• Non ci sono risultati.

Soluzione del problema n°3370

N/A
N/A
Protected

Academic year: 2021

Condividi "Soluzione del problema n°3370"

Copied!
17
0
0

Testo completo

(1)

SOLUTIONS

Au unprobleme n'estimmuable.L'editeur esttoujoursheureux

d'en-visager la publi ation de nouvelles solutions oude nouvelles perspe tives

portantsurdesproblemes anterieurs.

3363. [2008:362,364℄ ProposedbyToshioSeimiya,Kawasaki,Japan.

Let

ABC

beatrianglewith

∠ACB = 90

+

1

2

∠ABC

. Let

M

bethe

midpointof

BC

. Provethat

∠AM C < 60

.

Composite of similar solutions by Ri ardo Barroso Campos, University of

Seville,Seville,Spain;Ri hardI.Hess,Ran hoPalosVerdes,CA,USA;Matti

Lehtinen,National Defen eCollege, Helsinki,Finland;MadhavR.Modak,

formerly of Sir Parashurambhau College, Pune, India; and Peter Y. Woo,

BiolaUniversity,LaMirada,CA,USA.

In

△ABC

let

4β = ∠B

andlet

W

bethefootofthebise torof

∠A

. Wearegiventhat

∠C = 90

+ 2β

,when e

∠A = 90

− 6β

. Wededu ethat

6β < 90

,sothat

β <

15

. Moreover,be ause

∠AW C

isanexternalangle of

△ABW

,itsatis es

∠AW C = 4β + 45

− 3β



= 45

+ β < 60

.

Itremainstoshowthat

∠AM C < ∠AW C

. Be ausewearegiventhat

∠C

is obtuse, we have

AB > AC

, when e the foot

W

of the angle bise tor satis es

BW > W C

. Thatis,

W

liesbetween

M

and

C

;thus

∠AW C

isan externalangleof

△AM W

andthereforesatis es

∠AM C < ∠AW C < 60

,

asdesired.

Also solved by GEORGE APOSTOLOPOULOS, Messolonghi, Gree e; 

SEFKET

ARSLANAGI 

C, University of Sarajevo, Sarajevo, Bosnia and Herzegovina; ROY BARBARA,

Lebanese University, Fanar, Lebanon; MICHELBATAILLE, Rouen, Fran e; CHIP CURTIS,

Missouri Southern State University, Joplin, MO, USA; GERALD EDGECOMB and JULIE

STEELE,students,CaliforniaStateUniversity,Fresno,CA,USA;OLIVERGEUPEL,Bruhl, NRW,

Germany;JOHNG.HEUVER,GrandePrairie,AB;WALTHERJANOUS,Ursulinengymnasium,

Innsbru k, Austria; V  ACLAV KONE  CN 

Y, BigRapids, MI, USA;KEE-WAI LAU,Hong Kong,

China;TAICHIMAEKAWA,TakatsukiCity,Osaka,Japan;THANOSMAGKOS,3 rd

HighS hool

ofKozani,Kozani,Gree e;SALEMMALIKI 

C,student,SarajevoCollege,Sarajevo,Bosniaand

Herzegovina;SKIDMORECOLLEGEPROBLEMSOLVINGGROUP,SkidmoreCollege,Saratoga

Springs, NY, USA; GEORGE TSAPAKIDIS, Agrinio, Gree e; TITU ZVONARU, Comanesti,

Romania;andtheproposer.

3364. [2008:362,364℄ ProposedbyToshioSeimiya,Kawasaki,Japan.

Let

ABC

beatrianglewith

∠BAC = 120

and

AB > AC

. Let

M

be themidpointof

BC

. Provethat

∠M AC > 2 ∠ACB

.

(2)

I.SolutionbyPeterY.Woo,BiolaUniversity,LaMirada,CA,USA.

Let

β

= ∠CBA

and

γ

= ∠BCA

; then (be ause

∠BAC = 120

)

β

+ γ = 60

. Let

D

bethepoint ofsegment

BC

forwhi h

∠BAD = 2β

; then

∠DAC = 2γ

. TheLawofSinestellsusthat

BD

=

AD

sin 2β

sin β

= 2AD cos β

;

also,

CD

=

AD

sin 2 60

− β



sin 60

− β



= 2AD cos 60

− β



. But

β+γ = 60

and

γ > β

;hen e,

60

−β > β

sothat

cos 60

−β

 < cos β

.

Consequently,

CD < BD

,when e

M

liesbetween

B

and

D

. Itfollowsthat

∠M AC > ∠DAC = 2∠ACB

,asdesired.

II.SolutionbyMattiLehtinen,NationalDefen eCollege,Helsinki,Finland.

