• Non ci sono risultati.

A characterization of linearized polynomials with maximum kernel

N/A
N/A
Protected

Academic year: 2021

Condividi "A characterization of linearized polynomials with maximum kernel"

Copied!
22
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Finite

Fields

and

Their

Applications

www.elsevier.com/locate/ffa

A

characterization

of

linearized

polynomials

with

maximum

kernel

Bence Csajbóka, Giuseppe Marinob,c, Olga Polverinob,

Ferdinando Zullob,∗

aMTA–ELTEGeometricandAlgebraicCombinatoricsResearchGroup,ELTE

EötvösLorándUniversity,Budapest,Hungary,DepartmentofGeometry,1117

Budapest,Pázmány P.stny.1/C,Hungary

b

DipartimentodiMatematicaeFisica,UniversitàdegliStudidellaCampania “LuigiVanvitelli”,VialeLincoln5,I-81100Caserta,Italy

cDipartimentodiMatematicaeApplicazioni“RenatoCaccioppoli”,Universitàdegli

StudidiNapoli“FedericoII”,ViaCintia,MonteS.Angelo,I-80126Napoli,Italy

a r t i c l e i n f o a b s t r a c t

Articlehistory:

Received15August2018 Receivedinrevisedform26 November2018

Accepted29November2018 Availableonline6December2018 CommunicatedbyDieterJungnickel

MSC:

11T06 15A04

Keywords:

Linearizedpolynomials

Weprovidesufficient andnecessaryconditions forthe coef-ficientsofa q-polynomial f overFqn whichensure that the

numberofdistinctrootsof f inFqn equals thedegreeof f .

Wesaythatthesepolynomialshavemaximumkernel.Asan applicationwestudyindetail q-polynomialsofdegree qn−2 overFqn whichhave maximumkernelandforn≤ 6 welist

all q-polynomialswithmaximum kernel.Wealso obtain in-formationonthesplittingfieldofanarbitraryq-polynomial. Analogousresultsareprovedforqs-polynomialsaswell,where

gcd(s,n)= 1.

©2018ElsevierInc.Allrightsreserved.

TheresearchwassupportedbyMinistryforEducation,UniversityandResearchofItalyMIUR(Project PRIN2012“GeometriediGaloisestrutturediincidenza”)andbytheItalianNationalGroupforAlgebraic andGeometricStructuresandtheirApplications(GNSAGA- INdAM).Thefirstauthorwassupportedby theJánosBolyai ResearchScholarshipoftheHungarian AcademyofSciencesandbyOTKAGrantNo. K 124950.

* Correspondingauthor.

E-mailaddresses:csajbokb@cs.elte.hu(B. Csajbók),giuseppe.marino@unicampania.it, giuseppe.marino@unina.it(G. Marino),olga.polverino@unicampania.it(O. Polverino), ferdinando.zullo@unicampania.it(F. Zullo).

https://doi.org/10.1016/j.ffa.2018.11.009

(2)

Lineartransformations Semilineartransformations

1. Introduction

Aq-polynomialoverFqnisapolynomialoftheformf (x)=

iaixq i

,whereai∈ Fqn.

Wewill denotethesetofthesepolynomials byLn,q.LetK denotethealgebraicclosure

ofFqn.ThenforeveryFqn≤ L≤ K,f definesanFq-lineartransformationofL,whenL

isviewedasanFq-vectorspace.IfL isafinitefieldofsizeqmthenthepolynomialsofLn,q

consideredmodulo(xqm−x) formanF

q-subalgebraoftheFq-lineartransformationsofL.

OncethisfieldL isfixed,wecandefinethekernel off asthekernelofthecorresponding Fq-linear transformation ofL, which isthe sameas theset of roots of f inL; and the

rank off astherankofthecorrespondingFq-lineartransformation ofL.Notethatthe

kernelandtherankoff dependonthisfieldL andfromnowonwewillconsiderthecase L=Fqn.Inthis caseLn,q consideredmodulo(xq

n

− x) isisomorphictotheFq-algebra

of Fq-lineartransformationsof then-dimensionalFq-vectorspace Fqn.The elementsof

this factor algebraare representedby L˜n,q :={

n−1 i=0 aixq

i

: ai ∈ Fqn}.For f ∈ ˜Ln,q if

deg f = qk then wecall k theq-degree of f .It is clearthatinthis casethekernel off hasdimensionat mostk and therankoff isat leastn− k.

Let U = u1,u2,. . . ,ukFq be ak-dimensional Fq-subspace of Fqn. It is well known

that, up to a scalar factor, there is a unique q-polynomial of q-degree k, which has kernel U . Wecangetsuchapolynomialasthedeterminantofthematrix

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ x xq · · · xqk u1 uq1 · · · u qk 1 .. . uk uqk · · · uq k k ⎞ ⎟ ⎟ ⎟ ⎟ ⎠.

Theaimofthispaperistostudytheotherdirection,i.e.whenagivenf ∈ ˜Ln,q with

q-degreek haskernelofdimensionk.Ifthishappensthenwesaythatf isaq-polynomial

with maximumkernel.

If f (x) ≡ a0x+ a1+· · · + akxσ k

(mod xqn

− x), with σ = qs for some s with

gcd(s,n)= 1,thenwesaythatf (x) isaσ-polynomial(orqs-polynomial)withσ-degree

(or qs-degree)k.Regardingσ-polynomialsthefollowingisknown.

Result 1.1.[7, Theorem 5] Let L be a cyclic extension of a field F of degree n, and suppose thatσ generates the Galois group of L over F. Let k bean integer satisfying

1 ≤ k ≤ n, and let a0,a1,. . . ,ak be elements of L, not all them are zero. Then the

(3)

f (x) = a0x + a1+· · · + akxσ k

haskernelwithdimensionatmostk inL.

Similarlyto thes= 1 case wewill saythataσ-polynomialis ofmaximum kernel if thedimensionofitskernelequalsitsσ-degree.

Linearized polynomials have been used to describe families of Fq-linear maximum

rank distancecodes (MRD-codes), i.e. Fq-subspacesof L˜n,q of order qnk inwhich each

element has kernel of dimension at most k. The first examples of MRD-codes found were the generalized Gabidulin codes [3,5], thatis Gk,s = x,xq

s

,. . . ,xqs(k−1)Fqn with

gcd(s,n)= 1;thefactthatGk,sisanMRD-codecanbeshownsimplybyusingResult1.1.

Itisimportant tohaveexplicitconditionsonthecoefficientsofalinearizedpolynomial characterizingthenumberofitsroots.Furtherconnectionswithprojective polynomials canbe foundin[8].

Ourmain resultprovides sufficient and necessary conditions onthe coefficients ofa

σ-polynomialwith maximumkernel.

