthe quark wasconsidered andthe electronwasassumedtobe point-like(R2e

0).BothpositiveandnegativevaluesofR2q were consid-ered.NegativevaluesofR2

qcanbeobtainedifachargedistribution is assumed which changes sign asa function of the radius. The term“quarkradius”isonlyonepossibleinterpretationofBSM ef-fectsparameterisedasformfactors.

The QCD analysis described in the previous section was ex-tended by introducing R2

q as an additional model parameter and modifying all e±p DIS cross-section predictionsaccording to Eq.(2).ValuesforR2qwereextractedusinga

χ

2-minimisation pro-cedure,whereallPDFparameterswerealsosimultaneouslyfit;R2

q wastreatedasateststatistictobeusedforlimitsetting.Thevalue ofthisteststatisticforthedataisR2 Dataq

= −

0

.

2

·

10−33cm2.The probability distributions for R2

q were determined as described in thenextsection.

4. Limit-settingprocedure

The limit ontheeffective quark-radiussquared, Rq2,isderived inafrequentistapproach[8]usingthetechniqueofreplicas. Repli-cas are setsofcross-section valuesthat aregenerated byvarying all cross sections randomly according to their known uncertain-ties. For the analysis presented here, multiple replica sets were used,eachcoveringcross-sectionvaluesonallpointsofthex, Q2

gridusedintheQCDfit.Foran assumedtruevalue ofthe quark-radiussquared, R2 True

q ,replicadatasetswerecreatedbytakingthe reduced cross sections calculated from the ZRqPDF fit and scal-ing them with the quark form factor, Eq. (2), with R2q

=

R2 Trueq . This results in a set ofcross-section valuesmi0 for the assumed truequark-radiussquared, R2 True

q .Thevaluesofmi0 werethen

var-iedrandomly withinstatisticalandsystematicuncertaintiestaken from the data, taking correlations into account. All uncertainties wereassumedtofollowaGaussiandistribution.1 Foreachreplica, the generated value of the cross section at the point i,

μ

i, was calculatedas:

μ

i

=

mi0

+

δ

2i,stat

+ δ

i2,uncor

·

μ

i 0

·

ri



·

1

+



j

γ

i j

·

rj

⎠ ,

(3)

wherevariables ri andrj representrandomnumbers froma nor-maldistribution foreach datapoint i andforeachsourceof cor-relatedsystematicuncertainty j,respectively.

Theapproachadoptedwastogeneratesetsofreplicasthatwere used totestthehypothesis thatthe crosssectionsweremodified by a fixed R2q valueaccordingto Eq.(2).Thevalue of R2 Dataq de-termined by the fit to the data themselves was taken as a test statistic,towhichvaluesfromfitstoreplicas,R2 Fit

q ,couldbe com-pared. Positive(negative) R2 Trueq valuesthat, inmorethan95%of

1 ItwasverifiedthatusingaPoissonprobabilitydistributionforproducing

repli-casathighQ2,wheretheeventsamplesaresmall,andusingtheχ2minimisation

forthesedatadidnotsignificantlychangetheprobabilitydistributionsforthefitted parametervalues.

(4)

Fig. 1. TheprobabilityofobtainingR2 F it

q valuessmallerthanthatobtainedforthe

actualdata, R2 Data

q ,calculatedfromMonteCarloreplicas,asafunctionofthe

as-sumedvalueforthequark-radiussquared,R2 T rue

q .Pointswithstatisticalerrorbars

representMonteCarloreplicasetsgeneratedfor differentvaluesof R2 T rue q .The

solidcirclescorrespondtotheresultsobtainedfromthesimultaneousfitofR2 qand

PDFparameters(PDF+Rq).Forcomparison,theopencirclesrepresentthe

depen-denceobtainedwhenfixingthePDFparameterstotheZRqPDFvalues(Rq-only).