Let

O

bethe entreofthe ir um ir le

Γ

of

△ABC

,and

D

bethe mid-point of thear

CAB

of

Γ

. Note that

A

is onthe smallerar

DC

. Sin e

120

= ∠BAC = ∠BDC

,

DB

= DC = DO

. Drawthe ir le

Γ

with

en-tre

D

andradius

DB

(passingthrough

B

,

O

,and

C

).Be ause

M

isthe om-monmidpointof

BC

and

DO

, ir les

Γ

and

Γ

aresymmetri withrespe tto

M

. Let

AM

meet

Γ

at

E

(sothat

M

isalsothemidpointof

AE

);notethat

∠EDC = ∠AOB = 2∠ACB

. Extend

AE

tomeet

Γ

againat

F

andextend

DE

to meet

Γ

again at

G

. Be ausethe line

F A

separates

D

from

G

and

C

,

G

isonthear

F C

opposite

D

and

A

; onsequently,

∠F AC > ∠GDC

. But,

∠F AC = ∠M AC

,and

∠GDC = ∠EDC = ∠AOB = 2∠ACB

,sowe aredone.

Also solved by GEORGE APOSTOLOPOULOS, Messolonghi, Gree e; 

SEFKET

ARSLANAGI 

C, University of Sarajevo, Sarajevo, Bosnia and Herzegovina; ROY BARBARA,

Lebanese University, Fanar, Lebanon; MICHELBATAILLE, Rouen, Fran e; CHIP CURTIS,

Missouri Southern State University, Joplin, MO, USA; OLIVER GEUPEL, Bruhl, NRW,

Germany; V  ACLAV KONE  CN 

Y, Big Rapids, MI, USA; KEE-WAI LAU, Hong Kong, China;

THANOS MAGKOS,3 rd

High S hoolofKozani, Kozani, Gree e; SALEMMALIKI 

C,student,

SarajevoCollege,Sarajevo,BosniaandHerzegovina; GEORGETSAPAKIDIS,Agrinio,Gree e;

TITUZVONARU,Comanesti,Romania;andtheproposer.

3365. [2008:362,364℄ ProposedbyToshioSeimiya,Kawasaki,Japan.

A square

ABCD

is ins ribed in a ir le

Γ

. Let

P

be a point onthe minor ar

AD

of

Γ

,and let

E

and

F

betheinterse tions of

AD

with

P B

and

P C

,respe tively. Provethat

AE

· DF = 2 [P AE] + [P DF ]



,

(3)

SolutionbyJohnG.Heuver,GrandePrairie,AB.

Thealtitudesfrompoint

P

tosegments

AB

and

CD

leadusto on lude that

[P AB] + [P DC] =

1

2

AB

2

, Furthermore,

1

2

AB

2

= [P AE] + [AEB] + [P DF ] + [DF C]

, Sin e

[AEB] + [DF C] =

1

2

AB(AE + DF )

, wehave

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

A

B

C

D

E

F

P

q

q

b

b

[P AE] + [P DF ] =

1

2

AB

2

− [AEB] + [DF C]



=

1

2

AB

2

1

2

AB(AE + DF )

=

1

2

AB

(AB − AE − DF ) =

1

2

AB

· EF

. Now,

∠BP C = ∠CP D = ∠45

asanglessubtendedbyar sequal to

aquarterofthe ir le. Hen e

P F

isthebise torof

∠EP D

,andtherefore,

EF

F D

=

P E

P D

.

Also,

∠ABP = ∠P DA

asanglessubtendedbythear

AP

,sothattriangles

P DE

and

ABE

aresimilar,andtherefore,

P E

P D

=

AE

AB

. Consequently,

EF

F D

=

AE

AB

, or

EF

· AB = AE · DF

,andthen

[P AE] + [P DF ] =

1

2

AB

· EF =

1

2

AE

· DF

, whi h ompletestheproof.

Also solved by GEORGE APOSTOLOPOULOS, Messolonghi, Gree e; 

SEFKET

ARSLANAGI 

C, University of Sarajevo, Sarajevo, Bosnia and Herzegovina; ROY BARBARA,

Lebanese University, Fanar,Lebanon; RICARDOBARROSO CAMPOS,UniversityofSeville,

Seville, Spain; MICHELBATAILLE,Rouen, Fran e; CHIPCURTIS, MissouriSouthern State

University,Joplin,MO,USA;OLIVERGEUPEL,Bruhl, NRW, Germany;WALTHERJANOUS,

Ursulinengymnasium,Innsbru k,Austria;V 

ACLAVKONE 

CN 

(4)

MALIKI 

C,student,SarajevoCollege,Sarajevo,BosniaandHerzegovina;MADHAVR.MODAK,

formerlyofSirParashurambhauCollege,Pune,India;JOELSCHLOSBERG,Bayside,NY,USA;

D.J. SMEENK,Zaltbommel,theNetherlands; PETER Y.WOO,BiolaUniversity,La Mirada,

CA,USA;TITUZVONARU,Comanesti,Romania;andtheproposer. Therewasonein orre t

ommentsubmitted.

Kone nyandtheproposerea hbeganbyletting

Z

bethefootoftheperpendi ularfrom

P

to

AD

,thendedu ingthat

△DP Z ∼ △BEA

and

△AP Z ∼ △CF D

,whi hthenenables the al ulationof

AE · DF

.

