• Non ci sono risultati.

Search for anomalous electroweak production of vector boson pairs in association with two jets in proton-proton collisions at 13 TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Search for anomalous electroweak production of vector boson pairs in association with two jets in proton-proton collisions at 13 TeV"

Copied!
25
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Search

for

anomalous

electroweak

production

of

vector

boson

pairs

in

association

with

two

jets

in

proton-proton

collisions

at

13 TeV

.TheCMS Collaboration

CERN,Switzerland

a r t i c l e i n f o a b s t ra c t

Articlehistory: Received17May2019

Receivedinrevisedform23September 2019

Accepted25September2019 Availableonline30September2019 Editor: M.Doser Keywords: CMS Physics VBS ChargedHiggs

AsearchforanomalouselectroweakproductionofWW,WZ,andZZbosonpairsinassociationwithtwo jetsinproton-protoncollisionsat√s=13 TeV attheLHCisreported.Thedatasamplecorrespondstoan integratedluminosityof35.9 fb−1collectedwiththeCMSdetector.Eventsareselectedbyrequiringtwo jetswithlargerapidityseparationandinvariant mass,oneortwoleptons(electronsormuons),anda WorZbosondecayinghadronically.Noexcessofeventswithrespecttothestandardmodelbackground predictions is observed and constraints on the structure of quartic vector boson interactions in the frameworkofdimension-8effectivefieldtheoryoperatorsarereported.Stringent limitsonparameters oftheeffectivefieldtheoryoperatorsareobtained.Theobserved95% confidencelevellimitsfortheS0, M0,andT0 operatorsare2.7<fS0/4<2.7,1.0< fM0/4<1.0,and 0.17<fT0/4<0.16,in unitsofTeV−4.Constraintsarealsoreportedontheproductofthecrosssectionandbranchingfraction forvectorbosonfusionproductionofchargedHiggsbosonsasafunctionofmassfrom600to2000 GeV. TheresultsareinterpretedinthecontextoftheGeorgi–Machacekmodel.

©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Measurementsofvectorbosonscattering(VBS)processesprobe the non-Abelian gauge structure of the electroweak (EW) inter-actions ofthe standard model(SM) of particlephysics. The non-Abelian structure of the EW sector leads to self-interactions be-tweengaugebosonsviatripleandquarticgaugecouplings.Atthe CERN LHC interactions from VBS are characterized by the pres-ence of two gauge bosons in association with two forward jets withlargerapidity separation andlarge dijetinvariantmass. The discoveryofaHiggsboson [1–3] establishedthatW and Z gauge bosonsacquire massviathe Higgsmechanism.Models ofphysics beyond the SM predict enhancements in VBS processes through modificationsoftheHiggsbosoncouplingstogauge bosons [4,5]. Fig.1 showsa representative Feynman diagram involvingquartic vertices.An excess of events withrespect to the SM predictions couldindicatethepresenceofanomalousquarticgaugecouplings (aQGCs) [6].

This paper presents a study of VBS in WW, WZ, and ZZ channelsusing proton-proton(pp) collisions at √s=13TeV. The data sample corresponds to an integrated luminosity of 35.9± 0.9 fb−1[7] collectedwiththeCMSdetector [8] attheLHCin2016.

 E-mailaddress:cms-publication-committee-chair@cern.ch.

Fig. 1. The Feynman diagramofa VBSprocess contributingtothe EW-induced productionofeventscontainingahadronicallydecayinggaugeboson(V),aW±/Z bosondecayingtoleptons,andtwoforwardjets.Newphysics(representedbya blackcircle)intheEWsectorcanmodifythequarticgaugecouplings.

The first goal of this paper is to search for the presence of aQGCs incandidate eventscontaining a (i) hadronically decaying gauge boson (V) produced withlarge transverse momentum pT, (ii)aW orZ bosondecayingtooneortwochargedleptons (elec-trons or muons), and (iii) two forward jets. This final state has a higher branching fraction of the V decay than previous aQGC searches at the LHC for VBS containing only leptonic boson de-cays [9–19].AWV finalstatewheretheW bosondecaystoleptons receives contributions from the production of W±W∓, W±W±,

https://doi.org/10.1016/j.physletb.2019.134985

0370-2693/©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

Fig. 2. Examples of Feynman diagrams showing the production of singly (left) and doubly (right) charged Higgs bosons via VBF.

andW±Z bosonpairs. Similarly,a ZV finalstate wherethe Z bo-son decaysto leptons receives contributions fromthe production of W±Z and ZZ boson pairs. The ATLAS andCMS Collaborations havereported limitsonaQGCs usingfinal stateswith a hadroni-callydecayingW/Z bosoninpp collisionsatcenter-of-massenergy

s=8TeV [20–23].

A second goal of this paper is to search for charged Higgs bosonsthatareproducedviavectorbosonfusion(VBF)anddecay toW andZ bosons.ProposalsexistforextendedHiggssectorswith additionalSU(2) isotriplet scalars that give rise to charged Higgs bosonswithcouplingstoW andZ bosonsatthetree-level [24,25]. Specifically,theGeorgi–Machacek(GM)model [26],withbothreal andcomplextriplets,preservesaglobalsymmetrySUL(2)×SUR(2), whichisbrokenbytheHiggsvacuumexpectationvalue tothe di-agonalsubgroupSUL+R(2).Thus,thetree-levelratiooftheW and Z bosonmassesisprotectedagainstlarge radiativecorrections.In thismodel,singly(doubly)chargedHiggsbosonsareproducedvia VBFthatdecaytoW andZ bosons(same-signW bosonpairs).

The chargedHiggsbosons H± and H±± inthe GMmodelare degenerateinmass(denotedasm(H5))attreelevelandtransform as a quintuplet under the SUL+R(2) symmetry. The coupling de-pendsonm(H5)andtheparametersH,wheres2

Hcharacterizesthe fractionof the W boson mass squaredgenerated by the vacuum expectationvalueofthe tripletfields.Fig.2 showsrepresentative Feynman diagrams for the production anddecay of the charged Higgsbosons. The CMS Collaboration at13TeV [9,13,27] andthe ATLASCollaboration at8TeV [28] performed searchesforcharged Higgs bosons in these topologies and set constraints on the GM model.

2. TheCMSdetector

The central feature of the CMS apparatus is a superconduct-ing solenoidof 6 m internal diameter, providinga magnetic field of3.8 T. Withinthe solenoidvolume area siliconpixel andstrip tracker,aleadtungstatecrystalelectromagneticcalorimeter(ECAL), andabrass andscintillatorhadron calorimeter,eachcomposedof abarrelandtwoendcapsections.Forwardcalorimetersextendthe pseudorapidity(η)coverageprovidedbythebarrelandendcap de-tectors.Muonsaredetected ingas-ionizationdetectorsembedded inthesteelflux-returnyokeoutsidethesolenoid.Amoredetailed descriptionoftheCMSdetector,together withadefinitionofthe coordinatesystemused andtherelevantkinematic variables,can befoundinRef. [8].

ThefirstleveloftheCMStriggersystem, composedofcustom hardware processors, usesinformation fromthecalorimeters and muondetectorstoselecteventsofinterestinafixedtimeinterval oflessthan4 μs.Thesecondlevel,knownasthehigh-leveltrigger, consistsofafarmofprocessorsrunningaversionofthefullevent reconstructionsoftwareoptimizedforfastprocessing,andreduces theeventratetoO(1 kHz)beforedatastorage [29].

3. Signalandbackgroundsimulation

The SM EW, aQGC, and charged Higgs boson processes with two final-state quarksare simulated usingthe MonteCarlo (MC) generator MadGraph5_amc@nlo 2.3.3 [30] at leading order (LO) with fourEW andzero quantum chromodynamic(QCD) vertices. The signatures of W±W±, W±W∓, W±Z, and ZZ processes are produced separately and include diagrams with quartic vertices. The simulation of the aQGC processes employs matrix element reweighting toobtain afinelyspaced gridofparameters foreach oftheanomalouscouplingsprobedbytheanalysis.

Theproductionoftwogaugebosonswithtwofinalstatequarks or gluonsandatleastone QCD vertexattree level,which is re-ferred to as QCD VV production, is considered background. The MadGraph5_amc@nlo 2.3.3 generator at LO is used to simulate thisprocess.TheinterferencebetweentheEWandQCDdiagrams is evaluated using dedicated samples produced with the Phan-tom1.2.8 [31] generator.Theeffectoftheinterferencecontributes atthelevelof1%inthesignalregionandis,therefore,neglected.

The W+jets and Drell–Yan processes, with up to four outgo-ing partonsat Born level,are simulatedat QCD LOaccuracy us-ing MadGraph5_amc@nlo. The tt, ttW, ttZ, andsingle top quark processes are generated at next-to-leading order (NLO) accuracy using POWHEG 2.0 [32–35].Thesimulatedsamplesofbackground processes arenormalizedto thebest predictionavailable,NLO or higher [36–40].

The pythia 8.212 [41] packagewiththetuneCUETP8M1 [42,43] is used for parton showering, hadronization, and the underlying eventsimulation.TheNNPDF 3.0 [44] setisusedasthedefaultset ofpartondistributionfunctions(PDFs). ThePDFsarecalculatedat thesameorderasthecorrespondinghardprocess.

The detector response is simulated using a detailed descrip-tion oftheCMS detectorbasedon the Geant4package [45],and eventreconstructionisperformedwiththesamealgorithms used fordata.Additionalpp interactions(pileup)occurringinthesame beam crossingasthe eventof interestare included inthe simu-lation. These eventsare weighted so that the pileup distribution matches that observedin data,whichhasan average of approxi-mately23interactionsper beamcrossing assuming69 mb forthe inelasticpp crosssection [46].

4. Eventreconstructionandselection

The particle-flow algorithm [47] reconstructs and identifies each individual particle in an event, with an optimized combi-nation ofall subdetectorinformation.The individual particlesare identified ascharged and neutral hadrons, leptons, andphotons. The missingtransversemomentum, pmiss

T ,isdefinedasthe mag-nitudeofthenegativevector pT sumofallreconstructedparticles intheevent.Itsmagnitudeisdenotedby pmissT .

