• Non ci sono risultati.

Search for Supersymmetry at the LHC in Events with Jets and Missing Transverse Energy

N/A
N/A
Protected

Academic year: 2021

Condividi "Search for Supersymmetry at the LHC in Events with Jets and Missing Transverse Energy"

Copied!
16
0
0

Testo completo

(1)

Search for Supersymmetry at the LHC in Events with Jets and Missing Transverse Energy

S. Chatrchyan et al.* (CMS Collaboration)

(Received 12 September 2011; published 21 November 2011)

A search for events with jets and missing transverse energy is performed in a data sample of pp collisions collected at pffiffiffis¼ 7 TeV by the CMS experiment at the LHC. The analyzed data sample corresponds to an integrated luminosity of 1:14 fb1. In this search, a kinematic variableTis used as the main discriminator between events with genuine and misreconstructed missing transverse energy. No excess of events over the standard model expectation is found. Exclusion limits in the parameter space of the constrained minimal supersymmetric extension of the standard model are set. In this model, squark masses below 1.1 TeV are excluded at 95% C.L. Gluino masses below 1.1 TeV are also ruled out at 95% C.L. for values of the universal scalar mass parameter below 500 GeV.

DOI:10.1103/PhysRevLett.107.221804 PACS numbers: 14.80.Ly, 12.60.Jv, 13.85.Rm

The standard model (SM) of particle physics is generally considered to be valid only at low energy scales and is expected to be superseded by a more complete theory at higher scales. Supersymmetric (SUSY) extensions to the SM [1–8] introduce a large number of new particles with the same quantum numbers as their SM partners, but differ-ing by half a unit of spin. If R-parity conservation [9] is assumed, supersymmetric particles, such as squarks and gluinos, are produced in pairs and decay to the lightest, stable supersymmetric particle (LSP). If the LSP is neutral and weakly interacting, a typical signature is a final state of multijets accompanied by significant missing transverse energy, 6ET. Experiments at the Tevatron [10–13], Sp pS [14,15], HERA [16,17], and LEP [18] colliders have per-formed extensive searches for signs of SUSY. In 2010, the Large Hadron Collider (LHC) at CERN delivered an inte-grated luminosity of almost 50 pb1 at a center-of-mass energypffiffiffis¼ 7 TeV, leading to several new searches from both the ATLAS Collaboration [19–22] and CMS Collaboration [23–27].

This Letter presents a search for SUSY based on a data sample corresponding to an integrated luminosity of 1:14  0:05 fb1. The search strategy follows Ref. [23] and is designed to be sensitive to6ET signatures in events with two or more energetic jets. The search is not opti-mized for any particular model of SUSY and is applicable to other new physics scenarios with a6ETsignature. In this Letter, nevertheless, the results are interpreted in the con-strained minimal supersymmetric extension of the standard model (CMSSM) [28–30]. The CMSSM is described by the following five parameters: the universal scalar and

gaugino mass parameters,m0 andm1=2; the universal tri-linear soft SUSY-breaking parameter, A0; the ratio of the vacuum expectation values of the two Higgs doublets, tan; and the sign of the Higgs mixing parameter, . We consider only parameter sets for which the LSP is the lightest neutralino. The following example parameter set, referred to as LM6, is used to illustrate possible CMSSM yields: m0 ¼ 85 GeV, m1=2¼ 400 GeV, A0¼ 0, tan ¼ 10, and  > 0.

A detailed description of the CMS apparatus can be found in Ref. [31]. Its central feature is a superconducting solenoid providing an axial magnetic field of 3.8 T. The bore of the solenoid is instrumented with several particle detection systems. Charged particle trajectories are mea-sured by a silicon pixel and strip tracker system, with full azimuth () coverage and a pseudorapidity () acceptance from2:5 to þ2:5. Here,    ln½tanð=2Þ and  is the polar angle with respect to the counterclockwise beam direction. A lead tungstate crystal electromagnetic rimeter (ECAL) and a brass or scintillator hadron calo-rimeter surround the tracking volume and provide coverage in  from 3 to þ3. The forward hadron calorimeter extends symmetrically the coverage by a further two units in . Muons are identified in gas ionization detectors embedded in the steel return yoke of the magnet. The CMS detector is nearly hermetic, which allows for momentum-balance measurements in the plane transverse to the beam axis.

The offline event reconstruction and selection criteria described below are explained in more detail in Ref. [23]. Jets are reconstructed from the energy deposits in the calorimeter towers, clustered by the anti-kT algorithm

[32] with a size parameter of 0.5. The raw jet energies measured by the calorimeter systems are corrected to establish a uniform relative response in and a calibrated absolute response in transverse momentum pT with an associated uncertainty between 2% and 4%, depending on the jet  and pT [33]. Jets considered in the analysis

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

are required to have transverse energy ET> 50 GeV. Events are vetoed if any additional jet satisfies ET> 50 GeV and jj > 3, or rare, spurious signals are identified in the calorimeters [34,35]. The highest-ETjet is required to be within the central tracker acceptance and the two highest-ET jets must each have ET> 100 GeV. To sup-press SM processes with genuine6ETfrom neutrinos, events containing an isolated electron [36] or muon [37] with pT> 10 GeV are vetoed. To select a pure multijet

topol-ogy, events are vetoed in which an isolated photon [38] withpT> 25 GeV is found.

The following two variables characterize the visible energy and missing momentum in the transverse plane: the scalar sum of the transverse energyETof jets, defined asHT¼PNjeti¼1ET, and the magnitude of the vector sum of the transverse momenta ~pT of jets, defined as HT¼ jPNjeti¼1 ~pTj, where Njet is the number of jets with ET>

50 GeV. Significant hadronic activity in the event is en-sured by requiringHT> 275 GeV. Following these selec-tions, the background from multijet production, a manifestation of quantum chromodynamics (QCD), is still several orders of magnitude larger than the typical signal expected from SUSY. While the bulk of these multijet events do not exhibit significant 6ET, large values can be observed due to stochastic fluctuations in the measurement of jet energies or mismeasurements caused by nonuniform-ities in the calibration of the calorimeters or detector inefficiencies.

The T kinematic variable, first introduced in Refs. [39–41], is used in the selection to efficiently reject events either without significant 6ET or with transverse energy mismeasurements, while retaining a large sensitiv-ity to new physics with genuine6ET signatures. For events with two jets, the variable is defined asT¼ ETj2=MT¼ ETj2= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiH

T2 HT2

q

, whereETj2 is the transverse energy of the less-energetic jet, andMTis the transverse mass of the dijet system. For a perfectly measured dijet event with ETj1 ¼ ETj2 and jets back to back in, and in the limit

of large jet momenta compared to their masses, the value of T is 0.5. In the case of an imbalance in the measured

transverse energies of back-to-back jets,Tis smaller than 0.5. Values significantly greater than 0.5 are observed when the two jets are not back to back and balancing genuine6ET. For events with three or more jets, a dijet system is formed by combining the jets in the event into two pseudojets. The totalETof each of the two pseudojets is calculated as the scalar sum of the measuredETof contributing jets. The combination chosen is the one that minimizes the ET difference between the two pseudojets. This simple clus-tering criterion provides the best separation between QCD multijet events and events with genuine 6ET. Events with multiple jets withET< 50 GeV or with severe jet energy undermeasurements due to detector inefficiencies can lead to values of T slightly above 0.5. Such events are

effectively rejected by requiringT> 0:55 and by apply-ing dedicated vetoes, described further in Ref. [23]. These final selections complete the definition of the hadronic signal sample. A disjoint hadronic control sample consist-ing predominantly of QCD multijet events is defined by requiringT< 0:55.

As can be seen in Fig. 1, the only expected remaining backgrounds withT> 0:55 stem from SM processes with genuine 6ETin the final state. In the dijet case, the largest backgrounds with genuine 6ET are the associated produc-tion of W or Z bosons with jets, followed by either the weak decays Z !   or W ! , where the  decays hadronically and is identified as a jet, or by leptonic decays that are not rejected by the dedicated electron or muon vetoes. At higher jet multiplicities, top quark production, followed by semileptonic weak top quark decay, becomes important.

Events in the hadronic signal sample are recorded with a trigger condition that identifies candidate events with en-ergetic jets and significant 6ET. Events are selected if they haveHT> 250 GeV and 6ETabove a threshold that evolves with instantaneous luminosity, from 60 to 90 GeV. In the region 275 < HT< 325 GeV, the efficiency with which

events satisfying the full reconstruction and selection criteria are triggered is 0:99þ0:010:02. For events with HT> 325 GeV, the efficiency is 1:00þ0:000:03. A set of

pre-scaled HTtrigger conditions are used to record events for the hadronic control sample.

T α 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Events / 0.05 1 10 2 10 3 10 4 10 = 7 TeV s , -1 CMS, 1.14 fb Data Standard Model QCD multijet ) + jets ν ν → , t, W, Z t ( t SUSY LM6

FIG. 1 (color online). The distribution ofT, described in the text, for events in data with two or more jets (black dots with error bars representing the statistical uncertainties), after all event selection criteria except T are applied and HT> 375 GeV. For illustrative purposes only, expected yields from simulation are also shown for QCD multijet events (dot-dashed line), associated production of top quarks, W, or Z with jets (long-dashed line), the sum of all aforementioned SM processes (solid line) and the SUSY LM6 model (dotted line). The un-certainties for the SM expectation, due to the limited accuracy of the available simulation data sets and jet energy calibrations, are represented by the hatched area. The highest bin contains the overflows.

(3)

The analysis makes use of two additional data samples to estimate the backgrounds with genuine6ET. First, a þ jets sample is recorded with the hadronic trigger condition described above. The event selection, following closely the prescription described in Ref. [42], requires a single, iso-lated muon with pT> 10 GeV in the final state and the transverse mass of the muon andHT system to be larger than 30 GeV to ensure a sample rich in W bosons. The muon is required to be separated from the closest jet in the event by  and  such that the distance R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ 2

p

> 0:5. Second, a þ jets sample is selected using a dedicated photon trigger condition requiring a localized, large energy deposit in the ECAL with pT> 90 GeV and that satisfies loose photon identification and isolation criteria [38]. The offline selection requires a single photon to be reconstructed with pT> 100 GeV, jj < 1:45, satisfying tight isolation criteria, and with a minimum distance to any jet of R > 1:0. For these se-lection criteria, the photon trigger condition is found to be fully efficient.

The hadronic signal region is divided into eight bins of HT: two bins of width 50 GeV in the range 275 < HT<

375 GeV, five bins of width 100 GeV in the range 375 < HT< 875 GeV, and a final open bin, HT> 875 GeV. As

in Ref. [23], jetET thresholds are scaled down from their nominal values in the lowest twoHT bins to maintain jet multiplicities and thus comparable event kinematics, top-ologies, and background composition throughout the entire HT range. The background estimation methods described

below are combined in the statistical interpretation of the observed data yields to provide a single prediction of the SM background in each HT bin of the hadronic signal region. With respect to Ref. [23], these refinements provide greater sensitivity across a broader SUSY parameter space and, in the context of CMSSM, up to higher-mass states.