3366. [2008:362, 365℄ Proposed byOvidiuFurdui,CampiaTurzii,Cluj,

Romania.

Let

{x}

denote the fra tional part of the real number

x

; that is,

{x} = x − ⌊x⌋

, where

⌊x⌋

is the greatest integer not ex eeding

x

. Evaluate

Z

1

0



1

x



4

dx

.

Solution by Chip Curtis, Missouri Southern State University, Joplin, MO,

USA.

Let

I

betheintegraltobeevaluated. Then

I

=

lim

N →∞

N

X

n=1

Z

n

1

1

n+1



1

x



4

dx

=

lim

N →∞

N

X

n=1

Z

n+1

n

{y}

4

y

2

dy

=

lim

N →∞

N

X

n=1

Z

n+1

n

(y − n)

4

y

2

dy

=

N →∞

lim

N

X

n=1

I

n

, where

I

n

=

Z

n+1

n

(y − n)

4

y

2

dy

. Wehave

I

n

=

Z

n+1

n



y

2

− 4ny + 6n

2

4n

3

y

+

n

4

y

2



dy

=

 y

3

3

− 2ny

2

+ 6n

2

y

− 4n

3

ln y −

n

4

y



n+1

n

= 3n

2

− n +

1

3

n

4

n

+ 1

+ n

3

− 4n

3

ln



1 +

1

n



= 3n

2

− n +

1

3

+



n

2

− n −

1

n

+ 1

+ 1



− 4n

3

ln



1 +

1

n



= 4n

2

− 2n +

4

3

1

n

+ 1

− 4n

3

ln



1 +

1

n



.

(5)

Substitutingtheseriesexpansions

x

x

+ 1

=

X

k=0

(−1)

k

x

k+1

and

ln(1 + x) =

X

k=1

(−1)

k+1

x

k

k

, with

x

=

1

n

(n ≥ 2)

intothelastexpressionfor

I

n

yields

I

n

= 4n

2

− 2n +

4

3

X

k=0

(−1)

k

n

k+1

− 4n

3

X

k=1

(−1)

k+1

kn

k

= 4n

2

− 2n +

4

3

− 4n

3



1

n

1

2n

2

+

1

3n

3



X

k=0

(−1)

k

n

k+1

− 4n

3

X

k=4

(−1)

k+1

kn

k

= −

X

k=0

(−1)

k

n

k+1

− 4n

3

X

k=4

(−1)

k+1

kn

k

=

X

k=1

(−1)

k

n

k

− 4

X

k=4

(−1)

k+1

kn

k−3

=

X

k=1

(−1)

k

n

k

− 4

X

k=1

(−1)

k

(k + 3)n

k

=

X

k=2



1

n



k

− 4

X

k=2

(−1)

k

(k + 3)n

k

=

1

n(n + 1)

− 4

X

k=2

(−1)

k

(k + 3)n

k

,

andthelastformulaisvalidfor

I

1

aswell. Thus,

I

=

X

n=1

1

n(n + 1)

− 4

X

n=1

X

k=2

1

k

+ 3



1

n



k

=

1 − 4

X

k=2

(−1)

k

k

+ 3

X

n=1

1

n

k

=

1 − 4

X

k=2

(−1)

k

k

+ 3

ζ(k)

.

AlsosolvedbyWALTHERJANOUS,Ursulinengymnasium,Innsbru k,Austria;RICHARD

I.HESS,Ran hoPalosVerdes,CA,USA;OLIVERGEUPEL,Bruhl,NRW,Germany;MADHAV

R. MODAK, formerly of Sir Parashurambhau College, Pune, India; PAOLO PERFETTI,

DipartimentodiMatemati a, Universita deglistudidiTor VergataRoma,Rome, Italy; and

theproposer.Thereweretwoin orre tsolutionssubmitted.

Theproposerobtainedtheanswer

1

3

− γ + 2 ln 2π − 12 ln A + 12 ln B

,where

γ

is Euler's onstantandwhere

A = lim

n→∞

1

1

2

2

· · · n

n

n

n2

2

+

n

2

+

1

12

e

−n2

4

;

B = lim

n→∞

1

1

2

2

2

2

· · · n

n

2

n

n3

3

+

n2

2

+

n

6

e

−n3

9

+

n

12

(6)

aretheGlaisher{Kinkelin onstantsoforder

1

andorder

2

,respe tively. Geupelobtained

I = 24

P

k=2

ζ

(k) − 1

k(k + 1)(k + 2)(k + 3)

= 0.14553289 . . .

,whi hhe remarked onvergesmorerapidlythantheseries

1 −

P

k=2

(−1)

k

ζ(k)

k

+ 3

andisthusbettersuited fornumeri alapproximation.

Janousreportsthegeneralization

Z

1

0

 1

x



N

dx =

N −2

X

j =0

(−1)

j



N

j



1

N − j − 1



2

N −j −1

− 1



− (−1)

N



N ln 2 −

1

2



+

X

p=2

(−1)

p

(p − 1)

p + N − 1

ζ(p) − 1



.