Jetsarereconstructedusingtheanti-kTclusteringalgorithm [48] with a distance parameter of 0.4, as implemented in the Fast-Jet package [49,50]. Jet momentum is determined asthe sumof

(3)

allparticlemomenta inthejet.Correctionsare appliedto thejet energyasa function of jet η and pT to account for detector re-sponsenonlinearities,contributionfrompileup,andresidual differ-encesbetweenthejetenergyscaleindataandsimulation [51,52]. Additional selection requirements remove spurious jets originat-ing fromisolated noise patternsin certain regions ofthe hadron calorimeter [53].ThesecorrectionsarealsopropagatedtothepmissT calculation.The b quark jet identificationcriteriaare based on a multivariatetechniquetocombinetheinformationfromdisplaced tracks with the information from secondary vertices associated withthejet andon the possiblepresence ofa soft muonin the eventfromthesemileptonicdecayoftheb quark [54].

High-energyV bosoncandidates, referred toas V jets,are re-constructedusingtheanti-kTclustering algorithm [48] witha dis-tanceparameter of 0.8 [55]. The puppi algorithm [56] is used to mitigatetheeffectofpileupbyassigningaweighttoeachparticle priortojetclusteringbasedonthelikelihoodoftheparticle orig-inatingfrompileup.ThemassoftheV jet(mV)iscomputedafter employingthemodifiedmass-droptaggeralgorithm [57,58] to re-movesoft, wide-angleradiationfromthe jets.The N-subjettiness variable τN [59] quantifieshowwellthejetcanbedividedinto N subjets.Theobservable τ21isemployedtodiscriminate2-prong objectsarisingfromhadronicdecaysofW orZ bosonsfromthose fromlightquarksorgluons.

The reconstructed vertex with the largest value of summed physics-objectp2T istheprimarypp interactionvertex.Thephysics objectsare thejets, clusteredusing thejet-finding algorithm [48, 49] withthetracksassignedtothevertexasinputs,andthe asso-ciatedmissingtransversemomentum, thenegative vectorsumof thepT ofthosejets.

Muonsare reconstructed by associating a track reconstructed in the inner silicon detectors with a trackin the muon system. Selectedmuon candidates are required tosatisfy a setof quality requirementsbasedonthenumberofspatialmeasurementsinthe silicontrackerandthemuon system,aswell asthefit qualityof thecombinedmuontrack [60,61].

Electronsarereconstructedbyassociatingatrackreconstructed intheinnersilicondetectorswithaclusterofenergyinECAL [62]. The selected electron candidates cannot originate from photon conversionsinthe inner silicontrackermaterialandmust satisfy a set of quality requirements based on the shower shape of the energydepositin the ECAL.Electroncandidates in thetransition regionbetweentheECALbarrelandendcap,1.44<|η|<1.57,are notconsideredbecausethistransitionregionleads tolower qual-ityreconstructedclustersbecauseofagapbetweenthebarreland endcapcalorimeters,whichisfilledwithservicesandcables.

The lepton candidate tracks must be consistent withthe pri-maryvertexoftheevent [63] tosuppresselectroncandidatesfrom photonconversionsandleptoncandidatesoriginatingfromdecays ofheavyquarks.Theleptoncandidatesmustbeisolatedfromother particlesin theevent. The relativeisolation forthe lepton candi-dateswithtransversemomentump

Tisdefinedas Riso=   charged hadrons pT+max  0,  neutral hadrons pT+  photons pT−pPUT  pT, (1) where the sums run over the charged and neutral hadrons and photonsin a cone definedby R≡(η)2+ (φ)2=0.4 (0.3) aroundthe muon (electron)trajectory, and pPUT denotes the con-tribution of neutral particles from pileup [60,62]. Only charged hadronsoriginating fromthe primary vertexare includedin the firstsum.

Muon (electron)candidateswithR<0.15 (0.06)are consid-eredisolated. The leptonreconstruction andselection efficiencies are measured using “tag-and-probe” techniques with Drell–Yan eventsthatprovideanunbiasedsamplewithhighpurity [64].The muon(electron)candidateshaveanaverageselectionefficiencyof 95(70)%.

The event selection identifies events with one or two lep-tonsandahigh-energyV bosonproducedwithVBStopology.The events are triggered by the presence of atleast one muon with pT>24GeV and|η|<2.4,oratleastoneelectronwithtransverse energyET>27GeV and|η|<2.5.Thesetriggeredmuonsand elec-tronssatisfylessrestrictiveisolationandqualityrequirementsthan theofflineselectioncriteria.

In the offline analysis events with at least one isolated lep-ton withpT>50GeV areacceptedascandidates.TheWV→ νV decays are characterized by asignificant amount of pmissT associ-atedwiththeundetectedneutrino.TheDrell–YanandQCDmultijet backgroundprocessesarereducedbyrequiringpmissT >50 (80) GeV inthemuon(electron)finalstate.Candidateeventswithasecond opposite-chargedandsameflavorisolatedleptonwithpT>30GeV selecttheZV→ V decays.ThecandidateZ bosoninvariantmass must be within 15 GeV of the nominal Z boson mass [65]. The presence of additional muons orelectron, with pT>20GeV and

|η|<2.4(2.5)formuons(electrons), satisfyinglessrestrictive se-lectionrequirementsthanthesignalleptoncandidateselectionand withaverageselectionefficienciesabove 95% [61,62],isusedasa conditiontofurtherreduceeventsfromthetopquarkandtriboson backgroundprocesses.EventswithnoZ boson candidateselected andwithtwoormoreleptonsarerejected.Eventswithaselected Z boson candidate and with three or more leptons are also re-jected.

Events are required to have at least one V jet with pT>

200GeV, |η|<2.4, τ21<0.55, and 65<mV<105GeV. The V jetsthatare withinR<1.0 ofoneoftheidentified leptonsare excluded. The efficiencyof the N-subjettiness and mass require-ments for the signal events is about 70%, while the probability of misidentifying a quark ora gluon jet asa V jet is 5%. The V jet mass resolution is about 15%. In the case of multiple V jet candidates, the one with mass closest to the nominal W boson mass [65] isselected.

Events are required to contain at least two jets with pT>

30GeV and |η|<5.0, and R(j,V)>0.8. In the case of more thantwojetcandidates,thepairwiththelargestdijetmassis se-lected.TheVBStopologyistargetedbyrequiringalargedijetmass mjj>800GeV and a largepseudorapidity separation |ηjj|>4.0. Eventshavingoneormoreidentifiedb quarkjetswithpT>30GeV and |η|<2.4 are rejected, decreasing the number of top quark backgroundevents.

The longitudinal component of the neutrino momentum in WV→ νV events is estimated by constraining the mass of the chargedlepton and neutrinosystemto be the nominalW boson mass [65].ThisissimilartotheapproachusedinapreviousCMS search [66].Theresultingquadraticequation issolvedusing pTmiss as an estimate ofthe neutrinotransverse momentum. The solu-tionwiththeclosest matchto thelongitudinalcomponentofthe chargedleptonmomentumisselected.Onlytherealpartis consid-eredifnorealsolutionisfound.The momentumoftheW boson isthenuniquelydetermined.

Additional selectioncriteriaareemployed toenhance the sen-sitivitytoaQGCsinthe WV channel.TheW and V bosonsinthe VBSandVBFtopologiesaremostlyproducedinthecentralrapidity regionwithrespecttothetwoselectedjets.Candidate eventsare requiredto have zV<0.3 and zW<0.3, where zx = |ηx− (ηj1+

ηj2)/2|/|ηjj|istheZeppenfeldvariable [67], ηx isthe pseudora-pidityofagaugeboson,and ηj1and ηj2arethepseudorapiditiesof

(4)

Fig. 3. Comparison betweenthefitresultsfortheV+jetsbackgroundprocessesandthedatadistributionsofthemWV(left)andmZV(right),respectively,inthesideband

regionwith40<mV<65GeV or105<mV<150GeV.Thefituncertaintyisshownasashadedband.

thetwoselectedjets.Inaddition,eventsarerequiredtohaveϑ >

1.0, where ϑ =min(minW, ηV)−minj1, ηj2),maxj1, ηj2)− maxW, ηV))is thebosoncentrality.The extractionofthesignal yieldsisperformedwithafittothemassdistribution ofthe WV orZV systemtostatisticallysubtracttheSMbackground contribu-tions.

5. Backgroundestimation

Theestimationoftheshapeandyieldofthemajorbackground W(Z)+jetsintheWV (ZV)channel isbased ontheobserved data using the sideband of the signal region defined by the mass of theV jet.The backgroundestimationcloselyfollowsthemethods used in Refs. [68–70]. An estimate of the W(Z)+jets background is obtainedby performing a maximum likelihoodfit to the mWV (mZV) distribution in data for the events in the W(Z)+jets en-richedcontrolregionbyselectingeventswith40<mV<65GeV or 105<mV<150GeV andsatisfyingtherestofthesignalselection criteria described in the last section. The background processes are modeled byfitting themWV andmZV distributionsin the re-spective sideband regions with the parametric function f(m)=

exp [−m/(c0+c1m)]. Fig.3 showsthe mWV andmZV data distri-butions andthecorresponding fit resultsinthissidebandregion. Theotherbackgroundprocessesarealsomodeledbythe paramet-ric function inthe fit withthe shape andnormalizationfixed to thepredictionfromsimulation.TheSMEWVV contributionis in-cluded in the fit.The contribution of the SM EW VV process is expectedtobe smallinthesideband region,evenwith enhance-mentsofthecrosssectionduetoaQGCs,withapredictedyieldof approximately1% oftheselectedevents.

Transfer factors obtained from W(Z)+jets simulation are used toextrapolatefromthesidebandtothesignalregion.Thetransfer factorsare obtainedfromtheratiooftheW(Z)+jetsyields inthe signal andsidebandregions asafunction ofthemWV (mZV).The statisticaluncertaintyinthetransferfactorvaluesduetothe lim-itednumberofsimulatedeventsisalsoconsideredintheanalysis andaffectsthenormalizationandshapeoftheW(Z)+jets.The un-certaintiesinthefitparametersc0 andc1 aretreatedasnuisance parameters inthe likelihood fit.The W(Z)+jetsestimation isalso performedwithanalternative function( f(m)=exp [−m/c0])and thedifferencefromthenominalpredictionistakenasasystematic uncertainty.

