• Non ci sono risultati.

Search for top squark and higgsino production using diphoton higgs boson decays

N/A
N/A
Protected

Academic year: 2021

Condividi "Search for top squark and higgsino production using diphoton higgs boson decays"

Copied!
15
0
0

Testo completo

(1)

Search for Top Squark and Higgsino Production Using Diphoton Higgs Boson Decays

S. Chatrchyan et al.*

(CMS Collaboration)

(Received 11 December 2013; published 25 April 2014)

Results are presented of a search for a “natural” supersymmetry scenario with gauge mediated symmetry breaking. It is assumed that only the supersymmetric partners of the top quark (the top squark) and the Higgs boson (Higgsino) are accessible. Events are examined in which there are two photons forming a Higgs boson candidate, and at least twob-quark jets. In 19.7 fb−1of proton-proton collision data atpffiffiffis¼ 8 TeV, recorded in the CMS experiment, no evidence of a signal is found and lower limits at the 95% confidence level are set, excluding the top squark mass below 360 to 410 GeV, depending on the Higgsino mass.

DOI:10.1103/PhysRevLett.112.161802 PACS numbers: 14.80.Ly, 12.60.Jv, 14.80.Da

The recent measurements of the properties of the new boson with mass around 126 GeV by ATLAS [1,2] and

CMS [3,4] experiments confirm that it is consistent with

the standard model (SM) Higgs boson. One of the most important problems in particle physics is now to understand why the boson’s mass is so small compared to the Planck scale. Supersymmetry (SUSY) offers an elegant solution to this hierarchy problem. Although experimental searches have found no signs of it so far and the simplest SUSY models have become increasingly more constrained, there remain very large yet unprobed areas of SUSY parameter space that can still be “natural,” i.e., have a fairly small amount of fine tuning.

The essential requirement of natural SUSY is that the masses of the superpartners of the top quark and the Higgs bosons, the top squark and the Higgsinos, be light (see, e.g.,

[5,6]). This Letter describes a search we performed for

events with a topology motivated by SUSY with a gauge mediated SUSY breaking (GMSB) model[7–10]. Complete GMSB models are considered with a minimal number of accessible SUSY partners to satisfy the naturalness require-ments, namely, the right-handed top squark and Higgsinos. The lightest chargino (~χþ1) and neutralinos (~χ01,~χ02) in this case are almost pure Higgsinos and are therefore almost mass degenerate.

Pairs of Higgsinos are produced either directly through electroweak production or through right-handed top squark-antisquark pairs (strong production) with cas-cade decays

~tR→ b~χþ1 or ~tR → t~χ0i; (1)

where i ¼ 1, 2. The ~χþ1 (~χ02) subsequently decays into a very off-shellWþ (Z) boson and a ~χ01. (Here, and in what follows, the charge-conjugate final states are also implied.) The near mass degeneracy of the Higgsino states requires the off-shell boson decay products to be very soft.

The decay of the lightest neutralino in all cascades is ~χ0

1→ H ~G or ~χ01→ Z ~G; (2)

where ~G is the gravitino. The branching fractions of ~χ01decays depend on SUSY parameters. For a significant portion of the parameter space, neutralino decays into Higgs bosons dominate. This includes regions of low tanβ, the ratio of the vacuum expectation values of the two SUSY Higgs doublets, and negative values of the Higgsino mass termμ[11].

The final state of interest, therefore, has two Higgs bosons, some missing energy from the gravitinos escaping detection, and, in the case of strong production, two bottom (or top, if kinematically allowed) quarks from top squark decays, as shown in Fig.1. SM backgrounds, e.g., from top quark pair production, are suppressed by taking advantage of the known Higgs boson mass and by considering the case when at least one of the Higgs bosons decays into two photons and at least twob quarks are present from either Higgs or top squark decays. This approach also allows us to use diphoton mass sidebands for an estimate of the back-ground from data, without sensitivity to the exact compo-sition of the background, which is dominated by QCD production ofγγb¯b events and γb¯b þ j events with the jet being misidentified as a photon.

We use a data sample of19.7 fb−1 collected during the LHC 8 TeV running with the CMS detector, which is described in detail elsewhere[12]. The detector comprises a silicon pixel and strip tracker covering the pseudorapidity range jηj < 2.4 (where η ¼ − ln½tanðθ=2Þ and θ is the polar angle of the particle with respect to the counterclock-wise proton beam direction) and electromagnetic and had-ronic calorimeters, which cover jηj < 3.0 and jηj < 5.0, * Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published articles title, journal citation, and DOI.

(2)

respectively. The tracking and calorimeter systems are housed inside a 3.8 T solenoidal magnet. Muon chambers are imbedded in the iron return yoke of the solenoid up to pseudorapidity of jηj < 2.4. Events are required to pass a suite of diphoton triggers that impose mild shower shape and isolation requirements and demand transverse energies (ET¼ E · sin θ) above 36 and 22 GeV for the leading and the subleading photon, respectively.

The signal is simulated for a grid of Higgsino and top squark masses using the MADGRAPH 5 v.1.5.4 [13] and

PYTHIA 6.4.22 [14] generators and fast simulation of the

CMS detector[15]. The next-to-leading order (NLO) cross sections (shown in Fig. 2) are calculated usingPROSPINO

2.1[16–21]. The Higgsino mass splittingsm0

2− m~χþ1 and m~χþ

1 − m~χ01are set to 5 GeV, and a 100% branching fraction is assumed for the ~χ01→ H ~G decay. All other superpartners have masses too heavy to influence SUSY production at 8 TeV.

Photon candidates are reconstructed from the energy deposits in the electromagnetic calorimeter by grouping the calorimeter’s data channels into superclusters [22,23]. Photons are required to register in the barrel portion of the calorimeter (jηj < 1.4442) and to pass shower shape and isolation requirements. To reject electrons misidenti-fied as photons, photons are also required not to have associated hit patterns in the pixel detector consistent with a track. Photon energies are calculated using multivariate regression[4,23].

The particle-flow (PF) algorithm[24] is used to recon-struct individual particles (PF candidates) in the events,

combining all available subdetector information in a coherent and optimal manner. Jets are reconstructed from the PF particles using the anti-kT [25] algorithm with a

distance parameter of 0.5 and are required not to overlap with the two leading photons by imposing a requirement ΔR > 0.6, where ΔR ¼pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðΔϕÞ2þ ðΔηÞ2 and ϕ is the

azimuthal angle. Transverse momentum andη-dependent corrections to the jet energies are applied to account for residual effects of nonuniform detector response. The pileup contribution is estimated and subtracted from the jet energy using the jet area method[26]on an event-by-event basis. The combined secondary vertex (CSV) algo-rithm[27]is employed to identify jets that originate from a bottom quark.

The missing transverse energy (MeV) of the event is computed as the magnitude of the vectorial sum of the transverse momenta of all PF candidates [24].

Events are selected if they have at least two identified photons with transverse energies above 40 and 25 GeV for the leading and subleading photons, respectively. Events are also required to have at least two jets with transverse energy above 30 GeV andjηj < 2.4 and satisfying the loose (CSV-loose)b-tag requirements, at least one of which also must pass the medium (CSV-medium) requirement. The CSV-loose and CSV-medium working points have signal efficiencies of 80%–85% and 50%–75%, respectively, and mistag rates from light-flavor jets of 8%–13% and 1%–2%, respectively[27].

The events with diphoton mass between 120 and 131 GeV constitute the signal sample, while the events with mass between 103 and 118 GeV and between 133 and 163 GeV compose the lower sideband and upper sideband samples, respectively.

In the investigated SUSY signal, b-quark jets can originate from decays of the other Higgs bosons and from decays of top squark. This is exploited by separating events into three categories with different expected backgrounds as follows: (i) events with at least one additional CSV-loose

(GeV) R t ~ m 200 300 400 500 (GeV) 0 χ∼1 m 150 200 250 300 350 ) (fb)γ γ → Br(H • Cross Section -1 10 1 10 2 10 = 8 TeV s CMS Simulation,

FIG. 2 (color online). Cross section times branching ratio BrðH → γγÞ as a function of top squark and Higgsino masses.

FIG. 1. Example Feynman diagram of strong (top) and electro-weak (bottom) Higgsino production. The jets or leptons resulting from transitions between Higgsinos are extremely soft in both diagrams due to the near mass degeneracy among the Higgsinos.

(3)

b-quark jet in addition to the two (i.e., events with three or moreb-quark jets), (ii) events for which the invariant mass of the twob-quark jets is within a Higgs mass window from 95 to 155 GeV, and (iii) all other events.

The distribution of signal events among the three categories depends on the top squark and Higgsino masses. For small top squark-Higgsino mass differences, most of the signal populates category (ii), while for large mass differences categories (i) and (iii) dominate.

The search is performed independently in the three categories and the results are combined, leading to as much as 35% improvement in expected SUSY cross section limits compared to the analysis without categorization.

The peaking background from the SM Higgs boson production with subsequent diphoton decay is found neg-ligible using MC simulation. The diphoton mass sidebands are used to derive an estimate of all other SM background processes from data.

The diphoton distribution is fitted using a power law from 103 to 163 GeV [28]. The region from 118 to 133 GeV, corresponding to the signal region plus the 2 GeV“buffers” on each side of the signal region, is excluded from the fitter’s consideration to prevent a potential signal from affecting the background estimate. The result of the fit is used to calculate the normalization of the background. The effects of various other fit functions have been explored, and the resulting changes in the estimated background yields are well within the uncertainty in the fit function integral from the power law fit. The fit and background estimates are done independently in all three event categories.

Binned background distributions of relevant kinematic variables are obtained for each event category separately from the lower and upper sidebands and are weighted according to the fit function integrals. This provides two independent estimates of the distribution of the SM back-ground in the corresponding variable. No significant correlations are observed between the diphoton mass and other kinematic variables. However, to account for possible correlations, the background yield is conservatively assumed to be bounded by the independent background estimates from the upper and lower sidebands. The back-ground prediction using this bound as a systematic uncer-tainty is calculated as follows. The main background estimate in each bin of a kinematic variable is formed by taking an average of the two background estimates from the sidebands. Half the difference between the two esti-mates is taken as a systematic uncertainty for that bin, so that the central value and its uncertainty spans the range between the two estimates coming from the lower and upper sidebands. For the main variable used in this analysis, Emiss

T , the background uncertainty is dominated by the

statistical uncertainty in the sideband samples. The small correlation between the bin errors, originating from the common normalization from the fit, is taken into account during the statistical analysis described below.

