• Non ci sono risultati.

Performance testing of a combined solar and heat-drying system for biological sludge

N/A
N/A
Protected

Academic year: 2021

Condividi "Performance testing of a combined solar and heat-drying system for biological sludge"

Copied!
91
0
0

Testo completo

(1)

  1  

 

 

International  Joint  Master’s  degree  

Programme  –  Second  Cycle  (D.M.  

270/2004)  in  Environmental  Sciences  

(Sustainable  Development)  

 

 

Final  thesis  

 

 

 

Performance  testing  of  a  combined  solar  

and  thermal-­‐drying  system  for  biological  

sludge  

 

 

 

 

Supervisor  

Ch.  Prof.  Francesco  Gonella  

 

Assistant  supervisors  

Ch.  Prof.  Ernst  Worrell  (Utrecht  University)  

Dr.  Paolo  Franceschetti  (Solwa  srl)  

 

 

 

Graduand  

Stefano  Grosso  

Matriculation  Number  830497  

 

Academic  Year  

2013  /  2014

 

 

(2)

  2  

(3)

  3  

TABLE  OF  CONTENTS  

 

ABSTRACT   5  

CHAPTER  1  –  INTRODUCTION   6  

1.1   WASTEWATER  TREATMENT   7  

1.1.1  A  WASTEWATER  TREATMENT  PLANT  AND  SEWAGE  SLUDGE   7  

1.1.2  SLUDGE  TREATMENT  PHASES   9  

1.1.3  EXISTING  SLUDGE–DEWATERING  METHODS   11  

1.2  WASTEWATER  TREATMENT  PLANT  AT  TREVISO  (ITALY)   13  

1.3  SEWAGE  SLUDGE  MANAGEMENT  AND  REGULATION  IN  EUROPE   14  

1.3.1  SEWAGE  SLUDGE  MANAGEMENT  AND  REGULATION  IN  ITALY   16  

1.3.2  DIFFERENT  SITUATIONS  IN  EUROPEAN  COUNTRIES   17  

1.4  BIOLOGICAL  SLUDGE–DRYING   19  

1.5  BIOLOGICAL  SLUDGE  INCINERATION   21  

1.5.1  ADVANTAGES  OF  SLUDGE-­‐DRYING  AND  INCINERATION   24  

1.5.2  EMISSIONS  FROM  SLUDGE  COMBUSTION   25  

CHAPTER  2  –  DESCRIPTION  OF  THE  SYSTEMS   28  

2.1  SOLAR  STILL  FOR  WATER  DEPURATION   28  

2.2  FOOD–DRYING  SYSTEM   30  

2.3  SLUDGE–DRYING  SYSTEM   31  

2.3.1  COMBUSTION  OF  THE  DRIED  SLUDGE   32  

2.3.2  TECHNICAL  DESCRIPTION   33  

2.3.3  COMPETITORS  OF  THE  SLUDGE-­‐DRYING  SYSTEM   35  

CHAPTER  3  –  MATERIALS  AND  METHODS   38  

3.1  ANALYSIS  OF  THE  SOLAR-­‐DRYING  PROCESS   38  

3.1.1  CALCULATION  OF  THE  TOTAL  SOLAR  INCOMING  RADIATION   38  

3.1.2  DRYING  VELOCITY  AND  DRYING  RATE   39  

3.1.3  ENTHALPY  OF  INCOMING  AND  OUTGOING  AIR  IN  THE  SOLAR  COLLECTORS   40  

3.2  ANALYSIS  OF  THE  THERMAL-­‐DRYING  PROCESS   43  

3.3  DETERMINATION  OF  SOLID  AND  ASHES  CONTENT  IN  THE  SEWAGE  SLUDGE   44  

3.4  COD  DETERMINATION  WITH  TITRATION   45  

3.4.1.  COD  DETERMINATION  WITH  DIGESTION  IN  MICROWAVES  OVEN  (MILESTONE)   46  

3.5  MATERIALS   47  

3.5.1  COLLECTION  OF  THE  SAMPLES   48  

CHAPTER  4  –  RESULTS   49  

4.1  SOLAR  DRYING   49  

4.1.1  FIRST  WEEK  OF  TESTING   50  

4.1.2  SECOND  WEEK  OF  TESTING   52  

4.1.3  THIRD  WEEK  OF  TESTING   57  

4.1.4  COMMENTS  ON  THE  RESULTS  OF  THE  SOLAR-­‐DRYING  EXPERIMENTATION   61  

4.2  ENTHALPY  AND  EXCHANGED  THERMAL  POWER  IN  THE  SOLAR  COLLECTORS   62  

4.3  THERMAL  DRYING   65  

4.3.1  FIRST  TEST   65  

4.3.2  SECOND  TEST   67  

4.3.3  VOLUME  LOSS   72  

4.4  TOTAL  SOLIDS  (TS)  AND  TOTAL  VOLATILE  SOLIDS  (TVS)  DETERMINATION   72  

(4)

  4  