The  þ jets data sample provides an estimate of the contributions from top quark andW production (leading to W þ jets final states) still remaining in each HTbin of the

hadronic signal region after all selection criteria are ap-plied. Factors obtained from simulation [23] are then used to translate the yields in the þ jets sample to estimates in eachHTbin of the hadronic signal region. These factors are found to be only weakly dependent onHT, ranging from 1.14 at lowHTto 0.90 at highHT. Conservative uncertain-ties on all the parameters entering these translation factors are assigned. The total systematic uncertainty is estimated to be 30%, dominated by the uncertainty on the efficiency for vetoing leptons. The remaining irreducible background ofZ !   þ jets events in the hadronic signal sample is estimated from þ jets events. These two processes have similar kinematic properties when the photon is ignored [43,44], while the latter has a larger production cross section. Translation factors that account for the ratio of cross sections for þ jets and Z !   þ jets, and their relative acceptances, are obtained from simulation [23] and

are used to estimate the number ofZ !   þ jets events in eachHTbin of the hadronic signal region. As is the case of the  þ jets sample, these translation factors are only weakly dependent onHT, ranging from 0.35 at lowHTto 0.45 at high HT. The main systematic uncertainties on these factors are associated with the ratio of cross sections between þ jets and Z !   þ jets in the simulation (30%), the efficiency for photon identification (20%), and the purity of the photon selection (20%), which add up in quadrature to 40%. These uncertainty estimates are verified by predicting the number of þ two-jet events in each HT bin using the þ two-jet sample. The requirement of exactly two jets suppresses the top quark contribution in the muon sample, thus leaving a relatively pure W þ jets sample that is kinematically similar to the Z !   þ jets sample. The predicted and observed event yields are con-sistent within the assigned systematic uncertainties.

Furthermore, the HT dependence of the ratio RT is exploited to constrain the SM background estimate for eachHTbin. This ratio is defined as the number of events with Tabove and below a threshold value of 0.55 for a given bin in HT. The denominator of the ratio is always dominated by events from QCD multijet production and is measured in data with samples selected by the set of prescaled HTtrigger conditions. The chosenTthreshold ensures that, for a given bin in HT, the numerator of the ratio is dominated by events from SM processes with genuine 6ET from neutrinos, with no significant contribu-tion from QCD multijet produccontribu-tion. As observed in Ref. [23], this property leads toRT being independent of HT. The remaining backgrounds are those with genuine6ET

from associated production of top quarks, W, or Z with jets. By relaxing theTthreshold to values lower than 0.55, the numerator is instead dominated by mismeasured QCD multijet events, and an exponential dependence ofR

T on

HTis observed [23]. The behaviors ofTandRTðHTÞ are

observed in data and simulation to be robust against the effects of multiple pp collisions per beam crossing (pileup). In the statistical interpretation of the analysis, RTðHTÞ is modeled as a superposition of a

HT-independent contribution from SM processes with

genuine 6ET, and an exponentially falling contribution to accommodate any potential QCD contamination. The lat-ter is considered even though no evidence of a significant QCD contamination is found in the hadronic signal region. To obtain an accurate and consistent prediction of the SM background, a simultaneous binned likelihood fit using information from all three data samples is performed. The fit maximizes the likelihood Ltotal¼ Lhadronic Lþjets L þjets, whereLhadronic characterizesRTðHTÞ in the

had-ronic sample with a single exponential function,AekHT, to accommodate any QCD contamination and a constant, HT-independent contribution,B, to describe SM processes

with genuine 6ET. The likelihoods Lþjets and L þjets describe the HT-dependent yields in the  þ jets and

(4)

þ jets samples. For each HTbin, these yields are related

to the numerator of RTðHTÞ, measured in the hadronic signal sample, via the translation factors from the simulation.

With a fit probability (p value) of 0.56, the hypothesis for theRTdependence onHTreproduces the data well, as shown in Fig. 2. The only parameter with a significant nonzero value as determined by the fit is the constant term B ¼ ð1:1  0:2Þ  105. The other two fit parame-ters, A ¼ ð1:4  1:9Þ  105 and k ¼ ð5:2  5:6Þ  103GeV1, are compatible with zero, indicating that no significant QCD contamination has been observed in the signal region. Furthermore, as a cross check, the fit is repeated with the assumption that RT is independent of HT, which in turn implies that the numerator of the ratio is

fully dominated by SM backgrounds with genuine6ET. The result of this fit, shown in Fig.2, has ap value of 0.41 and is in good agreement with the nominal fit.

To validate the background estimation of the simulta-neous fit, the  þ jets and þ jets samples are used to

predict directly the SM backgrounds with genuine 6ET in the differentHTbins, independently of the fit. The predic-tion for eachHTbin is taken as the numerator of the ratio RT, and the observed behavior inHT is shown in Fig.2.

This cross-check confirms, within the statistical and sys-tematic uncertainties, the HT independence of RT when the numerator is dominated by SM events with genuine6ET. The fit results for all three data samples are listed in TableI, along with the observed yields in the data. Good agreement between the measured HTdistribution and the fit is observed for all three data samples, indicating that the observed yields are compatible with the SM background expectation provided by the fit. The uncertainties listed with the SM predictions are obtained from an ensemble of pseudoexperiments. Figure 3 compares the result of the simultaneous fit to the observed yields in the hadronic signal sample.

Given the lack of an excess of events above the expected SM backgrounds, limits are set in the parameter space of the CMSSM. At each point of the parameter space, the SUSY particle spectrum is calculated withSOFTSUSY[45], and the signal events are generated at leading order with

PYTHIA 6.4 [46]. Inclusive, process-dependent, next-to-leading-order (NLO) cross sections, obtained with the programPROSPINO[47], are used to calculate the observed and expected exclusion contours. The simulated signal events are reweighted so that the distribution of number of pileup events per beam crossing from the simulation matches that observed in data. Uncertainties on the SM background prediction, the luminosity measurement (4.5%) [48], the total acceptance times efficiency of the selection for the considered signal model (4.5%) [23,49], and NLO cross section and parton distribution functions (10%) are included in the limit. Although signal contribu-tions to the total yield in each of the three considered data samples are allowed, the only relevant signal contribution originates from the hadronic data sample in the case of the CMSSM.

Figure 4 shows the observed and expected exclusion limits at 95% confidence level (C.L.) in the (m0, m1=2) plane for tan ¼ 10 and A0 ¼ 0 GeV, calculated with the

CLs method [50]. For this choice of parameters in the

CMSSM, squark masses below 1.1 TeV are excluded and gluino masses below the same value are ruled out for

(GeV) T H 300 400 500 600 700 800 900 6 10×T α R 0 10 20 30 40 50 60 70

Data, hadronic signal sample data samples

γ

and

µ

Prediction from

Nominal hypothesis + SUSY LM6 value = 0.56) p Nominal hypothesis ( value = 0.41) p -independent hypothesis ( T H = 7 TeV s , -1 CMS, 1.14 fb

FIG. 2 (color online). The ratio RT as a function of HT, as measured in the hadronic data samples (black dots with error bars representing the statistical uncertainties). The ratios using the direct predictions from the þ jets and þ jets samples are shown as open squares (offset for clarity, with error bars repre-senting the statistical and systematic uncertainties). Also shown is the result of the simultaneous fit to the three data samples (solid line); the analogous result when assuming a HT-independent hypothesis (dotted line); and, for illustrative

purposes only, the expectation from the SUSY LM6 model when superimposed on the nominal fit result (long-dashed line).

TABLE I. Comparison of the measured yields in the differentHTbins for the hadronic, þ jets and þ jets samples with the SM expectations and combined statistical and systematic uncertainties given by the simultaneous fit.

HTbin (GeV) 275–325 325–375 375–475 475–575 575–675 675–775 775–875 >875 SM hadronic 787þ3222 310þ812 202þ99 60:43:0þ4:2 20:3þ1:81:1 7:7þ0:80:5 3:2þ0:40:2 2:8þ0:40:2 Data hadronic 782 321 196 62 21 6 3 1 SM þ jets 367þ1515 182þ89 113þ87 36:53:3þ3:8 13:4þ2:21:8 4:0þ1:41:2 0:8þ0:90:1 0:7þ0:90:1 Data þ jets 389 156 113 39 17 5 0 0 SM þ jets 834þ2830 325þ1717 210þ1212 64:77:0þ6:9 21:1þ3:94:3 10:5þ2:52:6 6:1þ0:91:7 5:5þ0:91:6 Data þ jets 849 307 210 67 24 12 4 4

(5)

m0< 500 GeV. The exclusion limit changes at most by

20 GeV in the (m0, m1=2) plane for different parameter values (e.g., tan ¼ 40 and A0 ¼ 500 GeV), indicating

that the limit is only weakly dependent on these parameters.

In summary, the first search for supersymmetry from CMS based on an integrated luminosity in excess of 1 fb1 has been reported. Final states with two or more jets and significant 6ET, as expected from high-mass squark and gluino production and decays, have been analyzed. The search has been performed in eight bins of the scalar sum of the transverse energy of jets,HT, considering events with HT in excess of 275 GeV. The sum of standard model backgrounds per HT bin has been estimated from

a simultaneous binned likelihood fit to hadronic, þ jets, and þ jets samples. The observed yields in the eight HT bins have been found to be in agreement with the expected contributions from standard model processes. Limits on the CMSSM parameters have been derived and squark masses below 1.1 TeV are excluded at 95% C.L. in this model. Gluino masses in the same range are ruled out at 95% C.L. form0< 500 GeV. This limit represents a tight constraint on the parameter space of SUSY models like the CMSSM. We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administra-tive staff at CERN and other CMS institutes, and acknowl-edge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (U.K.); DOE and NSF (U.S.).

[1] Y. A. Gol’fand and E. P. Likhtman, JETP Lett. 13, 323 (1971), http://www.jetpletters.ac.ru/ps/1584/article_ 24309.shtml.

[2] J. Wess and B. Zumino,Nucl. Phys. B70, 39 (1974). [3] H. P. Nilles,Phys. Rep. 110, 1 (1984).

[4] H. Haber and G. Kane,Phys. Rep. 117, 75 (1985). [5] R. Barbieri, S. Ferrara, and C. A. Savoy,Phys. Lett. B 119,

343 (1982).

[6] S. Dawson, E. Eichten, and C. Quigg, Phys. Rev. D 31, 1581 (1985).

[7] E. Witten,Nucl. Phys. B188, 513 (1981).

[8] S. Dimopoulos and H. Georgi, Nucl. Phys. B193, 150 (1981).

[9] G. R. Farrar and P. Fayet,Phys. Lett. B 76, 575 (1978). [10] T. Aaltonen et al. (CDF Collaboration),Phys. Rev. Lett.

101, 251801 (2008).

[11] T. Aaltonen et al. (CDF Collaboration),Phys. Rev. Lett. 102, 121801 (2009).

[12] V. M. Abazov et al. (D0 Collaboration),Phys. Lett. B 660, 449 (2008).