The observed distributions of MeV are shown in Fig.3

separately for the three event categories, together with the background estimates from the above procedure and the expected distributions from three characteristic signal points. TableIshows the expected signal yields, background

Data Background ): 0 χ∼ /m R t Signal (m~ 350 / 135 GeV 400 / 300 GeV 300 / 290 GeV (a) Data Background ): 0 χ∼ /m R t Signal (m~ 350 / 135 GeV 400 / 300 GeV 300 / 290 GeV (b)

Events per 10 GeV

2 4 6 8 10 12 Data Background ): 0 χ∼ /m R t Signal (m~ 350 / 135 GeV 400 / 300 GeV 300 / 290 GeV -1 = 19.7 fb t d L

L = 8 TeV, s CMS, (c) -1 t d L

L = 8 TeV, s CMS, = 19.7 fb (GeV) miss T E -1 = 19.7 fb t d L

L = 8 TeV, s CMS, (GeV) miss T E (GeV) miss T E

Events per 10 GeV

Events per 10 GeV

~ ~ ~ 0.5 1 1.5 2 2.5 3 3.5 4 0 20 40 60 80 100 120 140 1 2 3 4 5 6 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

FIG. 3 (color online). Emiss

T distributions for the data,

back-ground predictions, and representative signals for the three event categories (i), (ii), and (iii) in frames (a), (b), and (c), respectively. For each histogram, the last bin includes the overflow.

(4)

predictions, and observed event counts for the three event categories. The observations are in agreement with the background predictions.

Since the data agree with the expected background, we proceed to set limits on the SUSY model described above. The expected limits were calculated using a variety of kinematic variables and it was determined thatEmiss

T is the

single most sensitive variable. The observed Emiss

T distributions for the three event

categories, shown in Fig. 3, together with the signal and background expectations listed in TableI, are used as input to the limit setting procedure.

A frequentist LHC-style profiled likelihood test statistic is used[29–31]. For each model mass point, the modified frequentist CLSmethod is used to calculate upper limits on

the cross section for the model.

The dominant uncertainty in the analysis is the statistical uncertainty of the background prediction. The leading sources of systematic uncertainties are the b-quark jet identification efficiency and the jet energy scale. The magnitude of the uncertainties depends on the event category and Emiss

T . Forb-quark jet identification it varies

from 1% to 5% for categories with two b-quark jets and from 6% to 17% for the three or more b-quark jets. For the jet energy scale, the uncertainty is important only for Emiss

T values below 40 GeV and varies from 7% to 43%.

Other sources of systematic uncertainty in the expected signal yield include the uncertainties in integrated lumi-nosity (2.6%)[32], the diphoton trigger efficiency (0.1%), the photon reconstruction and identification efficiency (1%), and the photon resolution uncertainty (1%)[4]. All system-atic uncertainties are correlated among the event categories and are treated as nuisance parameters in the likelihood, profiled according to their estimated value.

Figure4shows the limits on the GMSB model in the top squark-Higgsino mass plane. Depending on the Higgsino mass, and conservatively using the−1 standard deviation value for the theoretical cross section [16], top squark masses below 360 to 410 GeV are excluded at a 95% confidence level, corresponding to the region to the left of the leftmost thin dashed black line in Fig.4.

To summarize, a search for a natural SUSY scenario with light Higgsinos and a top squark was performed, using Higgs tagging in the diphoton decay mode, in a final state containing at least two photons and two or moreb-quark jets.

No evidence for a signal is observed, and 95% confidence level limits are set in the top squark-Higgsino mass plane, excluding a significant portion of the natural parameter space up to top squark masses of 410 GeV.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/ IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania);

CINVESTAV, CONACYT, SEP, and UASLP-FAI

(Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

TABLE I. Expected and observed event counts. The yields for three signal points are shown for comparison indicatingm~tRand m~χ0

1 in GeV, respectively.

Category (i) (ii) (iii)

Signal350=135 10.7 2.0 6.8 Signal300=290 2.1 10.1 3.9 Signal400=300 4.0 1.4 2.8 Expected background 6.7  1.4 10.5  1.8 29.7  2.8 Observed 6 7 33 (GeV) R t ~ m 200 300 400 500 (GeV) 0χ∼1 m 200 300 400 500

Observed 95% Cross Section Exclusion (pb)

0 0.5 1 1.5 2 2.5 3 3.5 + 5 GeV + 1 χ∼ = m 0 2 χ∼ 5 GeV, m − + 1 χ∼ = m 0 1 χ∼ m

) = 1, Strong and EW Production

G~ H → 0 1 χ∼ Br(

Natural GMSB Higgsino model

Observed 95% CLs Limits Theory uncertainty Expected 95% CLs Limits experimental σ 1 ± Expected -1 = 19.7 fb t d L

= 8 TeV, s CMS,

FIG. 4 (color online). Limits on SUSY production cross sections for different top squark and Higgsino masses. The regions to the left of the contours are expected (thick dashed red or gray curves) and observed (solid black curves) to be excluded at the 95% level. Black dashed curves reflect the theoretical uncertainty on the cross section. Red dotted curves correspond to 1 standard deviation in expected sensitivity.

(5)

[1] ATLAS Collaboration,Phys. Lett. B 726, 88 (2013). [2] ATLAS Collaboration,Phys. Lett. B 726, 120 (2013). [3] CMS Collaboration,Phys. Rev. Lett. 110, 081803 (2013). [4] CMS Collaboration,J. High Energy Phys. 06 (2013) 081. [5] R. Barbieri and G. F. Giudice,Nucl. Phys. B306, 63 (1988). [6] M. Papucci, J. T. Ruderman, and A. Weiler,J. High Energy

Phys. 09 (2012) 035.

[7] S. Dimopoulos, M. Dine, S. Raby, and S. D. Thomas, Phys. Rev. Lett. 76, 3494 (1996).

[8] S. Ambrosanio, G. L. Kane, G. D. Kribs, S. P. Martin, and S. Mrenna,Phys. Rev. D 54, 5395 (1996).

[9] K. T. Matchev and S. D. Thomas,Phys. Rev. D 62, 077702 (2000).

[10] K. Howe and P. Saraswat,J. High Energy Phys. 10 (2012) 065.

[11] P. Meade, M. Reece, and D. Shih,J. High Energy Phys. 05 (2010) 105.

[12] CMS Collaboration,JINST 3, S08004 (2008).

[13] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T. Stelzer,J. High Energy Phys. 06 (2011) 128.

[14] T. Sjöstrand, S. Mrenna, and P. Z. Skands,J. High Energy Phys. 05 (2006) 026.

[15] CMS Collaboration,J. Phys. Conf. Ser. 331, 032049 (2011). [16] M. Krämer, A. Kulesza, R. van der Leeuw, M. Mangano,

S. Padhi, T. Plehn, and X. Portell,arXiv:1206.2892. [17] W. Beenakker, R. Hopker, M. Spira, and P. M. Zerwas,

Nucl. Phys. B492, 51 (1997).

[18] A. Kulesza and L. Motyka, Phys. Rev. Lett. 102, 111802 (2009).

[19] W. Beenakker, S. Brensing, M. Krämer, A. Kulesza, E. Laenen, and I. Niessen,J. High Energy Phys. 12 (2009) 041.

[20] W. Beenakker, S. Brensing, M. Krämer, A. Kulesza, E. Laenen, L. Motyka, and I. Niessen, Int. J. Mod. Phys. A 26, 2637 (2011).

[21] W. Beenakker, R. Hopker, and M. Spira, arXiv:hep-ph/ 9611232.

[22] CMS Collaboration, CMS Physics Analysis Summary, Report No. CMS-PAS-EGM-10-005, 2010, http://cdsweb .cern.ch/record/1279143.

[23] CMS Collaboration,JINST 8, P09009 (2013).

[24] CMS Collaboration, CMS Physics Analysis Summary, Report No. CMS-PAS-PFT-10-002, 2010, http://cdsweb .cern.ch/record/1279341.

[25] M. Cacciari, G. P. Salam, and G. Soyez, J. High Energy Phys. 04 (2008), 063.

[26] M. Cacciari and G. P. Salam,Phys. Lett. B 659, 119 (2008). [27] CMS Collaboration,JINST 8, P04013 (2013).

[28] See Supplemental Material at http://link.aps.org/ supplemental/10.1103/PhysRevLett.112.161802for the fits of diphoton mass distributions and distributions of consid-ered kinematic variables.

[29] ATLAS Collaboration, CMS Collaboration, and LHC Higgs Combination Group, Techncial Report No. CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11, CERN, Geneva, 2011, http://cds.cern.ch/record/1375842/files/ATL‑PHYS‑ PUB‑2011‑011.pdf.

[30] T. Junk,Nucl. Instrum. Methods Phys. Res., Sect. A 434, 435 (1999).

[31] A. L. Read,J. Phys. G 28, 2693 (2002).

[32] CMS Collaboration, CMS Physics Analysis Summary, Report No. CMS-PAS-LUM-13-001, 2013, http://cds.cern .ch/record/1598864/files/LUM‑13‑001‑pas.pdf.