ThemWV(mZV)shapesofthett,ttW,ttZ,andsingletopquark backgroundcontributionsinthesignalregionarepredictedbythe simulation after applying correctionsto account forsmall differ-encesbetweendataandsimulation [54,61,62].Theeventyieldsof

these backgroundprocesses are checked ina top quark enriched control sample by requiringabottom quark jetinthe final state. TheQCDVV backgroundcontributionisalsoevaluatedfrom simu-lation.

6. Systematicuncertainties

A number of sources of systematicuncertainty can affect the ratesandshapesofthemWV(mZV)distributionsforthesignaland background processes.Theoretical uncertainties are evaluated us-ingtheseven-pointscalevariationdetailedinRef. [71],wherethe renormalization andfactorizationscales are varied independently up anddownbyafactoroftwofromtheirnominalvalue ineach event (removing combinations where both variations differ by a factoroffour).Thelargestvariationfromthenominalpredictionis taken asasystematic uncertainty.The effecton thesignal yields oftheaQGCandchargedHiggsbosonsisupto20%,dependingon thekinematicregion.Theeffectontheexpectedyields oftheSM EW VV and QCD VV processes reaches to 22 and38% for larger mVV values,respectively.

ThePDFuncertaintiesareevaluatedaccordingtotheprocedure described in Ref. [72] using the NNPDF 3.0 [44] set. The uncer-tainty inthePDFresultsisup to17%variationforthesignal,SM EW,andQCDVV normalizations.ThefullNLOQCDandEW correc-tions fortheSM EW andaQGCsignal processesare notavailable andare notconsidered here. TheNLO EWcorrectionsare known only for thesame-sign dileptonand WZ→  final statesand reduce the cross section by approximately 15% [73–75]. The un-certainty dueto missing higher-order EW corrections inthe GM modelisevaluatedtobe7% [76].

The jet energy scale and resolution uncertainties affect the yields and shapes of the signal and background processes from simulation. The effect on the expected yields reaches to above 10%forlargermVV values.Theuncertainties intheV jet selection efficiencyandmVscaleandresolutiongiverisetoasystematic un-certainty of8%inthepredictedyields ofthesimulatedprocesses. The lepton trigger, reconstruction, and selection efficiency uncer-taintiesare2.2and2.8%fortheWV andZV channels,respectively. Theb quark identificationefficiencyuncertaintyresultsin3% sys-tematicuncertaintyinthetopquarkbackgroundnormalization.An additional5%uncertaintyisincludedforthetopquarkbackground normalizationbased onthelevel ofagreementinyields between dataandpredictionintheb quarkjetenrichedcontrolregion.The uncertaintyinthepileupreweighting uncertaintyintheV jet se-lectionisevaluatedbyvaryingtheeffectiveinelasticcrosssection

(5)

Table 1

Relativesystematicuncertaintiesintheestimatedsignalandbackgroundyieldsinunitsofpercent.TherangeoftheuncertaintyvariationasafunctionofmVVisshownfor

thesystematicuncertaintysourcesaffectingalsotheshapeofthemVVdistribution.Thevaluesinparentheses showthesystematicuncertaintiesintheZV channelwhere

theuncertaintiesdiffercomparedtotheWV channel.

Source Shape Signal (%) V+jets (%) SM EW (%) QCD VV (%) Top quark (%)

Renorm./fact. scales  11–22 — 11–22 32–38 —

PDF  7–17 — 4–17 5–9 —

Jet momentum scale  2–13 — 1–17 1–20 5–20

V jet selection 8.0 — 8.0 8.0 — GM model EW 7.0 — — — — Bkg. normalization — 7 (16) — — 5.0 V+jets shape  — 5–200 — — — Integrated luminosity 2.5 — 2.5 2.5 — Lepton efficiency 2.2 (2.8) — 2.2 (2.8) 2.2 (2.8) —

Lepton momentum scale  0.5–3.5 — 0.5–3.5 1.5–7.5 1.0–5.0

b quark jet efficiency 2.0 — 2.0 2.0 3.0

Jet/pmiss

T resolution 4.0 — 3.0 2.0 —

Pileup modeling 4.0 — 4.0 4.0 —

Limited MC event count  1–2 — 6–20 (12–39) 7–49 (17–57) 5–50 (3–70)

Fig. 4. Distributions ofmWV(left)andmZV(right)inthesignalregion.Thegraybandsincludeuncertaintiesfromthepredictedyields.Thehistogramsforotherbackgrounds

includethecontributionsfromQCDVV,topquark,W+jets,andDrell–Yanprocesses.Thepredictedyieldsareshownwiththeirbest-fitnormalizationsfromthe background-onlyfit.ThedashedlinesshowthesignalpredictionsfortwoaQGCparameters,andchargedHiggsbosonsintheGMmodel.Theoverflowisincludedinthelastbin.The bottompanelineachfigureshowstheratioofthenumberofeventsobservedindatatothatofthetotalbackgroundprediction.

by 5% [46]. The statistical uncertainties dueto the finite size of simulatedsamplesarealsoincluded [77].

TheW(Z)+jetsbackgroundnormalizationuncertaintyis7(16)%, dominatedbythestatisticaluncertaintyarisingfromthefittothe mVVdistributioninthesidebandregion.Theuncertaintiesinthefit parametersinthesidebandregionandthestatisticaluncertaintyin thetransferfactorvalues(describedinSection 5)affecttheshape of the W(Z)+jets background distribution. Uncertainties affecting theW(Z)+jetsshapesareimportantforlargemVV valuesreaching up to200%. The uncertaintyof 2.5%in theintegrated luminosity determination [7] isincludedforallprocessesevaluatedfrom sim-ulation.Thisuncertaintydoesnotaffectthebackgroundprocesses estimatedfromdata.Asummaryoftherelativesystematic uncer-taintiesintheestimatedsignalandbackgroundyieldsisshownin Table1.

7.Results

No excess of events with respect to the SM background pre-dictionsis observed. The eventsin the signal region are used to constrainaQGCsintheeffectivefieldtheoryframework [78].Nine independentcharge conjugateandparityconserving dimension-8 effectiveoperatorsareconsidered [6].TheS0andS1operatorsare constructedfromthecovariantderivativeoftheHiggsdoublet.The T0, T1, and T2 operators are constructed from the SUL(2) gauge

fields.ThemixedoperatorsM0,M1,M6,andM7involvetheSUL(2) gaugefieldsandtheHiggsdoublet.

Statisticalanalysisoftheeventyieldsisperformedwithafitto themassdistributionoftheWV orZV systeminthesignalregion. The systematic uncertainties are treated as nuisance parameters in the fit and profiled. The SM EW production is treated as a background in the statisticalanalysis. The mass distributions are binned as follows: mVV = [600,700,800,900,1000,1200,1500,

2000,∞]GeV.Thebinboundariesarechosenbasedonthelimited number ofsimulated eventsforthe background processes evalu-ated from simulation. The distributions of mWV andmZV in the signal region are shown in Fig.4. The data yields, together with the SM expectations for the differentprocesses, are given in Ta-ble 2.A nonzero aQGC enhances theproduction cross section at largemassesofthe VV systemwithrespecttotheSMprediction, ascanbeseeninFig.4.Theobservednumberofdataeventswith mVV>1500GeV is3(3)comparedtothepredictedSMbackground yieldof6.4±1.5 (2.6±1.3)intheWV (ZV)channel.

Theobservedandexpected95% confidencelevel(CL)lowerand upper limitson the aQGC parameters f/4, where f is the di-mensionlesscoefficientofthegivenoperatorandistheenergy scale of newphysics, are calculated using a modified frequentist approachwiththeCLs criterion [79,80] andasymptoticresultsfor theteststatistic [81].Theincreaseoftheyieldasafunctionofthe aQGCexhibitsaquadraticbehavior,andafittedparabolicfunction isusedtointerpolatebetweenthediscretecouplingparametersof

(6)

Table 2

ExpectedyieldsfromvariousbackgroundprocessesinWV andZV finalstates.The combination ofthe statistical andsystematic uncertaintiesareshown. The pre-dictedyieldsareshownwiththeirbest-fitnormalizationsfrom the background-onlyfit.TheaQGCsignalyieldsareshownfortwoaQGCscenarioswith fT 2/4=

−0.5TeV−4 and f

T 2/4= −2.5TeV−4 forthe WV andZV channels,respectively.

ThechargedHiggsbosonsignalyieldsarealsoshownforvaluesofsH=0.5 and mH5=500GeV intheGMmodel.Thestatisticaluncertaintiesareshownforthe

ex-pectedsignalyields.

Final state WV ZV Data 347 47 V+jets 196±14 42.6±6.1 Top quark 113±15 0.14±0.04 QCD VV 27±8 5.5±1.9 SM EW VV 16±2 2.0±0.4 Total bkg. 352±19 50.3±5.8 fT2/4= −0.5,−2.5 TeV−4 19±1 6.7±0.5 mH5=500 GeV, sH=0.5 38±1 4.1±0.1

thesimulatedsignals.Thisisdoneforeachbinofthemass distri-butionoftheWV orZV system.Table3showstheindividuallower andupperlimitsobtainedbysettingallotheraQGCsparametersto zerofortheWV andZV channelsandtheircombination.These re-sultsgive themoststringentconstraintsonthe aQGCparameters forthe S0,S1,M0,M1,M6, M7,T0,T1, andT2operators.The ef-fective field theory is not acomplete modeland thepresence of nonzeroaQGCswillviolate tree-levelunitarityatsufficientlyhigh energy.Itisimportanttonotethatthegivenlimitsdonotinclude dipole form factors or other procedures to avoid unitarity viola-tion [82].

Constraints on resonant charged Higgs boson production are also derived. The exclusion limits on theproduct ofthe charged Higgsbosoncrosssectionandbranchingfraction σVBF()B(H±→ W±Z) atthe 95% CL as a function of m() forthe W±V (up-per left) and ZV (upper right) channels, respectively, are shown in Fig. 5. The exclusion limit on the doubly charged Higgs

bo-Table 3

Observedandexpectedlowerandupper95%CL limitsontheparametersofthequarticoperatorsS0,S1,M0,M1,M6,M7,T0,T1,andT2inWV andZV channels.Thelast twocolumnsshowtheobservedandexpectedlimitsforthecombinationoftheWV andZV channels.