[13] V. M. Abazov et al. (D0 Collaboration),Phys. Lett. B 680, 34 (2009).

[14] C. Albajar et al. (UA1 Collaboration),Phys. Lett. B 198, 261 (1987). (GeV) T H 300 400 500 600 700 800 900 Events / bin 1 10 2 10 3 10 , s = 7 TeV -1 CMS, 1.14 fb Data Standard Model ) + jets ν ν → , t, W, Z t ( t + jets ν ν → Z SM + SUSY LM6

FIG. 3 (color online). The observed event yields versusHTin the hadronic signal sample (black dots with error bars represent-ing the statistical uncertainties). Also shown are the expectations given by the simultaneous fit for theZ !   þ jets process (dot-dashed line); the associated production of top,W, or Z with jets (long-dashed line); the sum of QCD and all aforementioned processes (solid line); and, for illustrative purposes only, the SUSY LM6 model superimposed on the SM expectation (dotted line). (GeV) 0 m 0 500 1000 1500 2000 (GeV) 1/2 m 200 400 600 g g = 7 TeV s , -1 CMS, 1.14 fb > 0 µ = 0 GeV, 0 = 10, A β tan LM6 = LSP τ∼ 95% C.L. limits: s

Observed Limit (NLO), C.L. σ 1 ± Median Expected Limit

(GeV) 0 m 0 500 1000 1500 2000 (GeV) 1/2 m 200 400 600 (GeV) 0 m 0 500 1000 1500 2000 (GeV) 1/2 m 200 400 600

FIG. 4 (color online). Observed and expected 95% C.L. ex-clusion contours in the CMSSM (m0,m1=2) plane ( tan ¼ 10, A0¼ 0,  > 0) using NLO signal cross sections with the C:L:s

method. The expected limit is shown with its 68% C.L. range. The SUSY benchmark model LM6 is also shown.

(6)

[15] R. Ansari et al. (UA2 Collaboration),Phys. Lett. B 195, 613 (1987).

[16] S. Chekanov et al. (ZEUS Collaboration),Eur. Phys. J. C 50, 269 (2007).

[17] S. Aid et al. (H1 Collaboration),Phys. Lett. B 380, 461 (1996).

[18] LEPSUSYWG (ALEPH, DELPHI, L3, and OPAL Collaborations), Joint SUSY working group, Report No. LEPSUSYWG/02-06-2 2002.

[19] G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett. 106, 131802 (2011).

[20] G. Aad et al. (ATLAS Collaboration),Phys. Lett. B 701, 186 (2011).

[21] G. Aad et al. (ATLAS Collaboration),Phys. Lett. B 701, 398 (2011).

[22] G. Aad et al. (ATLAS Collaboration),Eur. Phys. J. C 71, 1 (2011).

[23] V. Khachatryan et al. (CMS Collaboration),Phys. Lett. B 698, 196 (2011).

[24] CMS Collaboration,J. High Energy Phys. 08 (2011) 155. [25] CMS Collaboration,arXiv:1107.1279.

[26] S. Chatrchyan et al. (CMS Collaboration),Phys. Rev. Lett. 106, 211802 (2011).

[27] V. Khachatryan et al. (CMS Collaboration), J. High Energy Phys. 07 (2011) 113.

[28] A. H. Chamseddine, R. Arnowitt, and P. Nath,Phys. Rev. Lett. 49, 970 (1982).

[29] R. Arnowitt and P. Nath,Phys. Rev. Lett. 69, 725 (1992). [30] G. L. Kane et al.,Phys. Rev. D 49, 6173 (1994). [31] S. Chatrchyan et al. (CMS Collaboration), JINST 03,

S08004 (2008).

[32] M. Cacciari, G. P. Salam, and G. Soyez,J. High Energy Phys. 04 (2008) 063.

[33] CMS Collaboration, arXiv:1107.4277 [JINST (to be published)].

[34] S. Chatrchyan et al. (CMS),JINST 5, T03014 (2010). [35] CMS Collaboration, CMS Report No.

CMS-NOTE-2010-012, 2010.

[36] CMS Collaboration, CMS Physics Analysis Summary Report No. EGM-10-004, 2010.

[37] CMS Collaboration, CMS Physics Analysis Summary Report No. MUO-10-002, 2010.

[38] CMS Collaboration, CMS PhysicsAnalysis Summary Report No. EGM-10-006, 2010.

[39] L. Randall and D. Tucker-Smith, Phys. Rev. Lett. 101, 221803 (2008).

[40] CMS Collaboration, CMS Physics Analysis Summary Report No. SUS-08-005, 2008.

[41] CMS Collaboration, CMS Physics Analysis Summary Report No. SUS-09-001, 2009.

[42] V. Khachatryan et al. (CMS), Phys. Lett. B 695, 424 (2011).

[43] CMS Collaboration, CMS Physics Analysis Summary Report No. SUS-08-002, 2008.

[44] Z. Bern et al., arXiv:1106.1423 [Phys. Rev. D (to be published)].

[45] B. C. Allanach,Comput. Phys. Commun. 143, 305 (2002). [46] T. Sjo¨strand, S. Mrenna, and P. Z. Skands,J. High Energy

Phys. 05 (2006), 026.

[47] W. Beenakker et al.,Nucl. Phys. B492, 51 (1997). [48] CMS Collaboration, CMS Physics Analysis Summary

Report No. EWK-10-004, 2010.

[49] CMS Collaboration, CMS Physics Analysis Summary Report No. JME-10-010, 2010.

[50] K. Nakamura (Particle Data Group),J. Phys. G 37, 075021 (2010).

S. Chatrchyan,1V. Khachatryan,1A. M. Sirunyan,1A. Tumasyan,1W. Adam,2T. Bergauer,2M. Dragicevic,2J. Ero¨,2 C. Fabjan,2M. Friedl,2R. Fru¨hwirth,2V. M. Ghete,2J. Hammer,2,bS. Ha¨nsel,2M. Hoch,2N. Ho¨rmann,2J. Hrubec,2 M. Jeitler,2W. Kiesenhofer,2M. Krammer,2D. Liko,2I. Mikulec,2M. Pernicka,2B. Rahbaran,2H. Rohringer,2 R. Scho¨fbeck,2J. Strauss,2A. Taurok,2F. Teischinger,2C. Trauner,2P. Wagner,2W. Waltenberger,2G. Walzel,2 E. Widl,2C.-E. Wulz,2V. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3S. Bansal,4L. Benucci,4E. A. De Wolf,4

X. Janssen,4S. Luyckx,4T. Maes,4L. Mucibello,4S. Ochesanu,4B. Roland,4R. Rougny,4M. Selvaggi,4 H. Van Haevermaet,4P. Van Mechelen,4N. Van Remortel,4F. Blekman,5S. Blyweert,5J. D’Hondt,5 R. Gonzalez Suarez,5A. Kalogeropoulos,5M. Maes,5A. Olbrechts,5W. Van Doninck,5P. Van Mulders,5 G. P. Van Onsem,5I. Villella,5O. Charaf,6B. Clerbaux,6G. De Lentdecker,6V. Dero,6A. P. R. Gay,6G. H. Hammad,6

T. Hreus,6P. E. Marage,6A. Raval,6L. Thomas,6G. Vander Marcken,6C. Vander Velde,6P. Vanlaer,6V. Adler,7 A. Cimmino,7S. Costantini,7M. Grunewald,7B. Klein,7J. Lellouch,7A. Marinov,7J. Mccartin,7D. Ryckbosch,7

F. Thyssen,7M. Tytgat,7L. Vanelderen,7P. Verwilligen,7S. Walsh,7N. Zaganidis,7S. Basegmez,8G. Bruno,8 J. Caudron,8L. Ceard,8E. Cortina Gil,8J. De Favereau De Jeneret,8C. Delaere,8D. Favart,8A. Giammanco,8

G. Gre´goire,8J. Hollar,8V. Lemaitre,8J. Liao,8O. Militaru,8C. Nuttens,8S. Ovyn,8D. Pagano,8A. Pin,8 K. Piotrzkowski,8N. Schul,8N. Beliy,9T. Caebergs,9E. Daubie,9G. A. Alves,10L. Brito,10D. De Jesus Damiao,10

M. E. Pol,10M. H. G. Souza,10W. L. Alda´ Ju´nior,11W. Carvalho,11E. M. Da Costa,11C. De Oliveira Martins,11 S. Fonseca De Souza,11D. Matos Figueiredo,11L. Mundim,11H. Nogima,11V. Oguri,11W. L. Prado Da Silva,11

A. Santoro,11S. M. Silva Do Amaral,11A. Sznajder,11T. S. Anjos,12,cC. A. Bernardes,12,cF. A. Dias,12,d T. R. Fernandez Perez Tomei,12E. M. Gregores,12,cC. Lagana,12F. Marinho,12P. G. Mercadante,12,cS. F. Novaes,12

Sandra S. Padula,12N. Darmenov,13,bV. Genchev,13,bP. Iaydjiev,13,bS. Piperov,13M. Rodozov,13S. Stoykova,13 G. Sultanov,13V. Tcholakov,13R. Trayanov,13M. Vutova,13A. Dimitrov,14R. Hadjiiska,14A. Karadzhinova,14

(7)

V. Kozhuharov,14L. Litov,14M. Mateev,14B. Pavlov,14P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15 C. H. Jiang,15D. Liang,15S. Liang,15X. Meng,15J. Tao,15J. Wang,15J. Wang,15X. Wang,15Z. Wang,15H. Xiao,15 M. Xu,15J. Zang,15Z. Zhang,15Y. Ban,16S. Guo,16Y. Guo,16W. Li,16Y. Mao,16S. J. Qian,16H. Teng,16B. Zhu,16

W. Zou,16A. Cabrera,17B. Gomez Moreno,17A. A. Ocampo Rios,17A. F. Osorio Oliveros,17J. C. Sanabria,17 N. Godinovic,18D. Lelas,18K. Lelas,18R. Plestina,18,eD. Polic,18I. Puljak,18Z. Antunovic,19M. Dzelalija,19 M. Kovac,19V. Brigljevic,20S. Duric,20K. Kadija,20J. Luetic,20S. Morovic,20A. Attikis,21M. Galanti,21J. Mousa,21

C. Nicolaou,21F. Ptochos,21P. A. Razis,21M. Finger,22M. Finger, Jr.,22Y. Assran,23,fA. Ellithi Kamel,23,g S. Khalil,23,hM. A. Mahmoud,23,iA. Radi,23,jA. Hektor,24M. Kadastik,24M. Mu¨ntel,24M. Raidal,24L. Rebane,24

A. Tiko,24V. Azzolini,25P. Eerola,25G. Fedi,25M. Voutilainen,25S. Czellar,26J. Ha¨rko¨nen,26A. Heikkinen,26 V. Karima¨ki,26R. Kinnunen,26M. J. Kortelainen,26T. Lampe´n,26K. Lassila-Perini,26S. Lehti,26T. Linde´n,26