Theorem1.2. Consider

f (x) = a0x + a1+· · · + ak−1xσ

k−1 − xσk,

with σ = qs,gcd(s,n)= 1 and a

0,. . . ,ak−1 ∈ Fqn. Thenf (x) is of maximumkernel if

andonly ifthematrix

A = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 0 0 · · · 0 a0 1 0 · · · 0 a1 0 1 · · · 0 a2 .. . ... ... ... 0 0 · · · 1 ak−1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ (1) satisfies AAσ· · · Aσn−1 = Ik,

whereAσi isthematrixobtainedfrom A byapplying toeachof itsentriesthe

automor-phism x→ xσi andI

k istheidentity matrixoforder k.

Animmediateconsequenceofthisresultgivesinformationonthesplittingfieldofan arbitraryσ-polynomial,cf. Theorem4.1.

InSection3.1westudyindetailstheσ-polynomialsofσ-degreen− 2 for eachn.For

n≤ 6 wealsoprovidealistofallσ-polynomialswithmaximumkernelcf.Sections3.2,3.3

and3.4.TheseresultsmightyieldfurtherclassificationresultsandexamplesofFq-linear

(4)

2. Preliminaryresults

In this section we recall some results of Dempwolff, Fisher and Herman from [4], adaptingthemto ourneedsinordertomake thispaperself-contained.

LetV beak-dimensionalvectorspaceoverthefieldF andletT beasemilinear

trans-formationofV .AT -cyclicsubspaceofV isanF-subspaceofV spannedby{v,T (v),. . .} overF forsomev∈ V ,whichwillbedenotedby[v].Wefirstrecallthefollowinglemma. Lemma2.1.[4,Theorem1] LetV beann-dimensionalvectorspaceoverthefieldF,σ an

automorphism ofF and T an invertible σ-semilineartransformation onV .Then

V = [u1]⊕ . . . ⊕ [ur]

forT -cyclicsubspaces satisfying dim[u1]≥ dim[u2]≥ . . . ≥ dim[ur]≥ 1.

Theorem 2.2.Let T be an invertible semilinear transformation of V = V (k,qn) of

or-der n,withcompanionautomorphismσ∈ Aut(Fqn) suchthatFix(σ)=Fq.ThenFix(T )

is ak-dimensionalFq-subspaceof V andFix(T )Fqn = V .

Proof. First assumethatthe companionautomorphism of T is x→ xq and thatthere

exists v∈ V suchthat

V =v, T (v), . . . , Tk−1(v)Fqn.

Followingtheproofof[4,MainTheorem],considertheorderedbasisBT = (v,T (v),. . . , Tk−1(v)) andletA bethematrixassociatedwithT withrespect tothebasisBT,i.e.

A = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 0 0 · · · 0 α0 1 0 · · · 0 α1 0 1 · · · 0 α2 .. . ... ... ... 0 0 · · · 1 αk−1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ∈ Fk×k qn , (2) where Tk(v) = k

i=1αi−1Ti(v) with α0,. . . ,αk−1 ∈ Fqn and, since T is invertible,

we have α0 = 0. Denote by T the semilinear transformation of Fkqn having A as the

associated matrix withrespect to thecanonical orderedbasis BC = (e1,. . . ,ek) of Fkqn

and companion automorphism x→ xq.Note thatc

BT(Fix(T ))= Fix(T ),where cBT is

thecoordinatization withrespectto thebasisBT. Also,sinceT hasordern,we have

AAq· · · Aqn−1 = Ik, (3)

where Aqi,fori∈ {1,. . . ,n− 1},is thematrixobtainedfrom A byapplying toeachof itsentriestheautomorphismx→ xqi.Avectorz= (z0,. . . ,zk−1)∈ Fkqn isfixedbyT if

(5)

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ α0zk−1q = z0 zq0+ α1zqk−1= z1 .. . zqk−2+ αk−1zk−1q = zk−1

Eliminatingz0,. . . ,zk−2, weobtain theequation

αq0k−1zqk−1k + αq1k−2zqk−1k−1+ . . . + αk−1zk−1q − zk−1= 0,

whichhasqk distinct solutionsinthealgebraic closureK ofFqn bythederivativetest.

Each solution determines a unique vector of Fix(T ) in Kk. Also, the set Fix(T ) is an

Fq-subspace of Kk and hence dimFqFix(T ) = k. Let {w1,. . . ,wk} be an Fq-basis of

Fix(T ) andnote thatsince|Fix(T )|= qk, avector k

i=1

aiwi isfixed byT ifand onlyif ai∈ Fq.Thisimpliesthatw1,. . . ,wkarealsoK-independent.ThusFix(T )K=Kk and {w1,. . . ,wk} isalsoaK-basisofKk.Denotebyφ theK-lineartransformationsuchthat

φ(wi)= ei and by P theassociated matrix withrespect to the canonicalbasis BC, so

P ∈ GL(k,K).Thesemilineartransformation φ◦ T ◦ φ−1 hascompanionautomorphism

x→ xq, ordern andassociated matrixwithrespect to thecanonicalbasisP · A· P−q,

whereP−q istheinverseofP in whichtheautomorphismx→ xq isappliedentrywise.

Notethatφ◦ T ◦ φ−1(ei)= φ(T (wi))= φ(wi)= ei,hence

P· A · P−q= Ik, (4)

i.e.

Pq= P · A. (5)

ByEquations(3) and(5) andusinginductionweget Pqn = P· A · Aq· . . . · Aqn−1 = P,

i.e. P ∈ Fk×kqn . This implies thatFix(T ) is an Fq-subspace of Fkqn of dimension k and

henceFix(T )= c−1BT(Fix(T )) isak-dimensionalsubspaceofV (k,qn) withtheproperty

thatFix(T )Fqn = V .

Considernowthegeneralcase,i.e.supposeT asinthestatement,thatisT isan invert-iblesemilinearmapofordern withcompanionautomorphismx→ xqsandgcd(s,n)= 1.

Sincegcd(s,n)= 1 thereexistl,m∈ N suchthat1= sl + mn, andhencegcd(l,n)= 1. Then thesemilinear transformation Tl hasorder n, companion automorphism x→ xq

andFix(T )= Fix(Tl).ByLemma2.1,we maywrite V = [u1]⊕ . . . ⊕ [ur],

(6)

where [ui] is a Tl-cyclic subspace of V of dimension mi ≥ 1, for each i ∈ {1,. . . ,r},

and ri=1mi = k.Then we can restrictTl to eachsubspace [ui] and byapplying the

previousargumentswe getthatUi= Fix(Tl|[ui]) isanFq-subspaceof[ui] ofdimension mi withthepropertythatUiFqn = [ui].Thus

Fix(T ) = Fix(Tl) = U1⊕ . . . ⊕ Ur

is anFq-subspaceofdimensionk ofV withtheproperty thatFix(T )Fqn = V . 2

TheexistenceofamatrixP ∈ GL(k,K),withK thealgebraicclosureofafinitefield of order q,satisfying(4) isalso aconsequenceofthecelebratedLang’s Theorem[9] on connectedlinearalgebraic groups.Moreprecisely,byLang’sTheorem,sinceGL(k,K) is a connected linear algebraic group, the map M ∈ GL(k,K) → M−1· Mq ∈ GL(k,K)

is onto. InTheorem 2.2 it is proved that, if the semilinear transformation of V (k,qn)

having A asassociated matrixhasorder n,thenP ∈ GL(k,Fqn).