Observed (WV) Expected (WV) Observed (ZV) Expected (ZV) Observed Expected (TeV−4) (TeV−4) (TeV−4) (TeV−4) (TeV−4) (TeV−4)

fS0/4 [−2.7,2.7] [−4.2,4.2] [−40,40] [−31,31] [−2.7,2.7] [−4.2,4.2] fS1/4 [−3.3,3.4] [−5.2,5.2] [−32,32] [−24,24] [−3.4,3.4] [−5.2,5.2] fM0/4 [−0.69,0.69] [−1.0,1.0] [−7.5,7.5] [−5.3,5.3] [−0.69,0.70] [−1.0,1.0] fM1/4 [−2.0,2.0] [−3.0,3.0] [−22,23] [−16,16] [−2.0,2.1] [−3.0,3.0] fM6/4 [−1.4,1.4] [−2.0,2.0] [−15,15] [−11,11] [−1.3,1.3] [−1.4,1.4] fM7/4 [−3.4,3.4] [−5.1,5.1] [−35,36] [−25,26] [−3.4,3.4] [−5.1,5.1] fT0/4 [−0.12,0.11] [−0.17,0.16] [−1.4,1.4] [−1.0,1.0] [−0.12,0.11] [−0.17,0.16] fT1/4 [−0.12,0.13] [−0.18,0.18] [−1.5,1.5] [−1.0,1.0] [−0.12,0.13] [−0.18,0.18] fT2/4 [−0.28,0.28] [−0.41,0.41] [−3.4,3.4] [−2.4,2.4] [−0.28,0.28] [−0.41,0.41]

Fig. 5. Expected andobservedexclusionlimitsatthe95%CL asafunctionofm()forσVBF()B(H±→W±Z)intheWV (upperleft)andZV (upperright)finalstates,

forσVBF(H±±)B(H±±→W±W±),asafunctionofm(H±±)(lowerleft),andforsHintheGMmodel(lowerright).Theblueshadedareacoversthetheoreticallydisallowed

(7)

son σVBF(H±±)B(H±±→W±W±) atthe95% CL as a functionof m(H±±)fortheWV finalstateisalsoshowninthelowerleftpanel inFig.5.Asmallintrinsicwidthof1 GeV isassumedfortheH±± andH±bosons.Thecombinationofthemodel-independent exclu-sionlimitsconstrains the sH-m(H5) plane by usingthe predicted crosssectionsatnext-to-NLOaccuracyintheGMmodel [76].The excluded sH values as a function of m(H5) are shown in Fig. 5 (lowerright).

8. Summary

A search for anomalous electroweak production of WW, WZ, andZZ bosonpairs inassociation withtwojetsin proton-proton collisionsatthecenter-of-massenergyof13TeV wasreported.The datasample correspondsto an integratedluminosityof 35.9 fb−1 collectedwiththeCMSdetectorat13TeV.Finalstateswithoneor twoleptonsandahadronicallydecayingW/Z boson,reconstructed asonelarge-radiusjet,areconsidered.Thecontributionofthe ma-jorbackgroundprocessW(Z)+jetsintheWV (ZV)channelis eval-uatedwithdatacontrolsamples.Noexcessofeventswithrespect totheSM backgroundpredictionsisobserved.Constraints onthe quarticvectorbosoninteractions intheframework of dimension-8effectivefield theoryoperatorsare obtained.Stringentlimitson theeffectivefieldtheoryoperatorsS0,S1,M0,M1,M6,M7,T0,T1, andT2 are set. These are the first searches for anomalous elec-troweakproduction ofWW, WZ, andZZ boson pairs inWV and ZV semi-leptonicchannelsat13TeV.Thelimitsimprovethe sensi-tivityofthecurrentCMSfullyleptonic resultsat13TeV [9,13,15] by factorsof up to seven, depending on the operator. The upper limitsonVBFproducedchargedHiggsbosoncrosssectionsinthe high-massregion extendtheprevious results attheLHC. The re-sultsare interpreted inthe GM modelwhere the observed limit excludessHvaluesgreaterthan0.53forthem(H5)rangefrom600 to2000 GeV.

Acknowledgements

WecongratulateourcolleaguesintheCERNaccelerator depart-ments for the excellent performance of the LHC and thank the technicalandadministrativestaffs atCERN andatother CMS in-stitutes for their contributions to the success of the CMS effort. Inaddition,wegratefullyacknowledgethecomputingcentersand personneloftheWorldwideLHCComputingGridfordeliveringso effectivelythecomputinginfrastructure essential toour analyses. Finally, we acknowledge the enduring support for the construc-tionandoperationofthe LHCandtheCMSdetectorprovided by thefollowingfundingagencies: BMBWFandFWF(Austria);FNRS andFWO (Belgium); CNPq, CAPES, FAPERJ,FAPERGS, andFAPESP (Brazil); MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, PUT and ERDF (Estonia); AcademyofFinland,MEC,andHIP(Finland);CEAandCNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NK-FIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN(Italy);MSIPandNRF(RepublicofKorea);MES(Latvia);LAS (Lithuania);MOEandUM(Malaysia); BUAP,CINVESTAV,CONACYT, LNS,SEP,andUASLP-FAI(Mexico);MOS(Montenegro);MBIE(New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portu-gal);JINR(Dubna);MON,ROSATOM, RAS,RFBR,andNRCKI (Rus-sia);MESTD(Serbia);SEIDI,CPAN,PCTI,andFEDER(Spain);MoSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter,IPST,STAR, andNSTDA(Thailand);TUBITAKandTAEK (Turkey);NASUandSFFR(Ukraine);STFC (UnitedKingdom);DOE andNSF(USA).

Individuals have received support from the Marie-Curie pro-gramandtheEuropeanResearchCouncilandHorizon2020Grant, contract Nos. 675440 and 765710 (European Union); the Lev-entis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Of-fice; the Fonds pour la Formation à la Recherche dans l’Indus-trie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Sci-ence – EOS” – be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z181100004218003; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Lendület (“Momentum”) Program and the János Bolyai Research Scholarship of the Hungarian Academy of Sci-ences, the New National Excellence Program ÚNKP, the NKFIA researchgrants123842,123959,124845,124850,125105,128713, 128786, and 129058 (Hungary); the Council of Science and In-dustrial Research,India;theHOMING PLUSprogramofthe Foun-dation for Polish Science, cofinanced from European Union, Re-gional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Centre (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/ 02861,Sonata-bis2012/07/E/ST2/01406;theNationalPriorities Re-search Program by Qatar National Research Fund; the Programa Estatal de Fomento de la Investigación Científica y Técnica de ExcelenciaMaríade Maeztu,grant MDM-2015-0509andthe Pro-grama Severo Ochoa del Principado de Asturias; the Thalis and Aristeiaprograms cofinancedby EU-ESF andthe GreekNSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chula-longkornUniversityandtheChulalongkornAcademic intoIts2nd CenturyProjectAdvancementProject(Thailand);TheWelch Foun-dation,contractC-1845;andtheWestonHavensFoundation(USA). References

[1] ATLASCollaboration,Observationofanewparticleinthesearchforthe stan-dardmodelHiggsbosonwiththeATLASdetectorattheLHC,Phys.Lett.B716 (2012)1,https://doi.org/10.1016/j.physletb.2012.08.020,arXiv:1207.7214. [2] CMSCollaboration,Observationofanewbosonatamassof125GeVwith

theCMSexperimentattheLHC,Phys.Lett.B716(2012)30,https://doi.org/10. 1016/j.physletb.2012.08.021,arXiv:1207.7235.

[3] CMSCollaboration,Observationofanewbosonwithmassnear125GeVin ppcollisionsat√s=7 and8TeV,J.HighEnergyPhys.06(2013)081,https:// doi.org/10.1007/JHEP06(2013)081,arXiv:1303.4571.

[4] D.Espriu,B.Yencho,LongitudinalWW scatteringinlightoftheHiggsboson discovery,Phys.Rev.D87(2013)055017,https://doi.org/10.1103/PhysRevD.87. 055017,arXiv:1212.4158.

[5] J.Chang,K. Cheung,C.-T.Lu,T.-C.Yuan,WW scattering inthe eraof post-Higgs-bosondiscovery,Phys.Rev.D87(2013)093005,https://doi.org/10.1103/ PhysRevD.87.093005,arXiv:1303.6335.

[6] O.J.P. Éboli, M.C. Gonzalez-Garcia, J.K. Mizukoshi, pp→jje±μ±νν and jje±μννatO(α6

em)andO(αem4 αs2)forthestudyofthequarticelectroweak

gauge boson vertexat CERN LHC,Phys. Rev.D74 (2006) 073005, https:// doi.org/10.1103/PhysRevD.74.073005,arXiv:hep-ph/0606118.

[7] CMSCollaboration,CMSLuminosityMeasurementsfor the2016DataTaking Period,CMSPhysicsAnalysisSummaryCMS-PAS-LUM-17-001,2017,http://cds. cern.ch/record/2257069.

[8] CMSCollaboration,TheCMSexperimentattheCERNLHC,J.Instrum.3(2008) S08004,https://doi.org/10.1088/1748-0221/3/08/S08004.

[9] CMSCollaboration, Observation ofelectroweak production ofsame-sign W boson pairsinthe twojetand twosame-signleptonfinalstatein proton-protoncollisionsat√s=13 TeV,Phys.Rev.Lett.120(2018)081801,https:// doi.org/10.1103/PhysRevLett.120.081801,arXiv:1709.05822.

[10] ATLASCollaboration,Evidenceforelectroweakproduction ofW±W±jj inpp collisionsat√s=8TeV withtheATLASdetector,Phys.Rev.Lett.113(2014) 141803,https://doi.org/10.1103/PhysRevLett.113.141803,arXiv:1405.6241. [11] CMSCollaboration,Studyofvectorbosonscatteringandsearchfornewphysics

ineventswithtwosame-signleptonsandtwojets,Phys.Rev.Lett.114(2015) 051801,https://doi.org/10.1103/PhysRevLett.114.051801,arXiv:1410.6315. [12] ATLAS Collaboration, Measurement of W±W± vector boson scatteringand

(8)

Rev.D96(2017)012007,https://doi.org/10.1103/PhysRevD.96.012007,arXiv: 1611.02428.

[13] CMSCollaboration, Measurement ofelectroweak WZ bosonproduction and search for newphysicsinWZ + twojetseventsinpp collisionsat √s= 13 TeV, Phys.Lett.B795(2019)281,https://doi.org/10.1016/j.physletb.2019. 05.042,arXiv:1901.04060.