P. Luukka,26T. Ma¨enpa¨a¨,26E. Tuominen,26J. Tuominiemi,26E. Tuovinen,26D. Ungaro,26L. Wendland,26 K. Banzuzi,27A. Karjalainen,27A. Korpela,27T. Tuuva,27D. Sillou,28M. Besancon,29S. Choudhury,29 M. Dejardin,29D. Denegri,29B. Fabbro,29J. L. Faure,29F. Ferri,29S. Ganjour,29A. Givernaud,29P. Gras,29 G. Hamel de Monchenault,29P. Jarry,29E. Locci,29J. Malcles,29M. Marionneau,29L. Millischer,29J. Rander,29 A. Rosowsky,29I. Shreyber,29M. Titov,29S. Baffioni,30F. Beaudette,30L. Benhabib,30L. Bianchini,30M. Bluj,30,k C. Broutin,30P. Busson,30C. Charlot,30T. Dahms,30L. Dobrzynski,30S. Elgammal,30R. Granier de Cassagnac,30

M. Haguenauer,30P. Mine´,30C. Mironov,30C. Ochando,30P. Paganini,30D. Sabes,30R. Salerno,30Y. Sirois,30 C. Thiebaux,30C. Veelken,30A. Zabi,30J.-L. Agram,31,lJ. Andrea,31D. Bloch,31D. Bodin,31J.-M. Brom,31 M. Cardaci,31E. C. Chabert,31C. Collard,31E. Conte,31,lF. Drouhin,31,lC. Ferro,31J.-C. Fontaine,31,lD. Gele´,31

U. Goerlach,31S. Greder,31P. Juillot,31M. Karim,31,lA.-C. Le Bihan,31Y. Mikami,31P. Van Hove,31F. Fassi,32 D. Mercier,32C. Baty,33S. Beauceron,33N. Beaupere,33M. Bedjidian,33O. Bondu,33G. Boudoul,33 D. Boumediene,33H. Brun,33J. Chasserat,33R. Chierici,33D. Contardo,33P. Depasse,33H. El Mamouni,33J. Fay,33 S. Gascon,33B. Ille,33T. Kurca,33T. Le Grand,33M. Lethuillier,33L. Mirabito,33S. Perries,33V. Sordini,33S. Tosi,33

Y. Tschudi,33P. Verdier,33S. Viret,33D. Lomidze,34G. Anagnostou,35S. Beranek,35M. Edelhoff,35L. Feld,35 N. Heracleous,35O. Hindrichs,35R. Jussen,35K. Klein,35J. Merz,35N. Mohr,35A. Ostapchuk,35A. Perieanu,35

F. Raupach,35J. Sammet,35S. Schael,35D. Sprenger,35H. Weber,35M. Weber,35B. Wittmer,35V. Zhukov,35,m M. Ata,36E. Dietz-Laursonn,36M. Erdmann,36T. Hebbeker,36C. Heidemann,36A. Hinzmann,36K. Hoepfner,36 T. Klimkovich,36D. Klingebiel,36P. Kreuzer,36D. Lanske,36,aJ. Lingemann,36C. Magass,36M. Merschmeyer,36

A. Meyer,36P. Papacz,36H. Pieta,36H. Reithler,36S. A. Schmitz,36L. Sonnenschein,36J. Steggemann,36 D. Teyssier,36M. Bontenackels,37V. Cherepanov,37M. Davids,37G. Flu¨gge,37H. Geenen,37M. Giffels,37 W. Haj Ahmad,37F. Hoehle,37B. Kargoll,37T. Kress,37Y. Kuessel,37A. Linn,37A. Nowack,37L. Perchalla,37

O. Pooth,37J. Rennefeld,37P. Sauerland,37A. Stahl,37D. Tornier,37M. H. Zoeller,37M. Aldaya Martin,38 W. Behrenhoff,38U. Behrens,38M. Bergholz,38,nA. Bethani,38K. Borras,38A. Cakir,38A. Campbell,38E. Castro,38

D. Dammann,38G. Eckerlin,38D. Eckstein,38A. Flossdorf,38G. Flucke,38A. Geiser,38J. Hauk,38H. Jung,38,b M. Kasemann,38P. Katsas,38C. Kleinwort,38H. Kluge,38A. Knutsson,38M. Kra¨mer,38D. Kru¨cker,38 E. Kuznetsova,38W. Lange,38W. Lohmann,38,nB. Lutz,38R. Mankel,38M. Marienfeld,38I.-A. Melzer-Pellmann,38

A. B. Meyer,38J. Mnich,38A. Mussgiller,38J. Olzem,38A. Petrukhin,38D. Pitzl,38A. Raspereza,38M. Rosin,38 R. Schmidt,38,nT. Schoerner-Sadenius,38N. Sen,38A. Spiridonov,38M. Stein,38J. Tomaszewska,38R. Walsh,38 C. Wissing,38C. Autermann,39V. Blobel,39S. Bobrovskyi,39J. Draeger,39H. Enderle,39U. Gebbert,39M. Go¨rner,39

T. Hermanns,39K. Kaschube,39G. Kaussen,39H. Kirschenmann,39R. Klanner,39J. Lange,39B. Mura,39 S. Naumann-Emme,39F. Nowak,39N. Pietsch,39C. Sander,39H. Schettler,39P. Schleper,39E. Schlieckau,39

M. Schro¨der,39T. Schum,39H. Stadie,39G. Steinbru¨ck,39J. Thomsen,39C. Barth,40J. Bauer,40J. Berger,40 V. Buege,40T. Chwalek,40W. De Boer,40A. Dierlamm,40G. Dirkes,40M. Feindt,40J. Gruschke,40C. Hackstein,40 F. Hartmann,40M. Heinrich,40H. Held,40K. H. Hoffmann,40S. Honc,40I. Katkov,40,mJ. R. Komaragiri,40T. Kuhr,40 D. Martschei,40S. Mueller,40Th. Mu¨ller,40M. Niegel,40O. Oberst,40A. Oehler,40J. Ott,40T. Peiffer,40G. Quast,40 K. Rabbertz,40F. Ratnikov,40N. Ratnikova,40M. Renz,40S. Ro¨cker,40C. Saout,40A. Scheurer,40P. Schieferdecker,40 F.-P. Schilling,40M. Schmanau,40G. Schott,40H. J. Simonis,40F. M. Stober,40D. Troendle,40J. Wagner-Kuhr,40 T. Weiler,40M. Zeise,40E. B. Ziebarth,40G. Daskalakis,41T. Geralis,41S. Kesisoglou,41A. Kyriakis,41D. Loukas,41

I. Manolakos,41A. Markou,41C. Markou,41C. Mavrommatis,41E. Ntomari,41E. Petrakou,41L. Gouskos,42 T. J. Mertzimekis,42A. Panagiotou,42N. Saoulidou,42E. Stiliaris,42I. Evangelou,43C. Foudas,43,bP. Kokkas,43 N. Manthos,43I. Papadopoulos,43V. Patras,43F. A. Triantis,43A. Aranyi,44G. Bencze,44L. Boldizsar,44C. Hajdu,44,b

(8)

P. Hidas,44D. Horvath,44,oA. Kapusi,44K. Krajczar,44,pF. Sikler,44,bG. I. Veres,44,pG. Vesztergombi,44,pN. Beni,45 J. Molnar,45J. Palinkas,45Z. Szillasi,45V. Veszpremi,45J. Karancsi,46P. Raics,46Z. L. Trocsanyi,46B. Ujvari,46

S. B. Beri,47V. Bhatnagar,47N. Dhingra,47R. Gupta,47M. Jindal,47M. Kaur,47J. M. Kohli,47M. Z. Mehta,47 N. Nishu,47L. K. Saini,47A. Sharma,47A. P. Singh,47J. Singh,47S. P. Singh,47S. Ahuja,48B. C. Choudhary,48 P. Gupta,48A. Kumar,48A. Kumar,48S. Malhotra,48M. Naimuddin,48K. Ranjan,48R. K. Shivpuri,48S. Banerjee,49

S. Bhattacharya,49S. Dutta,49B. Gomber,49S. Jain,49S. Jain,49R. Khurana,49S. Sarkar,49R. K. Choudhury,50 D. Dutta,50S. Kailas,50V. Kumar,50P. Mehta,50A. K. Mohanty,50,bL. M. Pant,50P. Shukla,50T. Aziz,51 M. Guchait,51,qA. Gurtu,51M. Maity,51,rD. Majumder,51G. Majumder,51T. Mathew,51K. Mazumdar,51 G. B. Mohanty,51B. Parida,51A. Saha,51K. Sudhakar,51N. Wickramage,51S. Banerjee,52S. Dugad,52 N. K. Mondal,52H. Arfaei,53H. Bakhshiansohi,53,sS. M. Etesami,53,tA. Fahim,53,sM. Hashemi,53H. Hesari,53

A. Jafari,53,sM. Khakzad,53A. Mohammadi,53,uM. Mohammadi Najafabadi,53S. Paktinat Mehdiabadi,53 B. Safarzadeh,53M. Zeinali,53,tM. Abbrescia,54a,54bL. Barbone,54a,54bC. Calabria,54a,54bA. Colaleo,54a D. Creanza,54a,54cN. De Filippis,54a,54c,bM. De Palma,54a,54bL. Fiore,54aG. Iaselli,54a,54cL. Lusito,54a,54b G. Maggi,54a,54cM. Maggi,54aN. Manna,54a,54bB. Marangelli,54a,54bS. My,54a,54cS. Nuzzo,54a,54bN. Pacifico,54a,54b

G. A. Pierro,54aA. Pompili,54a,54bG. Pugliese,54a,54cF. Romano,54a,54cG. Roselli,54a,54bG. Selvaggi,54a,54b L. Silvestris,54aR. Trentadue,54aS. Tupputi,54a,54bG. Zito,54aG. Abbiendi,55aA. C. Benvenuti,55aD. Bonacorsi,55a

S. Braibant-Giacomelli,55a,55bL. Brigliadori,55aP. Capiluppi,55a,55bA. Castro,55a,55bF. R. Cavallo,55a M. Cuffiani,55a,55bG. M. Dallavalle,55aF. Fabbri,55aA. Fanfani,55a,55bD. Fasanella,55a,bP. Giacomelli,55a

M. Giunta,55aC. Grandi,55aS. Marcellini,55aG. Masetti,55bM. Meneghelli,55a,55bA. Montanari,55a F. L. Navarria,55a,55bF. Odorici,55aA. Perrotta,55aF. Primavera,55aA. M. Rossi,55a,55bT. Rovelli,55a,55b G. Siroli,55a,55bR. Travaglini,55a,55bS. Albergo,56a,56bG. Cappello,56a,56bM. Chiorboli,56a,56bS. Costa,56a,56b

R. Potenza,56a,56bA. Tricomi,56a,56bC. Tuve,56a,56bG. Barbagli,57aV. Ciulli,57a,57bC. Civinini,57a

R. D’Alessandro,57a,57bE. Focardi,57a,57bS. Frosali,57a,57bE. Gallo,57aS. Gonzi,57a,57bM. Meschini,57aS. Paoletti,57a G. Sguazzoni,57aA. Tropiano,57a,bL. Benussi,58S. Bianco,58S. Colafranceschi,58,vF. Fabbri,58D. Piccolo,58

