• Non ci sono risultati.

Experimental and computational investigation of autoignition of jet fuels and surrogates in nonpremixed flows at elevated pressures

N/A
N/A
Protected

Academic year: 2021

Condividi "Experimental and computational investigation of autoignition of jet fuels and surrogates in nonpremixed flows at elevated pressures"

Copied!
10
0
0

Testo completo

(1)

Proceedings of the Combustion Institute 37 (2019) 1605–1614

www.elsevier.com/locate/proci

Experimental

and

computational

investigation

of

autoignition

of

jet

fuels

and

surrogates

in

nonpremixed

flows

at

elevated

pressures

Gerald Mairinger

a

, Alessio Frassoldati

b

, Alberto Cuoci

b

,

Matteo Pelucchi

b

, Ernst Pucher

c

, Kalyanasundaram Seshadri

a ,∗ aDepartmentofMechanicalandAerospaceEngineering,UniversityofCaliforniaatSanDiego,LaJolla,CA92093-0411,

USA

bDipartimentodiChimicaMateriali,eIngegneriaChimica“G.Natta”,PolitecnicodiMilano,PiazzaL.daVinci32,

Milano20133,Italy

cInstituteforPowertrainsandAutomotiveTechnology,ViennaUniversityofTechnology,A-1040Vienna,Gusshausstrasse

27–29/315,Austria

Received1December2017;accepted27June2018 Availableonline5October2018

Abstract

Experimentalandcomputationalinvestigationsarecarriedouttoelucidatethefundamentalmechanisms of autoignition of surrogatesof jet-fuels atelevatedpressures upto6bar.The jet-fuelstestedareJP-8, Jet-A,andJP-5,andthesurrogatestestedaretheAachenSurrogatemadeupof80%n-decaneand20% 1,3,5-trimethylbenzenebymass,SurrogateCmadeupof 60%n-dodecane,20%methylcyclohexaneand 20 %o-xylenebyvolume, andthe 2ndgeneration Princeton Surrogate madeupof 40.4%n-dodecane, 29.5%2,2,4-trimethylpentane,7.3%1,3,5-trimethylbenzeneand22.8%n-propylbenzenebymole.Using thecounterflowconfiguration,anaxisymmetricflowofagaseousoxidizerstream,madeupof amixture of oxygenandnitrogen,isdirectedoverthesurfaceof anevaporating poolof aliquidfuel.The exper-imentsareconducted atafixed valueof massfraction of oxygen intheoxidizerstream andatafixed valueofthestrainrate.Thetemperatureoftheoxidizerstreamatautoignition,Tig,ismeasuredasa

func-tionof pressure,p.Experimentalresultsshow thatthecriticalconditions,of autoignition of the surro-gatesareclosetothatof thejet-fuels.OverallthecriticalconditionsofautoignitionofSurrogateCagree bestwiththoseofthejet-fuels.Computationswereperformedusingskeletalmechanismsconstructedfrom adetailedmechanism.Predictions of thecriticalconditionsof autoignitionof thesurrogatesarefound toagreewellwithmeasurements.Computationsshowthatlow-temperaturechemistryplaysasignificant roleinpromotingautoignitionforallsurrogates.Thelow-temperaturechemistry,of thecomponentofthe

Correspondingauthor.

E-mailaddress:seshadri@ucsd.edu (K.Seshadri). https://doi.org/10.1016/j.proci.2018.06.224

1540-7489© 2018TheAuthors.PublishedbyElsevierInc.onbehalfofTheCombustionInstitute.Thisisanopenaccess articleundertheCCBYlicense.(http://creativecommons.org/licenses/by/4.0/ )

(2)

1606 G.Mairingeretal./ProceedingsoftheCombustionInstitute37(2019)1605–1614

surrogatewith thegreatestvolatility,wasfoundtohavethemostinfluence onthecriticalconditionsof autoignition.

© 2018TheAuthors.PublishedbyElsevierInc.onbehalfofTheCombustionInstitute.