[14] ATLASCollaboration,MeasurementsofW±Z productioncrosssectionsinpp collisions at √s=8TeV with the ATLASdetector and limits onanomalous gaugebosonself-couplings,Phys.Rev.D93(2016)092004,https://doi.org/10. 1103/PhysRevD.93.092004,arXiv:1603.02151.

[15] CMSCollaboration,Measurementofvectorbosonscatteringandconstraintson anomalousquarticcouplings fromeventswith fourleptonsandtwojetsin proton-protoncollisionsat√s=13 TeV,Phys.Lett.B774(2017)682,https:// doi.org/10.1016/j.physletb.2017.10.020,arXiv:1708.02812.

[16] CMSCollaboration,Evidenceforexclusiveγ γ→W+W−productionand con-straintsonanomalousquarticgaugecouplingsinppcollisionsat√s=7 and 8 TeV,J.HighEnergyPhys.08(2016)119,https://doi.org/10.1007/JHEP08(2016) 119,arXiv:1604.04464.

[17] CMSCollaboration,Measurementofthecrosssectionforelectroweak produc-tionofZγ inassociationwithtwojetsandconstraintsonanomalousquartic gaugecouplingsinproton–protoncollisionsat √s=8TeV,Phys.Lett.B770 (2017)380,https://doi.org/10.1016/j.physletb.2017.04.071,arXiv:1702.03025. [18] CMSCollaboration, Measurementofelectroweak-inducedproduction ofWγ

with two jets in pp collisions at √s=8TeV and constraints on anoma-lous quartic gauge couplings,J. High Energy Phys. 06 (2017) 106, https:// doi.org/10.1007/JHEP06(2017)106,arXiv:1612.09256.

[19] ATLASCollaboration, Studiesof production inassociation with a high-mass dijetsysteminpp collisionsat √s=8 TeVwiththe ATLASdetector, J.HighEnergyPhys.07(2017)107,https://doi.org/10.1007/JHEP07(2017)107, arXiv:1705.01966.

[20] ATLASCollaboration,SearchforanomalouselectroweakproductionofWW/WZ inassociationwithahigh-massdijetsysteminpp collisionsat √s=8TeV with the ATLASdetector, Phys.Rev.D95(2017) 032001,https://doi.org/10. 1103/PhysRevD.95.032001,arXiv:1609.05122.

[21] ATLASCollaboration,SearchfortribosonW±W±W∓ production inpp colli-sionsat√s=8TeV withtheATLASdetector, Eur.Phys. J.C77(2017)141,

https://doi.org/10.1140/epjc/s10052-017-4692-1,arXiv:1610.05088.

[22] ATLAS Collaboration,StudyofWWγ andWZγ productioninpp collisionsat s=8TeV andsearchforanomalousquarticgaugecouplingswiththeATLAS experiment,Eur.Phys.J.C77(2017)646,https://doi.org/10.1140/epjc/s10052 -017-5180-3,arXiv:1707.05597.

[23] CMSCollaboration,SearchforWWγandWZγ productionandconstraintson anomalousquarticgaugecouplingsinpp collisionsat√s=8TeV,Phys.Rev. D90(2014)032008,https://doi.org/10.1103/PhysRevD.90.032008,arXiv:1404. 4619.

[24] C.Englert,E.Re,M. Spannowsky,TripletHiggsboson collider phenomenol-ogy afterthe LHC,Phys. Rev.D 87(2013) 095014, https://doi.org/10.1103/ PhysRevD.87.095014,arXiv:1302.6505.

[25] C.Englert,E.Re,M.Spannowsky,PinningdownHiggstripletsattheLHC,Phys. Rev.D88(2013)035024,https://doi.org/10.1103/PhysRevD.88.035024,arXiv: 1306.6228.

[26] H.Georgi,M.Machacek,DoublychargedHiggsbosons,Nucl.Phys.B262(1985) 463,https://doi.org/10.1016/0550-3213(85)90325-6.

[27] CMSCollaboration,SearchforchargedHiggsbosonsproducedviavector bo-son fusionanddecayingintoapairofW andZ bosonsusingpp collisions at √s=13 TeV,Phys. Rev.Lett.119(2017)141802,https://doi.org/10.1103/ PhysRevLett.119.141802,arXiv:1705.02942.

[28] ATLASCollaboration,SearchforachargedHiggsbosonproducedinthe vector-bosonfusionmodewithdecayH±→W±Z usingppcollisionsat√s=8 TeV withtheATLASexperiment,Phys.Rev.Lett.114(2015)231801,https://doi.org/ 10.1103/PhysRevLett.114.231801,arXiv:1503.04233.

[29] CMS Collaboration, The CMStrigger system, J. Instrum. 12 (2017)P01020,

https://doi.org/10.1088/1748-0221/12/01/P01020,arXiv:1609.02366. [30] J.Alwall, R. Frederix,S. Frixione, V.Hirschi, F.Maltoni, O. Mattelaer, H.-S.

Shao, T. Stelzer,P. Torrielli, M. Zaro, The automated computation of tree-levelandnext-to-leadingorderdifferentialcrosssections,andtheirmatching to partonshower simulations,J.High Energy Phys.07 (2014)079,https:// doi.org/10.1007/JHEP07(2014)079,arXiv:1405.0301.

[31] A.Ballestrero,A.Belhouari,G.Bevilacqua,V.Kashkan,E.Maina,PHANTOM:a MonteCarloeventgeneratorforsixpartonfinalstatesathighenergycolliders, Comput.Phys.Commun.180(2009)401,https://doi.org/10.1016/j.cpc.2008.10. 005,arXiv:0801.3359.

[32] S.Alioli,P.Nason,C.Oleari,E.Re,NLOvectorbosonproductionmatchedwith shower inPOWHEG,J.High EnergyPhys. 07(2008)060,https://doi.org/10. 1088/1126-6708/2008/07/060,arXiv:0805.4802.

[33] P.Nason,AnewmethodforcombiningNLOQCDwithshowerMonteCarlo algorithms,J.HighEnergyPhys.11(2004)040,https://doi.org/10.1088/1126 -6708/2004/11/040,arXiv:hep-ph/0409146.

[34] S.Frixione,P.Nason,C.Oleari,MatchingNLOQCDcomputationswithparton showersimulations:thePOWHEGmethod,J.HighEnergyPhys.11(2007)070,

https://doi.org/10.1088/1126-6708/2007/11/070,arXiv:0709.2092.

[35] S. Alioli, P.Nason, C.Oleari, E.Re,A general framework for implementing NLOcalculationsinshowerMonteCarloprograms:thePOWHEGBOX,J.High EnergyPhys. 06(2010)043,https://doi.org/10.1007/JHEP06(2010)043, arXiv: 1002.2581.

[36] R.Gavin,Y.Li,F.Petriello,S.Quackenbush,WphysicsattheLHCwithFEWZ 2.1,Comput.Phys.Commun.184(2013)208,https://doi.org/10.1016/j.cpc.2012. 09.005,arXiv:1201.5896.

[37] Y. Li, F. Petriello,Combining QCD and electroweak corrections todilepton productioninFEWZ,Phys.Rev.B86(2012)094034,https://doi.org/10.1103/ PhysRevD.86.094034,arXiv:1208.5967.

[38] R.Gavin, Y. Li,F.Petriello, S.Quackenbush, FEWZ2.0:acodeforhadronic Z productionat next-to-next-to-leadingorder, Comput. Phys.Commun.182 (2011)2388,https://doi.org/10.1016/j.cpc.2011.06.008,arXiv:1011.3540. [39] N.Kidonakis,Two-loopsoftanomalousdimensionsforsingletopquark

asso-ciatedproduction withW− orH−, Phys.Rev.D82(2010)054018,https:// doi.org/10.1103/PhysRevD.82.054018,arXiv:1005.4451 [hep-ph].

[40] M.Czakon,A.Mitov,Top++:aprogramforthecalculationofthetop-pair cross-sectionathadroncolliders,Comput.Phys.Commun.185(2014)2930,https:// doi.org/10.1016/j.cpc.2014.06.021,arXiv:1112.5675.

[41] T. Sjöstrand,S.Ask,J.R. Christiansen,R.Corke,N.Desai,P.Ilten,S. Mrenna, S.Prestel,C.O.Rasmussen,P.Z.Skands,AnintroductiontoPYTHIA8.2, Com-put.Phys.Commun.191(2015)159,https://doi.org/10.1016/j.cpc.2015.01.024, arXiv:1410.3012.

[42] P.Skands,S.Carrazza,J.Rojo,TuningPYTHIA8.1:theMonash2013tune,Eur. Phys. J. C 74 (2014) 3024, https://doi.org/10.1140/epjc/s10052-014-3024-y, arXiv:1404.5630.

[43] CMSCollaboration,Eventgeneratortunesobtainedfromunderlyingeventand multipartonscatteringmeasurements,Eur.Phys.J.C76(2016)155,https:// doi.org/10.1140/epjc/s10052-016-3988-x,arXiv:1512.00815.

[44] R.D.Ball,V.Bertone,S.Carrazza,C.S.Deans,L.DelDebbio,S.Forte,A. Guf-fanti,N.P.Hartland,J.I.Latorre,J.Rojo,M.Ubiali,NNPDF,Partondistributions fortheLHCRunII,J.HighEnergyPhys.04(2015)040,https://doi.org/10.1007/ JHEP04(2015)040,arXiv:1410.8849.

[45] S. Agostinelli,et al., GEANT4, geant 4—a simulationtoolkit, Nucl. Instrum. Methods, Sect. A 506 (2003) 250, https://doi.org/10.1016/S0168-9002(03) 01368-8.

[46] CMSCollaboration,Measurementoftheinelasticproton-protoncrosssection at√s=13 TeV,J.HighEnergyPhys.07(2018)161,https://doi.org/10.1007/ JHEP07(2018)161,arXiv:1802.02613.

[47] CMS Collaboration,Particle-flowreconstruction andglobalevent description withtheCMSdetector,J.Instrum.12(2017)P10003,https://doi.org/10.1088/ 1748-0221/12/10/P10003,arXiv:1706.04965.

[48] M.Cacciari,G.P.Salam,G.Soyez,Theanti-kTjetclusteringalgorithm,J.High

EnergyPhys. 04(2008) 063,https://doi.org/10.1088/1126-6708/2008/04/063, arXiv:0802.1189.