S. Chatrchyan,1 V. Khachatryan,1 A. M. Sirunyan,1 A. Tumasyan,1 W. Adam,2 T. Bergauer,2 M. Dragicevic,2 J. Erö,2 C. Fabjan,2bM. Friedl,2R. Frühwirth,2bV. M. Ghete,2C. Hartl,2N. Hörmann,2J. Hrubec,2M. Jeitler,2bW. Kiesenhofer,2 V. Knünz,2M. Krammer,2bI. Krätschmer,2D. Liko,2I. Mikulec,2D. Rabady,2cB. Rahbaran,2H. Rohringer,2R. Schöfbeck,2 J. Strauss,2A. Taurok,2W. Treberer-Treberspurg,2W. Waltenberger,2C.-E. Wulz,2bV. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3S. Alderweireldt,4M. Bansal,4S. Bansal,4T. Cornelis,4E. A. De Wolf,4X. Janssen,4A. Knutsson,4S. Luyckx,4 L. Mucibello,4S. Ochesanu,4B. Roland,4R. Rougny,4H. Van Haevermaet,4P. Van Mechelen,4N. Van Remortel,4A. Van Spilbeeck,4F. Blekman,5 S. Blyweert,5J. D’Hondt,5 N. Heracleous,5 A. Kalogeropoulos,5 J. Keaveney,5 T. J. Kim,5 S. Lowette,5 M. Maes,5A. Olbrechts,5D. Strom,5S. Tavernier,5W. Van Doninck,5P. Van Mulders,5G. P. Van Onsem,5

I. Villella,5 C. Caillol,6 B. Clerbaux,6 G. De Lentdecker,6 L. Favart,6 A. P. R. Gay,6 A. Léonard,6 P. E. Marage,6 A. Mohammadi,6 L. Perniè,6T. Reis,6 T. Seva,6 L. Thomas,6 C. Vander Velde,6 P. Vanlaer,6 J. Wang,6 V. Adler,7 K. Beernaert,7 L. Benucci,7 A. Cimmino,7S. Costantini,7 S. Dildick,7G. Garcia,7 B. Klein,7 J. Lellouch,7J. Mccartin,7 A. A. Ocampo Rios,7D. Ryckbosch,7S. Salva Diblen,7 M. Sigamani,7N. Strobbe,7F. Thyssen,7M. Tytgat,7 S. Walsh,7 E. Yazgan,7N. Zaganidis,7S. Basegmez,8C. Beluffi,8dG. Bruno,8R. Castello,8A. Caudron,8L. Ceard,8G. G. Da Silveira,8 C. Delaere,8T. du Pree,8D. Favart,8L. Forthomme,8A. Giammanco,8eJ. Hollar,8P. Jez,8M. Komm,8V. Lemaitre,8J. Liao,8 O. Militaru,8 C. Nuttens,8D. Pagano,8 A. Pin,8K. Piotrzkowski,8A. Popov,8fL. Quertenmont,8 M. Selvaggi,8M. Vidal Marono,8 J. M. Vizan Garcia,8N. Beliy,9 T. Caebergs,9E. Daubie,9G. H. Hammad,9 G. A. Alves,10M. Correa Martins Junior,10T. Martins,10M. E. Pol,10M. H. G. Souza,10W. L. Aldá Júnior,11W. Carvalho,11J. Chinellato,11gA. Custódio,11 E. M. Da Costa,11D. De Jesus Damiao,11C. De Oliveira Martins,11S. Fonseca De Souza,11H. Malbouisson,11M. Malek,11 D. Matos Figueiredo,11L. Mundim,11H. Nogima,11W. L. Prado Da Silva,11J. Santaolalla,11A. Santoro,11A. Sznajder,11 E. J. Tonelli Manganote,11g A. Vilela Pereira,11C. A. Bernardes,12bF. A. Dias,12ah T. R. Fernandez Perez Tomei,12a

(6)

E. M. Gregores,12b C. Lagana,12aP. G. Mercadante,12bS. F. Novaes,12a S. S. Padula,12a V. Genchev,13cP. Iaydjiev,13c A. Marinov,13 S. Piperov,13M. Rodozov,13G. Sultanov,13M. Vutova,13A. Dimitrov,14 I. Glushkov,14R. Hadjiiska,14 V. Kozhuharov,14 L. Litov,14B. Pavlov,14P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15M. Chen,15R. Du,15 C. H. Jiang,15D. Liang,15S. Liang,15X. Meng,15R. Plestina,15iJ. Tao,15X. Wang,15Z. Wang,15C. Asawatangtrakuldee,16

Y. Ban,16Y. Guo,16Q. Li,16W. Li,16S. Liu,16Y. Mao,16S. J. Qian,16D. Wang,16L. Zhang,16W. Zou,16C. Avila,17 C. A. Carrillo Montoya,17L. F. Chaparro Sierra,17C. Florez,17J. P. Gomez,17B. Gomez Moreno,17J. C. Sanabria,17 N. Godinovic,18D. Lelas,18D. Polic,18I. Puljak,18Z. Antunovic,19M. Kovac,19V. Brigljevic,20K. Kadija,20J. Luetic,20 D. Mekterovic,20S. Morovic,20L. Tikvica,20A. Attikis,21G. Mavromanolakis,21J. Mousa,21C. Nicolaou,21F. Ptochos,21

P. A. Razis,21M. Finger,22M. Finger Jr.,22 A. A. Abdelalim,23j Y. Assran,23k S. Elgammal,23jA. Ellithi Kamel,23l M. A. Mahmoud,23m A. Radi,23,o,p M. Kadastik,24 M. Müntel,24M. Murumaa,24M. Raidal,24L. Rebane,24A. Tiko,24 P. Eerola,25G. Fedi,25M. Voutilainen,25J. Härkönen,26V. Karimäki,26R. Kinnunen,26M. J. Kortelainen,26T. Lampén,26

K. Lassila-Perini,26S. Lehti,26T. Lindén,26P. Luukka,26T. Mäenpää,26T. Peltola,26 E. Tuominen,26J. Tuominiemi,26 E. Tuovinen,26L. Wendland,26T. Tuuva,27M. Besancon,28F. Couderc,28M. Dejardin,28D. Denegri,28 B. Fabbro,28 J. L. Faure,28F. Ferri,28S. Ganjour,28A. Givernaud,28P. Gras,28G. Hamel de Monchenault,28P. Jarry,28E. Locci,28 J. Malcles,28A. Nayak,28J. Rander,28A. Rosowsky,28M. Titov,28S. Baffioni,29F. Beaudette,29P. Busson,29C. Charlot,29 N. Daci,29T. Dahms,29M. Dalchenko,29L. Dobrzynski,29A. Florent,29R. Granier de Cassagnac,29P. Miné,29C. Mironov,29 I. N. Naranjo,29M. Nguyen,29C. Ochando,29P. Paganini,29D. Sabes,29R. Salerno,29Y. Sirois,29C. Veelken,29Y. Yilmaz,29 A. Zabi,29J.-L. Agram,30pJ. Andrea,30D. Bloch,30J.-M. Brom,30E. C. Chabert,30C. Collard,30E. Conte,30pF. Drouhin,30p J.-C. Fontaine,30p D. Gelé,30U. Goerlach,30C. Goetzmann,30P. Juillot,30A.-C. Le Bihan,30P. Van Hove,30S. Gadrat,31 S. Beauceron,32N. Beaupere,32G. Boudoul,32S. Brochet,32J. Chasserat,32R. Chierici,32D. Contardo,32cP. Depasse,32 H. El Mamouni,32J. Fan,32J. Fay,32S. Gascon,32M. Gouzevitch,32B. Ille,32T. Kurca,32M. Lethuillier,32L. Mirabito,32 S. Perries,32J. D. Ruiz Alvarez,32L. Sgandurra,32V. Sordini,32M. Vander Donckt,32P. Verdier,32S. Viret,32H. Xiao,32 Z. Tsamalaidze,33qC. Autermann,34S. Beranek,34M. Bontenackels,34B. Calpas,34M. Edelhoff,34L. Feld,34O. Hindrichs,34 K. Klein,34A. Ostapchuk,34A. Perieanu,34F. Raupach,34J. Sammet,34S. Schael,34D. Sprenger,34H. Weber,34B. Wittmer,34

V. Zhukov,34fM. Ata,35J. Caudron,35E. Dietz-Laursonn,35D. Duchardt,35M. Erdmann,35R. Fischer,35A. Güth,35 T. Hebbeker,35C. Heidemann,35K. Hoepfner,35D. Klingebiel,35S. Knutzen,35P. Kreuzer,35M. Merschmeyer,35A. Meyer,35 M. Olschewski,35K. Padeken,35P. Papacz,35H. Reithler,35S. A. Schmitz,35L. Sonnenschein,35D. Teyssier,35S. Thüer,35 M. Weber,35V. Cherepanov,36 Y. Erdogan,36G. Flügge,36H. Geenen,36M. Geisler,36 W. Haj Ahmad,36F. Hoehle,36 B. Kargoll,36T. Kress,36Y. Kuessel,36J. Lingemann,36cA. Nowack,36I. M. Nugent,36L. Perchalla,36O. Pooth,36A. Stahl,36 I. Asin,37N. Bartosik,37J. Behr,37W. Behrenhoff,37U. Behrens,37A. J. Bell,37M. Bergholz,37rA. Bethani,37K. Borras,37 A. Burgmeier,37A. Cakir,37L. Calligaris,37A. Campbell,37S. Choudhury,37F. Costanza,37C. Diez Pardos,37S. Dooling,37 T. Dorland,37G. Eckerlin,37D. Eckstein,37T. Eichhorn,37G. Flucke,37A. Geiser,37A. Grebenyuk,37P. Gunnellini,37 S. Habib,37J. Hauk,37G. Hellwig,37M. Hempel,37D. Horton,37H. Jung,37M. Kasemann,37 P. Katsas,37 J. Kieseler,37 C. Kleinwort,37M. Krämer,37D. Krücker,37W. Lange,37J. Leonard,37K. Lipka,37W. Lohmann,37rB. Lutz,37R. Mankel,37 I. Marfin,37I.-A. Melzer-Pellmann,37A. B. Meyer,37J. Mnich,37A. Mussgiller,37S. Naumann-Emme,37O. Novgorodova,37 F. Nowak,37H. Perrey,37A. Petrukhin,37D. Pitzl,37R. Placakyte,37A. Raspereza,37P. M. Ribeiro Cipriano,37C. Riedl,37

E. Ron,37M. O. Sahin,37J. Salfeld-Nebgen,37P. Saxena,37R. Schmidt,37r T. Schoerner-Sadenius,37M. Schröder,37 M. Stein,37A. D. R. Vargas Trevino,37R. Walsh,37C. Wissing,37M. Aldaya Martin,38V. Blobel,38H. Enderle,38J. Erfle,38

E. Garutti,38K. Goebel,38M. Görner,38M. Gosselink,38J. Haller,38R. S. Höing,38H. Kirschenmann,38R. Klanner,38 R. Kogler,38J. Lange,38T. Lapsien,38 I. Marchesini,38J. Ott,38T. Peiffer,38N. Pietsch,38D. Rathjens,38C. Sander,38 H. Schettler,38P. Schleper,38E. Schlieckau,38A. Schmidt,38M. Seidel,38J. Sibille,38sV. Sola,38H. Stadie,38G. Steinbrück,38 D. Troendle,38E. Usai,38L. Vanelderen,38C. Barth,39C. Baus,39J. Berger,39C. Böser,39E. Butz,39T. Chwalek,39W. De