Remark 2.3.Let T be an invertible semilinear transformation of V = V (k,qn) with companion automorphism x → xq and let K be the algebraic closure of Fqn. Denote

by T the semilinear transformation of Kk associated with T as in the proof of

The-orem 2.2. If λ ∈ K, then the set E(λ) := {v ∈ Kk: T (v) = λv} is an F

q-subspace

of Kk. By [4, page 293], it follows that E(λ) = λq−11 Fix(T ) and by [4, Main

The-orem] E(λ) is a k-dimensional Fq-subspace of Kk. Also, when T has order n and λq−11 ∈ Fqn, by Theorem 2.2, E(λ) is a k-dimensional Fq-subspace contained in Fkqn

suchthatE(λ)Fqn =F

k qn.

3. Mainresults

Now weareableto proveourmain result:

Proof of Theorem1.2. First suppose dimFqker f = k. Then there exist u0,u1, . . . , uk−1∈ Fqn whichform anFq-basisofker f .

Put u := (u0,u1,. . . ,uk−1)∈ Fkqn.Sinceu0,u1,. . . ,uk−1 areFq-linearlyindependent,

by [10, Lemma 3.51],we get thatB := (u,uqs,. . . ,uqs(k−1)) is anordered F

qn-basisof Fk qn.Also, uq sk = a0u + a1uq s

+· · · + ak−1uqs(k−1). It canbe seenthatthe matrix(1)

representstheFqn-linearpartoftheFqn-semilinearmap σ : v∈ Fkqn→ vq s

∈ Fk qn w.r.t.

thebasisB. Sincegcd(s,n)= 1,σ hasordern and hencetheassertionfollows. Viceversa, letτ bedefinedasfollows

τ : ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ x0 x1 .. . xk−1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠∈ F k qn → A ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ x0 x1 .. . xk−1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ qs ∈ Fk qn, (6)

(7)

whereA isas in(1) with thepropertyAAqs· · · Aqs(n−1) = Ik. Thenτ has ordern and,

byTheorem 2.2, it fixesa k-dimensionalFq-subspace S ofFkqn with the property that SFqn =F

k qn.

LetBS = (s0,. . . ,sk−1) beanFq-basisofS and notethat,sinceSFqn =F k

qn,BS is

alsoanFqn-basisofFkqn, thendenotingbyBC thecanonicalordered basisofFkqn,there

existsauniqueisomorphismφ ofFk

qn suchthatφ(si)= ei foreachi∈ {1,. . . ,k}.Then σ = φ◦ τ ◦ φ−1,whereσ : v∈ Fk qn→ vq s ∈ Fk qn.Also, σi= φ◦ τi◦ φ−1, (7)

foreachi∈ {1,. . . ,n− 1}.Also,by(6) τ (e0) = e1, τ (e1) = τ2(e0) = e2, .. . τ (ek−1) = τk(e 0) = (a0, . . . , ak−1) = a0e0+· · · + ak−1ek−1.

So,wegetthat

τk(e0) = a0e0+ a1τ (e0) +· · · + ak−1τk−1(e0),

andapplyingφ itfollowsthat

φ(τk(e0)) = a0φ(e0) + a1φ(τ (e0)) +· · · + ak−1φ(τk−1(e0)).

By(7) thepreviousequationbecomes

σk(φ(e0)) = a0φ(e0) + a1σ(φ(e0)) +· · · + ak−1σk−1(φ(e0)).

Putu = φ(e0),then

uqsk= a0u + a1uq

s

+· · · + ak−1uqs(k−1).

Thisimpliesthatu0,u1,. . . ,uk−1 areelementsofker f ,whereu = (u0,. . . ,uk−1).Also,

theyareFq-independentsinceB = (u,. . . ,uq s(k−1)

)= (φ(e0),. . . ,φ(ek−1)) isanordered

Fqn-basisofFk

qn.Thiscompletes theproof. 2

As a corollary we get the second part of [6, Theorem 10], see also [12, Lemma 3] for the case s = 1 and [11] for the case when q is a prime. Indeed, by evaluating the determinantsinAAqs· · · Aqs(n−1) = Ik weobtainthefollowing corollary.1

1 Forx∈ Fqn andforasubfieldF

qm ofFqn wewilldenotebyNqn/qm(x) thenormofx overFqm andby

Trqn/qm(x) wewilldenotethetraceofx overFqm.Ifn isclearfromthecontextandm= 1 thenwewill

(8)

Corollary3.1. Ifthekernelofaqs-polynomialf (x)= a0x+a1xq

s

+· · ·+ak−1xqs(k−1)−xqsk

has dimensionk, thenN(a0)= (−1)n(k+1).

Corollary 3.2.LetA beamatrix asinTheorem1.2.The condition AAqs· · · Aqs(n−1) = Ik

is satisfiedifandonly if AAqs

· · · Aqs(n−1) fixes e

0= (1,0,. . . ,0).

Proof. The only if part is trivial, we prove the if part by induction on 0 ≤ i k − 1. Suppose AAqs

· · · Aqs(n−1)eT

i = eTi for some 0 ≤ i ≤ k − 1. Then by

tak-ing qs-th powers of each entry we get AqsAq2s· · · AeTi = eTi . Since AeTi = eTi+1 this yields AqsAq2s· · · Aqs(n−1)eT

i+1 = eTi . Then multiplying both sides by A yields AAqsAq2s· · · Aqs(n−1)eT i+1 = eTi+1. 2 Consideraqs-polynomialf (x)= a 0x+ a1xq s +· · · + ak−1xqs(k−1)− xqsk, thematrix A∈ Fkqn×k asinTheorem1.2andthesemilinearmapτ definedin(6).

Note that eτ0 = (0, 1, 0, . . . , 0) = e1 eτ02 = (0, 0, 1, . . . , 0) = e2 .. . eτ0k−1 = (0, 0, 0, . . . , 1) = ek−1 eτ0k= (a0, a1, a2, . . . , ak−1) eτ0k+1= (a0aq s k−1, aq s 0 + a1aq s k−1, aq s 1 + a2aq s k−1, . . . , aq s k−2+ aq s+1 k−1 ). (8) Hence,if

eτ0i= (Q0,i, Q1,i, . . . , Qk−1,i)

where Qj,icanbeseenaspolynomials ina0,a1,. . . ,ak−1,fori≥ 0,then eτ0i+1 = (a0Qq s k−1,i, Qq s 0,i+ a1Qq s k−1,i, . . . , Qq s k−2,i+ ak−1Qq s k−1,i),

i.e. the polynomials Qj,i for 0 ≤ j ≤ k − 1 can be defined by the following recursive

relationsfor0≤ i≤ k − 1:

Qj,i=



1 if j = i, 0 otherwise, and bythefollowing relationsfori≥ k:

(9)

Q0,i+1= a0Qq s k−1,i Qj,i+1= Qq s j−1,i+ ajQq s k−1,i. (9) Now,weareabletoprovethefollowing.