ThisisanopenaccessarticleundertheCCBYlicense.(http://creativecommons.org/licenses/by/4.0/ )

Keywords: Autoignition;Surrogatefuels;Jetfuels;Lowtemperaturechemistry;Kineticmodeling

1. Introduction

Improved understanding of the combustion of jet-fuels at elevated pressures is essential for accurate predictions of chemical processes tak-ingplaceinair-breathingpropulsionsystems. Jet-fuelsaremixturesofnumerousaliphaticand aro-matic compounds. It has been established that auseful approach to obtainfundamental under-standingof combustionof jet-fuelsistofirst de-velopsurrogatesthatreproduceselectedaspectsof combustion of thesefuels [1] .Numerous experi-mental,computationalandanalyticalstudieshave addressed combustion of jet-fuels, surrogates of jet-fuels,andhigh-molecularweighthydrocarbon fuelsatelevatedpressures[2–8] .Thesestudies in-clude measurements and prediction of combus-tionprocessesinhomogeneoussystemsatnormal andelevated pressures[2–5] ,extinction of coun-terflow nonpremixed flames [7] , autoignition in nonpremixedflows[6,9–11] ,andlaminarpremixed flames[12] .Thereare,however,verylimited stud-iesonautoignitionofjet-fuelsinnonuniformflows andat elevated pressures. The present study ad-dressesthisdeficiency,andisfocusedonelucidating themechanisms of autoignition of surrogates of jet-fuelsatelevatedpressuresupto6bar. Autoigni-tionisanimportantpropertythathasasignificant influenceonperformanceofcompression-ignition engines. The present studies are carried out in nonpremixedsystemsbecauseitbestdescribes au-toignitionandcombustionincompression-ignition engines.

Experimentalandcomputationalinvestigations were carriedout recentlyto elucidatethe funda-mental mechanismof autoignition of n-heptane,

n-decane, and n-dodecane in nonpremixed flows atelevatedpressures upto 6bar [8] .Theresults showedthatn-dodecaneismosteasytoignite fol-lowed by n-decane and n-heptane. This was in agreement with previous experimental and com-putational studies at 1 atm where a similar or-der of reactivities for these fuels were observed at low strain rates [11,13] . A noteworthy find-ing was that low-temperature chemistry played a dominant role in promoting autoignition [8] . The influence of low-temperature chemistry was found to increase with increasing pressure [8] . Thepresentstudyextendsthistojet-fuelsandits surrogates.

2. Experiment

Experimental and computational studies are carriedoutemployingthecounterflow configura-tion whereina cylindricalduct is placed 12 mm aboveanevaporatingpoolofaliquidfuel.From thisductanaxisymmetricflow of agaseous oxi-dizerstream,madeupofamixtureofoxygen(O2)

andnitrogen(N2),isdirectedtowardthesurfaceof

theliquidfuel.Attheexitof theduct,the magni-tudeoftheinjectionvelocityisV2,thetemperature

T2,thedensityρ2,andthemassfractionof

oxy-genYO2,2.Heresubscript2represents conditions

attheoxidizer-boundary.Thetemperatureatthe liquid-gas interfaceisTs,andthe massaveraged

velocityonthegassideoftheliquid-gasinterface, asaresultofevaporationoftheliquidfuel,isVs.

Heresubscriptsrepresentsconditionsonthegas sideoftheliquid-gasinterface.Astagnationplane isformedneartheliquid-gasinterface.Ithasbeen shownpreviously[11] thattheradialcomponentof theflowvelocityattheliquid-gasinterfaceissmall andcanbepresumedtobeequaltozero.Athin boundary-layerisestablishedattheliquid-gas in-terfacein theasymptoticlimitof largeReynolds number,calculatedusingV2,thekinematic

viscos-ityof theoxidizerstreamattheexitof theduct, andthedistance,L,between theexitof theduct andtheliquid-gasinterface.Theinviscidflow out-sidethisboundary-layerisrotational,andthelocal strainrate,a2,intheinviscidregionevaluatedatthe

stagnationplane,obtainedfromintegrationof Eu-ler’sequations,isa2=2V2/L[11,14] .

Allgaseousstreamsarecontrolledbycomputer regulated analog mass flow controllers. A Pt-Pt 13 % Rhthermocouple with a wire diameter of 0.127mmandajunctiondiameterof0.21mmis usedto measurethe temperatureof theoxidizer stream, T2. The measuredtemperatures are

cor-rectedtoaccountforheatlossesbyradiationfrom thetheromocouplewires[15] .Fuelissuppliedtoa fuelcupbyasyringepumpwithavolumetricflow accuracyof ± 0.01mL/min.The temperatureof thefuelenteringthecup,Tc,ismeasuredbya

ther-mocouple.Furtherdetailsof theburnerincluding theprocedureemployedtomaintainthelevelofthe liquidfuelinthecuparedescribedindetail else-where[7,8] . Experimentsareconducted with the counterflow burner placed inside theHigh Pres-sureCombustionExperimentalFacility(HPCEF)

(3)

Fig.1. Highspeedphotographofatypicalautoignitioneventatp=4bar,YO2,2=0.15,a2=138s−1,andT2=1101K.