P. Fabbricatore,59R. Musenich,59A. Benaglia,60a,60b,bF. De Guio,60a,60bL. Di Matteo,60a,60bS. Gennai,60a,b A. Ghezzi,60a,60bS. Malvezzi,60aA. Martelli,60a,60bA. Massironi,60a,60b,bD. Menasce,60aL. Moroni,60a M. Paganoni,60a,60bD. Pedrini,60aS. Ragazzi,60a,60bN. Redaelli,60aS. Sala,60aT. Tabarelli de Fatis,60a,60b S. Buontempo,61aC. A. Carrillo Montoya,61a,bN. Cavallo,61a,wA. De Cosa,61a,61bF. Fabozzi,61a,wA. O. M. Iorio,61a,b

L. Lista,61aM. Merola,61a,61bP. Paolucci,61aP. Azzi,62aN. Bacchetta,62a,bP. Bellan,62a,62bD. Bisello,62a,62b A. Branca,62aR. Carlin,62a,62bP. Checchia,62aT. Dorigo,62aU. Dosselli,62aF. Fanzago,62aF. Gasparini,62a,62b U. Gasparini,62a,62bA. Gozzelino,62aS. Lacaprara,62a,xI. Lazzizzera,62a,62cM. Margoni,62a,62bM. Mazzucato,62a A. T. Meneguzzo,62a,62bM. Nespolo,62a,bL. Perrozzi,62aN. Pozzobon,62a,62bP. Ronchese,62a,62bF. Simonetto,62a,62b

E. Torassa,62aM. Tosi,62a,62b,bS. Vanini,62a,62bP. Zotto,62a,62bG. Zumerle,62a,62bP. Baesso,63a,63bU. Berzano,63a S. P. Ratti,63a,63bC. Riccardi,63a,63bP. Torre,63a,63bP. Vitulo,63a,63bC. Viviani,63a,63bM. Biasini,64a,64bG. M. Bilei,64a

B. Caponeri,64a,64bL. Fano`,64a,64bP. Lariccia,64a,64bA. Lucaroni,64a,64b,bG. Mantovani,64a,64bM. Menichelli,64a A. Nappi,64a,64bF. Romeo,64a,64bA. Santocchia,64a,64bS. Taroni,64a,64b,bM. Valdata,64a,64bP. Azzurri,65a,65c

G. Bagliesi,65aJ. Bernardini,65a,65bT. Boccali,65aG. Broccolo,65a,65cR. Castaldi,65aR. T. D’Agnolo,65a,65c R. Dell’Orso,65aF. Fiori,65a,65bL. Foa`,65a,65cA. Giassi,65aA. Kraan,65aF. Ligabue,65a,65cT. Lomtadze,65a L. Martini,65a,yA. Messineo,65a,65bF. Palla,65aF. Palmonari,65aG. Segneri,65aA. T. Serban,65aP. Spagnolo,65a

R. Tenchini,65aG. Tonelli,65a,65b,bA. Venturi,65a,bP. G. Verdini,65aL. Barone,66a,66bF. Cavallari,66a D. Del Re,66a,66b,bE. Di Marco,66a,66bM. Diemoz,66aD. Franci,66a,66bM. Grassi,66a,bE. Longo,66a,66b P. Meridiani,66aS. Nourbakhsh,66aG. Organtini,66a,66bF. Pandolfi,66a,66bR. Paramatti,66aS. Rahatlou,66a,66b

M. Sigamani,66aN. Amapane,67a,67bR. Arcidiacono,67a,67cS. Argiro,67a,67bM. Arneodo,67a,67cC. Biino,67a C. Botta,67a,67bN. Cartiglia,67aR. Castello,67a,67bM. Costa,67a,67bN. Demaria,67aA. Graziano,67a,67bC. Mariotti,67a

S. Maselli,67aE. Migliore,67a,67bV. Monaco,67a,67bM. Musich,67aM. M. Obertino,67a,67cN. Pastrone,67a M. Pelliccioni,67a,67bA. Potenza,67a,67bA. Romero,67a,67bM. Ruspa,67a,67cR. Sacchi,67a,67bV. Sola,67a,67b A. Solano,67a,67bA. Staiano,67aA. Vilela Pereira,67aS. Belforte,68aF. Cossutti,68aG. Della Ricca,68a,68bB. Gobbo,68a M. Marone,68a,68bD. Montanino,68a,68bA. Penzo,68aS. G. Heo,69S. K. Nam,69S. Chang,70J. Chung,70D. H. Kim,70 G. N. Kim,70J. E. Kim,70D. J. Kong,70H. Park,70S. R. Ro,70D. C. Son,70T. Son,70J. Y. Kim,71Zero J. Kim,71 S. Song,71H. Y. Jo,72S. Choi,73D. Gyun,73B. Hong,73M. Jo,73H. Kim,73J. H. Kim,73T. J. Kim,73K. S. Lee,73 D. H. Moon,73S. K. Park,73E. Seo,73K. S. Sim,73M. Choi,74S. Kang,74H. Kim,74C. Park,74I. C. Park,74S. Park,74

(9)

G. Ryu,74Y. Cho,75Y. Choi,75Y. K. Choi,75J. Goh,75M. S. Kim,75B. Lee,75J. Lee,75S. Lee,75H. Seo,75I. Yu,75 M. J. Bilinskas,76I. Grigelionis,76M. Janulis,76D. Martisiute,76P. Petrov,76M. Polujanskas,76T. Sabonis,76 H. Castilla-Valdez,77E. De La Cruz-Burelo,77I. Heredia-de La Cruz,77R. Lopez-Fernandez,77R. Magan˜a Villalba,77

J. Martı´nez-Ortega,77A. Sa´nchez-Herna´ndez,77L. M. Villasenor-Cendejas,77S. Carrillo Moreno,78 F. Vazquez Valencia,78H. A. Salazar Ibarguen,79E. Casimiro Linares,80A. Morelos Pineda,80M. A. Reyes-Santos,80 D. Krofcheck,81J. Tam,81P. H. Butler,82R. Doesburg,82H. Silverwood,82M. Ahmad,83I. Ahmed,83M. H. Ansari,83 M. I. Asghar,83H. R. Hoorani,83S. Khalid,83W. A. Khan,83T. Khurshid,83S. Qazi,83M. A. Shah,83M. Shoaib,83

G. Brona,84M. Cwiok,84W. Dominik,84K. Doroba,84A. Kalinowski,84M. Konecki,84J. Krolikowski,84 T. Frueboes,85R. Gokieli,85M. Go´rski,85M. Kazana,85K. Nawrocki,85K. Romanowska-Rybinska,85M. Szleper,85

G. Wrochna,85P. Zalewski,85N. Almeida,86P. Bargassa,86A. David,86P. Faccioli,86P. G. Ferreira Parracho,86 M. Gallinaro,86,bP. Musella,86A. Nayak,86J. Pela,86,bP. Q. Ribeiro,86J. Seixas,86J. Varela,86S. Afanasiev,87 I. Belotelov,87P. Bunin,87M. Gavrilenko,87I. Golutvin,87A. Kamenev,87V. Karjavin,87G. Kozlov,87A. Lanev,87 P. Moisenz,87V. Palichik,87V. Perelygin,87S. Shmatov,87V. Smirnov,87A. Volodko,87A. Zarubin,87V. Golovtsov,88

Y. Ivanov,88V. Kim,88P. Levchenko,88V. Murzin,88V. Oreshkin,88I. Smirnov,88V. Sulimov,88L. Uvarov,88 S. Vavilov,88A. Vorobyev,88An. Vorobyev,88Yu. Andreev,89A. Dermenev,89S. Gninenko,89N. Golubev,89

M. Kirsanov,89N. Krasnikov,89V. Matveev,89A. Pashenkov,89A. Toropin,89S. Troitsky,89V. Epshteyn,90 M. Erofeeva,90V. Gavrilov,90V. Kaftanov,90,aM. Kossov,90,bA. Krokhotin,90N. Lychkovskaya,90V. Popov,90

G. Safronov,90S. Semenov,90V. Stolin,90E. Vlasov,90A. Zhokin,90A. Belyaev,91E. Boos,91M. Dubinin,91,d L. Dudko,91A. Ershov,91A. Gribushin,91O. Kodolova,91I. Lokhtin,91A. Markina,91S. Obraztsov,91M. Perfilov,91

S. Petrushanko,91L. Sarycheva,91V. Savrin,91A. Snigirev,91V. Andreev,92M. Azarkin,92I. Dremin,92 M. Kirakosyan,92A. Leonidov,92G. Mesyats,92S. V. Rusakov,92A. Vinogradov,92I. Azhgirey,93I. Bayshev,93

S. Bitioukov,93V. Grishin,93,bV. Kachanov,93D. Konstantinov,93A. Korablev,93V. Krychkine,93V. Petrov,93 R. Ryutin,93A. Sobol,93L. Tourtchanovitch,93S. Troshin,93N. Tyurin,93A. Uzunian,93A. Volkov,93P. Adzic,94,z M. Djordjevic,94D. Krpic,94,zJ. Milosevic,94M. Aguilar-Benitez,95J. Alcaraz Maestre,95P. Arce,95C. Battilana,95 E. Calvo,95M. Cerrada,95M. Chamizo Llatas,95N. Colino,95B. De La Cruz,95A. Delgado Peris,95C. Diez Pardos,95 D. Domı´nguez Va´zquez,95C. Fernandez Bedoya,95J. P. Ferna´ndez Ramos,95A. Ferrando,95J. Flix,95M. C. Fouz,95

P. Garcia-Abia,95O. Gonzalez Lopez,95S. Goy Lopez,95J. M. Hernandez,95M. I. Josa,95G. Merino,95 J. Puerta Pelayo,95I. Redondo,95L. Romero,95J. Santaolalla,95M. S. Soares,95C. Willmott,95C. Albajar,96 G. Codispoti,96J. F. de Troco´niz,96J. Cuevas,97J. Fernandez Menendez,97S. Folgueras,97I. Gonzalez Caballero,97 L. Lloret Iglesias,97J. M. Vizan Garcia,97J. A. Brochero Cifuentes,98I. J. Cabrillo,98A. Calderon,98S. H. Chuang,98

J. Duarte Campderros,98M. Felcini,98,aaM. Fernandez,98G. Gomez,98J. Gonzalez Sanchez,98C. Jorda,98 P. Lobelle Pardo,98A. Lopez Virto,98J. Marco,98R. Marco,98C. Martinez Rivero,98F. Matorras,98 F. J. Munoz Sanchez,98J. Piedra Gomez,98,bbT. Rodrigo,98A. Y. Rodrı´guez-Marrero,98A. Ruiz-Jimeno,98 L. Scodellaro,98M. Sobron Sanudo,98I. Vila,98R. Vilar Cortabitarte,98D. Abbaneo,99E. Auffray,99G. Auzinger,99