KeithEkblaw,WallaWalla,WA,USA,obtainedtheestimate

I ≈ 0.146

byaMonteCarlo approa h,whi his orre tto

3

de imalpla esafterrounding.

3367. [2008:362, 365℄ Proposedby LiZhou, PolkCommunity College,

WinterHaven,FL,USA.

Let

p(x) = a

n

x

n

+ a

n−1

x

n−1

+ · · · + a

1

x

beapolynomialwithinteger oeÆ ients,where

a

n

>

0

and

n

P

k=1

a

k

= 1

. Proveordisprovethatthereare in nitelymanypairsofpositiveintegers

(k, ℓ)

su hthat

p

(k + 1) − p(k)

and

p

(ℓ + 1) − p(ℓ)

arerelativelyprime.

Solution by Cristinel Morti i, Valahia University of Targoviste, Romania,

modi edslightlybytheeditor.

Let

Q

(x) = p(x + 1) − p(x)

. Thenwehave

Q

(0) = p(1) − p(0) =

n

X

k=1

a

k

− 0 = 1

.

Hen e,

Q(x) = xq(x) + 1

forsomepolynomial

q(x)

ofdegree

n

− 1

. We need to nd in nitely many positive integers

k

and

l

su h that

gcd Q(k), Q(l) = 1

.

Sin e the leading term in

Q(x)

is

na

n

x

n−1

we have

Q(k) > 0

for suÆ ientlylargepositiveintegers

k

. Forsu h

k

let

l

= Q(k) = kq(k) + 1

, sothat

l

isapositiveinteger. If,onthe ontrary,

gcd Q(k), Q(l)

 6= 1

,then there is a prime number

p

su h that

p

| Q(k)

and

p

| Q(l)

. Then, sin e

Q(l) = lq(l) + 1 = Q(k)q(l) + 1

,we on ludethat

p

| 1

,a ontradi tion. AlsosolvedbyROYBARBARA,LebaneseUniversity,Fanar,Lebanon;OLIVERGEUPEL,

Bruhl, NRW,Germany;WALTHERJANOUS,Ursulinengymnasium,Innsbru k,Austria;andthe

proposer.

Morti iremarkedthatthe on lusioninfa tholdsforanypolynomial

Q(k)

whose on-stanttermiseither

1

or

−1

. Thisis learfromtheprooffeaturedabove. Barbaraprovedthe strongerresultsthat(1)if

a

n

6= 0

and

n

P

k=1

(7)

integers

k

su hthat

p(k + 1) − p(k)

are allpairwise relativelyprime, and(2)if

f(x)

isa polynomialwithinteger oeÆ ientsandpositivedegreesu hthat

f(0) = 1

,thenthereare in nitelymanyintegers

k

1

< k

2

< k

3

< · · ·

su hthatthe

f(k

i

)

'sareallpairwiserelatively prime.

3368. [2008:363,365℄ ProposedbyNevenJuri ,Zagreb,Croatia.

Let

m

be aninteger,

m

≥ 2

, andlet

A

= [A

ij

]

bea blo kmatrixof dimension

2

m

× 2

m

with

A

ij

∈ M

4,4

(N)

for

1 ≤ i

,

j

≤ 2

m−2

,de nedby

A

ij

= 2

m

B

ij

+ C

ij

,where

B

ij

=

2

m

− 4i + 4

4i − 4

4i − 4

2

m

− 4i + 4

4i − 3

2

m

− 4i + 3 2

m

− 4i + 3

4i − 3

4i − 2

2

m

− 4i + 2 2

m

− 4i + 2

4i − 2

2

m

− 4i + 1

4i − 1

4i − 1

2

m

− 4i + 1

, and

C

ij

=

4 − 4j 4j − 2 4j − 1 1 − 4j

4j − 3 3 − 4j 2 − 4j

4j

4j − 3 3 − 4j 2 − 4j

4j

4 − 4j 4j − 2 4j − 1 1 − 4j

.

Showthatmatrix

A

isamagi squareoforder

2

m

.

SolutionbyOliverGeupel,Bruhl, NRW,Germany.

For onvenien e,write

B

ij

= B

(i)

=



b

(i)

kℓ



and

C

ij

= C

(j)

=



c

(j)

kℓ



,

andnotethatthese

4 × 4

matri eshaveintegerentries. Claim1Forea hentry

a

of

A

,

1 ≤ a ≤ 2

2m

. Proof: Wehave

a

= 2

m

b

(i)

kℓ

+ c

(j)

kℓ

forsome

i

,

j

,

k

, and

. Ifwealsohave

(k, ℓ) ∈ {(1, 2)

,

(1, 3)}

,then

b

(i)

kℓ

≥ 0

and

c

(j)

kℓ

≥ 1

;hen e

a

≥ 1

. Otherwise,

b

(i)

kℓ

≥ 1

and

c

(j)

kℓ

≥ 1−2

m

;hen e

a

≥ 2

m

+1−2

m

= 1

. Thisprovesthelower

bound. Fortheupperbound,weobservethatfor

(k, ℓ) ∈ {(1, 1)

,

(1, 4)}

we have

b

(i)

kℓ

≤ 2

m

and

c

(j)

kℓ

≤ 0

;hen e

a

≤ 2

m

· 2

m

= 2

2m

. Inanyother ase

b

(i)

kℓ

≤ 2

m

− 1

and

c

(j)

kℓ

≤ 2

m

;soagain

a

≤ 2

m

2

m

− 1

 + 2

m

= 2

2m

.