Theorem3.3. The kernel of a qs-polynomial f (x)= a0x+ a1xq

s

+· · · + ak−1xqs(k−1)− xqsk ∈ Fqn[x],wheregcd(s,n)= 1, has dimensionk ifandonly if

Qj,n(a0, a1, . . . , ak−1) =



1 if j = 0,

0 otherwise. (10)

Proof. Relations(9) canbewrittenasfollows ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ Q0,i+1 Q1,i+1 .. . Qk−1,i+1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠= ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 0 0 · · · 0 a0 1 0 · · · 0 a1 0 1 · · · 0 a2 .. . ... ... ... 0 0 · · · 1 ak−1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ Qq0,is Qq1,is .. . Qqk−1,is ⎞ ⎟ ⎟ ⎟ ⎟ ⎠,

with i ∈ {0,. . . ,n − 1}. Also, (Q0,0,Q1,0,. . . ,Qk−1,0) = (1,0,. . . ,0) and eτ

t

0 =

(Q0,t,. . . ,Qk−1,t) for t ∈ {0,. . . ,n}. By Theorem 1.2 and by Corollary 3.2, the

ker-nel of f (x) has dimension k if and only if e0 = (Q0,0,Q1,0,. . . ,Qk−1,0) is fixed by

AAqs· · · Aqs(n−1),sothis happensifandonlyif

eτ0n= (Q0,n, Q1,n, . . . , Qk−1,n) = (1, 0, . . . , 0). 2

Theorem 3.3 with k = n− 1 and s = 1 givesthe following well-known result as a corollary.

Corollary3.4.[10,Theorem2.24] Thedimensionof thekernel ofaq-polynomialf (x)∈ Fqn[x] isn− 1 ifandonly ifthere existα,β ∈ F∗qn suchthat

f (x) = α Tr(βx). AgainfromTheorem3.3 wecandeducethefollowing. Corollary3.5. [10,Ex. 2.14] Theqs-polynomiala0x− xq

sk

∈ Fqn[x], withgcd(s,n)= 1

and1≤ k ≤ n− 1, admitsqk roots ifand onlyif k| n and N

qn/qk(a0)= 1.

3.1. Whentheqs-degreeequalsn− 2

Inthissectionweinvestigateqs-polynomials f (x) = a0x + a1xq

s

+· · · + an−3xq s(n−3)

(10)

with gcd(s,n)= 1.ByTheorem 3.3,dim ker f (x) = n− 2 if andonlyifa0,a1,. . . ,an−3

satisfythefollowingsystemofequations ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ Q0,n= a0(aq 2s n−4+ aq 2s+qs n−3 ) = 1, Q1,n= aq s 0 a q2s n−3+ a1(aq 2s n−4+ aq 2s +qs n−3 ) = 0, Q2,n= aq 2s 0 + a q2s n−3aq s 1 + a2(aq 2s n−4+ aq 2s+qs n−3 ) = 0, Q3,n= aq 2s 1 + a q2s n−3aq s 2 + a3(aq 2s n−4+ aq 2s +qs n−3 ) = 0, .. . Qn−3,n = aqn−52s + aqn−32s an−4qs + an−3(aqn−42s + aqn−32s+qs) = 0, (11) whichisequivalent to ⎧ ⎪ ⎨ ⎪ ⎩ a0(aq 2s n−4+ aq 2s +qs n−3 ) = 1, a1=−aq s+1 0 a q2s n−3=: g1(a0, an−3), aj=−aq 2s j−2a0− aq 2s n−3aq s j−1a0=: gj(a0, an−3), for 2≤ j ≤ n − 3. (12)

So,dimFqker f (x) = n− 2 if andonlyifa0 andan−3 satisfytheequations

 a0(gn−4(a0, an−3)q 2s + aqn−32s+qs) = 1, an−3 = gn−3(a0, an−3), and aj= gj(a0,an−3) forj∈ {1,. . . ,n− 4}.

Theorem 3.6.Suppose thatf (x)= a0x+ a1xq+· · · + an−3xqn−3− xqn−2 has maximum

kernel.Thenfort≥ 2 withgcd(t− 1,n)= 1 thecoefficients at−2 andan−t arenon-zero

and, with s= n− t+ 1,

an−2t+1aqt−22s+qs=−an−tqs+1aq2t2s−3. (13)

Also, itholdsthat

−an−t(−aq s t−2aq 2s 3t−4+ aq 2s+qs 2t−3 ) = aq 2s+qs+1 t−2 . (14)

In particular,fort≥ 2 withgcd(t− 1,n)= 1 weget

N(an−t) = (−1)nN(at−2) (15)

and

N(an−2t+1) = (−1)nN(a2t−3), (16)

(11)

Proof. Lett≥ 2 withgcd(t− 1,n)= 1 andconsiderthepolynomialF (x)= f (xqt),that is, F (x) = a0xq t + a1xq t+1 +· · · + an−3xqn+t−3− xqn+t−2.

Clearly dimFqker F = dimFqker f = n− 2. Byrenaming the coefficients, F (x) can be

writtenas F (x) = α0x + α1xq n−t+1 + α2xq 2(n−t+1) +· · · + αn−3xq (n−t+1)(n−3) + αn−2xq (n−t+1)(n−2) = α0x + α1xq n−t+1 +· · · + αn−3xq3t−3+ αn−2xq2t−2.

SinceF (x) hasmaximumkernel,bythesecondequationof(12) wegetα0 = 0,αn−2 = 0

andthefollowingrelation

α1 αn−2 =  α0 αn−2 qs+1 −αn−3 αn−2 q2s . (17)

The coefficient αj of F (x) equals the coefficient ai of f (x) with i ≡ n− t+ j(1− t)

(mod n),inparticular ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ α0= an−t, α1= an−2t+1, αn−3= a2t−3, αn−2= at−2, αn−4= a3t−4, (18)

andby(17),wegetthatat−2 andan−t arenonzero,and an−2t+1aq 2s+qs t−2 =−aq s+1 n−t aq 2s 2t−3,

whichgives(13).Thefirstequationof(12) gives

α0 αn−2  −αn−4 αn−2 q2s +  −αn−3 αn−2 q2s+qs = 1, thatis, −α0(−αq s n−2αq 2s n−4+ αq 2s+qs n−3 ) = αq 2s+qs+1 n−2 .

