• Non ci sono risultati.

Failure Detection in Linear Arrays through Compressive Sensing

N/A
N/A
Protected

Academic year: 2021

Condividi "Failure Detection in Linear Arrays through Compressive Sensing"

Copied!
90
0
0

Testo completo

(1)

UNIVERSITY

OF TRENTO

DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’INFORMAZIONE

38123 Povo – Trento (Italy), Via Sommarive 14

http://www.disi.unitn.it

FAILURE DETECTION IN LINEAR ARRAYS THROUGH

COMPRESSIVE SENSING

G. Oliveri, P. Rocca, and A. Massa

June 2013

(2)
(3)

Goal: the targetihaveto fo us oninthis proje tisthe reationofa newsoftware tool

for failure dete tion. i have to merge together different odes to rea h my aim. from

the linear array expe ted field radiation and the linear array measured field radiation

(both omputed by meansof the already existing ode generation.beam.pattern) ishould

be able, thanks to my tool, to elaborate the sparse ve tor as the already existing ode

bayesian ompressivesampling output.

1 Test Case Des ription

LinearArrayofpointsour es

Numberofelements:

N

Observationanglenumber:

U

Observationangle:

u

Referen epattern: DolphorTaylor

ElementSpa ing:

z

Per entageof failures:

F

A tual error( omplex):

e

n

,itisthea tual omplexsparseerrorve tor

Dete tederror( omplex):

e

ˆ

n

,itisthe omplexsparseerrorve tordete tedbytheBCSalgortihm

A tual errormagnitudeandphase:

| e

n

|

,

arg(e

n

)

Dete tederrormagnitudeandphase:

| ˆ

e

n

|

,

arg(ˆ

e

n

)

Expe ted Pattern( omplex):

F

{exp}

(u)

MeasuredPattern( omplex):

F

{mea}

(u)

Thereliabilityis omputedthankstothefollowingformula:

η =

P

N

n=1

|e

mea

n

−e

exp

n

|

2

P

N

n=1

|w

n

|

2

< 10

−4

,

(4)

1.1.1 First Case

Test Case:

LinearArrayofpointsour es

Referen epattern: Dolph

Numberofelements:

40

Observationanglenumber: from

1

to

2 ∗ N + 1

ElementSpa ing:

λ/2

• dB = −20

Per entageof failures:

5

%

Reliabilityabout allsimulations:

U

η

36

1.60 ∗ 10

−9

37

3.88 ∗ 10

−10

38

17.78

39

21.40

40

0

41

0

42

0

43

0

44

0

10

-12

10

-10

10

-8

10

-6

10

-4

10

-2

10

0

10

2

0

10

20

30

40

50

60

70

80

90

|

ν

| - (reliability)

U

|

ν

|

Fig.1-Reliability Resultswith

U = 41

:

(5)

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

Fig.2- A tual and measuredpatterns

-1

-0.5

0

0.5

1

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

(6)

Test Case:

LinearArrayofpointsour es

Referen epattern: Dolph

Numberofelements:

40

Observationanglenumber: from

1

to

2 ∗ N + 1

ElementSpa ing:

λ/2

• dB = −30

Numberoffailures:

5

%

Reliabilityabout allsimulations:

U

η

36

10.36

37

9.79 ∗ 10

−9

38

6.75 ∗ 10

−9

39

9.97 ∗ 10

−9

40

6.97

41

8.92 ∗ 10

−10

42

8.92 ∗ 10

−10

43

8.92 ∗ 10

−10

44

8.92 ∗ 10

−10

10

-12

10

-10

10

-8

10

-6

10

-4

10

-2

10

0

10

2

0

10

20

30

40

50

60

70

80

90

|

ν

| - (reliability)

U

|

ν

|

Fig.1-Reliability Resultswith

U = 41

:

(7)

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

Fig.2- A tual and measuredpatterns

-1

-0.5

0

0.5

1

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

(8)

Test Case:

LinearArrayofpointsour es

Referen epattern: Dolph

Numberofelements:

40

Observationanglenumber: from

1

to

2 ∗ N + 1

ElementSpa ing:

λ/2

• dB = −40

Numberoffailures:

5

%

Reliabilityabout allsimulations:

U

η

36

8.10 ∗ 10

−11

37

3.95 ∗ 10

−8

38

0

39

108.30

40

72.56

41

1.60 ∗ 10

−8

42

1.60 ∗ 10

−8

43

1.60 ∗ 10

−8

44

1.60 ∗ 10

−8

45

1.76 ∗ 10

−8

10

-12

10

-10

10

-8

10

-6

10

-4

10

-2

10

0

10

2

10

4

0

10

20

30

40

50

60

70

80

90

|

ν

| - (reliability)

U

|

ν

|

Fig.1-Reliability Resultswith

U = 41

:

(9)

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

Fig.2- A tual and measuredpatterns

-1

-0.5

0

0.5

1

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

(10)

Test Case:

LinearArrayofpointsour es

Referen epattern: Taylor

Numberofelements:

40

Observationanglenumber: from

1

to

2 ∗ N + 1

ElementSpa ing:

λ/2

• dB = −20

Numberoffailures:

5

%

Reliabilityabout allsimulations:

U

η

36

7.84 ∗ 10

−10

37

4.56 ∗ 10

−9

38

3.65

39

1.16 ∗ 10

−9

40

3.13

41

1.56 ∗ 10

−10

42

1.56 ∗ 10

−10

43

1.56 ∗ 10

−10

44

1.56 ∗ 10

−10

10

-12

10

-10

10

-8

10

-6

10

-4

10

-2

10

0

10

2

0

10

20

30

40

50

60

70

80

90

|

ν

| - (reliability)

U

|

ν

|

Fig.1-Reliability Resultswith

U = 41

:

(11)

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

Fig.2- A tual and measuredpatterns

-1

-0.5

0

0.5

1

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

1

2

3

4

5

6

7

8

9

10

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

(12)

Test Case:

LinearArrayofpointsour es

Referen epattern: Taylor

Numberofelements:

40

Observationanglenumber: from

1

to

2 ∗ N + 1

ElementSpa ing:

λ/2

• dB = −30

Numberoffailures:

5

%

Reliabilityabout allsimulations:

U

η

36

2.72 ∗ 10

−9

37

2.94 ∗ 10

−8

38

25.56

39

27.03

40

27.81

41

1.70 ∗ 10

−8

42

1.70 ∗ 10

−8

43

1.70 ∗ 10

−8

44

1.70 ∗ 10

−8

10

-10

10

-8

10

-6

10

-4

10

-2

10

0

10

2

0

10

20

30

40

50

60

70

80

90

|

ν

| - (reliability)

U

|

ν

|

Fig.1-Reliability Resultswith

U = 41

:

(13)

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

Fig.2- A tual and measuredpatterns

-1

-0.5

0

0.5

1

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

1

2

3

4

5

6

7

8

9

10

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

(14)

Test Case:

LinearArrayofpointsour es

Referen epattern: Taylor

Numberofelements:

40

Observationanglenumber: from

1

to

2 ∗ N + 1

ElementSpa ing:

λ/2

• dB = −40

Numberoffailures:

5

%

Reliabilityabout allsimulations:

U

η

36

5.72 ∗ 10

−8

37

2.65 ∗ 10

−7

38

2.38 ∗ 10

−7

39

6.85 ∗ 10

−9

40

169.18

41

6.17 ∗ 10

−8

42

6.17 ∗ 10

−8

43

6.17 ∗ 10

−8

44

6.17 ∗ 10

−8

10

-12

10

-10

10

-8

10

-6

10

-4

10

-2

10

0

10

2

10

4

0

10

20

30

40

50

60

70

80

90

|

ν

| - (reliability)