P. Baillon,99A. H. Ball,99D. Barney,99A. J. Bell,99,ccD. Benedetti,99C. Bernet,99,eW. Bialas,99P. Bloch,99 A. Bocci,99S. Bolognesi,99M. Bona,99H. Breuker,99K. Bunkowski,99T. Camporesi,99G. Cerminara,99

T. Christiansen,99J. A. Coarasa Perez,99B. Cure´,99D. D’Enterria,99A. De Roeck,99S. Di Guida,99 N. Dupont-Sagorin,99A. Elliott-Peisert,99B. Frisch,99W. Funk,99A. Gaddi,99G. Georgiou,99H. Gerwig,99

D. Gigi,99K. Gill,99D. Giordano,99F. Glege,99R. Gomez-Reino Garrido,99M. Gouzevitch,99P. Govoni,99 S. Gowdy,99R. Guida,99L. Guiducci,99M. Hansen,99C. Hartl,99J. Harvey,99J. Hegeman,99B. Hegner,99 H. F. Hoffmann,99V. Innocente,99P. Janot,99K. Kaadze,99E. Karavakis,99P. Lecoq,99P. Lenzi,99C. Lourenc¸o,99

T. Ma¨ki,99M. Malberti,99L. Malgeri,99M. Mannelli,99L. Masetti,99A. Maurisset,99G. Mavromanolakis,99 F. Meijers,99S. Mersi,99E. Meschi,99R. Moser,99M. U. Mozer,99M. Mulders,99E. Nesvold,99M. Nguyen,99 T. Orimoto,99L. Orsini,99E. Palencia Cortezon,99E. Perez,99A. Petrilli,99A. Pfeiffer,99M. Pierini,99M. Pimia¨,99

D. Piparo,99G. Polese,99L. Quertenmont,99A. Racz,99W. Reece,99J. Rodrigues Antunes,99G. Rolandi,99,dd T. Rommerskirchen,99C. Rovelli,99,eeM. Rovere,99H. Sakulin,99C. Scha¨fer,99C. Schwick,99I. Segoni,99 A. Sharma,99P. Siegrist,99P. Silva,99M. Simon,99P. Sphicas,99,ffD. Spiga,99M. Spiropulu,99,dM. Stoye,99

A. Tsirou,99P. Vichoudis,99H. K. Wo¨hri,99S. D. Worm,99,zzW. D. Zeuner,99W. Bertl,100K. Deiters,100 W. Erdmann,100K. Gabathuler,100R. Horisberger,100Q. Ingram,100H. C. Kaestli,100S. Ko¨nig,100D. Kotlinski,100

U. Langenegger,100F. Meier,100D. Renker,100T. Rohe,100J. Sibille,100,ggL. Ba¨ni,101P. Bortignon,101 L. Caminada,101,hhB. Casal,101N. Chanon,101Z. Chen,101S. Cittolin,101G. Dissertori,101M. Dittmar,101

(10)

J. Eugster,101K. Freudenreich,101C. Grab,101W. Hintz,101P. Lecomte,101W. Lustermann,101C. Marchica,101,hh P. Martinez Ruiz del Arbol,101P. Milenovic,101,iiF. Moortgat,101C. Na¨geli,101,hhP. Nef,101F. Nessi-Tedaldi,101

L. Pape,101F. Pauss,101T. Punz,101A. Rizzi,101F. J. Ronga,101M. Rossini,101L. Sala,101A. K. Sanchez,101 M.-C. Sawley,101A. Starodumov,101,jjB. Stieger,101M. Takahashi,101L. Tauscher,101,aA. Thea,101K. Theofilatos,101

D. Treille,101C. Urscheler,101R. Wallny,101M. Weber,101L. Wehrli,101J. Weng,101E. Aguilo,102C. Amsler,102 V. Chiochia,102S. De Visscher,102C. Favaro,102M. Ivova Rikova,102A. Jaeger,102B. Millan Mejias,102 P. Otiougova,102P. Robmann,102A. Schmidt,102H. Snoek,102Y. H. Chang,103K. H. Chen,103C. M. Kuo,103

S. W. Li,103W. Lin,103Z. K. Liu,103Y. J. Lu,103D. Mekterovic,103R. Volpe,103S. S. Yu,103P. Bartalini,104 P. Chang,104Y. H. Chang,104Y. W. Chang,104Y. Chao,104K. F. Chen,104C. Dietz,104U. Grundler,104W.-S. Hou,104

Y. Hsiung,104K. Y. Kao,104Y. J. Lei,104R.-S. Lu,104J. G. Shiu,104Y. M. Tzeng,104X. Wan,104M. Wang,104 A. Adiguzel,105M. N. Bakirci,105,kkS. Cerci,105,llC. Dozen,105I. Dumanoglu,105E. Eskut,105S. Girgis,105 G. Gokbulut,105I. Hos,105E. E. Kangal,105A. Kayis Topaksu,105G. Onengut,105K. Ozdemir,105S. Ozturk,105,mm

A. Polatoz,105K. Sogut,105,nnD. Sunar Cerci,105,llB. Tali,105,llH. Topakli,105,kkD. Uzun,105L. N. Vergili,105 M. Vergili,105I. V. Akin,106T. Aliev,106B. Bilin,106S. Bilmis,106M. Deniz,106H. Gamsizkan,106A. M. Guler,106 K. Ocalan,106A. Ozpineci,106M. Serin,106R. Sever,106U. E. Surat,106M. Yalvac,106E. Yildirim,106M. Zeyrek,106

M. Deliomeroglu,107D. Demir,107,ooE. Gu¨lmez,107B. Isildak,107M. Kaya,107,ppO. Kaya,107,ppM. O¨ zbek,107 S. Ozkorucuklu,107,qqN. Sonmez,107,rrL. Levchuk,108F. Bostock,109J. J. Brooke,109T. L. Cheng,109E. Clement,109

D. Cussans,109R. Frazier,109J. Goldstein,109M. Grimes,109G. P. Heath,109H. F. Heath,109L. Kreczko,109 S. Metson,109D. M. Newbold,109,ssK. Nirunpong,109A. Poll,109S. Senkin,109V. J. Smith,109L. Basso,110,tt K. W. Bell,110A. Belyaev,110,ttC. Brew,110R. M. Brown,110B. Camanzi,110D. J. A. Cockerill,110J. A. Coughlan,110

K. Harder,110S. Harper,110J. Jackson,110B. W. Kennedy,110E. Olaiya,110D. Petyt,110B. C. Radburn-Smith,110 C. H. Shepherd-Themistocleous,110I. R. Tomalin,110W. J. Womersley,110R. Bainbridge,111G. Ball,111J. Ballin,111

R. Beuselinck,111O. Buchmuller,111D. Colling,111N. Cripps,111M. Cutajar,111G. Davies,111M. Della Negra,111 W. Ferguson,111J. Fulcher,111D. Futyan,111A. Gilbert,111A. Guneratne Bryer,111G. Hall,111Z. Hatherell,111

J. Hays,111G. Iles,111M. Jarvis,111G. Karapostoli,111L. Lyons,111A.-M. Magnan,111J. Marrouche,111 B. Mathias,111R. Nandi,111J. Nash,111A. Nikitenko,111,jjA. Papageorgiou,111M. Pesaresi,111K. Petridis,111

M. Pioppi,111,uuD. M. Raymond,111S. Rogerson,111N. Rompotis,111A. Rose,111M. J. Ryan,111C. Seez,111 P. Sharp,111A. Sparrow,111A. Tapper,111S. Tourneur,111M. Vazquez Acosta,111T. Virdee,111S. Wakefield,111

N. Wardle,111D. Wardrope,111T. Whyntie,111M. Barrett,112M. Chadwick,112J. E. Cole,112P. R. Hobson,112 A. Khan,112P. Kyberd,112D. Leslie,112W. Martin,112I. D. Reid,112L. Teodorescu,112K. Hatakeyama,113H. Liu,113

C. Henderson,114T. Bose,115E. Carrera Jarrin,115C. Fantasia,115A. Heister,115J. St. John,115P. Lawson,115 D. Lazic,115J. Rohlf,115D. Sperka,115L. Sulak,115A. Avetisyan,116S. Bhattacharya,116J. P. Chou,116D. Cutts,116

A. Ferapontov,116U. Heintz,116S. Jabeen,116G. Kukartsev,116G. Landsberg,116M. Luk,116M. Narain,116 D. Nguyen,116M. Segala,116T. Sinthuprasith,116T. Speer,116K. V. Tsang,116R. Breedon,117G. Breto,117 M. Calderon De La Barca Sanchez,117S. Chauhan,117M. Chertok,117J. Conway,117R. Conway,117P. T. Cox,117

J. Dolen,117R. Erbacher,117R. Houtz,117W. Ko,117A. Kopecky,117R. Lander,117H. Liu,117O. Mall,117 S. Maruyama,117T. Miceli,117M. Nikolic,117D. Pellett,117J. Robles,117B. Rutherford,117S. Salur,117M. Searle,117

J. Smith,117M. Squires,117M. Tripathi,117R. Vasquez Sierra,117V. Andreev,118K. Arisaka,118D. Cline,118 R. Cousins,118A. Deisher,118J. Duris,118S. Erhan,118C. Farrell,118J. Hauser,118M. Ignatenko,118C. Jarvis,118

C. Plager,118G. Rakness,118P. Schlein,118,aJ. Tucker,118V. Valuev,118J. Babb,119R. Clare,119J. Ellison,119 J. W. Gary,119F. Giordano,119G. Hanson,119G. Y. Jeng,119S. C. Kao,119H. Liu,119O. R. Long,119A. Luthra,119 H. Nguyen,119S. Paramesvaran,119J. Sturdy,119S. Sumowidagdo,119R. Wilken,119S. Wimpenny,119W. Andrews,120 J. G. Branson,120G. B. Cerati,120D. Evans,120F. Golf,120A. Holzner,120R. Kelley,120M. Lebourgeois,120J. Letts,120

B. Mangano,120S. Padhi,120C. Palmer,120G. Petrucciani,120H. Pi,120M. Pieri,120R. Ranieri,120M. Sani,120 V. Sharma,120S. Simon,120E. Sudano,120M. Tadel,120Y. Tu,120A. Vartak,120S. Wasserbaech,120,vvF. Wu¨rthwein,120

A. Yagil,120J. Yoo,120D. Barge,121R. Bellan,121C. Campagnari,121M. D’Alfonso,121T. Danielson,121 K. Flowers,121P. Geffert,121J. Incandela,121C. Justus,121P. Kalavase,121S. A. Koay,121D. Kovalskyi,121,b V. Krutelyov,121S. Lowette,121N. Mccoll,121S. D. Mullin,121V. Pavlunin,121F. Rebassoo,121J. Ribnik,121 J. Richman,121R. Rossin,121D. Stuart,121W. To,121J. R. Vlimant,121C. West,121A. Apresyan,122A. Bornheim,122

J. Bunn,122Y. Chen,122J. Duarte,122M. Gataullin,122Y. Ma,122A. Mott,122H. B. Newman,122C. Rogan,122 K. Shin,122V. Timciuc,122P. Traczyk,122J. Veverka,122R. Wilkinson,122Y. Yang,122R. Y. Zhu,122B. Akgun,123