4.6  COD  ANALYSIS  (ORGANIC  CONTENT)   74  

4.7  INPUT  AND  OUTPUT  DATA  OF  THE  SLUDGE  DRYING  SYSTEM   75  

CHAPTER  5  –  CONCLUSIONS   82  

BIBLIOGRAPHY   87  

TABLE  OF  FIGURES   90  

(5)

  5  

Abstract  

 

The  present  work  has  the  principal  objective  of  testing  and  improving  the  per-­‐ formance  of  an  innovative  system  for  biological  sludge  drying,  which  combines   an   inner   high-­‐performance   sludge   burner   with   solar-­‐air   heaters.   The   research   question  is:  how  to  implement  the  design  and  structure  of  the  drying  system,  de-­‐ fining  its  best  working  conditions  (best  temperature,  materials  and  dimensions   of  its  components,  etc.).  

Current  practices  of  wastewater  treatment,  in  particular  the  treatment  of  biolog-­‐ ical   sludge   from   urban   sewage,   are   introduced   first,   with   insight   into   current   management   issues   in   Europe   and   Italy.   Solar-­‐drying   technology   is   then   de-­‐ scribed,   along   with   a   presentation   of   the   system   developed   for   this   project.   In   addition,   its   technical   advantages   and   the   possible   environmental   benefits   that   the  technology  could  bring,  especially  in  comparison  to  other  solar-­‐drying  plants   available  on  the  market,  are  demonstrated.  

Testing  was  done  separately  on  two  solar-­‐drying  systems  and  in  a  laboratory  ov-­‐ en,  in  order  to  assess  the  response  of  the  biological  sludge  to  solar  and  thermal   heating.  

Moreover,  the  measure  of  the  heating  value  during  the  combustion  phase  is  pre-­‐ sented,   followed   by   a   brief   literature   review   regarding   possible   emissions   into   the   atmosphere:   this   data   is   necessary   for   the   development   of   the   project,   be-­‐ cause  the  heat  produced  by  combustion  will  be  put  back  into  the  system  to  dry   the  new  wet  sludge,  obtaining  a  final  product  with  about  85%  dry  matter.  

This  system  is  expected  to  have  a  strong  economic  appeal,  since  it  can  produce   large  cost  savings:  this  product  is  completely  new  on  the  market  in  terms  of  ex-­‐ pected  performance,  design,  technology  and  dimensions.  

(6)

  6  

Chapter  1  –  Introduction  

 

The  present  work  is  embedded  in  a  field  of  research  started  at  Ca’  Foscari  Uni-­‐ versity  of  Venice  and  further  developed  by  Solwa  srl,  a  start-­‐up  company  found-­‐ ed  by  Dr.  Paolo  Franceschetti.  He  was  a  former  Ph.D.  student  at  Ca’  Foscari  Uni-­‐ versity  studying  “Renewable  energy  and  distributed  microgeneration”.  With  the   creation   of   an   innovative   solar   still   for   water   depuration   called   Solwa,   he   was   awarded   with   many   national   and   international   prizes1  (the   system   will   be   de-­‐

scribed  in  Paragraph  2.1).  Starting  from  the  knowledge  acquired  in  the  develop-­‐ ment  of  the  Solwa  prototype,  other  innovative  systems  were  proposed,  such  as   the  one  for  food  drying  (see  Paragraph  2.2).  