ThefuelisJet-A.

described elsewhere [7,16,17] . The reactive flow fieldischaracterizedbythevaluesofYO2,2,T2,a2,

andpressure,p.Theexperimentswereconducted withYO2,2=0.15 anda2=138−1s. The

tempera-ture of the oxidizer stream at autoignition, Tig,

was measuredas afunction of p. Thevalues of

YO2,2anda2wereselectedtominimizeratesofsoot

formation.

Theprocedureformeasuringcriticalconditions ofautoignitionisasfollows.Firstthedesired cham-berpressureisestablishedbyintroducingnitrogen intothechamber.Watercoolingsystemsare acti-vated. The flowfieldisestablished attheselected valuesofYO2,anda2andatavalueofT2thatisless

thanTig.Liquidfuelisintroducedintothefuel-cup

andthesyringepumpisusedtocontrolitslevel. Thetemperatureof theoxidizerstreamis gradu-ally increasedinsmallincrements,allowing suffi-cienttimeforthesystemtoreachsteady-state,until autoignitiontakesplace.Theonsetofautoignition isrecordedusingahighspeedvideocamera oper-atingat1000framespersecond.Figure 1 showsthe progressionoftheautoignitioneventatsuccessive values of thetime,t,recordedbythehigh speed camera.Thefirstimageisthestartafterthecritical conditionshavebeenreached,thesecondimage,at 3.0ms,showsafaintglowwheretheflameisseen asasmallcirculardiscaroundtheaxisof symme-try.Inthesubsequentimagesthediameterof the flameincreases.Therepeatabilityofthe

measure-mentsofTigis± 5K.Theaccuracyisestimatedto

be15Kandisattributedtouncertaintiesin eval-uatingthecorrectionthatmustbe appliedtothe measuredtemperatureduetoheatlossesfrom ra-diationfromthethermocouple.Onlythose experi-mentaldatawhereautoignitionisobservedtotake placeclosetotheaxisof symmetryisincludedin thedataset.Thesemeasurementsareperformedfor differentvaluesofp.

3. Fuelstested

Thejet-fuels tested areJP-8,Jet-A,andJP-5, andthe surrogates tested arethe Aachen Surro-gate,SurrogateC,andthe2ndgeneration Prince-tonSurrogate.TheAachenSurrogateismadeup of80%n-decaneand20%1,3,5-trimethylbenzene bymass(H/C2.00).Thissurrogatehasbeenused instudiesdescribedinRef.[7,9,10,18–20] .It accu-ratelyreproducedcriticalconditions of autoigni-tion of JP-8 at nonpremixed conditions at at-mospheric pressure [9,10] , critical conditions of extinctionof JP-8 atpremixedandnonpremixed conditionsatatmosphericpressure[9,10,20] ,and sootformation atnonpremixed conditionsat at-mospheric pressure [9] . Kinetic modelling stud-ies have been carried using detailed chemical-kineticmechanisms[9,10,20] .SurrogateCismade upof 60%n-dodecane,20%methylcyclohexane

(4)

1608 G.Mairingeretal./ProceedingsoftheCombustionInstitute37(2019)1605–1614 and 20 % o-xylene by volume (H/C 1.92). This

surrogate has been used in studies described in [10,19–21] .Ithasbeenfoundtoaccurately repro-duce at atmospheric pressure, critical conditions of autoignition of JP-8 at nonpremixed condi-tions[10,21] ,andcriticalconditionsofextinction of JP-8atnonpremixedandpremixedconditions [10,20,21] .The2ndgenerationPrincetonSurrogate ismade upof 40.4% n-dodecane,29.5 % 2,2,4-trimethylpentane, 7.3 % 1,3,5-trimethylbenzene and22.8%n-propylbenzenebymole(H/C=1.96). It has been used in studies described in [2,3,7] . It has been found to accurately reproduce vari-ousaspectsofcombustionofjetfuelsthatinclude ignition delay times measured employing shock tubesandrapidcompressionmachines[2,3] , lami-narburningvelocitiesofpremixedflamesand crit-icalconditionsofextinctionof diffusionflameat atmosphericpressure[2] ,andcriticalconditionsof extinctionofJP-8atmoderatepressure[7] .