Thedashedlineandthedashed-dottedlinerepresentthecumulativeGaussian dis-tributionsfittedtothePDF+RqandRq-onlyreplicapoints,respectively.Thevertical

linerepresentsthe95% C.L.upperlimitonR2 q.

thereplicas,resultinthefittedradiussquaredvalue,R2 Fit

q ,greater than(lessthan)thatobtainedforthedata, R2 Data

q ,were excluded atthe 95% C.L..The detailsoftheseprocedures aredescribed be-low.

Toset thelimit,a numberofMCreplica cross-sectionsets for eachvalueofR2 Trueq wasusedforaQCDfitwiththePDF parame-tersandthequarkradiusasfreeparameters,yieldingadistribution ofthefittedvaluesofthequark radius, R2 Fit

q .The

χ

2 formulaof Eq. (1), with the measured cross-section values,

μ

i

0, in the

nu-meratorofthefirst termreplacedby thegeneratedvaluesofthe replica,

μ

i,wasusedforfittingR2

q andthePDFparameters. Inalaststep,theprobabilityofobtaininga R2 Fitq valuesmaller thanthat obtained fortheactual data, Prob

(

R2 Fitq

<

R2 Dataq

)

, was plottedasafunctionofR2 True

q ,forpositiveR2 Trueq values,asshown inFig. 1.Theprobabilitydistributionwasinterpolatedtocalculate theR2qvaluecorrespondingtothe95% C.L.upperlimit.About5000 MonteCarloreplicasweregenerated foreachvalue of R2 True

q re-sultinginarelativestatisticaluncertaintyoftheextractedlimitof about0.3%. The corresponding plot fornegative Rq2 True values is showninFig. 2.

As a cross check, the limits on R2q were also estimated from the simultaneous PDF and R2q fit to the data by looking at the variationofthe

χ

2 valueminimised withrespectto thePDF

pa-rameters when changing the R2q value. Both limits are in good agreement with the results based on the Monte Carlo replicas. Thelimit-settingprocedurewas alsorepeatedfordifferentmodel and parameter settings, considered as systematic checks in the HERAPDF2.0 analysis[1].The resultingvariations ofthelimitson

R2

q arenegligible.

Fig. 2. TheprobabilityofobtainingR2 F it

q valueslargerthanthatobtainedforthe

actualdata,R2 Data

q ,calculatedfromMonteCarloreplicas,asafunctionofthe

as-sumedvalueforthequark-radiussquared,R2 T rue

q .OtherdetailsasforFig. 1.

5. Results

Theresultsofthelimit-settingprocedureusingthe simultane-ous fit to PDF parameters and R2

q,based on sets ofMonte Carlo replicas testingthe possible cross-section modifications dueto a quark formfactor,yieldthe95% C.L. limitsontheeffectivequark radiusof

−(

0.47

·

10−16cm)2

<

R2q

< (0.43

·

10−16cm)2

.

Taking into account the possible influence of quark radii on the PDF parameters is necessary as demonstrated in Figs. 1 and 2, because the limitsthat wouldbe obtained for fixed PDF param-eters aretoo strongby about10%.The limitsareconsistent with the estimated experimental sensitivity, calculated as the median of the limit distribution for the SM replicas, corresponding to a quarkradiusof0

.

45

·

10−16cm (forbothpositiveandnegative R2q). Cross-sectiondeviationsgivenbyEq.(2),correspondingtothe pre-sented 95% C.L. exclusion limits, are compared to the combined HERAhigh- Q2 NCandCCDISdatainFigs. 3 and4,respectively.

The 95% C.L. upperlimit forthe quark radius presented here is almost a factor of two better than the previous ZEUS limit of 0

.

85

·

10−16cm, based on the HERA I data [2]. The present

re-sultimproves the limit set in ep scattering by the H1 collabora-tion [9] (Rq

<

0

.

65

·

10−16 cm) and is similar to the limit pre-sented by the L3 collaboration (Rq

<

0

.

42

·

10−16 cm), based on quark-pair production atLEP2 [10]. It is important to remember thatthepossibleBSMphysicsparameterisedbytheRq atLEPand HERA canbe very different, sothat the LEP andHERAlimitsare largelycomplementary.Thelimitonnegative R2q valuespresented hereisanimprovementcomparedtothe publishedZEUS limitof

R2

q

>

−(

1

.