 

The  prototypes  developed  are  innovative  in  terms  of  size,  design  and  technologi-­‐ cal   features   and   aim   to   enter   the   market   as   sustainable   and   environmentally   friendly  systems,  with,  at  the  same  time,  better  performances  in  terms  of  costs   and  efficiency,  compared  to  their  competitors.  It  is  from  this  line  of  research  that   the  system  for  sludge  drying  and  burning  has  been  designed.  

 

The  structure  of  the  thesis  will  be  organized  as  follows:  there  will  be  a  descrip-­‐ tion  of  wastewater  and  sewage  sludge  treatment  and  management,  and  the  exist-­‐ ing  technologies  for  its  disposal;  the  regulatory  framework  will  be  described  and   the  current  emissions  from  sludge  incineration,  as  described  in  literature,  will  be   analysed.   Then,   the   two   prototypes   (solar   still   and   food   drying)   will   be   intro-­‐ duced,  and  the  sludge  drying  and  burning  project  will  be  fully  described.  Finally,   the  experimental  part  will  be  presented,  including  materials  and  method  applied,   presentation   and   discussion   of   the   results,   and   conclusions   derived   from   the   whole  project.  

   

                                                                                                               

1  2010:  Solwa  solar  still  has  been  included  in  the  IDEASS  UN  Program  for  the  “Innovation  for  Development  

of  Humanity”.  

2011:   MIT   –   Massachusetts   Institute   Of   Technology   (Boston   –   USA):   Solwa   project   is   awarded   as   “Italian   innovation  of  the  year”  by  the  Journal  “Technology  review”.  

2012:  Solwa  srl.  is  awarded  first  place  by  Huffington  Post  (World)  in  an  evaluation  of  the  10  technological   successes  of  the  year  worldwide.  

2012:  Gaetano  Marzotto  award  (Vicenza  –  Italy):  winner  of  the  award  “Impresa  del  futuro”  (Firm  of  the  fu-­‐ ture).  [http://www.solwa.it]  

(7)

  7   1.1 Wastewater  treatment  

 

Wastewater  Treatment  (WWT)  is  a  process  that  makes  water  suitable  for  partic-­‐ ular  uses,  such  as  drinking,  industry  or  medicine.  Depending  on  the  end  use,  the   process   is   very   different.   In   general,   wastewater   treatment   can   be   divided   into   three  categories:  

1) Purification  for  domestic  use  

2) Treatment  for  industrial  application  

3) Treatment  of  the  wastewater  before  discharge  or  reuse  

The  different  types  of  treatment  also  depend  on  the  quality  of  the  original  water.  

Urban  wastewater  generally  contains  a  mix  of  various  substances:  oxygen  con-­‐

suming  material,  sediments,  fats,  oils,  foam,  salts,  nutrients,  pathogens  and  a  lot   of  other  objects  that  ends  up  in  the  discharge.  

In  WWT,  the  removed  substances  are:   -­‐ the  sifted  material;  

-­‐ the  material  after  coarse  screening;   -­‐ foam  and  sludge.  

 

Sludge  is  generally  the  substance  produced  most  abundantly  and  can  be  in  liquid   or   semi-­‐solid   form,   with   a   typical   solid   content   between   0.25   and   12%   (Stoddard,   et   al.,   2003).   Sludge,   then,   is   the   side-­‐product   of   wastewater   treat-­‐ ment  that  interests  more  the  purpose  of  this  thesis  project  because,  as  it  will  be   presented  in  the  following  sections,  its  disposal  is  a  great  issue  of  modern  socie-­‐ ty.  