4. Formulation

Kineticmodellingdescribedhereiscarriedout using a skeletal mechanism made up of kinetic stepsselectedfromthePOLIMIdetailed chemical-kinetic mechanism [22] that describes pyrolysis, partialoxidationandcombustionofkeroseneand aviationfuels.Thisskeletalmechanismismadeup of 231speciesandhasbeenemployedpreviously tocharacterizecombustionofmanysurrogate mix-turesproposedforkerosene [22] .Reference com-poundsinkerosenesurrogatestypicallyincluden -alkanes,iso-alkanes,methylcyclohexane,aromatics (from toluene up to C9 aromatics), decalin and

tetralin.Thekineticstepsforthesecompoundsare includedinthekineticmechanism,andhavebeen tested[22] .Thekineticsubsetfor methylcyclohex-anewas updatedfromthatin[23] in viewof re-centexperimentalmeasurementsof ignitiondelay timesinrapidcompressionmachinesathigh pres-sureandlowtointermediatetemperatures[24] . De-tailsoftherevisionandtestsofthepredictionsof theupdatedkineticmechanismfor methylcyclohex-aneareprovidedasupplementarymaterial.

The computations were performed with the OpenSMOKE++code[25] .Thestructureof the reactiveflow-fieldisobtainedbysolvingthe con-servationequationsof mass,momentumand en-ergy,andthespeciesbalanceequations.Attheexit of the duct,thevalues of V2,andthemass flux

ofO2andN2arespecified,andtheradial

compo-nentoftheflowvelocityispresumedtobeequalto zero.Attheliquid-gasinterface,mixedboundary conditionsareappliedforthespeciesbalance equa-tions,andtheenergyconservationequation[8,13] . Thetemperatureattheliquid-gasinterfaceis ob-tainedusing Raoult’s Law[26] .Empirical coeffi-cientsforcalculatingthevaporpressure, andthe heat of vaporization, forthesefuels aregivenin

[27] .Simulationsareperformed,withYO2=0.15,

a2=138s−1,andforpbetween 3barand6bar,

using a computational grid with more than 400 grid points to ensure grid insensitive results. A convergednon-reactive(cold) solutionisfirst ob-tainedforT2=300K.Thetemperatureofthe

ox-idizerstreamisincreasedatarateof10K/suntil autoignitiontakesplaceandahotflameis estab-lished. Numericalanalyses showed that the pre-dictedTigisnotaffectedbytherateof

tempera-tureincreaseifitdoesnotexceed100K/s.Forthe given value of p, autoignition is defined to take placeatthevalueofT2=Tig,whereanabrupt

tran-sitiontakesplacefromaweaklyreactiveregionto aflame.

5. Results

Figure 2 showsthe measured temperature of theoxidizerstreamatautoignition,Tig,asa

func-tionof p,forJP-8, Jet-A,JP-5,theAachen Sur-rogate,SurrogateC,andthePrincetonSurrogate. Forallfuels,Tigdecreaseswithincreasingpressure.

ThevaluesofTigforSurrogateCandthe

Prince-tonSurrogateagreebestwiththoseforthejet-fuels atpressuresaround3barwhileatpressuresclose 6bar,the valuesof Tig forSurrogate Candthe

AachenSurrogateagreewellwiththoseforthe jet-fuels. Overallthe critical conditionsof autoigni-tionof SurrogateCagreebestwiththoseforthe jet-fuels.

Figures 3 ,and4 showthepredictedaxial tem-peraturedistribution intheflow-fieldasa conse-quenceof gradualincreaseinthevalueof T2.In

these figures results are shown at p=6bar, be-causeatthispressuretheroleoflow-temperature chemistry and the negative temperature regime aredisplayedbest.Moreover atthispressurethe values of Tig for the surrogates differ the most.

Figure 3 showsthat forT2 around700 K,there

is a small, but sudden, increase in the value of thetemperatureof theflow-fieldnearthesurface of theliquidpool,especiallyfortheAachen Sur-rogate (marked asLT in Fig. 3 ), indicatingthat low-temperatureignition hastaken place. Thisis followedbythenegative-temperaturecoefficient re-gion(NTC)and“hot”-ignition.