[49] M.Cacciari,G.P.Salam,G.Soyez,FastJetusermanual,Eur.Phys.J.C72(2012) 1896,https://doi.org/10.1140/epjc/s10052-012-1896-2,arXiv:1111.6097. [50] M.Cacciari,G.P.Salam,DispellingtheN3mythforthek

Tjet-finder,Phys.Lett.

B641(2006)57,https://doi.org/10.1016/j.physletb.2006.08.037,arXiv:hep-ph/ 0512210.

[51] CMSCollaboration,Determinationofjetenergycalibrationandtransverse mo-mentumresolutioninCMS, J.Instrum. 6(2011)P11002, https://doi.org/10. 1088/1748-0221/6/11/P11002,arXiv:1107.4277.

[52] CMSCollaboration,JetenergyscaleandresolutionintheCMSexperimentin ppcollisionsat 8 TeV,J.Instrum.12(2017)P02014,https://doi.org/10.1088/ 1748-0221/12/02/P02014,arXiv:1607.03663.

[53] CMSCollaboration,Performanceofmissingtransversemomentum reconstruc-tioninproton-protoncollisionsat √s=13 TeVusingthe CMSdetector, J. Instrum.14(2019)P07004,https://doi.org/10.1088/1748-0221/14/07/P07004, arXiv:1903.06078.

[54] CMS Collaboration,Identificationofbquarkjetswith theCMSexperiment, J.Instrum.8(2012)P04013, https://doi.org/10.1088/1748-0221/8/04/P04013, arXiv:1211.4462.

[55] CMSCollaboration,IdentificationtechniquesforhighlyboostedW bosonsthat decayintohadrons,J.HighEnergyPhys.12(2014)017,https://doi.org/10.1007/ JHEP12(2014)017,arXiv:1410.4227.

[56] D. Bertolini, P. Harris, M. Low, N. Tran, Pileup per particle identification, J.HighEnergy Phys. 10(2014)59, https://doi.org/10.1007/JHEP10(2014)059, arXiv:1407.6013.

[57] M.Dasgupta,A.Fregoso,S.Marzani,G.P.Salam,Towardsanunderstandingof jetsubstructure,J.HighEnergyPhys.09(2013)029,https://doi.org/10.1007/ JHEP09(2013)029,arXiv:1307.0007.

[58] A.J.Larkoski,S.Marzani,G.Soyez,J.Thaler,Softdrop,J.HighEnergyPhys.05 (2014)146,https://doi.org/10.1007/JHEP05(2014)146,arXiv:1402.2657. [59] J.Thaler,K.VanTilburg,IdentifyingboostedobjectswithN-subjettiness,J.High

EnergyPhys. 03(2011)015,https://doi.org/10.1007/JHEP03(2011)015,arXiv: 1011.2268.

(9)

[60] CMSCollaboration,PerformanceofCMSmuonreconstructioninppcollision eventsat √s=7TeV, J. Instrum. 7(2012) P10002, https://doi.org/10.1088/ 1748-0221/7/10/P10002,arXiv:1206.4071.

[61] CMSCollaboration,PerformanceoftheCMSmuondetectorandmuon recon-structionwithproton-protoncollisionsat√s=13 TeV,J.Instrum.13(2018) P06015,https://doi.org/10.1088/1748-0221/13/06/P06015,arXiv:1804.04528. [62] CMSCollaboration,Performanceofelectronreconstructionandselectionwith

the CMSdetector in proton-protoncollisions at √s=8TeV,J. Instrum. 10 (2015) P06005, https://doi.org/10.1088/1748-0221/10/06/P06005, arXiv:1502. 02701.

[63] CMSCollaboration,Descriptionandperformanceoftrackandprimary-vertex reconstructionwiththeCMStracker,J.Instrum.9(2014)P10009,https://doi. org/10.1088/1748-0221/9/10/P10009,arXiv:1405.6569.

[64] CMSCollaboration,MeasurementoftheDrell–Yancrosssectioninpp collisions at √s=7 TeV,J. HighEnergyPhys. 10(2011)132,https://doi.org/10.1007/ JHEP10(2011)132,arXiv:1107.4789.

[65] M.Tanabashi,etal.,ParticleDataGroup,Reviewofparticlephysics,Phys.Rev. D98(2018)030001,https://doi.org/10.1103/PhysRevD.98.030001.

[66] CMSCollaboration,Searchforaheavyresonancedecayingtoapairof vec-torbosonsintheleptonplusmergedjetfinalstateat√s=13 TeV,J.High Energy Phys.05(2018)088,https://doi.org/10.1007/JHEP05(2018)088, arXiv: 1802.09407.

[67] D.L.Rainwater,R.Szalapski,D.Zeppenfeld,Probingcolorsingletexchangein Z +twojet eventsat theCERNLHC,Phys.Rev.D54(1996)6680,https:// doi.org/10.1103/PhysRevD.54.6680,arXiv:hep-ph/9605444.

[68] J.F.Gunion,M.Soldate,OvercomingacriticalbackgroundtoHiggsdetection, Phys.Rev.D34(1986)826,https://doi.org/10.1103/PhysRevD.34.826. [69] CMS Collaboration, Search for massive resonances decaying into pairs of

boostedbosonsinsemi-leptonicfinalstatesat√s=8TeV,J.HighEnergyPhys. 08(2014)174,https://doi.org/10.1007/JHEP08(2014)174,arXiv:1405.3447. [70] CMSCollaboration,SearchformassiveresonancesdecayingintoWW,WZ or

ZZ bosonsinproton-protoncollisionsat√s=13 TeV,J.HighEnergyPhys.03 (2017)162,https://doi.org/10.1007/JHEP03(2017)162,arXiv:1612.09159. [71] A.Ballestrero,etal.,Precisepredictionsforsame-signW-bosonscatteringat

the LHC,Eur.Phys. J.C 78(2018)671, https://doi.org/10.1140/epjc/s10052 -018-6136-y,arXiv:1803.07943.

[72] J.Butterworth, etal., PDF4LHCrecommendationsfor LHCRun II,J.Phys. G 43(2016)023001,https://doi.org/10.1088/0954-3899/43/2/023001,arXiv:1510. 03865.

[73] B. Biedermann,A.Denner, M.Pellen, Largeelectroweakcorrections to vec-torbosonscatteringattheLargeHadronCollider,Phys.Rev.Lett.118(2017) 261801,https://doi.org/10.1103/PhysRevLett.118.261801,arXiv:1611.02951. [74] B.Biedermann,A.Denner,M.Pellen,CompleteNLOcorrectionstoW+W+

scat-teringanditsirreduciblebackgroundattheLHC,J.HighEnergyPhys.10(2017) 124,https://doi.org/10.1007/JHEP10(2017)124,arXiv:1708.00268.

[75] A.Denner,S. Dittmaier,P.Maierhöfer, M.Pellen,C.Schwan,QCD and elec-troweakcorrectionstoWZ scatteringattheLHC,J.HighEnergyPhys.06(2019) 067,https://doi.org/10.1007/JHEP06(2019)067,arXiv:1904.00882.

[76] M.Zaro,H.Logan,RecommendationsfortheInterpretationofLHCSearchesfor H0

5,H±5,andH±±5 inVectorBosonFusionwithDecaystoVectorBosonPairs,

CERNReportLHCHXSWG-2015-001,2015,https://cds.cern.ch/record/2002500. [77] R.Barlow,C.Beeston,FittingusingfiniteMonteCarlosamples,Commun.

Com-put.Phys.77(1993)219,https://doi.org/10.1016/0010-4655(93)90005-W. [78] C.Degrande,N.Greiner,W.Kilian,O.Mattelaer,H.Mebane,T.Stelzer,S.

Wil-lenbrock, C.Zhang,Effectivefieldtheory: a modernapproachtoanomalous couplings,Ann.Phys.335(2013)21,https://doi.org/10.1016/j.aop.2013.04.016, arXiv:1205.4231.

[79] T.Junk,Confidencelevelcomputationforcombiningsearcheswithsmall statis-tics,Nucl.Instrum.Methods,Sect.A434(1999)435,https://doi.org/10.1016/ S0168-9002(99)00498-2,arXiv:hep-ex/9902006.

[80] A.L.Read,Presentationofsearchresults:theCLstechnique,J.Phys.G28(2002)

2693,https://doi.org/10.1088/0954-3899/28/10/313.

[81] G.Cowan,K.Cranmer,E.Gross,O.Vitells,Asymptoticformulaefor likelihood-basedtestsofnewphysics,Eur.Phys.J.C71(2011)1554,https://doi.org/10. 1140/epjc/s10052-011-1554-0, arXiv:1007.1727, Erratum: https://doi.org/10. 1140/epjc/s10052-013-2501-z.

[82] O.J.P.Eboli, M.C.Gonzalez-Garcia,S.M.Lietti,S.F.Novaes,Anomalous quartic gaugeboson couplings athadron colliders,Phys. Rev.D 63(2001)075008,

https://doi.org/10.1103/PhysRevD.63.075008,arXiv:hep-ph/0009262.