Boer,39A. Descroix,39A. Dierlamm,39M. Feindt,39M. Guthoff,39cF. Hartmann,39cT. Hauth,39cH. Held,39 K. H. Hoffmann,39U. Husemann,39I. Katkov,39f A. Kornmayer,39cE. Kuznetsova,39P. Lobelle Pardo,39D. Martschei,39 M. U. Mozer,39T. Müller,39M. Niegel,39A. Nürnberg,39O. Oberst,39G. Quast,39K. Rabbertz,39F. Ratnikov,39S. Röcker,39 F.-P. Schilling,39 G. Schott,39H. J. Simonis,39 F. M. Stober,39R. Ulrich,39J. Wagner-Kuhr,39S. Wayand,39T. Weiler,39 R. Wolf,39M. Zeise,39G. Anagnostou,40 G. Daskalakis,40T. Geralis,40S. Kesisoglou,40A. Kyriakis,40D. Loukas,40 A. Markou,40C. Markou,40E. Ntomari,40A. Psallidas,40I. Topsis-giotis,40L. Gouskos,41A. Panagiotou,41N. Saoulidou,41

(7)

I. Papadopoulos,42E. Paradas,42G. Bencze,43C. Hajdu,43P. Hidas,43D. Horvath,43tF. Sikler,43V. Veszpremi,43 G. Vesztergombi,43u A. J. Zsigmond,43N. Beni,44S. Czellar,44 J. Molnar,44 J. Palinkas,44Z. Szillasi,44J. Karancsi,45 P. Raics,45Z. L. Trocsanyi,45B. Ujvari,45S. K. Swain,46S. B. Beri,47V. Bhatnagar,47N. Dhingra,47R. Gupta,47M. Kaur,47 M. Z. Mehta,47M. Mittal,47N. Nishu,47A. Sharma,47J. B. Singh,47A. Kumar,48A. Kumar,48S. Ahuja,48A. Bhardwaj,48 B. C. Choudhary,48A. Kumar,48S. Malhotra,48M. Naimuddin,48K. Ranjan,48V. Sharma,48R. K. Shivpuri,48S. Banerjee,49 S. Bhattacharya,49K. Chatterjee,49S. Dutta,49B. Gomber,49S. Jain,49S. Jain,49R. Khurana,49A. Modak,49S. Mukherjee,49 D. Roy,49S. Sarkar,49M. Sharan,49A. P. Singh,49A. Abdulsalam,50D. Dutta,50S. Kailas,50V. Kumar,50A. K. Mohanty,50c L. M. Pant,50P. Shukla,50A. Topkar,50T. Aziz,51R. M. Chatterjee,51S. Ganguly,51S. Ghosh,51M. Guchait,51vA. Gurtu,51w G. Kole,51S. Kumar,51M. Maity,51x G. Majumder,51K. Mazumdar,51G. B. Mohanty,51B. Parida,51 K. Sudhakar,51

N. Wickramage,51y S. Banerjee,52S. Dugad,52H. Arfaei,53H. Bakhshiansohi,53 H. Behnamian,53S. M. Etesami,53z A. Fahim,53aa A. Jafari,53M. Khakzad,53M. Mohammadi Najafabadi,53M. Naseri,53 S. Paktinat Mehdiabadi,53

B. Safarzadeh,53bbM. Zeinali,53M. Grunewald,54M. Abbrescia,55a,55b L. Barbone,55a,55bC. Calabria,55a,55b S. S. Chhibra,55a,55bA. Colaleo,55aD. Creanza,55a,55cN. De Filippis,55a,55cM. De Palma,55a,55bL. Fiore,55aG. Iaselli,55a,55c

G. Maggi,55a,55c M. Maggi,55a B. Marangelli,55a,55bS. My,55a,55c S. Nuzzo,55a,55bN. Pacifico,55a A. Pompili,55a,55b G. Pugliese,55a,55cR. Radogna,55a,55bG. Selvaggi,55a,55bL. Silvestris,55aG. Singh,55a,55bR. Venditti,55a,55bP. Verwilligen,55a

G. Zito,55a G. Abbiendi,56aA. C. Benvenuti,56aD. Bonacorsi,56a,56b S. Braibant-Giacomelli,56a,56b L. Brigliadori,56a,56b R. Campanini,56a,56bP. Capiluppi,56a,56b A. Castro,56a,56bF. R. Cavallo,56a G. Codispoti,56a,56b M. Cuffiani,56a,56b G. M. Dallavalle,56a F. Fabbri,56a A. Fanfani,56a,56b D. Fasanella,56a,56bP. Giacomelli,56a C. Grandi,56a L. Guiducci,56a,56b S. Marcellini,56aG. Masetti,56aM. Meneghelli,56a,56b A. Montanari,56a F. L. Navarria,56a,56bF. Odorici,56a A. Perrotta,56a F. Primavera,56a,56bA. M. Rossi,56a,56bT. Rovelli,56a,56bG. P. Siroli,56a,56bN. Tosi,56a,56bR. Travaglini,56a,56bS. Albergo,57a,57b G. Cappello,57a M. Chiorboli,57a,57bS. Costa,57a,57b F. Giordano,57a,57ccR. Potenza,57a,57bA. Tricomi,57a,57bC. Tuve,57a,57b

G. Barbagli,58a V. Ciulli,58a,58b C. Civinini,58a R. D’Alessandro,58a,58b E. Focardi,58a,58b E. Gallo,58a S. Gonzi,58a,58b V. Gori,58a,58bP. Lenzi,58a,58bM. Meschini,58aS. Paoletti,58aG. Sguazzoni,58aA. Tropiano,58a,58bL. Benussi,59S. Bianco,59 F. Fabbri,59D. Piccolo,59P. Fabbricatore,60aR. Ferretti,60a,60bF. Ferro,60aM. Lo Vetere,60a,60bR. Musenich,60aE. Robutti,60a

S. Tosi,60a,60bA. Benaglia,61a M. E. Dinardo,61a,61b S. Fiorendi,61a,61bc S. Gennai,61a R. Gerosa,61a A. Ghezzi,61a,61b P. Govoni,61a,61b M. T. Lucchini,61a,61bcS. Malvezzi,61a R. A. Manzoni,61a,61bcA. Martelli,61a,61bcB. Marzocchi,61a D. Menasce,61aL. Moroni,61aM. Paganoni,61a,61bD. Pedrini,61aS. Ragazzi,61a,61bN. Redaelli,61aT. Tabarelli de Fatis,61a,61b

S. Buontempo,62a N. Cavallo,62a,62c F. Fabozzi,62a,62c A. O. M. Iorio,62a,62bL. Lista,62a S. Meola,62a,62dcM. Merola,62a P. Paolucci,62acP. Azzi,63aN. Bacchetta,63aD. Bisello,63a,63bA. Branca,63a,63bR. Carlin,63a,63bP. Checchia,63aT. Dorigo,63a

M. Galanti,63a,63bcF. Gasparini,63a,63b U. Gasparini,63a,63bP. Giubilato,63a,63b A. Gozzelino,63a K. Kanishchev,63a,63c S. Lacaprara,63a I. Lazzizzera,63a,63c M. Margoni,63a,63bA. T. Meneguzzo,63a,63b M. Passaseo,63a J. Pazzini,63a,63b M. Pegoraro,63aN. Pozzobon,63a,63bP. Ronchese,63a,63b F. Simonetto,63a,63bE. Torassa,63a M. Tosi,63a,63bA. Triossi,63a S. Ventura,63a A. Zucchetta,63a,63bG. Zumerle,63a,63b M. Gabusi,64a,64bS. P. Ratti,64a,64b C. Riccardi,64a,64bP. Vitulo,64a,64b M. Biasini,65a,65b G. M. Bilei,65a L. Fanò,65a,65bP. Lariccia,65a,65b G. Mantovani,65a,65b M. Menichelli,65a F. Romeo,65a,65b

A. Saha,65a A. Santocchia,65a,65b A. Spiezia,65a,65bK. Androsov,66acc P. Azzurri,66a G. Bagliesi,66a J. Bernardini,66a T. Boccali,66aG. Broccolo,66a,66cR. Castaldi,66aM. A. Ciocci,66accR. Dell’Orso,66aF. Fiori,66a,66cL. Foà,66a,66cA. Giassi,66a

M. T. Grippo,66accA. Kraan,66a F. Ligabue,66a,66cT. Lomtadze,66a L. Martini,66a,66b A. Messineo,66a,66b C. S. Moon,66add F. Palla,66a A. Rizzi,66a,66bA. Savoy-Navarro,66aee A. T. Serban,66a P. Spagnolo,66a P. Squillacioti,66acc R. Tenchini,66a

G. Tonelli,66a,66bA. Venturi,66a P. G. Verdini,66a C. Vernieri,66a,66c L. Barone,67a,67bF. Cavallari,67a D. Del Re,67a,67b M. Diemoz,67a M. Grassi,67a,67bC. Jorda,67a E. Longo,67a,67b F. Margaroli,67a,67bP. Meridiani,67aF. Micheli,67a,67b S. Nourbakhsh,67a,67bG. Organtini,67a,67bR. Paramatti,67aS. Rahatlou,67a,67bC. Rovelli,67a L. Soffi,67a,67bP. Traczyk,67a,67b N. Amapane,68a,68b R. Arcidiacono,68a,68c S. Argiro,68a,68bM. Arneodo,68a,68c R. Bellan,68a,68bC. Biino,68a N. Cartiglia,68a

S. Casasso,68a,68bM. Costa,68a,68bA. Degano,68a,68b N. Demaria,68a C. Mariotti,68a S. Maselli,68a E. Migliore,68a,68b V. Monaco,68a,68bM. Musich,68aM. M. Obertino,68a,68cG. Ortona,68a,68bL. Pacher,68a,68bN. Pastrone,68aM. Pelliccioni,68ac

A. Potenza,68a,68bA. Romero,68a,68b M. Ruspa,68a,68c R. Sacchi,68a,68bA. Solano,68a,68bA. Staiano,68a U. Tamponi,68a S. Belforte,69aV. Candelise,69a,69b M. Casarsa,69a F. Cossutti,69a G. Della Ricca,69a,69b B. Gobbo,69a C. La Licata,69a,69b M. Marone,69a,69bD. Montanino,69a,69bA. Penzo,69aA. Schizzi,69a,69bT. Umer,69a,69bA. Zanetti,69aS. Chang,70T. Y. Kim,70 S. K. Nam,70D. H. Kim,71G. N. Kim,71J. E. Kim,71M. S. Kim,71D. J. Kong,71S. Lee,71Y. D. Oh,71H. Park,71D. C. Son,71 J. Y. Kim,72Z. J. Kim,72S. Song,72S. Choi,73D. Gyun,73B. Hong,73M. Jo,73H. Kim,73Y. Kim,73K. S. Lee,73S. K. Park,73

(8)