Figure 4 showsthetemperatureincrementT [K]andtemperatureattheliquid-gasinterface,Ts,

asafunctionofT2 forthesurrogates.The

quan-tityTisthedifferencebetweenthepeakvalueof thetemperatureinthemixinglayerandT2.Forthe

AachenSurrogate,asT2isincreased,aweakly

reac-tiveregionappearsinthevicinityof700K,thatis markedbyanincreaseinthevalueofTfollowed byadecrease.FurtherincreaseinT2leadstoarapid

riseinT.Thisbehaviorissimilartothatshownin Fig. 3 .Thetemperatureriseintheweaklyreacting regionisindicativeoflow-temperatureignition fol-lowedbytheNTCregionandfinally“hot”-ignition

(5)

Fig.2. Themeasuredtemperatureoftheoxidizerstreamatautoignition,Tigasafunctionofpressure,p,ata2=138s−1,

andYO2,2=0.15.Thesymbolsrepresentexperimentaldataandthelinesbestfittotheexperimentaldata.Theerrorbar

shownononeexperimentaldataappliestoall.

Fig.3. Predictedaxialtemperaturedistributionintheflow-fieldofthesurrogates,asaconsequenceofagradually increas-ingthetemperatureoftheoxidizerstream.Thecalculationsweremadeatp=6bar,YO2,2=0.15,anda2=138s−1.

markedbylargeincreaseof T.Thehigher reac-tivityoftheAachenSurrogatewhencomparedto theother surrogatestestedhere isaconsequence ofitslargeparaffiniccontentnamelyn-decanethat wasfoundinpreviousstudies[8] toexhibit signifi-cantlow-temperaturechemistry andNTC behav-ior. Figure 4 showsthatTs forallsurrogates

in-creaseswithincreasingT2anditsvalueislessthan

their respectiveboiling point temperature, about 30 Klowerattheonset of low-temperature igni-tionand20Kattheonsetof“hot” ignition.The increaseinthevalueofTswithincreasing

temper-ature of theoxidizerstream isaconsequenceof

thebalancebetweenthevapor-pressureandrates ofvaporization.Raisingthetemperatureofthe ox-idizerstreamenhancestheheatfluxtotheliquid poolthatleadstohighervaluesofTsandtherates

ofevaporation.TheboilingpointsfortheAachen Surrogate,SurrogateC,andthePrinceton Surro-gateatpressureof1baris446K,411K,and412K, respectivelyandatapressureof6bar,itis532K, 501K,and502K,respectively.Forthejetfuels JP-8andJet-Athevalueoftheboilingpointat1baris roughly500K.Thepresenceofcoolflames,NTC behaviorandtwo-stageignitionwasalsoobserved inpreviousexperimentalandcomputational

(6)

stud-1610 G.Mairingeretal./ProceedingsoftheCombustionInstitute37(2019)1605–1614

Fig.4. TemperatureincrementT[K],temperatureattheliquid-gasinterface,Ts,asafunctionofthetemperatureofthe

oxidizerstream,T2,forp=6bar,YO2,2=0.15,anda2=138s−1.

Fig.5. Mole-fractionofhydrogenperoxide(H2O2),XH2O2,andmole-fractionofketo-hydroperoxide(KET),XKET,as

functionsofthetemperatureoftheoxidizerstream,T2,forp=6bar,YO2,2=0.15,anda2=138s−1.KETismarkedas

OQOOH.

iesofautoignitionof n-heptane,n-decane,and

n-dodecaneincounterflowconfigurationandisolated fueldroplets[8,28,29] .

Figure 5 showsthemole-fractionof hydrogen peroxide(H2O2),XH2O2,andmole-fractionof

keto-hydroperoxide (KET), XKET, asfunctions of T2.

Forallsurrogates,H2O2andKETareformedatthe

onset of low-temperatureignition andtheir con-centrationbecomesnegligibleattheonsetof“hot” ignition. Thus,for allsurrogates ‘hot’-ignitionis preceded by low-temperature ignition. For pur-posesofillustration,computationswerealsodone forSurrogate C,withkineticsteps characterizing low-temperaturechemistryformethylcyclohexane removed.Figure 5 showsthatasaconsequenceof thisremoval,theformationof H2O2 atlow

tem-peratureissuppressedandH2O2isformedinlower

amounts only prior to the “hot”-ignition. Thus low-temperature ignition of Surrogate C comes

primarilyfrommethylcyclohexaneinSurrogateC. Computations show that for the surrogates, the exothermicreactionzonethatleadstoautoignition isontheoxidizersideofthestagnationplane.The fueldiffusesthroughthestagnationplanetoazone where low-temperature reactions take place and formH2O2,peroxidesandketo-hydroperoxidesas

wellasheptenesandheterocyclecompounds.These species,especially H2O2 diffusefurther upstream

towards theoxidizer boundaryandfacilitate the “hot”-ignition.