U

|

ν

|

Fig.1-Reliability Resultswith

U = 41

:

(15)

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

Fig.2- A tual and measuredpatterns

-1

-0.5

0

0.5

1

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

Fig.3-A tualand measured magnitude Fig.4-A tual andmeasured phase

Observations

As we expe ted the failure dete tion works perfe tly from a threshold up to innite. In the ase I have

studied thethresholdis alwaysequalto

N + 1

, where

N

isthe numberof arrayelement. These resultsare validforbothDolphand Taylorreferen epattern. Thisthreshold,ifwethink thattheformulatoitshould

(16)

1.2.1 First Case

Test Case:

LinearArrayofpointsour es

Referen epattern: Dolph

Numberofelements:

20

Observationanglenumber:

21

ElementSpa ing:

λ/2

• dB = −30

Per entageof failures:

F ∈ [5, 10, 15, 20]

[%℄

Reliabilityabout allsimulations:

F

[%℄

η

5

0

10

8.24 ∗ 10

−11

15

0

20

1.12 ∗ 10

−10

10

-11

10

-10

10

-9

4

6

8

10

12

14

16

18

20

|

ν

| - (reliability)

Err

%

|

ν

|

Fig.1-Reliability Resultswith

F = 5

:

(17)

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

Fig.2- A tual and measuredpatterns

-1

-0.5

0

0.5

1

0

1

2

3

4

5

6

7

8

9

10

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

1

2

3

4

5

6

7

8

9

10

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

Fig.3-A tualand measured magnitude Fig.4-A tual andmeasured phase

Resultswith

F = 10

:

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

(18)

-1

-0.5

0

0.5

1

0

1

2

3

4

5

6

7

8

9

10

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

1

2

3

4

5

6

7

8

9

10

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

Fig.3-A tualand measured magnitude Fig.4-A tual andmeasured phase

Resultswith

F = 15

:

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

Fig.2- A tual and measuredpatterns

-1

-0.5

0

0.5

1

0

1

2

3

4

5

6

7

8

9

10

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

1

2

3

4

5

6

7

8

9

10

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

(19)

Resultswith

F = 20

:

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

Fig.2- A tual and measuredpatterns

-1

-0.5

0

0.5

1

0

1

2

3

4

5

6

7

8

9

10

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

1

2

3

4

5

6

7

8

9

10

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

(20)

Test Case:

LinearArrayofpointsour es

Referen epattern: Dolph

Numberofelements:

30

Observationanglenumber:

31

ElementSpa ing:

λ/2

• dB = −30

Per entageof failures:

F ∈ [4, 7, 10, 14, 17, 20]

[%℄

Reliabilityabout allsimulations:

F

[%℄

η

4

0

7

9.00 ∗ 10

−12

10

0

14

1.50 ∗ 10

−9

17

1.69 ∗ 10

−9

20

2.66 ∗ 10

−9

10

-12

10

-11

10

-10

10

-9

10

-8

4

6

8

10

12

14

16

18

20

|

ν

| - (reliability)

Err

%

|

ν

|

Fig.1-Reliability Resultswith

F = 4

:

(21)

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

Fig.2- A tual and measuredpatterns

-1

-0.5

0

0.5

1

0

2

4

6

8

10

12

14

16

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

2

4

6

8

10

12

14

16

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

Fig.3-A tualand measured magnitude Fig.4-A tual andmeasured phase

Resultswith

F = 7

:

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

(22)

-1

-0.5

0

0.5

1

0

2

4

6

8

10

12

14

16

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

2

4

6

8

10

12

14

16

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

Fig.3-A tualand measured magnitude Fig.4-A tual andmeasured phase

Resultswith

F = 10

:

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

Fig.2- A tual and measuredpatterns

-1

-0.5

0

0.5

1

0

2

4

6

8

10

12

14

16

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

2

4

6

8

10

12

14

16

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

(23)

Resultswith

F = 14

:

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

Fig.2- A tual and measuredpatterns

-1

-0.5

0

0.5

1

0

2

4

6

8

10

12

14

16

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

2

4

6

8

10

12

14

16

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

Fig.3-A tualand measured magnitude Fig.4-A tual andmeasured phase

Resultswith

F = 17

:

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

(24)

-1

-0.5

0

0.5

1

0

2

4

6

8

10

12

14

16

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

2

4

6

8

10

12

14

16

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

Fig.3-A tualand measured magnitude Fig.4-A tual andmeasured phase

Resultswith

F = 20

:

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

(25)

-1

-0.5

0

0.5

1

0

2

4

6

8

10

12

14

16

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

2

4

6

8

10

12

14

16

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

(26)

Test Case:

LinearArrayofpointsour es

Referen epattern: Dolph

Numberofelements:

40

Observationanglenumber:

41

ElementSpa ing:

λ/2

• dB = −30

Per entageof failures:

F ∈ [3, 5, 8, 10, 13, 15, 18, 20]

[%℄

Reliabilityabout allsimulations:

F

[%℄

η

3

0

5

8.92 ∗ 10

−10

8

0

10

3.93 ∗ 10

−9

13

3.72 ∗ 10

−9

15

7.58 ∗ 10

−9

18

5.91 ∗ 10

−9

20

1.57 ∗ 10

−8

10

-10

10

-9

10

-8

10

-7

2

4

6

8

10

12

14

16

18

20

|

ν

| - (reliability)

Err

%

|

ν

|

Fig.1-Reliability Resultswith

F = 3

:

(27)

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

Fig.2- A tual and measuredpatterns

-1

-0.5

0

0.5

1

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

Fig.3-A tualand measured magnitude Fig.4-A tual andmeasured phase

Resultswith

F = 5

:

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

(28)

-1

-0.5

0

0.5

1

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

Fig.3-A tualand measured magnitude Fig.4-A tual andmeasured phase

Resultswith

F = 8

:

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

Fig.2- A tual and measuredpatterns

-1

-0.5

0

0.5

1

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

(29)

Resultswith

F = 10

:

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

Fig.2- A tual and measuredpatterns

-1

-0.5

0

0.5

1

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

Fig.3-A tualand measured magnitude Fig.4-A tual andmeasured phase

Resultswith

F = 13

:

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

(30)

-1

-0.5

0

0.5

1

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

Fig.3-A tualand measured magnitude Fig.4-A tual andmeasured phase

Resultswith

F = 15

:

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

(31)

-1

-0.5

0

0.5

1

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

Fig.3-A tualand measured magnitude Fig.4-A tual andmeasured phase

Resultswith

F = 18

:

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

Fig.2- A tual and measuredpatterns

-1

-0.5

0

0.5

1

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

(32)

Resultswith

F = 20

:

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

Fig.2- A tual and measuredpatterns

-1

-0.5

0

0.5

1

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

(33)

Test Case:

LinearArrayofpointsour es

Referen epattern: Taylor

Numberofelements:

20

Observationanglenumber:

21

ElementSpa ing:

λ/2

• dB = −30

Per entageof failures:

F ∈ [5, 10, 15, 20]

[%℄

Reliabilityabout allsimulations:

F

[%℄

η

5

0

10

4.45 ∗ 10

−9

15

0

20

5.91 ∗ 10

−9

10

-9

10

-8

4

6

8

10

12

14

16

18

20

|

ν

| - (reliability)

Err

%

|

ν

|

Fig.1-Reliability Resultswith

F = 5

:

(34)

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

Fig.2- A tual and measuredpatterns

-1

-0.5

0

0.5

1

0

1

2

3

4

5

6

7

8

9

10

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

1

2

3

4

5

6

7

8

9

10

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

Fig.3-A tualand measured magnitude Fig.4-A tual andmeasured phase

Resultswith

F = 10

:

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

(35)