Claim2Theentriesof

A

aredistin t. Proof: Iftwoentriesof

A

areequalthen

2

m

b

(i)

kℓ

+ c

(j)

kℓ

= 2

m

b

(i

)

kℓ

+ c

(j

)

kℓ

for some

j

,

j

,

k

,

k

,

,and

. Let

b

= b

(i)

kℓ

,

b

= b

(i

)

k

,

c

= c

(j)

kℓ

,and

c

= c

(j

)

k

. Wethenhave

1 ≤ |c − c

| ≤ 4 · 2

m−2

− 1 − 4 · 2

m−2

 = 2

m+1

− 1 < 2

m+1

.

Without loss ofgenerality, suppose that

c < c

. Then

c

− c = 2

m

and

b

= b

+ 1

,hen e

c

≡ c

(mod 4)

and

b

≡ b

+ 1 (mod 4)

. Therearefour

asesfor

c

and

c

: Case1

(k, ℓ) ∈ {(1, 1)

,

(4, 1)}

and

(k

, ℓ

) ∈ {(2, 4)

,

(3, 4)}

; Case2

(k, ℓ) ∈ {(1, 4)

,

(4, 4)}

and

(k

, ℓ

) ∈ {(2, 1)

,

(3, 1)}

;

(8)

Case3

(k, ℓ) ∈ {(2, 3)

,

(3, 3)}

and

(k

, ℓ

) ∈ {(1, 2)

,

(4, 2)}

; Case4

(k, ℓ) ∈ {(2, 2)

,

(3, 2)}

and

(k

, ℓ

) ∈ {(1, 3)

,

(4, 3)}

; ea hofthemin ompatiblewiththe ondition

b

≡ b

+ 1 (mod 4)

.

Claim3Thesumoftheentriesalonganyhorizontal,verti al,ormaindiagonal

lineof

A

is

2

3m−1

+ 2

m−1

.

Proof: Thesumalonganygivenhorizontalorverti allineof

B

(i)

and

C

(j)

is

S

B

= 2

m+1

and

S

C

= 2

,respe tively. Therefore,thesumoftheentriesin ea hlineof

A

is

2

m−2

2

m

S

B

+S

C

 = 2

m−2

2

m

·2

m+1

+2 = 2

3m−1

+2

m−1

. The maindiagonal sumsof

B

(i)

and

C

(j)

are

b

(i)

= 2

m+2

− 16i + 10

and

c

(j)

= 10 − 16j

. Theentriesinea hmaindiagonal of

A

thenalsohavethe

sum

2

m−2

P

i=1

2

m

b

(i)

+

2

m−2

P

j=1

c

(j)

= 2

3m−1

+ 2

m−1

.

Alsosolvedbytheproposer.Onein ompletesolutionwasre eivedthatveri edtherow,

olumn,anddiagonalsums,butdidnotshowthattheentriesofthemagi square onsistedof

1

,

2

,

. . .

,

2

2m

.

3369. [2008 : 363, 365℄ Proposed by George Tsintsifas, Thessaloniki,

Gree e.

Let

A

1

A

2

A

3

A

4

be a tetrahedron whi h ontains the entre

O

of its ir umsphereasaninteriorpoint. Let

ρ

i

bethedistan efrom

O

tothefa e oppositevertex

A

i

. If

R

istheradiusofthe ir umsphere,provethat

4

3

R

4

X

i=1

ρ

i

.

SolutionbyOliverGeupel,Bruhl, NRW,Germany.

The laimisfalse;thefollowing ounterexampleisadaptedfrom[1℄.

First, onsiderthedegeneratetetrahedron

A

1

A

2

A

3

A

4

,where

A

1

= A

2

=

(−1, 1, 0)

,

A

3

=

(1, 1, 0)

,

A

4

=

(−1, −1, 0)

,

O

= (0, 0, 0)

,and

R

=

2

. Wehave

ρ

1

= ρ

2

= 0

,and

ρ

3

= ρ

4

= 1

, so that

4R

4

P

i=1

ρ

i

=

4

2

2

= 2

2 < 3

.

(9)

Now,let

A

1

=



−1 + ε, 1 − ε,

p2ε(2 − ε)



,

A

2

=



−1 + ε, 1 − ε, −p2ε(2 − ε)



,

A

3

=



2 cos



π

4

− ε



,

2 sin



π

4

− ε



,

0



,

A

4

=



2 cos



4

+ ε



,

2 sin



4

+ ε



,

0



.