Y. Roh,73M. Choi,74J. H. Kim,74C. Park,74I. C. Park,74S. Park,74G. Ryu,74Y. Choi,75Y. K. Choi,75J. Goh,75E. Kwon,75 B. Lee,75J. Lee,75S. Lee,75H. Seo,75I. Yu,75A. Juodagalvis,76J. R. Komaragiri,77H. Castilla-Valdez,78E. De La

Cruz-Burelo,78I. Heredia-de La Cruz,78ff R. Lopez-Fernandez,78J. Martínez-Ortega,78A. Sanchez-Hernandez,78 L. M. Villasenor-Cendejas,78S. Carrillo Moreno,79F. Vazquez Valencia,79H. A. Salazar Ibarguen,80E. Casimiro Linares,81 A. Morelos Pineda,81D. Krofcheck,82P. H. Butler,83R. Doesburg,83S. Reucroft,83M. Ahmad,84M. I. Asghar,84J. Butt,84 H. R. Hoorani,84 S. Khalid,84W. A. Khan,84T. Khurshid,84S. Qazi,84M. A. Shah,84M. Shoaib,84 H. Bialkowska,85

M. Bluj,85ggB. Boimska,85 T. Frueboes,85 M. Górski,85M. Kazana,85 K. Nawrocki,85 K. Romanowska-Rybinska,85 M. Szleper,85G. Wrochna,85P. Zalewski,85G. Brona,86K. Bunkowski,86M. Cwiok,86W. Dominik,86 K. Doroba,86 A. Kalinowski,86M. Konecki,86J. Krolikowski,86 M. Misiura,86W. Wolszczak,86P. Bargassa,87C. Beirão Da Cruz E Silva,87P. Faccioli,87P. G. Ferreira Parracho,87M. Gallinaro,87F. Nguyen,87J. Rodrigues Antunes,87J. Seixas,87cJ. Varela,87 P. Vischia,87M. Gavrilenko,88I. Golutvin,88I. Gorbunov,88A. Kamenev,88V. Karjavin,88V. Konoplyanikov,88G. Kozlov,88

A. Lanev,88A. Malakhov,88V. Matveev,88hh P. Moisenz,88V. Palichik,88V. Perelygin,88M. Savina,88 S. Shmatov,88 N. Skatchkov,88V. Smirnov,88A. Zarubin,88V. Golovtsov,89Y. Ivanov,89V. Kim,89P. Levchenko,89V. Murzin,89 V. Oreshkin,89I. Smirnov,89V. Sulimov,89L. Uvarov,89S. Vavilov,89A. Vorobyev,89A. Vorobyev,89Y. Andreev,90 A. Dermenev,90S. Gninenko,90N. Golubev,90M. Kirsanov,90N. Krasnikov,90A. Pashenkov,90D. Tlisov,90A. Toropin,90 V. Epshteyn,91V. Gavrilov,91N. Lychkovskaya,91V. Popov,91G. Safronov,91S. Semenov,91A. Spiridonov,91V. Stolin,91 E. Vlasov,91 A. Zhokin,91 V. Andreev,92M. Azarkin,92I. Dremin,92M. Kirakosyan,92A. Leonidov,92G. Mesyats,92 S. V. Rusakov,92A. Vinogradov,92A. Belyaev,93E. Boos,93V. Bunichev,93M. Dubinin,93h L. Dudko,93 A. Ershov,93 A. Gribushin,93V. Klyukhin,93O. Kodolova,93I. Lokhtin,93S. Obraztsov,93S. Petrushanko,93V. Savrin,93I. Azhgirey,94

I. Bayshev,94S. Bitioukov,94V. Kachanov,94 A. Kalinin,94D. Konstantinov,94V. Krychkine,94V. Petrov,94R. Ryutin,94 A. Sobol,94L. Tourtchanovitch,94S. Troshin,94N. Tyurin,94A. Uzunian,94A. Volkov,94 P. Adzic,95iiM. Djordjevic,95

M. Ekmedzic,95J. Milosevic,95M. Aguilar-Benitez,96J. Alcaraz Maestre,96C. Battilana,96E. Calvo,96M. Cerrada,96 M. Chamizo Llatas,96cN. Colino,96B. De La Cruz,96A. Delgado Peris,96D. Domínguez Vázquez,96C. Fernandez Bedoya,96J. P. Fernández Ramos,96A. Ferrando,96J. Flix,96M. C. Fouz,96P. Garcia-Abia,96O. Gonzalez Lopez,96S. Goy Lopez,96J. M. Hernandez,96M. I. Josa,96G. Merino,96E. Navarro De Martino,96J. Puerta Pelayo,96A. Quintario Olmeda,96 I. Redondo,96 L. Romero,96M. S. Soares,96C. Willmott,96C. Albajar,97J. F. de Trocóniz,97M. Missiroli,97H. Brun,98

J. Cuevas,98J. Fernandez Menendez,98S. Folgueras,98I. Gonzalez Caballero,98L. Lloret Iglesias,98J. A. Brochero Cifuentes,99 I. J. Cabrillo,99 A. Calderon,99 S. H. Chuang,99J. Duarte Campderros,99 M. Fernandez,99G. Gomez,99 J. Gonzalez Sanchez,99 A. Graziano,99A. Lopez Virto,99 J. Marco,99R. Marco,99C. Martinez Rivero,99F. Matorras,99 F. J. Munoz Sanchez,99J. Piedra Gomez,99T. Rodrigo,99A. Y. Rodríguez-Marrero,99A. Ruiz-Jimeno,99L. Scodellaro,99 I. Vila,99R. Vilar Cortabitarte,99D. Abbaneo,100E. Auffray,100G. Auzinger,100M. Bachtis,100P. Baillon,100A. H. Ball,100 D. Barney,100 J. Bendavid,100L. Benhabib,100 J. F. Benitez,100C. Bernet,100i G. Bianchi,100P. Bloch,100A. Bocci,100 A. Bonato,100O. Bondu,100C. Botta,100H. Breuker,100T. Camporesi,100G. Cerminara,100T. Christiansen,100J. A. Coarasa Perez,100S. Colafranceschi,100jj M. D’Alfonso,100D. d’Enterria,100 A. Dabrowski,100A. David,100F. De Guio,100 A. De Roeck,100S. De Visscher,100S. Di Guida,100 M. Dobson,100 N. Dupont-Sagorin,100A. Elliott-Peisert,100J. Eugster,100 G. Franzoni,100W. Funk,100M. Giffels,100D. Gigi,100K. Gill,100M. Girone,100M. Giunta,100F. Glege,100R. Gomez-Reino Garrido,100S. Gowdy,100R. Guida,100J. Hammer,100M. Hansen,100P. Harris,100V. Innocente,100P. Janot,100E. Karavakis,100 K. Kousouris,100K. Krajczar,100P. Lecoq,100C. Lourenço,100N. Magini,100L. Malgeri,100M. Mannelli,100L. Masetti,100 F. Meijers,100S. Mersi,100E. Meschi,100F. Moortgat,100M. Mulders,100P. Musella,100L. Orsini,100E. Palencia Cortezon,100

E. Perez,100L. Perrozzi,100A. Petrilli,100G. Petrucciani,100A. Pfeiffer,100M. Pierini,100M. Pimiä,100D. Piparo,100 M. Plagge,100A. Racz,100 W. Reece,100 G. Rolandi,100kkM. Rovere,100 H. Sakulin,100F. Santanastasio,100C. Schäfer,100

C. Schwick,100 S. Sekmen,100A. Sharma,100P. Siegrist,100P. Silva,100 M. Simon,100P. Sphicas,100llJ. Steggemann,100 B. Stieger,100M. Stoye,100A. Tsirou,100 G. I. Veres,100u J. R. Vlimant,100H. K. Wöhri,100W. D. Zeuner,100W. Bertl,101

K. Deiters,101 W. Erdmann,101 R. Horisberger,101 Q. Ingram,101 H. C. Kaestli,101 S. König,101D. Kotlinski,101 U. Langenegger,101 D. Renker,101T. Rohe,101 F. Bachmair,102 L. Bäni,102 L. Bianchini,102 P. Bortignon,102 M. A. Buchmann,102B. Casal,102N. Chanon,102A. Deisher,102G. Dissertori,102M. Dittmar,102M. Donegà,102M. Dünser,102

P. Eller,102C. Grab,102D. Hits,102W. Lustermann,102B. Mangano,102A. C. Marini,102 P. Martinez Ruiz del Arbol,102 D. Meister,102N. Mohr,102 C. Nägeli,102mm P. Nef,102 F. Nessi-Tedaldi,102F. Pandolfi,102L. Pape,102 F. Pauss,102 M. Peruzzi,102M. Quittnat,102F. J. Ronga,102 M. Rossini,102 A. Starodumov,102nnM. Takahashi,102L. Tauscher,102a

(9)

K. Theofilatos,102D. Treille,102R. Wallny,102H. A. Weber,102C. Amsler,103ooV. Chiochia,103A. De Cosa,103C. Favaro,103 A. Hinzmann,103T. Hreus,103M. Ivova Rikova,103B. Kilminster,103B. Millan Mejias,103J. Ngadiuba,103P. Robmann,103 H. Snoek,103S. Taroni,103M. Verzetti,103Y. Yang,103M. Cardaci,104K. H. Chen,104C. Ferro,104C. M. Kuo,104S. W. Li,104 W. Lin,104Y. J. Lu,104R. Volpe,104S. S. Yu,104P. Bartalini,105P. Chang,105Y. H. Chang,105Y. W. Chang,105Y. Chao,105 K. F. Chen,105P. H. Chen,105C. Dietz,105U. Grundler,105W.-S. Hou,105Y. Hsiung,105K. Y. Kao,105Y. J. Lei,105Y. F. Liu,105

R.-S. Lu,105D. Majumder,105 E. Petrakou,105X. Shi,105J. G. Shiu,105 Y. M. Tzeng,105M. Wang,105R. Wilken,105 B. Asavapibhop,106N. Suwonjandee,106A. Adiguzel,107M. N. Bakirci,107ppS. Cerci,107qqC. Dozen,107I. Dumanoglu,107 E. Eskut,107S. Girgis,107G. Gokbulut,107E. Gurpinar,107I. Hos,107E. E. Kangal,107A. Kayis Topaksu,107G. Onengut,107rr K. Ozdemir,107S. Ozturk,107ppA. Polatoz,107K. Sogut,107ssD. Sunar Cerci,107qqB. Tali,107qqH. Topakli,107ppM. Vergili,107 I. V. Akin,108 T. Aliev,108B. Bilin,108 S. Bilmis,108 M. Deniz,108 H. Gamsizkan,108 A. M. Guler,108G. Karapinar,108tt