Then(18) andαn−4= a3t−4 imply

−an−t(−aq s t−2aq 2s 3t−4+ a q2s+qs 2t−3 ) = a q2s+qs+1 t−2 ,

(12)

whichgives(14).ByCorollary3.1withs= n− t+ 1 weobtain N  α0 αn−2  = 1, and taking(18) intoaccountwe get

N(an−t) = (−1)nN(at−2).

Then (13) andthepreviousrelationyield

N(an−2t+1) = (−1)nN(a2t−3). 2

Proposition 3.7. Let f (x) be a qs-polynomial with qs-degree n− 2 and with maximum kernel.Ifthecoefficientofxqs iszero,thenn isevenandf (x)= α Trqn/q2(βx) forsome

α,β∈ F∗qn.

Proof. We mayassumef (x)= a0x+ a1xq

s

+· · · + an−3xqs(n−3)− xqs(n−2) with a

1= 0.

Bythesecondequation of(12),itfollowsthatan−3= 0.Bythethirdequationof (12), we getthataj= 0 for everyoddintegerj∈ {3,. . . ,n− 3}.Ifj iseventhenwehave

aj = (−1) j

2aq

sj+qs(j−2)+···+q2s+1

0 . (19)

Ifn−3 iseven,thenthisgivesusacontradictionwithj = n−3.Itfollowsthatn−3 isodd andhencen iseven.ByN(a0)= (−1)n,thereexistsλ∈ F∗qn suchthata0=−λ1−q

s(n−2) . So,by(19) wegetaj = λq js−qs(n−2) ,and hence f (x) = Trqn/q2(λx) λqs(n−2) . 2

In the next sections we list all the qs-polynomials of Fqn with maximum kernel for n≤ 6. ByCorollaries 3.4and 3.5 then≤ 3 case canbe easily describedhence wewill consider onlythen∈ {4,5,6} cases.

For f (x) = n−1i=0 aixq i ∈ ˜Ln,q we denote by f (x)ˆ := n−1i=0 aq n−i i xq n−i the adjoint (w.r.t.thesymmetricnon-degeneratebilinear formdefinedbyx,y= Tr(xy))off .

By [1, Lemma 2.6],see also [2, pages 407–408],the kernel of f and f hasˆ the same dimensionand hencethefollowingresultholds.

Proposition 3.8. Iff (x)∈ ˜Ln,q is aqs-polynomialwith maximumkernel, thenf (x) isˆ a

qn−s-polynomialwithmaximum kernel.

(13)

3.2. The n= 4 case

InthissectionwedeterminethelinearizedpolynomialsoverFq4withmaximumkernel.

Withoutlossofgenerality,wecansupposethattheleadingcoefficientofthepolynomial is−1.

Because of Proposition 3.8, we canassume s = 1. Corollaries 3.4 and 3.5 cover the caseswhentheq-degreeoff is1 or3 sofromnowonwesupposef (x)= a0x+a1xq−xq

2

. Ifa1= 0 thenwecanuseagainCorollary3.5andwegeta0x− xq

2

,withNq4/q2(a0)= 1.

Supposea1 = 0.ByEquation(12),wegettheconditions

 a0(aq 2 0 + a q2+q 1 ) = 1, a1=−aq+10 a q2 1 , whichisequivalentto  Nq4/q(a0) = 1, aq+11 = aq02+q+1− aq0, see(A1) ofSection5.

InTable1we listtheq-polynomialsof L4,q withmaximum kernel,upto anon-zero

scalarin Fq4. Applying theadjoint operation we can obtain thelist of q3-polynomials

overFq4 withmaximumkernel.Inthetabletheq-degreewillbe denotedbyk.

Table 1

LinearizedpolynomialsofFq4 withmaximumkernelwiths= 1.

k polynomial form conditions

3 Tr(λx) λ∈ F∗q4 2 a0x− xq 2 Nq4/q2(a0) = 1 2 a0x + a1xq− xq 2 Nq4/q(a0) = 1 aq+11 = a q2+q+1 0 − a q 0 1 a0x− xq Nq4/q(a0) = 1 3.3. The n= 5 case

InthissectionwedeterminethelinearizedpolynomialsoverFq5withmaximumkernel.

Withoutlossofgenerality,wecansupposethattheleadingcoefficientofthepolynomial is−1.BecauseofProposition3.8,wecanassumes∈ {1,2}.Corollaries3.4and3.5cover thecaseswhentheqs-degreeoff is1 or4.Firstwesupposethatf hasqs-degree3,i.e.

f (x) = a0x + a1xq

s

+ a2xq 2s

(14)

From (12), f (x) hasmaximum kernel ifand only ifa0, a1 and a2 satisfy thefollowing system: ⎧ ⎪ ⎨ ⎪ ⎩ a1=−aq s+1 0 a q2s 2 , −aq3s+q2s+1 0 a q4s 2 + a q2s+qs 2 a0= 1, a2=−aq 2s+1 0 + a q3s+q2s 2 a q2s+qs+1 0 , whichis equivalentto ⎧ ⎪ ⎨ ⎪ ⎩ N(a0) = 1, a1=−aq s+1 0 a q2s 2 , −aq3s+q2s+1 0 a q4s 2 + a0aq 2s+qs 2 = 1,

see(A2)ofSection5.

Supposenow thattheqs-degreeis2,i.e. f (x) = a0x + a1xq

s − xq2s.

ByTheorem3.3thepolynomialf (x) hasmaximumkernelifandonlyifitscoefficients satisfy  a0(aq 2s 0 a q3s 1 + a qs 1 (a q3s 0 + a q3s+q2s 1 )) = 1, aq0s+1(aq03s+ aq13s+q2s) + a1= 0, whichis equivalentto  N(a0) =−1, a0qs+ aq1s+1= a0q2s+qs+1aq13s, see(A3)ofSection5.

In Table 2we list the qs-polynomials,s ∈ {1,2} of L

5,q with maximum kernel, up

to a non-zero scalar in Fq5. Applying the adjoint operation we can obtain the list of

qt-polynomials, t ∈ {3,4}, over F

q5 with maximum kernel. As before, the qs-degree is

denotedbyk.

Table 2

LinearizedpolynomialsofFq5withmaximumkernelwiths∈ {1,2}.

k polynomial form conditions

4 Tr(λx) λ∈ F∗ q5 3 a0x + a1xq s + a2xq 2s − xq3s ⎧ ⎪ ⎨ ⎪ ⎩ N(a0) = 1 a1=−aq s+1 0 a q2s 2 −aq3s+q2s+1 0 a q4s 2 + a0aq 2s+qs 2 = 1 2 a0x + a1xq s − xq2s N(a0) =−1 aq1s+1+ a qs 0 = a q3s 1 a q2s+qs+1 0 1 a0x− xq s N(a0) = 1

(15)

3.4. The n= 6 case

InthissectionwedeterminethelinearizedpolynomialsoverFq6withmaximumkernel.