Itiseasytoverifythatpoint

O

isintheinteriorofthetetrahedron

A

1

A

2

A

3

A

4

, andthat

A

i

→ A

i

forea h

i

as

ε

→ 0

,aswellas

4R

4

P

i=1

ρ

i

−→ 2

2

. The bound

2

2

isthebest possible. This isa orollaryfrom the fol-lowing:

Theorem[1℄.Let

A

1

A

2

A

3

A

4

beanondegeneratetetrahedronwhose ir um- entre

O

isnotanexteriorpoint. Let

P

beapointnotexteriorto

A

1

A

2

A

3

A

4

. Letthe distan esfrom

P

totheverti esandtothefa es of

A

1

A

2

A

3

A

4

be denotedby

R

i

and

ρ

i

,respe tively. Then

4

P

i=1

R

i

4

P

i=1

ρ

i

>

2

2

, and

2

2

isthegreatestlowerbound.

Referen es

[1℄ Ni holas D. Kazarino , \D.K. Kazarino 's inequality for tetrahedra",

Mi higanMathemati alJournal,Vol.4,No.2(1957),pp.99-104.

CounterexamplealsogivenbyPeterY.Woo,BiolaUniversity,LaMirada,CA,USA.

GeorgeApostolopoulos,Messolonghi,Gree e, itedthebookbyKazarino ,Geometri

Inequalities,YaleUniversityPress,1961,p.116.

No ompletesolutionsorother ommentsweresubmitted.

3370. [2008 : 363, 365℄ Proposed by George Tsintsifas, Thessaloniki,

Gree e.

Let

a

i

and

b

i

bepositive realnumbersfor

1 ≤ i ≤ k

, andlet

n

bea positiveinteger. Provethat

k

X

i=1

a

n

1

i

!

n

k

X

i=1

a

i

b

i

!

k

X

i=1

b

1

n−1

i

!

n−1

.

(10)

Compositeofsimilaroridenti alsolutionssubmittedbyallthesolverswhose

namesappearbelow(ex eptthetwosolversidenti edbya\*"beforetheir

names). Let

p

= n

and

q

=

n

n

− 1

. Then

p >

1

,

q >

1

and

1

p

+

1

q

= 1

. [Ed: learly,

n >

1

forthegiveninequalitytomakesense.℄ Let

x

i

=



a

i

b

i



n

1

and

y

i

= b

1

n

i

. Then

x

i

and

y

i

arepositiveforea h

i

.

ByHolder'sInequality,wehave

k

P

i=1

x

i

y

i



k

P

i=1

x

p

i



1

p



k

P

i=1

y

q

i



1

q

whi h be omes

k

P

i=1

a

1

n

i



k

P

i=1

a

i

b

i



n

1



k

P

i=1

b

n−1

i



n−1

n

.

Theresultfollowsbyraisingbothsidestothe

n

th

power.

Also solved by GEORGE APOSTOLOPOULOS, Messolonghi, Gree e; 

SEFKET

ARSLANAGI 

C,UniversityofSarajevo,Sarajevo,BosniaandHerzegovina;MICHELBATAILLE,

Rouen,Fran e;MANUELBENITO, 

OSCARCIAURRI,EMILIOFERNANDEZ,andLUZRONCAL,

Logro~no,Spain;CAOMINHQUANG,NguyenBinhKhiemHighS hool,VinhLong,Vietnam;

CHIPCURTIS,MissouriSouthernStateUniversity,Joplin,MO,USA;OLIVERGEUPEL,Bruhl,

NRW, Germany;JOEHOWARD,Portales,NM,USA;WALTHERJANOUS,

Ursulinengymnas-ium, Innsbru k,Austria; SALEMMALIKI 

C,student, SarajevoCollege, Sarajevo,Bosniaand

Herzegovina; DUNG NGUYENMANH, HighS hool ofHUS, Hanoi, Vietnam; *CRISTINEL

MORTICI, Valahia Universityof Targoviste, Romania; PAOLO PERFETTI, Dipartimento di

Matemati a, Universita deglistudi diTorVergata Roma, Rome, Italy; JOEL SCHLOSBERG,

Bayside,NY,USA;*PETERY.WOO,BiolaUniversity,LaMirada,CA,USA;TITUZVONARU,

Comane sti,Romania;andtheproposer.

3371. [2008 : 363, 368℄ Proposed by George Tsintsifas, Thessaloniki,

Gree e.

Let

ABC

beatrianglewith

a

,

b

,and

c

thelengthsofthesidesopposite the verti es

A

,

B

, and

C

, respe tively, and let

M

be aninterior point of

△ABC

. Thelines

AM

,

BM

,and

CM

interse ttheoppositesidesatthe points

A

1

,

B

1

,and

C

1

,respe tively. Linesthrough

M

perpendi ulartothe sidesof

△ABC

interse t

BC

,

CA

,and

AB

at

A

2

,

B

2

,and

C

2

,respe tively. Let

p

1

,

p

2

,and

p

3

bethedistan esfrom

M

tothesides

BC

,

CA

,and

AB

, respe tively. Provethat

[A

1

B

1

C

1

]

[A

2

B

2

C

2

]

=

(ap

1

+ bp

2

)(bp

2

+ cp

3

)(cp

3

+ ap

1

)

8a

2

b

2

c

2

 a

p

1

+

b

p

2

+

c

p

3



,

where

[KLM ]

denotestheareaoftriangle

KLM

. SolutionbyJoelS hlosberg,Bayside, NY,USA.