(11)

R. Carroll,123T. Ferguson,123Y. Iiyama,123D. W. Jang,123S. Y. Jun,123Y. F. Liu,123M. Paulini,123J. Russ,123 H. Vogel,123I. Vorobiev,123J. P. Cumalat,124M. E. Dinardo,124B. R. Drell,124C. J. Edelmaier,124W. T. Ford,124 A. Gaz,124B. Heyburn,124E. Luiggi Lopez,124U. Nauenberg,124J. G. Smith,124K. Stenson,124K. A. Ulmer,124 S. R. Wagner,124S. L. Zang,124L. Agostino,125J. Alexander,125A. Chatterjee,125N. Eggert,125L. K. Gibbons,125

B. Heltsley,125W. Hopkins,125A. Khukhunaishvili,125B. Kreis,125G. Nicolas Kaufman,125J. R. Patterson,125 D. Puigh,125A. Ryd,125E. Salvati,125X. Shi,125W. Sun,125W. D. Teo,125J. Thom,125J. Thompson,125J. Vaughan,125

Y. Weng,125L. Winstrom,125P. Wittich,125A. Biselli,126G. Cirino,126D. Winn,126S. Abdullin,127M. Albrow,127 J. Anderson,127G. Apollinari,127M. Atac,127J. A. Bakken,127L. A. T. Bauerdick,127A. Beretvas,127J. Berryhill,127

P. C. Bhat,127I. Bloch,127K. Burkett,127J. N. Butler,127V. Chetluru,127H. W. K. Cheung,127F. Chlebana,127 S. Cihangir,127W. Cooper,127D. P. Eartly,127V. D. Elvira,127S. Esen,127I. Fisk,127J. Freeman,127Y. Gao,127 E. Gottschalk,127D. Green,127K. Gunthoti,127O. Gutsche,127J. Hanlon,127R. M. Harris,127J. Hirschauer,127 B. Hooberman,127H. Jensen,127S. Jindariani,127M. Johnson,127U. Joshi,127R. Khatiwada,127B. Klima,127

K. Kousouris,127S. Kunori,127S. Kwan,127C. Leonidopoulos,127P. Limon,127D. Lincoln,127R. Lipton,127 J. Lykken,127K. Maeshima,127J. M. Marraffino,127D. Mason,127P. McBride,127T. Miao,127K. Mishra,127

S. Mrenna,127Y. Musienko,127,wwC. Newman-Holmes,127V. O’Dell,127J. Pivarski,127R. Pordes,127 O. Prokofyev,127T. Schwarz,127E. Sexton-Kennedy,127S. Sharma,127W. J. Spalding,127L. Spiegel,127P. Tan,127 L. Taylor,127S. Tkaczyk,127L. Uplegger,127E. W. Vaandering,127R. Vidal,127J. Whitmore,127W. Wu,127F. Yang,127 F. Yumiceva,127J. C. Yun,127D. Acosta,128P. Avery,128D. Bourilkov,128M. Chen,128S. Das,128M. De Gruttola,128

G. P. Di Giovanni,128D. Dobur,128A. Drozdetskiy,128R. D. Field,128M. Fisher,128Y. Fu,128I. K. Furic,128 J. Gartner,128S. Goldberg,128J. Hugon,128B. Kim,128J. Konigsberg,128A. Korytov,128A. Kropivnitskaya,128 T. Kypreos,128J. F. Low,128K. Matchev,128G. Mitselmakher,128L. Muniz,128P. Myeonghun,128R. Remington,128

A. Rinkevicius,128M. Schmitt,128B. Scurlock,128P. Sellers,128N. Skhirtladze,128M. Snowball,128D. Wang,128 J. Yelton,128M. Zakaria,128V. Gaultney,129L. M. Lebolo,129S. Linn,129P. Markowitz,129G. Martinez,129 J. L. Rodriguez,129T. Adams,130A. Askew,130J. Bochenek,130J. Chen,130B. Diamond,130S. V. Gleyzer,130

J. Haas,130S. Hagopian,130V. Hagopian,130M. Jenkins,130K. F. Johnson,130H. Prosper,130S. Sekmen,130 V. Veeraraghavan,130M. M. Baarmand,131B. Dorney,131M. Hohlmann,131H. Kalakhety,131I. Vodopiyanov,131

M. R. Adams,132I. M. Anghel,132L. Apanasevich,132Y. Bai,132V. E. Bazterra,132R. R. Betts,132J. Callner,132 R. Cavanaugh,132C. Dragoiu,132L. Gauthier,132C. E. Gerber,132D. J. Hofman,132S. Khalatyan,132G. J. Kunde,132,xx

F. Lacroix,132M. Malek,132C. O’Brien,132C. Silkworth,132C. Silvestre,132A. Smoron,132D. Strom,132 N. Varelas,132U. Akgun,133E. A. Albayrak,133B. Bilki,133W. Clarida,133F. Duru,133C. K. Lae,133E. McCliment,133

J.-P. Merlo,133H. Mermerkaya,133,yyA. Mestvirishvili,133A. Moeller,133J. Nachtman,133C. R. Newsom,133 E. Norbeck,133J. Olson,133Y. Onel,133F. Ozok,133S. Sen,133J. Wetzel,133T. Yetkin,133K. Yi,133B. A. Barnett,134 B. Blumenfeld,134A. Bonato,134C. Eskew,134D. Fehling,134G. Giurgiu,134A. V. Gritsan,134Z. J. Guo,134G. Hu,134

P. Maksimovic,134S. Rappoccio,134M. Swartz,134N. V. Tran,134A. Whitbeck,134P. Baringer,135A. Bean,135 G. Benelli,135O. Grachov,135R. P. Kenny Iii,135M. Murray,135D. Noonan,135S. Sanders,135R. Stringer,135

J. S. Wood,135V. Zhukova,135A. F. Barfuss,136T. Bolton,136I. Chakaberia,136A. Ivanov,136S. Khalil,136 M. Makouski,136Y. Maravin,136S. Shrestha,136I. Svintradze,136J. Gronberg,137D. Lange,137D. Wright,137 A. Baden,138M. Boutemeur,138S. C. Eno,138D. Ferencek,138J. A. Gomez,138N. J. Hadley,138R. G. Kellogg,138 M. Kirn,138Y. Lu,138A. C. Mignerey,138K. Rossato,138P. Rumerio,138F. Santanastasio,138A. Skuja,138J. Temple,138

M. B. Tonjes,138S. C. Tonwar,138E. Twedt,138B. Alver,139G. Bauer,139J. Bendavid,139W. Busza,139E. Butz,139 I. A. Cali,139M. Chan,139V. Dutta,139P. Everaerts,139G. Gomez Ceballos,139M. Goncharov,139K. A. Hahn,139 P. Harris,139Y. Kim,139M. Klute,139Y.-J. Lee,139W. Li,139C. Loizides,139P. D. Luckey,139T. Ma,139S. Nahn,139

C. Paus,139D. Ralph,139C. Roland,139G. Roland,139M. Rudolph,139G. S. F. Stephans,139F. Sto¨ckli,139 K. Sumorok,139K. Sung,139D. Velicanu,139E. A. Wenger,139R. Wolf,139B. Wyslouch,139S. Xie,139M. Yang,139

Y. Yilmaz,139A. S. Yoon,139M. Zanetti,139S. I. Cooper,140P. Cushman,140B. Dahmes,140A. De Benedetti,140 G. Franzoni,140A. Gude,140J. Haupt,140K. Klapoetke,140Y. Kubota,140J. Mans,140N. Pastika,140V. Rekovic,140 R. Rusack,140M. Sasseville,140A. Singovsky,140N. Tambe,140J. Turkewitz,140L. M. Cremaldi,141R. Godang,141 R. Kroeger,141L. Perera,141R. Rahmat,141D. A. Sanders,141D. Summers,141K. Bloom,142S. Bose,142J. Butt,142

D. R. Claes,142A. Dominguez,142M. Eads,142P. Jindal,142J. Keller,142T. Kelly,142I. Kravchenko,142 J. Lazo-Flores,142H. Malbouisson,142S. Malik,142G. R. Snow,142U. Baur,143A. Godshalk,143I. Iashvili,143

(12)

D. Baumgartel,144O. Boeriu,144M. Chasco,144S. Reucroft,144J. Swain,144D. Trocino,144D. Wood,144J. Zhang,144 A. Anastassov,145A. Kubik,145N. Mucia,145N. Odell,145R. A. Ofierzynski,145B. Pollack,145A. Pozdnyakov,145

M. Schmitt,145S. Stoynev,145M. Velasco,145S. Won,145L. Antonelli,146D. Berry,146A. Brinkerhoff,146 M. Hildreth,146C. Jessop,146D. J. Karmgard,146J. Kolb,146T. Kolberg,146K. Lannon,146W. Luo,146S. Lynch,146

N. Marinelli,146D. M. Morse,146T. Pearson,146R. Ruchti,146J. Slaunwhite,146N. Valls,146M. Wayne,146 J. Ziegler,146B. Bylsma,147L. S. Durkin,147C. Hill,147P. Killewald,147K. Kotov,147T. Y. Ling,147M. Rodenburg,147

C. Vuosalo,147G. Williams,147N. Adam,148E. Berry,148P. Elmer,148D. Gerbaudo,148V. Halyo,148P. Hebda,148 A. Hunt,148E. Laird,148D. Lopes Pegna,148D. Marlow,148T. Medvedeva,148M. Mooney,148J. Olsen,148P. Piroue´,148

X. Quan,148B. Safdi,148H. Saka,148D. Stickland,148C. Tully,148J. S. Werner,148A. Zuranski,148J. G. Acosta,149 X. T. Huang,149A. Lopez,149H. Mendez,149S. Oliveros,149J. E. Ramirez Vargas,149A. Zatserklyaniy,149 E. Alagoz,150V. E. Barnes,150G. Bolla,150L. Borrello,150D. Bortoletto,150M. De Mattia,150A. Everett,150 L. Gutay,150Z. Hu,150M. Jones,150O. Koybasi,150M. Kress,150A. T. Laasanen,150N. Leonardo,150V. Maroussov,150

P. Merkel,150D. H. Miller,150N. Neumeister,150I. Shipsey,150D. Silvers,150A. Svyatkovskiy,150 M. Vidal Marono,150H. D. Yoo,150J. Zablocki,150Y. Zheng,150S. Guragain,151N. Parashar,151A. Adair,152 C. Boulahouache,152K. M. Ecklund,152F. J. M. Geurts,152B. P. Padley,152R. Redjimi,152J. Roberts,152J. Zabel,152

B. Betchart,153A. Bodek,153Y. S. Chung,153R. Covarelli,153P. de Barbaro,153R. Demina,153Y. Eshaq,153 H. Flacher,153A. Garcia-Bellido,153P. Goldenzweig,153Y. Gotra,153J. Han,153A. Harel,153D. C. Miner,153 G. Petrillo,153W. Sakumoto,153D. Vishnevskiy,153M. Zielinski,153A. Bhatti,154R. Ciesielski,154L. Demortier,154