K. Ocalan,108 A. Ozpineci,108 M. Serin,108R. Sever,108U. E. Surat,108 M. Yalvac,108 M. Zeyrek,108 E. Gülmez,109 B. Isildak,109uuM. Kaya,109vvO. Kaya,109vvS. Ozkorucuklu,109ww H. Bahtiyar,110xx E. Barlas,110 K. Cankocak,110

Y. O. Günaydin,110yyF. I. Vardarlı,110M. Yücel,110L. Levchuk,111 P. Sorokin,111J. J. Brooke,112E. Clement,112 D. Cussans,112H. Flacher,112R. Frazier,112 J. Goldstein,112M. Grimes,112 G. P. Heath,112H. F. Heath,112 J. Jacob,112 L. Kreczko,112C. Lucas,112Z. Meng,112D. M. Newbold,112zzS. Paramesvaran,112A. Poll,112S. Senkin,112V. J. Smith,112

T. Williams,112 K. W. Bell,113A. Belyaev,113aaaC. Brew,113R. M. Brown,113 D. J. A. Cockerill,113J. A. Coughlan,113 K. Harder,113 S. Harper,113 J. Ilic,113E. Olaiya,113 D. Petyt,113 C. H. Shepherd-Themistocleous,113A. Thea,113 I. R. Tomalin,113W. J. Womersley,113S. D. Worm,113M. Baber,114 R. Bainbridge,114O. Buchmuller,114D. Burton,114 D. Colling,114N. Cripps,114M. Cutajar,114P. Dauncey,114G. Davies,114M. Della Negra,114W. Ferguson,114J. Fulcher,114

D. Futyan,114A. Gilbert,114A. Guneratne Bryer,114 G. Hall,114 Z. Hatherell,114J. Hays,114G. Iles,114 M. Jarvis,114 G. Karapostoli,114M. Kenzie,114R. Lane,114R. Lucas,114zzL. Lyons,114A.-M. Magnan,114J. Marrouche,114B. Mathias,114 R. Nandi,114J. Nash,114A. Nikitenko,114nnJ. Pela,114M. Pesaresi,114K. Petridis,114M. Pioppi,114bbbD. M. Raymond,114 S. Rogerson,114 A. Rose,114 C. Seez,114 P. Sharp,114aA. Sparrow,114A. Tapper,114 M. Vazquez Acosta,114 T. Virdee,114

S. Wakefield,114N. Wardle,114 J. E. Cole,115P. R. Hobson,115 A. Khan,115 P. Kyberd,115D. Leggat,115D. Leslie,115 W. Martin,115I. D. Reid,115P. Symonds,115L. Teodorescu,115M. Turner,115J. Dittmann,116K. Hatakeyama,116A. Kasmi,116 H. Liu,116T. Scarborough,116O. Charaf,117 S. I. Cooper,117C. Henderson,117P. Rumerio,117A. Avetisyan,118 T. Bose,118 C. Fantasia,118A. Heister,118P. Lawson,118D. Lazic,118J. Rohlf,118D. Sperka,118J. St. John,118L. Sulak,118J. Alimena,119 S. Bhattacharya,119G. Christopher,119D. Cutts,119Z. Demiragli,119 A. Ferapontov,119 A. Garabedian,119U. Heintz,119 S. Jabeen,119G. Kukartsev,119 E. Laird,119 G. Landsberg,119M. Luk,119M. Narain,119M. Segala,119T. Sinthuprasith,119 T. Speer,119J. Swanson,119R. Breedon,120G. Breto,120M. Calderon De La Barca Sanchez,120S. Chauhan,120M. Chertok,120

J. Conway,120R. Conway,120 P. T. Cox,120 R. Erbacher,120 M. Gardner,120 W. Ko,120 A. Kopecky,120 R. Lander,120 T. Miceli,120 D. Pellett,120 J. Pilot,120 F. Ricci-Tam,120B. Rutherford,120 M. Searle,120S. Shalhout,120J. Smith,120

M. Squires,120 M. Tripathi,120 S. Wilbur,120R. Yohay,120 V. Andreev,121D. Cline,121R. Cousins,121 S. Erhan,121 P. Everaerts,121 C. Farrell,121 M. Felcini,121 J. Hauser,121M. Ignatenko,121C. Jarvis,121 G. Rakness,121 P. Schlein,121a E. Takasugi,121V. Valuev,121M. Weber,121J. Babb,122R. Clare,122J. Ellison,122J. W. Gary,122G. Hanson,122J. Heilman,122 P. Jandir,122F. Lacroix,122H. Liu,122O. R. Long,122A. Luthra,122M. Malberti,122H. Nguyen,122A. Shrinivas,122J. Sturdy,122 S. Sumowidagdo,122S. Wimpenny,122W. Andrews,123J. G. Branson,123G. B. Cerati,123S. Cittolin,123R. T. D’Agnolo,123 D. Evans,123 A. Holzner,123R. Kelley,123 D. Kovalskyi,123 M. Lebourgeois,123J. Letts,123I. Macneill,123S. Padhi,123

C. Palmer,123M. Pieri,123 M. Sani,123V. Sharma,123 S. Simon,123E. Sudano,123 M. Tadel,123 Y. Tu,123A. Vartak,123 S. Wasserbaech,123ccc F. Würthwein,123A. Yagil,123J. Yoo,123D. Barge,124 C. Campagnari,124T. Danielson,124 K. Flowers,124 P. Geffert,124 C. George,124F. Golf,124J. Incandela,124C. Justus,124 R. Magaña Villalba,124N. Mccoll,124 V. Pavlunin,124J. Richman,124R. Rossin,124D. Stuart,124W. To,124C. West,124A. Apresyan,125A. Bornheim,125J. Bunn,125

Y. Chen,125E. Di Marco,125J. Duarte,125 D. Kcira,125A. Mott,125H. B. Newman,125 C. Pena,125C. Rogan,125 M. Spiropulu,125 V. Timciuc,125 R. Wilkinson,125 S. Xie,125 R. Y. Zhu,125V. Azzolini,126 A. Calamba,126R. Carroll,126

T. Ferguson,126 Y. Iiyama,126D. W. Jang,126 M. Paulini,126J. Russ,126 H. Vogel,126I. Vorobiev,126 J. P. Cumalat,127 B. R. Drell,127W. T. Ford,127A. Gaz,127E. Luiggi Lopez,127U. Nauenberg,127J. G. Smith,127K. Stenson,127K. A. Ulmer,127 S. R. Wagner,127J. Alexander,128A. Chatterjee,128N. Eggert,128L. K. Gibbons,128W. Hopkins,128A. Khukhunaishvili,128 B. Kreis,128N. Mirman,128 G. Nicolas Kaufman,128J. R. Patterson,128A. Ryd,128E. Salvati,128W. Sun,128W. D. Teo,128

(10)

M. Albrow,130 J. Anderson,130 G. Apollinari,130 L. A. T. Bauerdick,130A. Beretvas,130 J. Berryhill,130P. C. Bhat,130 K. Burkett,130J. N. Butler,130V. Chetluru,130H. W. K. Cheung,130F. Chlebana,130S. Cihangir,130V. D. Elvira,130I. Fisk,130

J. Freeman,130 Y. Gao,130E. Gottschalk,130 L. Gray,130D. Green,130S. Grünendahl,130 O. Gutsche,130 D. Hare,130 R. M. Harris,130J. Hirschauer,130B. Hooberman,130S. Jindariani,130M. Johnson,130U. Joshi,130K. Kaadze,130B. Klima,130 S. Kwan,130J. Linacre,130D. Lincoln,130R. Lipton,130J. Lykken,130K. Maeshima,130J. M. Marraffino,130V. I. Martinez Outschoorn,130S. Maruyama,130D. Mason,130P. McBride,130K. Mishra,130S. Mrenna,130Y. Musienko,130hhS. Nahn,130

C. Newman-Holmes,130V. O’Dell,130 O. Prokofyev,130N. Ratnikova,130E. Sexton-Kennedy,130S. Sharma,130 W. J. Spalding,130L. Spiegel,130L. Taylor,130S. Tkaczyk,130N. V. Tran,130L. Uplegger,130E. W. Vaandering,130R. Vidal,130 A. Whitbeck,130J. Whitmore,130W. Wu,130F. Yang,130J. C. Yun,130D. Acosta,131P. Avery,131D. Bourilkov,131T. Cheng,131 S. Das,131 M. De Gruttola,131 G. P. Di Giovanni,131D. Dobur,131 R. D. Field,131 M. Fisher,131 Y. Fu,131I. K. Furic,131 J. Hugon,131B. Kim,131J. Konigsberg,131A. Korytov,131A. Kropivnitskaya,131T. Kypreos,131J. F. Low,131K. Matchev,131 P. Milenovic,131dddG. Mitselmakher,131L. Muniz,131A. Rinkevicius,131L. Shchutska,131N. Skhirtladze,131M. Snowball,131

J. Yelton,131M. Zakaria,131V. Gaultney,132S. Hewamanage,132S. Linn,132P. Markowitz,132G. Martinez,132 J. L. Rodriguez,132 T. Adams,133A. Askew,133J. Bochenek,133 J. Chen,133 B. Diamond,133J. Haas,133S. Hagopian,133 V. Hagopian,133K. F. Johnson,133H. Prosper,133V. Veeraraghavan,133M. Weinberg,133M. M. Baarmand,134B. Dorney,134 M. Hohlmann,134H. Kalakhety,134F. Yumiceva,134M. R. Adams,135L. Apanasevich,135V. E. Bazterra,135R. R. Betts,135 I. Bucinskaite,135R. Cavanaugh,135 O. Evdokimov,135L. Gauthier,135 C. E. Gerber,135D. J. Hofman,135S. Khalatyan,135 P. Kurt,135D. H. Moon,135C. O’Brien,135C. Silkworth,135P. Turner,135N. Varelas,135U. Akgun,136E. A. Albayrak,136xx