By the basi formula forthe area ofa triangle,

[ACM ] =

1

2

bp

2

and

[CM B] =

1

2

ap

1

. Itiswellknownthatifsegments

Y Z

and

Y

Z

(11)

samelineand

X

isanypoint,then

[XY Z] : [XY

Z

] = Y Z : Y

Z

,sothat

[ACC

1

]

[ACM ]

=

[CC

1

B]

[CM B]

=

CC

1

CM

;

[ACC

1

]

[CC

1

B]

=

[ACM ]

[CM B]

=

AC

1

C

1

B

=

bp

2

ap

1

. By similarreasoning,

BA

1

A

1

C

=

cp

3

bp

2

and

CB

1

B

1

A

=

ap

1

cp

3

. A knownformula(see

Eri W. Weisstein, \Routh's Theorem," at

http://mathworld.wolfram.com/

RouthsTheorem.html

) states that if

A

,

B

, and

C

are points on the sides

BC

,

CA

,and

AB

of

△ABC

,respe tively,then

[A

B

C

] =

AC

C

B

·

BA

A

C

·

CB

B

A

+ 1



AC

C

B

+ 1

 

BA

A

C

+ 1

 

CB

B

A

+ 1

 [AB C ]

. Therefore,

[A

1

B

1

C

1

] =

bp

2

ap

1

·

cp

3

bp

2

·

ap

1

cp

3

+ 1



bp

2

ap

1

+ 1

 

cp

3

bp

2

+ 1

 

ap

1

cp

3

+ 1

 [AB C ]

=

2abcp

1

p

2

p

3

(ap

1

+ bp

2

)(bp

2

+ cp

3

)(cp

3

+ ap

1

)

[ABC]

.

Sin e

∠M A

2

C

and

∠M B

2

C

arerightangles,

∠A

2

M B

2

= 360

− ∠M A

2

C

− ∠M B

2

C

− ∠A

2

CB

2

= 180

− ∠ACB

,

so

sin ∠A

2

M B

2

= sin C

,andsin eallfouranglesofquadrilateral

A

2

M B

2

C

arelessthan

180

,

A

2

M B

2

C

is onvex. Thewell-knownareaformulafora triangle,

[XY Z] =

1

2

XY

· XZ sin ∠Y XZ

,yields

[M A

2

B

2

] =

1

2

M A

2

· M B

2

sin ∠A

2

M B

2

=

p

1

p

2

ab



1

2

ab

sin C



=

p

1

p

2

ab

[ABC]

. Bysimilarreasoning,

[M B

2

C

2

] =

p

2

p

3

bc

[ABC]

and

[M C

2

A

2

] =

p

3

p

1

ca

[ABC]

, and

B

2

M C

2

A

and

C

2

M A

2

B

are onvex. Sin e

A

2

M B

2

C

,

B

2

M C

2

A

,and

C

2

M A

2

B

are onvex,

M

isoutsideof

△A

2

B

2

C

,

△B

2

C

2

A

,and

△C

2

A

2

B

, and sin e

M

is in the interior of

△ABC

,

M

must be in the interior of

△A

2

B

2

C

2

. Therefore,

(12)

andso

[A

2

B

2

C

2

]

=

 p

1

p

2

ab

+

p

2

p

3

bc

+

p

3

p

1

ca



[ABC]

=

p

1

p

2

p

3

abc

 a

p

1

+

b

p

2

+

c

p

3



[ABC]

. Finally,

[A

2

B

2

C

2

]

[A

1

B

1

C

1

]

=

p

1

p

2

p

3

abc



a

p

1

+

b

p

2

+

c

p

3



[ABC]

2abcp

1

p

2

p

3

(ap

1

+ bp

2

)(bp

2

+ cp

3

)(cp

3

+ ap

1

)

[ABC]

=

(ap

1

+ bp

2

)(bp

2

+ cp

3

)(cp

3

+ ap

1

)

2a

2

b

2

c

2

 a

p

1

+

b

p

2

+

c

p

3



.

AlsosolvedbyGEORGEAPOSTOLOPOULOS,Messolonghi,Gree e;ARKADYALT,San

Jose, CA,USA;MICHELBATAILLE,Rouen,Fran e; CHIPCURTIS,MissouriSouthern State

University,Joplin,MO,USA;OLIVERGEUPEL,Bruhl, NRW, Germany;WALTHERJANOUS,

Ursulinengymnasium, Innsbru k,Austria; PETERY.WOO,BiolaUniversity,La Mirada,CA,

USA;andTITUZVONARU,Comane sti,Romania.Therewasonein orre tsolutionsubmitted.