Figure 6 compares predicted values of criti-cal conditions of autoignition forthe surrogates withexperimentaldata.Ingeneralthepredictions agree well with measurements. At a given value of p, Tig for the Aachen Surrogate is the

low-est followed by Surrogate C and the Princeton Surrogate.Therelativeorderof reactivitycanbe explained by consideration of the volatility and

(7)

Fig.6.Thetemperatureof theoxidizerstreamatautoignition,Tigasafunctionof pressure,p,ata2=138s−1,and

YO2,2=0.15.Thesymbolsrepresentexperimentaldataforthesurrogates(sameasthoseshowninFig. 2 )andthelines

arepredictions.ThefigurealsoshowspredictionsforSurrogateCobtainedafterremovingreactionsthatcharacterize low-temperaturechemistryofmethylcyclohexane(Markedascalc-NoLTMCYC6).

low-temperaturereactivity of thecomponentsof thesurrogates.Apreviousworkhasshownthatfor high-molecularweighthydrocarbonfuels autoigni-tionisinfluencedbylow-temperaturechemistryat lowstrainrateswhileathighstrainratesitis in-fluencedbymoleculartransport[13] ,andthe influ-enceof low-temperaturechemistry increaseswith increasingpressure[8] .Thepresentworkisat rela-tivelylowstrainratesandelevatedpressure, there-foreautoignitioncanbeexpectedtobeinfluenced bylow-temperaturechemistry.TheAachen Surro-gateiseasiesttoignitebecausethevalueof Ts is

highestamongthesurrogates tested.Asa conse-quencelargeamountsofn-decane,thatisknownto havesignificantlow-temperaturereactivity[8,13] , vaporizesfromthesurfaceleadingtoignition. Sur-rogateCandthePrincetonSurrogatehavesimilar volatility butthecomponentshavedifferent low-temperaturereactivities.Inparticular,thepresence of 2,2,4-trimethylpentaneinthePrinceton Surro-gate(insteadofmethylcyclohexaneasinSurrogate C) and of alarger amountof aromatics are re-sponsible forits lower reactivity.Figure 6 shows thatthereactivityofSurrogateCdecreasesif reac-tionsthatcharacterizelow-temperaturechemistry ofmethylcyclohexaneareremoved,andforagiven

pthedifferencebetweenthepredictedvaluesofTig

with and withoutlow-temperature chemistry for methylcyclohexaneincreaseswithincreasing pres-sure.Thisfurtherhighlightstheinfluenceof low-temperature reactivity of methylcyclohexane on autoignition.

Figures 7 –9 show the sensitivity coefficients for the Aachen Surrogate, Surrogate C, andthe Princeton Surrogate just before onset of “hot”-ignition.Theyshow thatautoignitionissensitive toreactionsthatcharacterizelowand intermedi-atetemperaturechemistry[30] ofthemorevolatile componentinthesurrogate.Forexample,the con-centrationof n-dodecane inthegasphaseabove theliquidpoolofSurrogateCisabouteighttimes smallerthanthatof methylcyclohexane,although

n-dodecaneisthelargestconstituentofthis surro-gate.Asaconsequence,autoignitionof Surrogate Cismainlyinfluencedbylow-temperature chem-istry of methylcyclohexane, andnot that of the morereactiven-dodecane.Theeffectof o-xylene, whichhasavaporpressurebetween thoseof the other twocomponents,is alsohighlighted inthe sensitivityanalysisshowninFig. 8 .Theinfluence ofHO2isalsoevidentfromthesensitivitiesofits

reactionsshowninFigs. 7 and8 .Itisformedin theNTCregion, andtheopposinginfluences of itsterminationstepwhichformsH2O2,andits

re-actionswiththebenzylictyperadicalsofo-xylene and1,3,5-trimethylbenzenethatconvertitintothe morereactiveOH,playmajorrolesindetermining ignitionpropensity[31] .Moreover,the decompo-sition of H2O2 is also a key reaction

control-ling the transition from NTC to high tempera-tureignition.Forthesamereasons,Fig. 7 shows thatautoignitionofAachenSurrogateisprimarily

(8)

1612 G.Mairingeretal./ProceedingsoftheCombustionInstitute37(2019)1605–1614

Fig.7. SensitivitycoefficientfortheAachenSurrogatejustbeforeonsetof“hot”-ignitionatp=6bar,YO2,2=0.15,and

a2=138s−1.