K. Goulianos,154G. Lungu,154S. Malik,154C. Mesropian,154S. Arora,155O. Atramentov,155A. Barker,155 C. Contreras-Campana,155E. Contreras-Campana,155D. Duggan,155Y. Gershtein,155R. Gray,155E. Halkiadakis,155

D. Hidas,155D. Hits,155A. Lath,155S. Panwalkar,155M. Park,155R. Patel,155A. Richards,155K. Rose,155 S. Schnetzer,155S. Somalwar,155R. Stone,155S. Thomas,155G. Cerizza,156M. Hollingsworth,156S. Spanier,156

Z. C. Yang,156A. York,156R. Eusebi,157W. Flanagan,157J. Gilmore,157A. Gurrola,157T. Kamon,157 V. Khotilovich,157R. Montalvo,157I. Osipenkov,157Y. Pakhotin,157A. Perloff,157J. Roe,157A. Safonov,157

S. Sengupta,157I. Suarez,157A. Tatarinov,157D. Toback,157N. Akchurin,158C. Bardak,158J. Damgov,158 P. R. Dudero,158C. Jeong,158K. Kovitanggoon,158S. W. Lee,158T. Libeiro,158P. Mane,158Y. Roh,158A. Sill,158

I. Volobouev,158R. Wigmans,158E. Yazgan,158E. Appelt,159E. Brownson,159D. Engh,159C. Florez,159 W. Gabella,159M. Issah,159W. Johns,159C. Johnston,159P. Kurt,159C. Maguire,159A. Melo,159P. Sheldon,159 B. Snook,159S. Tuo,159J. Velkovska,159M. W. Arenton,160M. Balazs,160S. Boutle,160B. Cox,160B. Francis,160 S. Goadhouse,160J. Goodell,160R. Hirosky,160A. Ledovskoy,160C. Lin,160C. Neu,160J. Wood,160R. Yohay,160 S. Gollapinni,161R. Harr,161P. E. Karchin,161C. Kottachchi Kankanamge Don,161P. Lamichhane,161M. Mattson,161 C. Milste`ne,161A. Sakharov,161M. Anderson,162M. Bachtis,162D. Belknap,162J. N. Bellinger,162D. Carlsmith,162 M. Cepeda,162S. Dasu,162J. Efron,162E. Friis,162L. Gray,162K. S. Grogg,162M. Grothe,162R. Hall-Wilton,162

M. Herndon,162A. Herve´,162P. Klabbers,162J. Klukas,162A. Lanaro,162C. Lazaridis,162J. Leonard,162 R. Loveless,162A. Mohapatra,162I. Ojalvo,162W. Parker,162I. Ross,162A. Savin,162W. H. Smith,162

J. Swanson,162and M. Weinberg162

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2Institut fu¨r Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus

4Universiteit Antwerpen, Antwerpen, Belgium 5Vrije Universiteit Brussel, Brussel, Belgium 6Universite´ Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium

8Universite´ Catholique de Louvain, Louvain-la-Neuve, Belgium 9Universite´ de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12

Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil

13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria 14University of Sofia, Sofia, Bulgaria

(13)

15Institute of High Energy Physics, Beijing, China

16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 17Universidad de Los Andes, Bogota, Colombia

18Technical University of Split, Split, Croatia 19University of Split, Split, Croatia 20Institute Rudjer Boskovic, Zagreb, Croatia

21University of Cyprus, Nicosia, Cyprus 22Charles University, Prague, Czech Republic 23

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 25Department of Physics, University of Helsinki, Helsinki, Finland

26Helsinki Institute of Physics, Helsinki, Finland 27Lappeenranta University of Technology, Lappeenranta, Finland

28Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France 29DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

30Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

31Institut Pluridisciplinaire Hubert Curien, Universite´ de Strasbourg, Universite´ de Haute Alsace Mulhouse,

CNRS/IN2P3, Strasbourg, France

32Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France 33Universite´ de Lyon, Universite´ Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucle´aire de Lyon, Villeurbanne, France

34Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia 35RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

36RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 37

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

38Deutsches Elektronen-Synchrotron, Hamburg, Germany 39University of Hamburg, Hamburg, Germany 40Institut fu¨r Experimentelle Kernphysik, Karlsruhe, Germany 41Institute of Nuclear Physics ‘‘Demokritos,’’ Aghia Paraskevi, Greece

42University of Athens, Athens, Greece 43University of Ioa´nnina, Ioa´nnina, Greece

44KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 45Institute of Nuclear Research ATOMKI, Debrecen, Hungary

46University of Debrecen, Debrecen, Hungary 47Panjab University, Chandigarh, India

48University of Delhi, Delhi, India 49Saha Institute of Nuclear Physics, Kolkata, India

50Bhabha Atomic Research Centre, Mumbai, India 51Tata Institute of Fundamental Research-EHEP, Mumbai, India 52Tata Institute of Fundamental Research-HECR, Mumbai, India 53Institute for Research and Fundamental Sciences (IPM), Tehran, Iran

54aINFN Sezione di Bari, Bari, Italy 54bUniversita` di Bari, Bari, Italy 54cPolitecnico di Bari, Bari, Italy 55aINFN Sezione di Bologna, Bologna, Italy

55bUniversita` di Bologna, Bologna, Italy 56aINFN Sezione di Catania, Catania, Italy

56b

Universita` di Catania, Catania, Italy

57aINFN Sezione di Firenze, Firenze, Italy 57bUniversita` di Firenze, Firenze, Italy

58INFN Laboratori Nazionali di Frascati, Frascati, Italy 59INFN Sezione di Genova, Genova, Italy 60aINFN Sezione di Milano-Bicocca, Milano, Italy

60bUniversita` di Milano-Bicocca, Milano, Italy 61aINFN Sezione di Napoli, Napoli, Italy 61bUniversita` di Napoli ‘‘Federico II,’’ Napoli, Italy

62a

INFN Sezione di Padova, Padova, Italy

62bUniversita` di Padova, Padova, Italy 62cUniversita` di Trento (Trento), Padova, Italy

63aINFN Sezione di Pavia, Pavia, Italy 63bUniversita` di Pavia, Pavia, Italy

(14)

64aINFN Sezione di Perugia, Perugia, Italy 64bUniversita` di Perugia, Perugia, Italy

65aINFN Sezione di Pisa, Pisa, Italy 65bUniversita` di Pisa, Pisa, Italy 65cScuola Normale Superiore di Pisa, Pisa, Italy

66aINFN Sezione di Roma, Roma, Italy 66bUniversita` di Roma ‘‘La Sapienza,’’ Roma, Italy

67aINFN Sezione di Torino, Torino, Italy 67b

Universita` di Torino, Torino, Italy

67cUniversita` del Piemonte Orientale (Novara), Torino, Italy 68aINFN Sezione di Trieste, Trieste, Italy

68bUniversita` di Trieste, Trieste, Italy 69Kangwon National University, Chunchon, Korea

70Kyungpook National University, Daegu, Korea

71Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 72Konkuk University, Seoul, Korea

73Korea University, Seoul, Korea 74University of Seoul, Seoul, Korea 75Sungkyunkwan University, Suwon, Korea

76Vilnius University, Vilnius, Lithuania

77Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 78Universidad Iberoamericana, Mexico City, Mexico

79Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 80Universidad Auto´noma de San Luis Potosı´, San Luis Potosı´, Mexico

81

University of Auckland, Auckland, New Zealand

82University of Canterbury, Christchurch, New Zealand

83National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 84Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

85Soltan Institute for Nuclear Studies, Warsaw, Poland

86Laborato´rio de Instrumentac¸a˜o e Fı´sica Experimental de Partı´culas, Lisboa, Portugal 87Joint Institute for Nuclear Research, Dubna, Russia

88Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia 89Institute for Nuclear Research, Moscow, Russia

90Institute for Theoretical and Experimental Physics, Moscow, Russia 91Moscow State University, Moscow, Russia

92P.N. Lebedev Physical Institute, Moscow, Russia

93State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 94University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

95Centro de Investigaciones Energe´ticas Medioambientales y Tecnolo´gicas (CIEMAT), Madrid, Spain 96Universidad Auto´noma de Madrid, Madrid, Spain

97Universidad de Oviedo, Oviedo, Spain

98Instituto de Fı´sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 99CERN, European Organization for Nuclear Research, Geneva, Switzerland

100Paul Scherrer Institut, Villigen, Switzerland

101Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 102Universita¨t Zu¨rich, Zurich, Switzerland

103National Central University, Chung-Li, Taiwan 104

National Taiwan University (NTU), Taipei, Taiwan

105Cukurova University, Adana, Turkey

106Middle East Technical University, Physics Department, Ankara, Turkey 107Bogazici University, Istanbul, Turkey

108National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 109University of Bristol, Bristol, United Kingdom

110Rutherford Appleton Laboratory, Didcot, United Kingdom 111Imperial College, London, United Kingdom 112Brunel University, Uxbridge, United Kingdom

113

Baylor University, Waco, Texas 76706, USA

114The University of Alabama, Tuscaloosa, Alabama 35487, USA 115Boston University, Boston, Massachusetts 02215, USA 116Brown University, Providence, Rhode Island 02912, USA 117University of California, Davis, Davis, California 95616, USA

Figura

FIG. 1 (color online). The distribution of  T , described in the text, for events in data with two or more jets (black dots with error bars representing the statistical uncertainties), after all event selection criteria except  T are applied and H T &gt;
Figure 4 shows the observed and expected exclusion limits at 95% confidence level (C.L.) in the ( m 0 , m 1=2 ) plane for tan ¼ 10 and A 0 ¼ 0 GeV, calculated with the
FIG. 3 (color online). The observed event yields versus H T in the hadronic signal sample (black dots with error bars  represent-ing the statistical uncertainties)

Riferimenti

Documenti correlati

The fractional frequency difference that VLBI evaluated was consistent with the difference between two HM frequencies which were separately calibrated by a Sr lattice clock

She has published broadly in early cinema, has programmed films for Cinema Ritrovato, Bologna, and been involved in Women and the Silent Screen since its founding in

Recall that the diseconomy of scope in R&amp;D reduces fundamental innovation, while the diseconomy of scope in the production of varieties increases specialized innovation,

Keywords: Endocrine disruptor, humic substances, natural organic matter, organic contaminant, phytoremediation,

RNA-seq of AML-amp cases identi fied 12,468 and 58,032 raw chimeric transcripts by CS and FM, respectively, among which 38 and 429 involved 8q24-ampli fied genes (Supplementary

The aim of the present study was to estimate the preventable proportion of Intubation-Asso- ciated Pneumonia (IAP) in the Intensive Care Units (ICUs) participating in the Italian

In both GLC1 cell lines, we observed a significant up-regulation of the amplified genes AKT3 and RUNX1; CREG1 showed up-regulation in GLC1DM but not in GLC1HSR, most likely due to

an approximate admission rate to acute psychiatric wards, including voluntary and involuntary patients, of 31.8 per 10,000 residents in the city of Rome in 2002.. Another