Without loss of generality, we can suppose that the leading coefficient of the polyno-mial is −1. Because of Proposition 3.8, we can assume s = 1. Corollaries 3.4 and 3.5

coverthe cases whenthe q-degree of f is1 or 5.As before, denote by k theqs-degree

of f .

Wefirstconsiderthecasek = 2,i.e.f (x)= a0x+ a1xq

s − xq2s

.ByTheorem3.3,f (x) hasmaximumkernelifandonlyifthecoefficientssatisfy

⎧ ⎪ ⎨ ⎪ ⎩ N(a0) = 1, (aq0+ aq+11 )q3 = aq05+q4+q3(aq0+ aq+11 ), a1q4aq03+ aq12(a0q4+ aq14+q3) = a1 aq+10 ,

see(A4) ofSection5.

Ifk = 3,thenf (x)= a0x+a1xq

s

+a2xq 2s

−xq3s

,andbyTheorem3.3ithasmaximum kernelifandonlyifthe coefficientsfulfill

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ N(a0) = 1, aq03+q+1+ aq23a1q2aq+10 − aq2a1= aq0, a2q+1=−a0q3+q2+q+1aq14− aq1, aq+11 = a2aq0+ a q2+q+1 0 a q3 2 ,

see(A5) ofSection5.Notethata1= 0 ifandonlyifa2= 0 andinthiscasewegetthe

traceover Fq3.

Finally,letk = 4.Thenthepolynomialf (x)= a0x+ a1xq

s + a2xq 2s + a3xq 3s − xq4s

hasmaximumkernelifandonlyifthecoefficientssatisfy ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ N(a0) = 1, a0(−aq 4+q2 0 + a q5+q4 3 a q4+q3+q2 0 + a q2+q 3 ) = 1, a1=−aq+10 a q2 3 , a2=−aq 2+1 0 + a q3+q2 3 a q2+q+1 0 , a3= aq 4 3 a q3+q2+1 0 + a q2 3 a q3+q+1 0 − a q3+q2+q+1 0 a q4+q3+q2 3 ,

see(A6) ofSection5.

InTable3we listtheq-polynomialsof L6,q withmaximum kernel,upto anon-zero

scalarin Fq6. Applying theadjoint operation we can obtain thelist of q5-polynomials

(16)

Table 3

LinearizedpolynomialsofFq6withmaximumkernelwiths= 1.

k polynomial form conditions 5 Trq6/q(λx) λ∈ F∗q6 4 a0x + a1xq+ a2xq 2 + a3xq 3 − xq4 ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ a1= 0 N(a0) = 1 a0(−aq 4+q2 0 + a q5+q4 3 a q4+q3+q2 0 + a q2+q 3 ) = 1 a1=−aq+10 a q2 3 a2=−aq 2+1 0 + a q3+q2 3 a q2+q+1 0 a3= aq 4 3a q3+q2+1 0 + a q2 3 a q3+q+1 0 − a q3+q2+q+1 0 a q4+q3+q2 3 4 Trq6/q2(λx) λ∈ F∗q6 3 a0x + a1xq+ a2xq 2 − xq3 ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ N(a0) = 1 aq03+q+1+ a q3 2a q2 1a q+1 0 − a q 2a1= aq0 aq+12 =−a q3+q2+q+1 0 a q4 1 − a q 1 aq+11 = a2aq0+ a q2+q+1 0 a q3 2 3 Trq6/q3(λx) λ∈ F∗q6 2 a0x + a1xq− xq 2 ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ a1= 0 N(a0) = 1 (aq0+ a q+1 1 )q 3 = aq05+q4+q3(a q 0+ a q+1 1 ) aq14a q3 0 + a q2 1(a q4 0 + a q4+q3 1 ) = a1 aq+1 0 2 a0x− xq 2 Nq6/q2(a0) = 1 1 a0x− xq Nq6/q(a0) = 1 4. Application

As an application of Theorem 1.2 we are able to prove the following result on the splitting fieldofq-polynomials.

Theorem 4.1.Let f (x) = a0x+ a1xq+· · · + ak−1xq

k−1 − xqk

∈ Fqn[x] with a0 = 0

and let A be defined as in (1). Then the splitting field of f (x) is Fqnm where m is the

(multiplicative) order ofthematrixB := AAq· · · Aqn−1.

Proof. The derivativeof f (x) isnon-zeroandhencef (x) has qk distinct rootsinsome

algebraic extension of Fqn. Suppose that Fqnm is the splitting field of f (x) and let t

denote the order of B. Then the kernel of the Fq-linear Fqnm → Fqnm map defined as

x→ f(x) hasdimensionk over Fqand hencebyTheorem 1.2wehave

AAq· · · Aqnm−1 = Ik.

Since thecoefficientsofA areinFqn,thisisequivalenttoBm= Ik andhencet| m.On

theother hand

(17)

andhenceagainbyTheorem1.2thekerneloftheFq-linearFqnt→ Fqnt mapdefinedas x→ f(x) hasdimensionk over Fq. ItfollowsthatFqnm isasubfieldofFqnt from which

m| t. 2

AfurtherapplicationofTheorem1.2 isthefollowing.

Theorem4.2.Letn,m,s andt bepositiveintegerssuchthatgcd(s,nm)= gcd(t,nm)= 1

and s ≡ t (mod m). Let f (x) = a0x+ a1xq

s +· · · + ak−1xq s(k−1) − xqsk and g(x) = a0x+ a1xq t +· · · + ak−1xqt(k−1)− xqtk,wherea 0,a1,. . . ,ak−1∈ Fqm.The kernelof f (x)

consideredas alineartransformation ofFqnm has dimensionk if andonly ifthekernel

ofg(x) considered asalinear transformationof Fqnm has dimensionk.

Proof. DenotebyA thematrixassociatedwithf (x) asin(1).Byhypothesis,A∈ Fk×kqm

and it is the same as the matrix associated with g(x). By Theorem 1.2 the kernel of

f (x),consideredasalineartransformation ofFqnm,hasdimensionk ifandonlyif

AAqs· · · Aqs(nm−1) = Ik.

Sinces≡ t (mod m),wehave

AAqs· · · Aqs(nm−1) = AAqt· · · Aqt(nm−1) = Ik,

and, againbyTheorem 1.2, thisholds ifand onlyifthekernel ofg(x), consideredasa lineartransformationofFqnm,hasdimensionk. 2

Addendum

Duringthe“Combinatorics2018”conference,thefourthauthor presentedtheresults ofthispaperinthetalkentitled“Onq-polynomialswithmaximumkernel”.Inthesame conferenceJohnSheekeypresentedajointworkwithGaryMcGuire[8] inhistalkentitled “Ranksof LinearizedPolynomials and Roots of ProjectivePolynomials”.It turned out that, independently from the authors of the present paper, they also obtained similar results.

5. Appendix

Inthissectionwedevelopsomecalculationsregardingtherelationsonthecoefficients ofalinearizedpolynomialswithmaximumkernelpresentedinSections3.2,3.3and3.4, seealso[13].