Fig.8.SensitivitycoefficientforSurrogateCjustbeforeonsetof“hot”-ignitionatp=6bar,YO2,2=0.15,anda2=

(9)

Fig.9. SensitivitycoefficientforPrincetonSurrogatejustbeforeonsetof“hot”-ignitionatp=6bar,YO2,2=0.15,and

a2=138s−1.

influenced by low-temperature reactivity of

n-decane.Besidebeingthemainconstituentof this surrogate,becauseitsvaporpressureisclosetothat of 1,3,5-trimethylbenzene,itsconcentrationis rel-ativelyhighinthegasphase.Figure 9 showsthat thecriticalconditionofautoignitionofthe Prince-ton Surrogate is primarily influenced by 2,2,4-trimethylpentaneasitisthemostvolatile compo-nentof thissurrogate,despitethelargerpresence ofthemorereactiven-dodecane.

6. Concludingremarks

Experimental and computational studies de-scribed here show that the Aachen Surrogate, Surrogate C, and the 2nd generation Princeton Surrogatereproducethecriticalconditionsof au-toignitionof thejetfuelsJP-8,andJet-A reason-ablywell.Thepredictionsofcriticalconditionsof autoignitionofthekineticmodelarereasonably ac-curate.Thecomputationalstudyshowsthe domi-nantroleplayedbylow-temperaturechemistryin promoting autoignition, and a noteworthy find-ing isthat autoignition is promotedby the low-temperature chemistry of the mostvolatile com-ponentinthesurrogatemixture.Theinvestigation describedherewasrestrictedtolowvaluesof the strainratesandlow valuesof YO2,2.Itwouldbe

ofinteresttotesttheinfluenceoflow-temperature chemistryonautoignitionathighervaluesofstrain rates,oxygenmassfraction,andpressure.

Acknowledgments

The authors acknowledge Professor F. A. WilliamsandProfessorE.Ranzifortheir contri-butions andhelpful discussions. The research at UCSDissupportedbytheU.S.Army Research Office , Grant # W911NF-16-1-0054 (Program ManagerRalph A.Anthenien Jr). Politecnicodi Milano has receivedfundingfrom theEuropean Union’s Horizon 2020 research and innovation programmeundergrantagreementNo723525 .

Supplementarymaterial

Supplementarymaterialassociatedwiththis ar-ticlecanbefound,intheonlineversion,atdoi:10. 1016/j.proci.2018.06.224 .

References

[1] T. Edwards , L.Q. Maurice , J.Propul.Power17 (2001) 461–466 .

[2] S. Dooley , S.H. Won , J. Heyne , et al. , Combust.

Flame159 (2012) 1444–1466 .

[3] T. Malewicki , S. Gudiyella , K. Brezinsky , Combust. Flame160 (2013) 17–30 .

[4] K. Narayanaswamy , P. Pepiot , H. Pitsch , Combust. Flame161 (2014) 866–884 .

[5] Y. Zhu , S. Li , D.F. Davidson , R.K. Hanson , Proc.

Combust.Inst.35 (2015) 241–248 .

[6] A. Smallbone , W. Liu , C. Law , X. You , H. Wang ,

(10)

1614 G.Mairingeretal./ProceedingsoftheCombustionInstitute37(2019)1605–1614 [7] R. Gehmlich , A. Kuo , K. Seshadri , Proc.Combust.

Inst.35 (2014) 937–943 .

[8] G. Mairinger , A. Frassoldati , R. Gehmlich , et al. ,

Combust.TheoryModel.20 (2016) 995–1009 .

[9] S. Honnet , K. Seshadri , U. Niemann , N. Peters , Proc. Combust.Inst.32 (2008) 485–492 .

[10] S. Humer , R. Seiser , K. Seshadri , J.Propul.Power27 (2011) 847–855 .

[11] K. Seshadri , S. Humer , R. Seiser , Combust.Theory Model.12 (2008) 831–855 .