TheCMSCollaboration

A.M. Sirunyan,A. Tumasyan

YerevanPhysicsInstitute,Yerevan,Armenia

W. Adam, F. Ambrogi, E. Asilar,T. Bergauer, J. Brandstetter, M. Dragicevic, J. Erö,A. Escalante Del Valle,

M. Flechl,R. Frühwirth1,V.M. Ghete, J. Hrubec, M. Jeitler1,N. Krammer, I. Krätschmer,D. Liko,

T. Madlener,I. Mikulec, N. Rad, H. Rohringer, J. Schieck1, R. Schöfbeck, M. Spanring, D. Spitzbart,

W. Waltenberger, J. Wittmann, C.-E. Wulz1,M. Zarucki

InstitutfürHochenergiephysik,Wien,Austria

V. Chekhovsky, V. Mossolov,J. Suarez Gonzalez

InstituteforNuclearProblems,Minsk,Belarus

E.A. De Wolf,D. Di Croce, X. Janssen,J. Lauwers, A. Lelek, M. Pieters,H. Van Haevermaet,

P. Van Mechelen,N. Van Remortel

UniversiteitAntwerpen,Antwerpen,Belgium

F. Blekman, J. D’Hondt,J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette,I. Marchesini,

S. Moortgat, L. Moreels,Q. Python, K. Skovpen, S. Tavernier,W. Van Doninck, P. Van Mulders,

I. Van Parijs

VrijeUniversiteitBrussel,Brussel,Belgium

D. Beghin,B. Bilin, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, L. Favart,

A. Grebenyuk,A.K. Kalsi, J. Luetic,A. Popov2,N. Postiau, E. Starling, L. Thomas, C. Vander Velde,

P. Vanlaer,D. Vannerom, Q. Wang

(10)

T. Cornelis,D. Dobur, A. Fagot,M. Gul, I. Khvastunov3, C. Roskas, D. Trocino, M. Tytgat,W. Verbeke,

B. Vermassen, M. Vit, N. Zaganidis

GhentUniversity,Ghent,Belgium

O. Bondu,G. Bruno, C. Caputo,P. David, C. Delaere, M. Delcourt,A. Giammanco, G. Krintiras,V. Lemaitre,

A. Magitteri,K. Piotrzkowski,A. Saggio, M. Vidal Marono, P. Vischia,J. Zobec

UniversitéCatholiquedeLouvain,Louvain-la-Neuve,Belgium

F.L. Alves,G.A. Alves, G. Correia Silva,C. Hensel, A. Moraes,M.E. Pol, P. Rebello Teles

CentroBrasileirodePesquisasFisicas,RiodeJaneiro,Brazil

E. Belchior Batista Das Chagas, W. Carvalho,J. Chinellato4,E. Coelho, E.M. Da Costa, G.G. Da Silveira5,

D. De Jesus Damiao,C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson,

D. Matos Figueiredo, M. Melo De Almeida,C. Mora Herrera,L. Mundim, H. Nogima,W.L. Prado Da Silva,

L.J. Sanchez Rosas, A. Santoro,A. Sznajder, M. Thiel, E.J. Tonelli Manganote4,F. Torres Da Silva De Araujo,

A. Vilela Pereira

UniversidadedoEstadodoRiodeJaneiro,RiodeJaneiro,Brazil

S. Ahujaa, C.A. Bernardesa, L. Calligarisa, T.R. Fernandez Perez Tomeia,E.M. Gregoresb,

P.G. Mercadanteb,S.F. Novaesa,Sandra S. Padulaa

aUniversidadeEstadualPaulista,SãoPaulo,Brazil bUniversidadeFederaldoABC,SãoPaulo,Brazil

A. Aleksandrov, R. Hadjiiska, P. Iaydjiev,A. Marinov, M. Misheva, M. Rodozov, M. Shopova,G. Sultanov

InstituteforNuclearResearchandNuclearEnergy,BulgarianAcademyofSciences,Sofia,Bulgaria

A. Dimitrov, L. Litov,B. Pavlov, P. Petkov

UniversityofSofia,Sofia,Bulgaria

W. Fang6, X. Gao6,L. Yuan

BeihangUniversity,Beijing,China

M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen,M. Chen, Y. Chen, C.H. Jiang, D. Leggat, H. Liao,Z. Liu,

S.M. Shaheen7,A. Spiezia, J. Tao, E. Yazgan, H. Zhang,S. Zhang7,J. Zhao

InstituteofHighEnergyPhysics,Beijing,China

Y. Ban, G. Chen, A. Levin, J. Li,L. Li, Q. Li, Y. Mao,S.J. Qian, D. Wang

StateKeyLaboratoryofNuclearPhysicsandTechnology,PekingUniversity,Beijing,China Y. Wang

TsinghuaUniversity,Beijing,China

C. Avila,A. Cabrera, C.A. Carrillo Montoya, L.F. Chaparro Sierra, C. Florez, C.F. González Hernández,

M.A. Segura Delgado UniversidaddeLosAndes,Bogota,Colombia J.D. Ruiz Alvarez

UniversidaddeAntioquia,Medellin,Colombia

N. Godinovic, D. Lelas, I. Puljak,T. Sculac

(11)

Z. Antunovic,M. Kovac UniversityofSplit,FacultyofScience,Split,Croatia

V. Brigljevic,D. Ferencek, K. Kadija,B. Mesic, M. Roguljic, A. Starodumov8, T. Susa

InstituteRudjerBoskovic,Zagreb,Croatia

M.W. Ather,A. Attikis, E. Erodotou, M. Kolosova,S. Konstantinou, G. Mavromanolakis, J. Mousa,

C. Nicolaou,F. Ptochos, P.A. Razis, H. Rykaczewski, D. Tsiakkouri

UniversityofCyprus,Nicosia,Cyprus

M. Finger9,M. Finger Jr.9

CharlesUniversity,Prague,CzechRepublic E. Ayala

EscuelaPolitecnicaNacional,Quito,Ecuador E. Carrera Jarrin

UniversidadSanFranciscodeQuito,Quito,Ecuador

H. Abdalla10, A.A. Abdelalim11,12,M.A. Mahmoud13,14

AcademyofScientificResearchandTechnologyoftheArabRepublicofEgypt,EgyptianNetworkofHighEnergyPhysics,Cairo,Egypt

S. Bhowmik, A. Carvalho Antunes De Oliveira,R.K. Dewanjee, K. Ehataht,M. Kadastik, M. Raidal,

C. Veelken

NationalInstituteofChemicalPhysicsandBiophysics,Tallinn,Estonia

P. Eerola,H. Kirschenmann, J. Pekkanen,M. Voutilainen

DepartmentofPhysics,UniversityofHelsinki,Helsinki,Finland

J. Havukainen, J.K. Heikkilä, T. Järvinen,V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini,S. Laurila,

S. Lehti,T. Lindén, P. Luukka, T. Mäenpää,H. Siikonen, E. Tuominen, J. Tuominiemi

HelsinkiInstituteofPhysics,Helsinki,Finland T. Tuuva

LappeenrantaUniversityofTechnology,Lappeenranta,Finland

M. Besancon,F. Couderc, M. Dejardin, D. Denegri,J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras,

G. Hamel de Monchenault,P. Jarry, C. Leloup,E. Locci, J. Malcles,J. Rander, A. Rosowsky, M.Ö. Sahin,

A. Savoy-Navarro15, M. Titov

IRFU,CEA,UniversitéParis-Saclay,Gif-sur-Yvette,France

C. Amendola,F. Beaudette, P. Busson, C. Charlot,B. Diab, R. Granier de Cassagnac, I. Kucher, A. Lobanov,

J. Martin Blanco, C. Martin Perez,M. Nguyen, C. Ochando, G. Ortona, P. Paganini,J. Rembser, R. Salerno,

J.B. Sauvan, Y. Sirois,A. Zabi, A. Zghiche

LaboratoireLeprince-Ringuet,Ecolepolytechnique,CNRS/IN2P3,UniversitéParis-Saclay,Palaiseau,France

J.-L. Agram16,J. Andrea, D. Bloch,G. Bourgatte, J.-M. Brom, E.C. Chabert,C. Collard, E. Conte16,

J.-C. Fontaine16,D. Gelé, U. Goerlach,M. Jansová, A.-C. Le Bihan, N. Tonon,P. Van Hove

(12)

S. Gadrat

CentredeCalculdel’InstitutNationaldePhysiqueNucleaireetdePhysiquedesParticules,CNRS/IN2P3,Villeurbanne,France

S. Beauceron,C. Bernet, G. Boudoul, N. Chanon, R. Chierici,D. Contardo, P. Depasse, H. El Mamouni,

J. Fay, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh,H. Lattaud,M. Lethuillier,

L. Mirabito,S. Perries, V. Sordini, G. Touquet, M. Vander Donckt, S. Viret

UniversitédeLyon,UniversitéClaudeBernardLyon1,CNRS-IN2P3,InstitutdePhysiqueNucléairedeLyon,Villeurbanne,France

A. Khvedelidze9

GeorgianTechnicalUniversity,Tbilisi,Georgia

Z. Tsamalaidze9

TbilisiStateUniversity,Tbilisi,Georgia

C. Autermann, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, D. Meuser, A. Pauls,M. Preuten, M.P. Rauch,

C. Schomakers,J. Schulz, M. Teroerde,B. Wittmer

RWTHAachenUniversity,I.PhysikalischesInstitut,Aachen,Germany

A. Albert, M. Erdmann,S. Erdweg, T. Esch,R. Fischer, S. Ghosh,T. Hebbeker, C. Heidemann, K. Hoepfner,

H. Keller, L. Mastrolorenzo, M. Merschmeyer,A. Meyer, P. Millet,S. Mukherjee, A. Novak, T. Pook,

A. Pozdnyakov,M. Radziej, Y. Rath, H. Reithler,M. Rieger, A. Schmidt, A. Sharma,D. Teyssier,S. Thüer

RWTHAachenUniversity,III.PhysikalischesInstitutA,Aachen,Germany

G. Flügge, O. Hlushchenko,T. Kress, T. Müller, A. Nehrkorn, A. Nowack,C. Pistone, O. Pooth,D. Roy,

H. Sert, A. Stahl17

RWTHAachenUniversity,III.PhysikalischesInstitutB,Aachen,Germany

M. Aldaya Martin,T. Arndt, C. Asawatangtrakuldee, I. Babounikau, H. Bakhshiansohi, K. Beernaert,

O. Behnke,U. Behrens, A. Bermúdez Martínez, D. Bertsche, A.A. Bin Anuar, K. Borras18,V. Botta,

A. Campbell,P. Connor, C. Contreras-Campana, V. Danilov,A. De Wit, M.M. Defranchis, C. Diez Pardos,

D. Domínguez Damiani,G. Eckerlin, T. Eichhorn, A. Elwood, E. Eren, E. Gallo19, A. Geiser,

J.M. Grados Luyando, A. Grohsjean, M. Guthoff,M. Haranko, A. Harb,N.Z. Jomhari, H. Jung, A. Kasem18,