(A1) ByEquation(11) withn= 4,s= 1 andk = 2,wegettheconditions

Σ :  a0(aq 2 0 + a q2+q 1 ) = 1, a1=−aq+10 a q2 1 .

(18)

ByCorollary3.1, thesystemΣ isequivalentto thefollowingsystem Σ: ⎧ ⎪ ⎨ ⎪ ⎩ Nq4/q(a0) = 1, a0(aq 2 0 + a q2+q 1 ) = 1, a1=−aq+10 a q2 1 ,

whichcanberewrittenas follows

Σ: ⎧ ⎪ ⎨ ⎪ ⎩ Nq4/q(a0) = 1, aq12−1= 1 aq+10 , aq+11 = aq02+q+1− aq0. Now considerthesystem

Σ: 

Nq4/q(a0) = 1,

aq+11 = aq02+q+1− aq0.

Clearly, S(Σ)⊆ S(Σ∗),where S(Σ) andS(Σ∗) denotetheset of solutionsofΣ andΣ,respectively.Let(a0,a1)∈ S(Σ∗),thenbyusingthenormconditionona0

aq12−1=  1 aq03 − a q 0 q−1 =  1− aq+q0 3 aq03 q−1 = = 1− a 1+q2 0 1− aq+q0 3a q3−1 0 = 1 1 aq+q30 1− aq+q0 3a q3−1 0 = 1 aq+10 , i.e. (a0,a1)∈ S(Σ) and henceS(Σ∗)= S(Σ)= S(Σ).

(A2) From (11) withn= 5,gcd(s,5)= 1 andk = 3,wegetthefollowing conditions:

Σ : ⎧ ⎪ ⎨ ⎪ ⎩ a0(aq 2s 1 + a q2s+qs 2 ) = 1, a1=−aq s +1 0 a q2s 2 , a2=−aq 2s+1 0 − a q2s 2 a qs 1 a0. ByCorollary3.1, Σ isequivalentto Σ: ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ Nq5/q(a0) = 1, a0(aq 2s 1 + a q2s+qs 2 ) = 1, a1=−aq s+1 0 a q2s 2 , a2=−aq 2s+1 0 − a q2s 2 a qs 1 a0,

(19)

Σ: ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ Nq5/q(a0) = 1, a1=−aq s+1 0 a q2s 2 , −aq3s+q2s+1 0 a q4s 2 + a q2s+qs 2 a0= 1, a2=−aq 2s+1 0 + a q3s+q2s 2 a q2s+qs+1 0 .

Byraisingthethirdequationtoqsandmultiplyingbyaq2s+1

0 ,sinceN(a0)= 1,we

getthefourthequation.Therefore Σ, andhenceΣ,isequivalentto ⎧ ⎪ ⎨ ⎪ ⎩ Nq5/q(a0) = 1, a1=−aq s +1 0 a q2s 2 , −aq3s+q2s+1 0 a q4s 2 + a0aq 2s+qs 2 = 1.

(A3) ApplyingTheorem3.3withn= 5 andk = 2,wegetthatthepolynomialf (x) has maximumkernelifandonlyifitscoefficientssatisfy

Σ :  Q0,5= a0(aq 2s 0 a q3s 1 + a qs 1 (a q3s 0 + a q3s+q2s 1 )) = 1, Q1,5= aq s 0 (a q3s 0 + a q3s+q2s 1 ) + a1(aq 2s 0 a q3s 1 + a qs 1 (a q3s 0 + a q3s+q2s 1 )) = 0, whichisequivalentto ⎧ ⎪ ⎨ ⎪ ⎩ Nq5/q(a0) =−1, a0(aq 2s 0 a q3s 1 + a qs 1 (a q3s 0 + a q3s+q2s 1 )) = 1, aq0s+1(aq03s+ aq13s+q2s) + a1= 0,

becauseofCorollary3.1andsinceaq02saq13s+ a1qs(aq03s+ aq13s+q2s)= 1 a0

.Theabove systemcanberewrittenas follows

⎧ ⎪ ⎨ ⎪ ⎩ Nq5/q(a0) =−1, aq03s+ aq13s+q2s = a1 aqs +10 , aq13sa0q2s+qs+1− aq1s+1= aq0s, whichisequivalentto ⎧ ⎪ ⎨ ⎪ ⎩ Nq5/q(a0) =−1, a1qs+1+ aq0s= a1q3saq02s+qs+1, a1aq 4s+q3s+q2s 0 =aqs +1a1 0 .

Ifthefirstandthesecondequationsaresatisfied,clearlyalsothelastoneisfulfilled, henceΣ isequivalent tothefollowingsystem



Nq5/q(a0) =−1,

(20)

(A4) By Theorem3.3, withn= 6,s= 1 andk = 2,weget  Q0,6= a0(aq 2 0 (a q4 0 + a q4 +q3 1 ) + a q 1(a q3 0 a q4 1 + a q2 1 (a q4 0 + a q4 +q3 1 ))) = 1, Q1,6= aq 2 0 a1(aq 4 0 + a q4 +q3 1 ) + (a q+1 1 + a q 0)(a q3 0 a q4 1 + a q2 1 (a q4 0 + a q4 +q3 1 )) = 0, whichisequivalent to  a0q2(aq04+ a1q4+q3) + aq1(aq03aq14+ aq12(a0q4+ aq14+q3)) = a1 0, a1 a0 + a q 0(a q3 0 a q4 1 + a q2 1 (a q4 0 + a q4+q3 1 )) = 0, i.e.  a0q2(aq04+ a1q4+q3) + aq1(aq03aq14+ aq12(a0q4+ aq14+q3)) = a1 0, a0q3aq14+ aq12(a0q4+ aq14+q3) = a1 aq+10 . ByCorollary3.1, theprevioussystemisequivalentto

⎧ ⎪ ⎨ ⎪ ⎩ N(a0) = 1, a0q2(aq04+ a1q4+q3) + aq1(aq03aq14+ aq12(a0q4+ aq14+q3)) = a1 0, a0q3aq14+ aq12(a0q4+ aq14+q3) = a1 aq+10 , whichisequivalent to ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ N(a0) = 1, aq02(aq0+ aq+11 )q3 −aq+11 aq+1 0 = 1 a0, a0q3aq14+ aq12(a0q4+ aq14+q3) = a1 aq+10 , henceitisequivalentto ⎧ ⎪ ⎨ ⎪ ⎩ N(a0) = 1, (aq0+ aq+11 )q3 = aq05+q4+q3(aq0+ aq+11 ), a1q4aq03+ aq12(a0q4+ aq14+q3) = a1 aq+10 . (A5) By Theorem3.3with n= 6,s= 1 andk = 3,weget