[12] G. Jomaas , X. Zheng , D. Zhu , C. Law , Proc. Com-bust.Inst.30 (2005) 193–200 .

[13] R. Grana , K. Seshadri , A. Cuoci , U. Niemann , T. Faravelli , E. Ranzi , Combust.Flame 159 (2012) 130–141 .

[14] K. Seshadri , F.A. Williams , Int.J.HeatMassTransf.

21 (2) (1978) 251–253 .

[15] R. Seiser , NonpremixedCombustionofLiquid

Hy-drocarbonFuels, Technical University of Graz, 2000

Ph.D thesis .

[16] U. Niemann , K. Seshadri , F.A. Williams , Proc. Com-bust.Inst.34 (2013) 881–886 .

[17] U. Niemann , K. Seshadri , F.A. Williams , Combust. Flame161 (2014) 138–146 .

[18] F. Carbone , A. Gomez , Proc. Combust. Inst. 35 (2015) 761–769 .

[19] L. Tosatto , F. Mella , M.B. Long , M.D. Smooke ,

Combust.Flame159 (2012) 3027–3039 .

[20] K. Seshadri , A. Frassoldati , A. Cuoci , et al. ,

Com-bust.TheoryModel.15 (2011) 569–583 .

[21]S. Humer , A. Frassoldati , S. Granata , et al. , Proc. Combust.Inst.31 (2007) 393–400 .

[22]E. Ranzi , A. Frassoldati , A. Stagni , M. Pelucchi , A. Cuoci , T. Faravelli , Int.J.Chem.Kinet.46 (2014) 512–542 .

[23]A. Agosta , N.P. Cernansky , D.L. Miller , T. Far- avelli , E. Ranzi , Exper.ThermalFluidSci. 28 (2004) 701–708 .

[24]B.W. Weber, W.J. Pitz, M. Mehl, E.J. Silke, A.C. Davis, C.-J. Sung, Combust. Flame 161 (8) (2014)1972–1983,doi:10.1016/j.combustflame.2014. 01.018 .

[25]A. Cuoci , A. Frassoldati , T. Faravelli , E. Ranzi ,

Com-put.Phys.Commun.192 (2015) 237–264 .

[26]J.M. Smith , H.C.V. Ness , M.M. Abbott , Introduction

toChemicalEngineeringThermodynamics, Fifth, Mc

Graw Hill, 1996 .

[27]D.W. Green , R.H. Perry , Perry’sChemicalEngineers’ Handbook, 8, McGraw Hill, 2008 .

[28]A. Cuoci , A. Frassoldati , T. Faravelli , E. Ranzi , Proc.

Combust.Inst.35 (2015) 1621–1627 .

[29]A. Frassoldati , G. D’Errico , T. Lucchini , et al. ,

Re-ducedkineticmechanismsofdieselfuelsurrogatefor

engineCFDsimulations,Combust.Flame 162 (2015)

3391–4007 .

[30]J. Zádor , C.A. Taatjes , R.X. Fernandes , Progress

En-ergyCombust.Sci.37 (2011) 371–421 .

[31]G. da Silva , J.W. Bozzelli , Proc.Combust.Inst. 32 (2009) .

Riferimenti

Documenti correlati

Dust drift reduction effect of an air conveyor kit (dual-pipe deflector) mounted on different maize pneumatic drills..

Nel momento in cui il regno di Napoli perdeva la propria indipendenza travolto dall'imperialismo franco-spagnolo d'inizio Cinquecento, la repubblica di Venezia

High elevation environmental and territorial data and metadata are cataloged in a single integrated platform to get access to the information heritage of the SHARE project, using

Use of a Weather Generator for analysis of projections of future daily temperature and its validation with climate change indices.. Annalisa Di Piazza 1 , Emanuele Cordano 1 ,

Sauvignon Blanc (SB; n=3) and Aromatic Traminer (TR; n=3) very clear juices were spiked with a grape tannin rich in precursors (H; Cys-3MH, 125 mg/kg; GSH-3MH, 162 mg/kg)

We report a successful surgical sterilization procedure for population control of 324 male and female free-ranging grey squirrels (Sciurus carolinensis) in Genoa (Italy).. We

However, this study contributes to the earlier literature by exploring the relationship amongst teleworking, air pollution and traffic, using detailed individual and

By per- forming combined analyses of metagenomic and small RNA sequencing (sRNA-Seq) data, we characterized both the human and microbial small RNA contents of stool sam- ples