M. Kasemann, J. Keaveney, C. Kleinwort,J. Knolle,D. Krücker, W. Lange, T. Lenz,J. Leonard, K. Lipka,

W. Lohmann20,R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer,M. Meyer, M. Missiroli, G. Mittag, J. Mnich,

V. Myronenko,S.K. Pflitsch, D. Pitzl,A. Raspereza, A. Saibel,M. Savitskyi, P. Saxena,V. Scheurer,

P. Schütze,C. Schwanenberger, R. Shevchenko,A. Singh, H. Tholen, O. Turkot,A. Vagnerini,

M. Van De Klundert,G.P. Van Onsem, R. Walsh, Y. Wen,K. Wichmann, C. Wissing,O. Zenaiev, R. Zlebcik

DeutschesElektronen-Synchrotron,Hamburg,Germany

R. Aggleton,S. Bein, L. Benato, A. Benecke, V. Blobel, T. Dreyer, A. Ebrahimi, A. Fröhlich, E. Garutti,

D. Gonzalez, P. Gunnellini, J. Haller, A. Hinzmann, A. Karavdina, G. Kasieczka, R. Klanner, R. Kogler,

N. Kovalchuk,S. Kurz, V. Kutzner, J. Lange,T. Lange, A. Malara, D. Marconi, J. Multhaup,M. Niedziela,

C.E.N. Niemeyer,D. Nowatschin, A. Perieanu, A. Reimers, O. Rieger,C. Scharf, P. Schleper, S. Schumann,

J. Schwandt,J. Sonneveld, H. Stadie,G. Steinbrück, F.M. Stober, M. Stöver,B. Vormwald, I. Zoi

UniversityofHamburg,Hamburg,Germany

M. Akbiyik, C. Barth,M. Baselga, S. Baur, T. Berger,E. Butz, R. Caspart,T. Chwalek, W. De Boer,

A. Dierlamm, K. El Morabit,N. Faltermann, M. Giffels,M.A. Harrendorf, F. Hartmann17, U. Husemann,

I. Katkov2, S. Kudella, S. Mitra, M.U. Mozer, Th. Müller, M. Musich, G. Quast, K. Rabbertz,M. Schröder,

I. Shvetsov,H.J. Simonis, R. Ulrich, M. Weber, C. Wöhrmann, R. Wolf

(13)

G. Anagnostou,G. Daskalakis, T. Geralis,A. Kyriakis, D. Loukas,G. Paspalaki InstituteofNuclearandParticlePhysics(INPP),NCSRDemokritos,AghiaParaskevi,Greece

A. Agapitos,G. Karathanasis, P. Kontaxakis,A. Panagiotou, I. Papavergou, N. Saoulidou, K. Theofilatos,

K. Vellidis

NationalandKapodistrianUniversityofAthens,Athens,Greece

G. Bakas, K. Kousouris,I. Papakrivopoulos,G. Tsipolitis

NationalTechnicalUniversityofAthens,Athens,Greece

I. Evangelou,C. Foudas, P. Gianneios, P. Katsoulis, P. Kokkas, S. Mallios,K. Manitara, N. Manthos,

I. Papadopoulos,E. Paradas, J. Strologas, F.A. Triantis,D. Tsitsonis

UniversityofIoánnina,Ioánnina,Greece

M. Bartók21,M. Csanad, N. Filipovic, P. Major, K. Mandal, A. Mehta,M.I. Nagy, G. Pasztor,O. Surányi,

G.I. Veres

MTA-ELTELendületCMSParticleandNuclearPhysicsGroup,EötvösLorándUniversity,Budapest,Hungary

G. Bencze,C. Hajdu, D. Horvath22, Á. Hunyadi, F. Sikler,T.Á. Vámi, V. Veszpremi, G. Vesztergombi†

WignerResearchCentreforPhysics,Budapest,Hungary

N. Beni,S. Czellar, J. Karancsi21,A. Makovec,J. Molnar, Z. Szillasi

InstituteofNuclearResearchATOMKI,Debrecen,Hungary

P. Raics,Z.L. Trocsanyi, B. Ujvari

InstituteofPhysics,UniversityofDebrecen,Debrecen,Hungary

S. Choudhury,J.R. Komaragiri, P.C. Tiwari

IndianInstituteofScience(IISc),Bangalore,India

S. Bahinipati23,C. Kar, P. Mal, A. Nayak24, S. Roy Chowdhury, D.K. Sahoo23,S.K. Swain

NationalInstituteofScienceEducationandResearch,HBNI,Bhubaneswar,India

S. Bansal,S.B. Beri, V. Bhatnagar, S. Chauhan,R. Chawla, N. Dhingra, R. Gupta, A. Kaur, M. Kaur, S. Kaur,

P. Kumari,M. Lohan, M. Meena, K. Sandeep, S. Sharma, J.B. Singh, A.K. Virdi, G. Walia

PanjabUniversity,Chandigarh,India

A. Bhardwaj,B.C. Choudhary, R.B. Garg,M. Gola, S. Keshri, Ashok Kumar,S. Malhotra, M. Naimuddin,

P. Priyanka,K. Ranjan, Aashaq Shah, R. Sharma

UniversityofDelhi,Delhi,India

R. Bhardwaj25, M. Bharti25, R. Bhattacharya,S. Bhattacharya, U. Bhawandeep25, D. Bhowmik, S. Dey,

S. Dutt25,S. Dutta, S. Ghosh, M. Maity26, K. Mondal, S. Nandan,A. Purohit, P.K. Rout, A. Roy, G. Saha,

S. Sarkar,T. Sarkar26, M. Sharan, B. Singh25, S. Thakur25

SahaInstituteofNuclearPhysics,HBNI,Kolkata,India

P.K. Behera,A. Muhammad

IndianInstituteofTechnologyMadras,Madras,India

R. Chudasama, D. Dutta, V. Jha, V. Kumar, D.K. Mishra, P.K. Netrakanti, L.M. Pant, P. Shukla,P. Suggisetti

(14)

T. Aziz, M.A. Bhat,S. Dugad,G.B. Mohanty, N. Sur,Ravindra Kumar Verma TataInstituteofFundamentalResearch-A,Mumbai,India

S. Banerjee, S. Bhattacharya, S. Chatterjee,P. Das, M. Guchait, Sa. Jain, S. Karmakar,S. Kumar,

G. Majumder, K. Mazumdar,N. Sahoo, S. Sawant

TataInstituteofFundamentalResearch-B,Mumbai,India

S. Chauhan,S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, A. Rastogi, S. Sharma

IndianInstituteofScienceEducationandResearch(IISER),Pune,India

S. Chenarani27, E. Eskandari Tadavani,S.M. Etesami27,M. Khakzad, M. Mohammadi Najafabadi,

M. Naseri, F. Rezaei Hosseinabadi, B. Safarzadeh28,M. Zeinali

InstituteforResearchinFundamentalSciences(IPM),Tehran,Iran

M. Felcini,M. Grunewald

UniversityCollegeDublin,Dublin,Ireland

M. Abbresciaa,b, C. Calabriaa,b,A. Colaleoa,D. Creanzaa,c, L. Cristellaa,b,N. De Filippisa,c,

M. De Palmaa,b, A. Di Florioa,b, F. Erricoa,b,L. Fiorea, A. Gelmia,b,G. Iasellia,c,M. Incea,b, S. Lezkia,b, G. Maggia,c,M. Maggia, G. Minielloa,b, S. Mya,b, S. Nuzzoa,b, A. Pompilia,b,G. Pugliesea,c, R. Radognaa, A. Ranieria, G. Selvaggia,b,L. Silvestrisa, R. Vendittia, P. Verwilligena

aINFNSezionediBari,Bari,Italy bUniversitàdiBari,Bari,Italy cPolitecnicodiBari,Bari,Italy

G. Abbiendia,C. Battilanaa,b,D. Bonacorsia,b,L. Borgonovia,b,S. Braibant-Giacomellia,b, R. Campaninia,b, P. Capiluppia,b,A. Castroa,b,F.R. Cavalloa, S.S. Chhibraa,b, G. Codispotia,b,

M. Cuffiania,b,G.M. Dallavallea,F. Fabbria,A. Fanfania,b,E. Fontanesi, P. Giacomellia, C. Grandia,

L. Guiduccia,b,F. Iemmia,b,S. Lo Meoa,29,S. Marcellinia,G. Masettia,A. Montanaria,F.L. Navarriaa,b, A. Perrottaa,F. Primaveraa,b,A.M. Rossia,b,T. Rovellia,b,G.P. Sirolia,b, N. Tosia

aINFNSezionediBologna,Bologna,Italy bUniversitàdiBologna,Bologna,Italy

S. Albergoa,b,30,A. Di Mattiaa, R. Potenzaa,b,A. Tricomia,b,30,C. Tuvea,b aINFNSezionediCatania,Catania,Italy

bUniversitàdiCatania,Catania,Italy

G. Barbaglia, K. Chatterjeea,b,V. Ciullia,b,C. Civininia, R. D’Alessandroa,b, E. Focardia,b,G. Latino, P. Lenzia,b,M. Meschinia,S. Paolettia, L. Russoa,31, G. Sguazzonia, D. Stroma, L. Viliania

aINFNSezionediFirenze,Firenze,Italy bUniversitàdiFirenze,Firenze,Italy

L. Benussi, S. Bianco, F. Fabbri,D. Piccolo

INFNLaboratoriNazionalidiFrascati,Frascati,Italy

F. Ferroa, R. Mulargiaa,b,E. Robuttia, S. Tosia,b aINFNSezionediGenova,Genova,Italy

bUniversitàdiGenova,Genova,Italy

A. Benagliaa, A. Beschib, F. Brivioa,b, V. Cirioloa,b,17,S. Di Guidaa,b,17,M.E. Dinardoa,b,S. Fiorendia,b,

Riferimenti

Documenti correlati

Gli endpoint primari dello studio sono stati la variazione del diametro trasversale intermolare superiore tra la misurazione al baseline e a un anno dall’inizio

The hybrid stage shop scheduling model is based on a digraph, which is a powerful tool to design scheduling optimization (metaheuristics) algorithms. In section 6 a heuristics

We now describe the main components of our proposed hardware-in-the-loop simulation platform. A general overview of the architecture of the platform is shown in Fig. The main

In this section we focus on the time evolution of the one-body density matrix and the momentum distribution function: these are the most suitable quantities to investigate the

Si tratta di indagini che soltanto impropriamen- te possono definirsi “suppletive”, poiché l’inve- stigazione difensiva può essere preventiva, ma non è mai preliminare. A

Abstract Mutations in the SPG3A gene represent a sig- nificant cause of autosomal dominant hereditary spastic paraplegia with early onset and pure phenotype.. We describe an

In this review, after an look at the main natural sources of 5-HTP, the chemical analysis and synthesis, biosynthesis and microbial production of 5-HTP by molecular engineering will

In this study, two isolates of Fusarium oxysporum, obtained from lettuce plants grown in the Netherlands, which showed symptoms of wilt, were characterized by combining the study