-1

-0.5

0

0.5

1

0

1

2

3

4

5

6

7

8

9

10

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

1

2

3

4

5

6

7

8

9

10

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

Fig.3-A tualand measured magnitude Fig.4-A tual andmeasured phase

Resultswith

F = 15

:

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

Fig.2- A tual and measuredpatterns

-1

-0.5

0

0.5

1

0

1

2

3

4

5

6

7

8

9

10

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

1

2

3

4

5

6

7

8

9

10

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

(36)

Resultswith

F = 20

:

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

Fig.2- A tual and measuredpatterns

-1

-0.5

0

0.5

1

0

1

2

3

4

5

6

7

8

9

10

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

1

2

3

4

5

6

7

8

9

10

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

(37)

Test Case:

LinearArrayofpointsour es

Referen epattern: Taylor

Numberofelements:

30

Observationanglenumber:

31

ElementSpa ing:

λ/2

• dB = −30

Per entageof failures:

F ∈ [4, 7, 10, 14, 17, 20]

[%℄

Reliabilityabout allsimulations:

F

[%℄

η

4

0

7

1.69 ∗ 10

−8

10

0

14

1.66 ∗ 10

−8

17

6.44 ∗ 10

−10

20

2.32 ∗ 10

−8

10

-10

10

-9

10

-8

10

-7

4

6

8

10

12

14

16

18

20

|

ν

| - (reliability)

Err

%

|

ν

|

Fig.1-Reliability Resultswith

F = 4

:

(38)

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

Fig.2- A tual and measuredpatterns

-1

-0.5

0

0.5

1

0

2

4

6

8

10

12

14

16

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

2

4

6

8

10

12

14

16

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

Fig.3-A tualand measured magnitude Fig.4-A tual andmeasured phase

Resultswith

F = 7

:

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

(39)

-1

-0.5

0

0.5

1

0

2

4

6

8

10

12

14

16

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

2

4

6

8

10

12

14

16

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

Fig.3-A tualand measured magnitude Fig.4-A tual andmeasured phase

Resultswith

F = 10

:

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

Fig.2- A tual and measuredpatterns

-1

-0.5

0

0.5

1

0

2

4

6

8

10

12

14

16

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

2

4

6

8

10

12

14

16

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

(40)

Resultswith

F = 14

:

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

Fig.2- A tual and measuredpatterns

-1

-0.5

0

0.5

1

0

2

4

6

8

10

12

14

16

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

Fig.3- A tualand measuredmagnitude

Resultswith

F = 17

:

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

(41)

-1

-0.5

0

0.5

1

0

2

4

6

8

10

12

14

16

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

2

4

6

8

10

12

14

16

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

Fig.3-A tualand measured magnitude Fig.4-A tual andmeasured phase

Resultswith

F = 20

:

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

(42)

-1

-0.5

0

0.5

1

0

2

4

6

8

10

12

14

16

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

2

4

6

8

10

12

14

16

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

(43)

Test Case:

LinearArrayofpointsour es

Referen epattern: Taylor

Numberofelements:

40

Observationanglenumber:

41

ElementSpa ing:

λ/2

• dB = −30

Per entageof failures:

F ∈ [3, 5, 8, 10, 13, 15, 18, 20]

[%℄

Reliabilityabout allsimulations:

F

[%℄

η

3

0

5

1.70 ∗ 10

−8

8

0

10

3.26 ∗ 10

−8

13

1.94 ∗ 10

−8

15

4.07 ∗ 10

−8

18

5.42 ∗ 10

−8

20

5.49 ∗ 10

−8

10

-8

10

-7

2

4

6

8

10

12

14

16

18

20

|

ν

| - (reliability)

Err

%

|

ν

|

Fig.1-Reliability Resultswith

F = 3

:

(44)

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

Fig.2- A tual and measuredpatterns

-1

-0.5

0

0.5

1

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

Fig.3-A tualand measured magnitude Fig.4-A tual andmeasured phase

Resultswith

F = 5

:

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

(45)

-1

-0.5

0

0.5

1

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

Fig.3-A tualand measured magnitude Fig.4-A tual andmeasured phase

Resultswith

F = 8

:

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

Fig.2- A tual and measuredpatterns

-1

-0.5

0

0.5

1

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

(46)

Resultswith

F = 10

:

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

Fig.2- A tual and measuredpatterns

-1

-0.5

0

0.5

1

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

Fig.3-A tualand measured magnitude Fig.4-A tual andmeasured phase

Resultswith

F = 13

:

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

(47)

-1

-0.5

0

0.5

1

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

Fig.3-A tualand measured magnitude Fig.4-A tual andmeasured phase

Resultswith

F = 15

:

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

(48)

-1

-0.5

0

0.5

1

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

Fig.3-A tualand measured magnitude Fig.4-A tual andmeasured phase

Resultswith

F = 18

:

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

Fig.2- A tual and measuredpatterns

-1

-0.5

0

0.5

1

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

(49)

Resultswith

F = 20

:

-40

-30

-20

-10

0

10

20

30

-1

-0.5

0

0.5

1

|Y| [db]

u

F

exp

(u) - a.p. U=600

F

mea

(u) - m.p. U=600

F

exp

(u) - actual pattern

F

mea

(u) - measured pattern

Fig.2- A tual and measuredpatterns

-1

-0.5

0

0.5

1

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

|\hate

n

| - measured magnitude

|e

n

| - actual magnitude

-

π

-

π

/2

0

π

/2

π

0

2

4

6

8

10

12

14

16

18

20

|

w| [arbitrary unit]

z [

λ

]

arg(\hate

n

) - measured phase

arg(e

n

) - actual phase

Fig.3-A tualand measured magnitude Fig.4-A tual andmeasured phase

Observations

As weexpe ted, thereliabilitytrendshowsthat themoreyouadderrorsin thearrayantennaandtheless

(50)

1.3.1 First Case

Test Case:

LinearArrayofpointsour es

Referen epattern: Dolph

Numberofelements:

N ∈ [20, 40, 100, 200]

Observationanglenumber:

N + 1

ElementSpa ing:

λ/2

• dB = −20

Per entageof failures:

5

%

Reliabilityabout allsimulations:

N

η

20

0

40

0

100

5.12 ∗ 10

−8

200

1.14 ∗ 10

−6

10

-8

10

-7

10

-6

10

-5

20

40

60

80

100

120

140

160

180

200

|

ν

| - (reliability)

N (elements number)

|

ν

|

Fig.1-Reliability Resultswith

N = 20

:

Riferimenti

Documenti correlati

We also show that the error convergence represents a limiting case of the performance of the FGM method for discretely monitored options as N → ∞ and ∆t → 0, where N is the number

[r]

Storia delle storie del femminismo è un libro di Arruzza Cinzia; Cirillo Lidia pubblicato da Edizioni Alegre nella collana Quaderni viola - 9788898841240.. La critica femminista

Google Pixel XL Phone 5.5&#34; Display 128GB 4G LTE FACTORY UNLOCKED Smartphone.. Google Pixel 32GB Verizon Wireless 4G LTE Android

Gli ambien- ti e le opere progettate valorizzano una fruizione collettiva più che individuale, in cui le scelte sono esperienze di più persone e il racconto procede per effetto

L’OUTPUT DI REVIT: I DOCUMENTI DI PROGETTO A chiusura del processo di modellazione asso- ciativa tramite gli oggetti intelligenti, l’output cartaceo di un progetto

La mia esperienza quasi quinquennale di docenza nel Laboratorio progettuale di Disegno dell’Architettura II nel Corso di Laurea di Ingegneria Edile/Architettura a Bologna (AA

Consapevoli della debolezza e della fragilità in cui versa tanto il mondo indigeno che l’intera istituzione rispetto alle possibilità del governo, tanto militari che