B. Bilki,136eeeW. Clarida,136K. Dilsiz,136F. Duru,136 M. Haytmyradov,136J.-P. Merlo,136H. Mermerkaya,136fff A. Mestvirishvili,136A. Moeller,136J. Nachtman,136H. Ogul,136Y. Onel,136F. Ozok,136xxS. Sen,136P. Tan,136E. Tiras,136 J. Wetzel,136T. Yetkin,136gggK. Yi,136B. A. Barnett,137B. Blumenfeld,137S. Bolognesi,137D. Fehling,137A. V. Gritsan,137 P. Maksimovic,137C. Martin,137M. Swartz,137P. Baringer,138A. Bean,138G. Benelli,138R. P. Kenny III,138M. Murray,138 D. Noonan,138S. Sanders,138J. Sekaric,138R. Stringer,138Q. Wang,138J. S. Wood,138A. F. Barfuss,139I. Chakaberia,139 A. Ivanov,139S. Khalil,139M. Makouski,139Y. Maravin,139L. K. Saini,139S. Shrestha,139I. Svintradze,139J. Gronberg,140 D. Lange,140F. Rebassoo,140 D. Wright,140 A. Baden,141 B. Calvert,141 S. C. Eno,141J. A. Gomez,141 N. J. Hadley,141 R. G. Kellogg,141T. Kolberg,141Y. Lu,141M. Marionneau,141A. C. Mignerey,141K. Pedro,141A. Skuja,141J. Temple,141 M. B. Tonjes,141S. C. Tonwar,141A. Apyan,142R. Barbieri,142G. Bauer,142W. Busza,142I. A. Cali,142M. Chan,142L. Di Matteo,142 V. Dutta,142G. Gomez Ceballos,142 M. Goncharov,142 D. Gulhan,142 M. Klute,142Y. S. Lai,142 Y.-J. Lee,142

A. Levin,142P. D. Luckey,142T. Ma,142C. Paus,142 D. Ralph,142C. Roland,142 G. Roland,142G. S. F. Stephans,142 F. Stöckli,142 K. Sumorok,142D. Velicanu,142 J. Veverka,142B. Wyslouch,142 M. Yang,142A. S. Yoon,142 M. Zanetti,142 V. Zhukova,142B. Dahmes,143A. De Benedetti,143A. Gude,143 S. C. Kao,143 K. Klapoetke,143Y. Kubota,143J. Mans,143

N. Pastika,143 R. Rusack,143A. Singovsky,143N. Tambe,143J. Turkewitz,143J. G. Acosta,144L. M. Cremaldi,144 R. Kroeger,144S. Oliveros,144L. Perera,144R. Rahmat,144D. A. Sanders,144D. Summers,144E. Avdeeva,145K. Bloom,145 S. Bose,145D. R. Claes,145A. Dominguez,145R. Gonzalez Suarez,145J. Keller,145D. Knowlton,145I. Kravchenko,145J. Lazo-Flores,145S. Malik,145F. Meier,145G. R. Snow,145J. Dolen,146A. Godshalk,146I. Iashvili,146S. Jain,146A. Kharchilava,146 A. Kumar,146S. Rappoccio,146G. Alverson,147E. Barberis,147D. Baumgartel,147M. Chasco,147J. Haley,147A. Massironi,147

D. Nash,147T. Orimoto,147D. Trocino,147D. Wood,147 J. Zhang,147A. Anastassov,148K. A. Hahn,148A. Kubik,148 L. Lusito,148 N. Mucia,148 N. Odell,148 B. Pollack,148 A. Pozdnyakov,148 M. Schmitt,148 S. Stoynev,148K. Sung,148 M. Velasco,148S. Won,148D. Berry,149A. Brinkerhoff,149K. M. Chan,149A. Drozdetskiy,149M. Hildreth,149C. Jessop,149

D. J. Karmgard,149 N. Kellams,149 J. Kolb,149K. Lannon,149W. Luo,149 S. Lynch,149N. Marinelli,149D. M. Morse,149 T. Pearson,149M. Planer,149R. Ruchti,149J. Slaunwhite,149N. Valls,149M. Wayne,149M. Wolf,149 A. Woodard,149 L. Antonelli,150B. Bylsma,150L. S. Durkin,150 S. Flowers,150C. Hill,150R. Hughes,150 K. Kotov,150T. Y. Ling,150 D. Puigh,150M. Rodenburg,150G. Smith,150 C. Vuosalo,150 B. L. Winer,150 H. Wolfe,150 H. W. Wulsin,150E. Berry,151 P. Elmer,151V. Halyo,151P. Hebda,151J. Hegeman,151 A. Hunt,151 P. Jindal,151S. A. Koay,151 P. Lujan,151 D. Marlow,151 T. Medvedeva,151M. Mooney,151J. Olsen,151P. Piroué,151X. Quan,151A. Raval,151H. Saka,151D. Stickland,151C. Tully,151 J. S. Werner,151 S. C. Zenz,151A. Zuranski,151 E. Brownson,152A. Lopez,152H. Mendez,152 J. E. Ramirez Vargas,152 E. Alagoz,153D. Benedetti,153G. Bolla,153D. Bortoletto,153M. De Mattia,153A. Everett,153Z. Hu,153M. Jha,153M. Jones,153

K. Jung,153 M. Kress,153 N. Leonardo,153 D. Lopes Pegna,153V. Maroussov,153 P. Merkel,153 D. H. Miller,153 N. Neumeister,153B. C. Radburn-Smith,153I. Shipsey,153D. Silvers,153A. Svyatkovskiy,153F. Wang,153W. Xie,153L. Xu,153

(11)

H. D. Yoo,153J. Zablocki,153Y. Zheng,153N. Parashar,154A. Adair,155B. Akgun,155K. M. Ecklund,155F. J. M. Geurts,155 W. Li,155B. Michlin,155B. P. Padley,155R. Redjimi,155J. Roberts,155J. Zabel,155B. Betchart,156A. Bodek,156R. Covarelli,156 P. de Barbaro,156R. Demina,156Y. Eshaq,156T. Ferbel,156A. Garcia-Bellido,156P. Goldenzweig,156J. Han,156A. Harel,156

D. C. Miner,156 G. Petrillo,156D. Vishnevskiy,156M. Zielinski,156A. Bhatti,157R. Ciesielski,157 L. Demortier,157 K. Goulianos,157G. Lungu,157S. Malik,157 C. Mesropian,157 S. Arora,158 A. Barker,158J. P. Chou,158 C. Contreras-Campana,158 E. Contreras-Campana,158 D. Duggan,158D. Ferencek,158Y. Gershtein,158R. Gray,158E. Halkiadakis,158 D. Hidas,158A. Lath,158S. Panwalkar,158M. Park,158R. Patel,158V. Rekovic,158J. Robles,158S. Salur,158S. Schnetzer,158

C. Seitz,158 S. Somalwar,158 R. Stone,158 S. Thomas,158P. Thomassen,158M. Walker,158K. Rose,159 S. Spanier,159 Z. C. Yang,159A. York,159O. Bouhali,160hhhR. Eusebi,160W. Flanagan,160J. Gilmore,160T. Kamon,160iiiV. Khotilovich,160

V. Krutelyov,160R. Montalvo,160I. Osipenkov,160 Y. Pakhotin,160A. Perloff,160 J. Roe,160A. Safonov,160T. Sakuma,160 I. Suarez,160A. Tatarinov,160D. Toback,160N. Akchurin,161C. Cowden,161J. Damgov,161C. Dragoiu,161P. R. Dudero,161

K. Kovitanggoon,161S. Kunori,161S. W. Lee,161 T. Libeiro,161 I. Volobouev,161 E. Appelt,162 A. G. Delannoy,162 S. Greene,162A. Gurrola,162W. Johns,162C. Maguire,162Y. Mao,162A. Melo,162M. Sharma,162P. Sheldon,162B. Snook,162

S. Tuo,162 J. Velkovska,162 M. W. Arenton,163 S. Boutle,163 B. Cox,163B. Francis,163J. Goodell,163R. Hirosky,163 A. Ledovskoy,163C. Lin,163C. Neu,163J. Wood,163S. Gollapinni,164R. Harr,164P. E. Karchin,164C. Kottachchi Kankanamge

Don,164P. Lamichhane,164D. A. Belknap,165L. Borrello,165D. Carlsmith,165 M. Cepeda,165S. Dasu,165 S. Duric,165 E. Friis,165 M. Grothe,165 R. Hall-Wilton,165 M. Herndon,165A. Hervé,165P. Klabbers,165J. Klukas,165A. Lanaro,165 A. Levine,165R. Loveless,165 A. Mohapatra,165I. Ojalvo,165 T. Perry,165G. A. Pierro,165G. Polese,165 I. Ross,165

A. Sakharov,165T. Sarangi,165A. Savin165 and W. H. Smith165 (CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2

Institut für Hochenergiephysik der OeAW, Wien, Austria

3National Centre for Particle and High Energy Physics, Minsk, Belarus 4

Universiteit Antwerpen, Antwerpen, Belgium

5Vrije Universiteit Brussel, Brussel, Belgium 6

Université Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium 8

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

9Université de Mons, Mons, Belgium 10

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12

Universidade Estadual Paulista, Universidade Federal do ABC, São Paulo, Brazil

12a

Universidade Estadual Paulista, São Paulo, Brazil

12b

Universidade Federal do ABC, São Paulo, Brazil

13

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

14

University of Sofia, Sofia, Bulgaria

15

Institute of High Energy Physics, Beijing, China

16

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China

17

Universidad de Los Andes, Bogota, Colombia

18

Technical University of Split, Split, Croatia

19

University of Split, Split, Croatia

20

Institute Rudjer Boskovic, Zagreb, Croatia

21

University of Cyprus, Nicosia, Cyprus

22

Charles University, Prague, Czech Republic

23

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

24

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

25

Department of Physics, University of Helsinki, Helsinki, Finland

26

Helsinki Institute of Physics, Helsinki, Finland

27

Lappeenranta University of Technology, Lappeenranta, Finland

28

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

29

(12)

30Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg,

Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

31Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules,

CNRS/IN2P3, Villeurbanne, France

32Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3,

Institut de Physique Nucléaire de Lyon, Villeurbanne, France

33Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia 34

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

35RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 36

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

37Deutsches Elektronen-Synchrotron, Hamburg, Germany 38

University of Hamburg, Hamburg, Germany

39Institut für Experimentelle Kernphysik, Karlsruhe, Germany 40

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

41University of Athens, Athens, Greece 42

University of Ioánnina, Ioánnina, Greece

43Wigner Research Centre for Physics, Budapest, Hungary 44

Institute of Nuclear Research ATOMKI, Debrecen, Hungary

45University of Debrecen, Debrecen, Hungary 46

National Institute of Science Education and Research, Bhubaneswar, India

47Panjab University, Chandigarh, India 48

University of Delhi, Delhi, India

49Saha Institute of Nuclear Physics, Kolkata, India 50

Bhabha Atomic Research Centre, Mumbai, India

51Tata Institute of Fundamental Research - EHEP, Mumbai, India 52

Tata Institute of Fundamental Research - HECR, Mumbai, India

53Institute for Research in Fundamental Sciences (IPM), Tehran, Iran 54

University College Dublin, Dublin, Ireland

55aINFN Sezione di Bari, Bari, Italy 55b

Università di Bari, Bari, Italy

55cPolitecnico di Bari, Bari, Italy 56a

INFN Sezione di Bologna, Bologna, Italy

56bUniversità di Bologna, Bologna, Italy 57a

INFN Sezione di Catania, Catania, Italy

57bUniversità di Catania, Catania, Italy 57c

CSFNSM, Catania, Italy

58aINFN Sezione di Firenze, Firenze, Italy 58b

Università di Firenze, Firenze, Italy

59INFN Laboratori Nazionali di Frascati, Frascati, Italy 60a

INFN Sezione di Genova, Genova, Italy

60bUniversità di Genova, Genova, Italy 61a

INFN Sezione di Milano-Bicocca, Milano, Italy

61bUniversità di Milano-Bicocca, Milano, Italy 62a

INFN Sezione di Napoli, Napoli, Italy

62bUniversità di Napoli’Federico II’, Napoli, Italy 62c

Università della Basilicata (Potenza), Napoli, Italy

62dUniversità G. Marconi (Roma), Napoli, Italy 63a

INFN Sezione di Padova, Padova, Italy

63bUniversità di Padova, Padova, Italy 63c

Università di Trento (Trento), Padova, Italy

64aINFN Sezione di Pavia, Pavia, Italy 64b

Università di Pavia, Pavia, Italy

65aINFN Sezione di Perugia, Perugia, Italy 65b

Università di Perugia, Perugia, Italy

66aINFN Sezione di Pisa, Pisa, Italy 66b

Università di Pisa, Pisa, Italy

66cScuola Normale Superiore di Pisa, Pisa, Italy 67a

INFN Sezione di Roma, Roma, Italy

67bUniversità di Roma, Roma, Italy 68a

(13)

68bUniversità di Torino, Torino, Italy 68c

Università del Piemonte Orientale (Novara), Torino, Italy

69aINFN Sezione di Trieste, Trieste, Italy 69b

Università di Trieste, Trieste, Italy

70Kangwon National University, Chunchon, Korea 71

Kyungpook National University, Daegu, Korea

72Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 73

Korea University, Seoul, Korea

74University of Seoul, Seoul, Korea 75

Sungkyunkwan University, Suwon, Korea

76Vilnius University, Vilnius, Lithuania 77

University of Malaya Jabatan Fizik, Kuala Lumpur, Malaysia

78Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 79

Universidad Iberoamericana, Mexico City, Mexico

80Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 81

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

82University of Auckland, Auckland, New Zealand 83

University of Canterbury, Christchurch, New Zealand

84National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 85

National Centre for Nuclear Research, Swierk, Poland

86Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland 87

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

88Joint Institute for Nuclear Research, Dubna, Russia 89

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

90Institute for Nuclear Research, Moscow, Russia 91

Institute for Theoretical and Experimental Physics, Moscow, Russia

92P.N. Lebedev Physical Institute, Moscow, Russia 93

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

94State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 95

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

96Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain 97

Universidad Autónoma de Madrid, Madrid, Spain

98Universidad de Oviedo, Oviedo, Spain 99

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

100CERN, European Organization for Nuclear Research, Geneva, Switzerland 101

Paul Scherrer Institut, Villigen, Switzerland

102Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 103

Universität Zürich, Zurich, Switzerland

104National Central University, Chung-Li, Taiwan 105

National Taiwan University (NTU), Taipei, Taiwan

106Chulalongkorn University, Bangkok, Thailand 107

Cukurova University, Adana, Turkey

108Middle East Technical University, Physics Department, Ankara, Turkey 109

Bogazici University, Istanbul, Turkey

110Istanbul Technical University, Istanbul, Turkey 111

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

112University of Bristol, Bristol, United Kingdom 113

Rutherford Appleton Laboratory, Didcot, United Kingdom

114Imperial College, London, United Kingdom 115

Brunel University, Uxbridge, United Kingdom

116Baylor University, Waco, USA 117

The University of Alabama, Tuscaloosa, USA

118Boston University, Boston, USA 119

Brown University, Providence, USA

120University of California, Davis, Davis, USA 121

University of California, Los Angeles, USA

122University of California, Riverside, Riverside, USA 123

University of California, San Diego, La Jolla, USA

124University of California, Santa Barbara, Santa Barbara, USA 125

(14)

126Carnegie Mellon University, Pittsburgh, USA 127

University of Colorado at Boulder, Boulder, USA

128Cornell University, Ithaca, USA 129

Fairfield University, Fairfield, USA

130Fermi National Accelerator Laboratory, Batavia, USA 131

University of Florida, Gainesville, USA

132Florida International University, Miami, USA 133

Florida State University, Tallahassee, USA

134Florida Institute of Technology, Melbourne, USA 135

University of Illinois at Chicago (UIC), Chicago, USA

136The University of Iowa, Iowa City, USA 137

Johns Hopkins University, Baltimore, USA

138The University of Kansas, Lawrence, USA 139

Kansas State University, Manhattan, USA

140Lawrence Livermore National Laboratory, Livermore, USA 141

University of Maryland, College Park, USA

142Massachusetts Institute of Technology, Cambridge, USA 143

University of Minnesota, Minneapolis, USA

144University of Mississippi, Oxford, USA 145

University of Nebraska-Lincoln, Lincoln, USA

146State University of New York at Buffalo, Buffalo, USA 147

Northeastern University, Boston, USA

148Northwestern University, Evanston, USA 149

University of Notre Dame, Notre Dame, USA

150The Ohio State University, Columbus, USA 151

Princeton University, Princeton, USA

152University of Puerto Rico, Mayaguez, USA 153

Purdue University, West Lafayette, USA

154Purdue University Calumet, Hammond, USA 155

Rice University, Houston, USA

156University of Rochester, Rochester, USA 157

The Rockefeller University, New York, USA

158Rutgers, The State University of New Jersey, Piscataway, USA 159

University of Tennessee, Knoxville, USA

160Texas A&M University, College Station, USA 161

Texas Tech University, Lubbock, USA

162Vanderbilt University, Nashville, USA 163

University of Virginia, Charlottesville, USA

164Wayne State University, Detroit, USA 165

University of Wisconsin, Madison, USA

aDeceased. b

Also at Vienna University of Technology, Vienna, Austria.

cAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland. d

Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France.

e

Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.

fAlso at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia. g

Also at Universidade Estadual de Campinas, Campinas, Brazil.

hAlso at California Institute of Technology, Pasadena, USA. i

Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.

jAlso at Zewail City of Science and Technology, Zewail, Egypt. k

Also at Suez Canal University, Suez, Egypt.

lAlso at Cairo University, Cairo, Egypt. m

Also at Fayoum University, El-Fayoum, Egypt.

nAlso at British University in Egypt, Cairo, Egypt. o

Present address: Ain Shams University, Cairo, Egypt.

pAlso at Université de Haute Alsace, Mulhouse, France. q

Also at Joint Institute for Nuclear Research, Dubna, Russia.

(15)

sAlso at The University of Kansas, Lawrence, USA. t

Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.

uAlso at Eötvös Loránd University, Budapest, Hungary. v

Also at Tata Institute of Fundamental Research - HECR, Mumbai, India.

wPresent address: King Abdulaziz University, Jeddah, Saudi Arabia. x

Also at University of Visva-Bharati, Santiniketan, India.

yAlso at University of Ruhuna, Matara, Sri Lanka. z

Also at Isfahan University of Technology, Isfahan, Iran.

aaAlso at Sharif University of Technology, Tehran, Iran. bb

Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.

ccAlso at Università degli Studi di Siena, Siena, Italy. dd

Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France.

eeAlso at Purdue University, West Lafayette, USA. ff

Also at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico.

ggAlso at National Centre for Nuclear Research, Swierk, Poland. hh

Also at Institute for Nuclear Research, Moscow, Russia.

iiAlso at Faculty of Physics, University of Belgrade, Belgrade, Serbia. jj

Also at Facoltà Ingegneria, Università di Roma, Roma, Italy.

kkAlso at Scuola Normale e Sezione dell’INFN, Pisa, Italy. ll

Also at University of Athens, Athens, Greece.

mmAlso at Paul Scherrer Institut, Villigen, Switzerland. nn

Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.

ooAlso at Albert Einstein Center for Fundamental Physics, Bern, Switzerland. pp

Also at Gaziosmanpasa University, Tokat, Turkey.

qqAlso at Adiyaman University, Adiyaman, Turkey. rr

Also at Cag University, Mersin, Turkey.

ssAlso at Mersin University, Mersin, Turkey. tt

Also at Izmir Institute of Technology, Izmir, Turkey.

uuAlso at Ozyegin University, Istanbul, Turkey. vv

Also at Kafkas University, Kars, Turkey.

Figura

FIG. 2 (color online). Cross section times branching ratio Br ðH → γγÞ as a function of top squark and Higgsino masses.
FIG. 3 (color online). E miss
TABLE I. Expected and observed event counts. The yields for three signal points are shown for comparison indicating m ~t R and m ~χ 0

Riferimenti

Documenti correlati

The committee included 4 environmental associations (WWF Trentino, Legambiente, Italianostra, Mountain Wilderness), the local canoe club (Canoa Club Trento), the regional federation

Figure 2 shows the effect of the composite composition and electric field on the flash onset temperature for materials produced by manually mixing the powders.. As expected the

In this study, two isolates of Fusarium oxysporum, obtained from lettuce plants grown in the Netherlands, which showed symptoms of wilt, were characterized by combining the study

Analogamente, nell’orizzonte ampio e aperto delle Crete occupa- te da vaste e ininterrotte distese di seminativi, spiccano come elementi strutturanti il paesaggio, sia sul

rinvii di interventi chirurgici per non corretta preparazione o incompleta informazione anno Fase 17 10 8 2 Valutazione del decorso clinico ed eventuali adeguamenti

L’assimilazione e l’accomodamento, secondo lo psicopedagogista svizzero, sono i due principali processi che caratterizzano l’apprendimento ed è soprattut- to l’accomodamento

These find- ings suggest that a specific group therapy can improve neuropsychological functioning together with indi- vidual cognitive rehabilitation, carried out in all