06

·

10−16cm

)

2. 6. Conclusions

The HERA combined measurement of inclusivedeep inelastic crosssections inneutralandchargedcurrent e±p scattering was

(5)

Fig. 3. CombinedHERA(a)e+p and(b)ep NCDISdatacomparedtothe95% C.L. exclusionlimitsontheeffectivemean-squareradiusofquarks.Alsoshownarethe expectationscalculatedusingtheZRqPDFpartondistributions.Thebandsrepresent thetotaluncertaintyonthe predictions.The insetsshow thecomparisoninthe

Q2<104GeV2

regionwithalinearordinatescale.

usedtosetlimitsonpossibledeviationsfromtheStandardModel due to a finite radius of the quarks. The limit-setting procedure wasbasedonasimultaneousfitofPDF parametersandthequark radius.Theresulting95% C.L.limitsforthequarkradiusare

−(

0.47

·

10−16cm)2

<

R2q

< (0.43

·

10−16cm)2

.

ThisresultiscompetitivewithadeterminationfromLEP2and sub-stantiallyimprovespreviousHERAlimits.

Acknowledgements

We appreciate the contributions to the construction, mainte-nance and operation of the ZEUS detector of many people who

Fig. 4. CombinedHERA(a)e+p and(b)ep CCDISdatacomparedtothe95% C.L. exclusionlimitsontheeffectivemean-squareradiusofquarks.Otherdetailsasfor

Fig. 3.

are notlistedasauthors.TheHERA machinegroupandtheDESY computing staff are especially acknowledged fortheir success in providingexcellent operationofthecolliderandthedata-analysis environment.WethanktheDESYdirectoratefortheirstrong sup-portandencouragement.

References

[1]H1andZEUSCollaborations,H.Abramowicz,etal.,Eur.Phys.J.C75(2015) 580.

[2]ZEUSCollaboration,S.Chekanov,etal.,Phys.Lett.B591(2004)23.

[3]CTEQCollaboration,H.L.Lai,etal.,Eur.Phys.J.C12(2000)375.

[4]CTEQCollaboration,H.L.Lai,etal.,Phys.Rev.D55(1997)1280.

[5]G.Kopp,etal.,Z.Phys.C65(1995)545.

[6]M.Botje,Comput.Phys.Commun.182(2011)490.

[7]S.Alekhin,etal.,Eur.Phys.J.C75(2015)304.

[8]R.D.Cousins,Am.J.Phys.63(1995)398.

[9]H1Collaboration,F.D.Aaron,etal.,Phys.Lett.B705(2011)52.

Riferimenti

Documenti correlati

In fact, even if the human hand model of the long fingers presents 4 DOFs each (one flexion-extension movement per joint, and one ab/adduction rotation about the

In what follows I extend the model proposed by Berton and Garibaldi [2006] to indirect search on the side of the workers and show that the basic results (i.e. the trade-o¤ between

To sum up, the results of the first 4 experiments showed that: a) the voice-based categoriza- tion of SO is fairly inaccurate; b) listeners tend to consistently categorize speakers ’

Thus, to focus on Tange’s Hiroshima center as only a modernist innovation contributing to CIAM debates on the core is to ignore his larger project for the city, and to miss

Dalle simulazioni effettuate è evidente che il nuovo layout di progetto previsto per queste intersezioni apporti notevoli miglioramenti alla circolazione dei veicoli, in

Metterli a confronto può apparire un’operazione ardita tanto diversi sono gli ambiti e gli strumenti e, nondimeno, il Freud, pur intellettuale illuminista e medico

One possibility to infer these fingerprints is the ‘excess absorption’ method, where the flux of the spectral range of interest is integrated within a bandwidth and divided by the

Balancing competing demands of work and family life is considered as a multidimensional phenomenon (Greenhaus and Beutell, 1985). This study focuses on two of its dimensions: time