⎧ ⎪ ⎨ ⎪ ⎩ a0Qq2,5 = 1, Qq0,5+ a1Qq2,5= 0, Qq1,5+ a2Qq2,5= 0, where Q0,5= a0(aq 2 1 + a q2+q 2 ), Q1,5= aq0a q2 2 + a1(aq 2 1 + a q2+q 2 ), Q2,5= aq 2 0 + a q2 2 a q 1+ a2(aq 2 1 + a q2+q 2 ),

(21)

hencewe obtainthefollowingsystem ⎧ ⎪ ⎨ ⎪ ⎩ a0(aq 3 0 + a q3 2 a q2 1 + a q 2(a q3 1 + a q3+q2 2 )) = 1, a1 a0 + a q 0(a q3 1 + a q3+q2 2 ) = 0, a2 a0 + a q3 2 a q2 0 + a q 1(a q3 1 + a q3+q2 2 ) = 0. ByCorollary 3.1itisequivalentto ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ N(a0) = 1, a0(aq 3 0 + a q3 2 a q2 1 + a q 2(a q3 1 + a q3+q2 2 )) = 1, aq13+ aq23+q2 = a1 a1+q0 , a2 a0 + a q3 2 a q2 0 + a q 1(a q3 1 + a q3+q2 2 ) = 0,

bysubstitutingthethirdequation intotheothersweget ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ N(a0) = 1, a0(aq 3 0 + a q3 2 a q2 1 aq2a1 a1+q0 ) = 1, aq13+ aq23+q2= a1 a1+q0 , a2 a0 + a q3 2 a q2 0 aq+11 a1+q0 = 0, i.e. ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ N(a0) = 1, aq03+q+1+ aq23a1q2aq+10 − aq2a1= aq0, a2q+1=−a0q3+q2+q+1aq14− aq1, aq+11 = a2aq0+ a q2+q+1 0 a q3 2 .

(A6) Equations(11) withn= 6,s= 1 andk = 4 are ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ a0(aq 2 2 + a q2+q 3 ) = 1, aq0aq32+ a1(aq 2 2 + a q2+q 3 ) = 0, aq02+ aq32aq1+ a2(aq 2 2 + a q2+q 3 ) = 0, aq12+ aq32aq2+ a3(aq 2 2 + a q2+q 3 ) = 0,

which,byCorollary3.1,isequivalent to ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ N(a0) = 1, a0(aq 2 2 + a q2+q 3 ) = 1, aq0aq32+ a1(aq 2 2 + a q2+q 3 ) = 0, aq02+ aq32aq1+ a2(aq 2 2 + a q2+q 3 ) = 0, aq12+ aq32aq2+ a3(aq 2 2 + a q2+q 3 ) = 0,

(22)

thusitcanberewrittenas follows ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ N(a0) = 1, aq22+ aq32+q=a1 0, aq0aq32+a1 a0 = 0, aq02+ aq32aq1+a2 a0 = 0, aq12+ aq32aq2+a3 a0 = 0, and hence ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ N(a0) = 1, a0(aq 2 2 + a q2+q 3 ) = 1, a1=−aq+10 a q2 3 , a2=−aq 2+1 0 − a q2 3 a q 1a0, a3=−aq 2 1 a0− aq 2 3 a q 2a0, i.e. ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ N(a0) = 1, a0(−aq 4+q2 0 + a q5+q4 3 a q4+q3+q2 0 + a q2+q 3 ) = 1, a1=−aq+10 a q2 3 , a2=−aq 2+1 0 + a q3+q2 3 a q2+q+1 0 , a3= aq 4 3 a q3+q2+1 0 + a q2 3 a q3+q+1 0 − a q3+q2+q+1 0 a q4+q3+q2 3 . References

[1]D.Bartoli,M.Giulietti,G.Marino,O.Polverino,Maximumscatteredlinearsetsandcompletecaps inGaloisspaces,Combinatorica38 (2)(2018)255–278.

[2]B.Csajbók,G.Marino,O.Polverino,ClassesandequivalenceoflinearsetsinPG(1,qn),J.Comb. Theory,Ser.A157(2018)402–426.

[3]P.Delsarte,Bilinearformsoverafinitefield,withapplicationstocodingtheory,J.Comb.Theory, Ser.A25(1978)226–241.

[4]U.Dempwolff, J.C.Fisher,A.Herman,SemilineartransformationsoverfinitefieldsareFrobenius maps,Glasg.Math.J.42 (2)(2000)289–295.

[5]E.Gabidulin,Theoryofcodeswithmaximumrankdistance,Probl.Inf.Transm.21 (3)(1985)3–16.

[6]R.Gow,R.Quinlan,Galoistheoryandlinearalgebra,LinearAlgebraAppl.430(2009)1778–1789.

[7]R.Gow,R.Quinlan,Galoisextensionsandsubspacesofalterningbilinearformswithspecialrank properties,LinearAlgebraAppl.430(2009)2212–2224.

[8] G. McGuire, J. Sheekey, Acharacterization of thenumber of roots of linearized and projective polynomialsinthefieldofcoefficients, https://arxiv.org/abs/1806.05853.

[9]S.Lang,Algebraicgroupsoverfinitefields,Am.J.Math.78(1956)555–563.

[10]R.Lidl,H.Niederreiter,FiniteFields,vol. 20,CambridgeUniversityPress,1997.

[11]O.Ore,Onaspecialclassofpolynomials,Trans.Am.Math.Soc.35(1933)559–584.

[12]J.Sheekey, Anewfamilyof linear maximumrank distance codes,Adv.Math.Commun. 10 (3) (2016)475–488.

[13]F.Zullo,LinearCodesandGaloisGeometries:BetweenTwoWorlds,PhDthesis,Universitàdegli StudidellaCampania“LuigiVanvitelli”,2018.

Riferimenti

Documenti correlati

It can also be said that, when we added the foreign ownership control variable, E-statistics appear to be getting closer to 0, that is to say; both models hold

We can say, when a bank is foreign owned totally, the total effect of expenses made on deposit on bank revenues is positive with a value of 0.215 where for the domestic banks it

Inoltre, il Fornitore si impegna fornire tutti i pezzi di ricambio necessari e deve garantire la disponibilità degli stessi per 10 (dieci) anni a decorrere dalla data

Enti partner: Dipartimento di Ingegneria Università degli Studi della Campania Luigi Vanvitelli Stato del progetto: valutato positivamente ma non finanziato. Date

La password, da utilizzare solo per il primo accesso, come spiegato nel paragrafo 3, dove essere ritirata personalmente dal richiedente presso l'ufficio del Servizio di Informatica

Nelle persone che vivono con HIV (PLWH) i disturbi nella re- golazione dell'espressione delle citochine possono influen- zare in modo determinante l’esito della patologia favorendo,

Descrizione delle attività di ricerca del progetto: Sulla base delle comprovate esperienze della Germania in tema di green economy e di turismo sostenibile e

Valutazione preliminare e realizzazione del progetto con specifica dettagliata degli interventi e. realizzazione computo metrico dettagliato e differenziato