BothBatailleandGeupel al ulatedwithbary entri oordinates.Geupelalsousedthe

formulafortheareaofthepedaltriangleof

M

,towit

[A

2

B

2

C

2

] = |R

2

−OM

2

|/4R

2

,where

O

and

R

arethe ir um entreand ir umradiusoftriangle

ABC

,respe tively.

3372. [2008:364,366℄ ProposedbyVoQuo BaCan,CanThoUniversity

ofMedi ineandPharma y,CanTho,Vietnam.

If

x

,

y

,

z

≥ 0

and

xy

+ yz + zx = 1

,provethat (a)

1

p2x

2

+ 3yz

+

1

p2y

2

+ 3zx

+

1

p2z

2

+ 3xy

2

6

3

; (b)

1

px

2

+ yz

+

1

py

2

+ zx

+

1

pz

2

+ xy

≥ 2

2

.

SolutionbyGeorgeApostolopoulos,Messolonghi,Gree e.

(a) Sin e

2x

2

≤ 3x

2

wehave

2x

2

+ 3yz ≤ 3x

2

+ 3yz

,thus

1

p2x

2

+ 3yz

1

p3x

2

+ 3yz

=

1

3px

2

+ yz

.

Similarinequalitiesholdfortheothertwotermsontheleftsideofthedesired

inequality,andwenowhave

1

p2x

2

+ 3yz

+

1

p2y

2

+ 3zx

+

1

p2z

2

+ 3xy

1

3

1

px

2

+ yz

+

1

py

2

+ zx

+

1

pz

2

+ xy

!

.

(13)

Thedesiredinequalityfollowsnowfrom(b),whi hisprovenbelow.

(b)

Moregenerally,wewillprovethatif

x

,

y

,

z

≥ 0

and

xy+yz+zx > 0

, then

1

px

2

+ yz

+

1

py

2

+ zx

+

1

pz

2

+ xy

2

2

xy

+ yz + zx

. (1)

Sin e thisissymmetri in

x

,

y

,

z

,wemayassumethat

x

≥ y ≥ z

. Noti e that

1

py

2

+ zx

+

1

pz

2

+ xy

2

2

py

2

+ z

2

+ xy + zx

. [Ed: we have

1

py

2

+ zx

+

1

pz

2

+ xy

≥ 2

r

1

py

2

+ zx

1

pz

2

+ xy

from the

AM{GMInequality,andalso

1

py

2

+ zxpz

2

+ xy

2

y

2

+ zx + z

2

+ xy

;the inequalityabovenowfollowsfromthesetwo.℄

SoitsuÆ estoprovethat

1

px

2

+ yz

+

2

2

py

2

+ z

2

+ xy + zx

2

2

xy

+ yz + zx

. Let

K

= xy + yz + zx

and

L

= y

2

+ z

2

+ xy + zx

. Then

2

2

K

2

2

L

=

2

2

L

K



KL

=

2

2 y

2

− yz + z

2



KL

L

+

K



. Itis learthat

L

≥ K

,

L

≥ 2 y

2

− yz + z

2



,and

K

≥ y

px

2

+ yz

.

[Ed: Sin e

x

≥ y ≥ z

, we have

L

= y

2

+ z

2

+ xy + zx ≥ y

2

+ z

2

+ y

2

+ z

2

≥ 2(y

2

− yz + z

2

)

and

K

= xy + yz + zx ≥ xy + yz + yz

= y

x

2

+ 4xz + 4z

2

≥ y

px

2

+ 4yz + 4z

2

≥ y

px

2

+ yz

.℄ Thus,

2

2 y

2

− yz + z

2



KL(

L

+

K)

2

2 y

2

− yz + z

2



KL(2

K)

=

2 y

2

− yz + z

2



K

L

2 y

2

− yz + z

2



ypx

2

+ yz

q

2 y

2

− yz + z

2



=

py

2

− yz + z

2

ypx

2

+ yz

py

2

ypx

2

+ yz

=

1

px

2

+ yz

,

Riferimenti

Documenti correlati

After adjusting for relevant confounders, there was no association between decreased serum TSH levels and all-cause and cardiovascular mortality in the Pomerania study; on the

Keywords: nomograms, head and neck cancer, oral cancer, squamous cell carcinoma, neutrophil to lymphocyte ratio, prognosis, extranodal extension, perineural

Le specie vegetali per proteggersi da questo tipo di stress, grazie al meccanismo d’acclimatazione, mettono in atto tutta una serie di risposte che comprende: modifiche

L’obiettivo principale degli studi eseguiti sull’acclimatazione al freddo e sulla tolleranza allo stress da congelamento, prevede l’identificazione delle proteine indotte da

[r]

Il carico termico dovuto alla ventilazione, cioè al numero e alla modalità di ricambio dell’aria interna con quella esterna, è una grandezza di fondamentale importanza

Il parametro k necessario per la scalatura in Doppler viene stimato attraverso una stima dell’estensione geometrica del modello 3-D dopo che è stata effettuata la proiezione sul piano

In particolare questo problema ` e noto come problema di Didone e pu` o essere formulato matematicamente nel seguente modo: “tra tutte le curve della stessa lunghezza aventi estremi