 

1.1.1  A  Wastewater  Treatment  Plant  and  Sewage  Sludge  

The  wastewater  treatment  takes  normally  place  in  one  assigned  area:  a  conven-­‐ tional   wastewater   treatment   plant   (WWTP),   which   comprises   different   pro-­‐ cesses.  The  result  is  generally  purified  water  on  one  side  and  biological  sludge  on   the  other;  this  is  a  general  scheme:  

(8)

  8    

Figure  1  –  Basic  flow  diagram  for  conventional  wastewater  treatment  plant  

It  is  then  important  to  distinguish  the  different  types  of  sludge  and  from  which   phase  of  the  process  they  are  taken,  in  order  to  better  understand  which  might   be   their   composition   and   physic-­‐chemical   characteristics.   A   WWTP   in   general   produces  three  types  of  sludge  (Reverdy,  et  al.,  2013):  

-­‐ Primary  biological  sludge  comes  from  the  settling  of  the  effluents,  pre-­‐ viously  suspended  in  water.  

-­‐ Secondary  biological  sludge  is  produced  from  the  settling  of  the  organic   matter  (including  bacteria).  Part  of  the  sludge  is  regularly  removed  from   the  tanks  in  order  to  avoid  an  excess  of  biomass.  

-­‐ Tertiary   biological   sludge   or   physical-­‐chemical   sludge   (derived   from   primary  sludge):  with  the  addition  of  a  coagulant,  the  organic  matter  com-­‐ ing  from  wastewaters  is  agglomerated;  90%  of  the  suspended  matter  can   be   captured   and   settled,   forming   tertiary   sludge,   that   contains   a   major   part  of  water  mineral  salts  and  coagulant  agent.  

 

The  characteristics  of  sewage  sludge  are  also  very  different  depending  on  the  

origin   of   the   wastewater.  In  particular,  different  hazardous   compounds  can  

be  present  in  the  sewage  from  industrial  process,  depending  on  the  production   chain.  For  example,  tannery  sludge  generally  has  a  high  Cr6+  content  or  sludge  

from  paper   industry  contains  various  bleaching   compounds.  Another  type  of   sludge  is  the  so-­‐called  “Red  mud”  which  is  a  waste  product  of  the  production  of  

aluminium  in  the  mining  industry  through  the  Bayer  process  (refining  bauxite  

en  route  to  alumina).    

One  interesting  possibility  that  has  to  be  tested  in  future  research  is  the  incin-­‐

(9)

! N! D'*3! G'>($! FFR2! >=%! (+.*! -(05,+#-'1* ,150."* )%(+'-(-(.* 2'^'#0%5,* )%&3 7%5(0,!.=6B!(.!B&(<8!3&%(+.!*'!B&e(<(+&$%!6B'*3)=3C!RB).!>&6(=.&!%B&!B(h('0\ *=.!6*3@*=$0.!('&!1&$&'(++8!3(0&!*D!2"'84*7'#+-)1",!HB)6B!('&!$*%!.=@@*.&0! %*!&$0!(.!&3)..)*$.!)$%*!%B&!(%3*.@B&'&!>=%!.B*=+0!#"&'-(* -(* +2"* ',2",!%B(%! ('&!0).@*.&0!*D!)$!+($0D)++.C!A='%B&'!'&.&('6B!H)++!%B&$!B(<&!%*!D*6=.!*$!%B&!($(+8\ .).!*D!%B&!&3)..)*$.!*D!)$0=.%')(+!.+=01&C! ! >R>R<*6150."*+#"'+&"(+*72',",*

#$! %B).! .&6%)*$a! %B&! 3()$! @'*6&..&.! D*'! .+=01&! %'&(%3&$%! ('&! >')&D+8! 0&.6')>&0c! .+=01&! H)%B! 0)DD&'&$%! 6B('(6%&').%)6.! 9.=6B! (.! .*+)0! 6*$%&$%:! 6*3&.! *=%! D'*3! %B*.&! @B(.&.! ($0! (+.*! %B&! .+=01&! =.&0! )$! %B&! &e@&')3&$%(+! @('%! H(.! .(3@+&0! D'*3!.)3)+('!(@@('(%=.C! ! Q!FFR!@'*6&..a!)$!D(6%a!(66=3=+(%&.!B)1B!(3*=$%.!*D!.+=01&!%B(%!3=.%!>&!%'&(%\ &0!($0!0).@*.&0!*D!)$!(!.(D&!($0!&DD&6%)<&!3($$&'C!RB&!3()$!@B(.&.!1&$&'(++8!('&c! ! >X*!#"3+2-)`"(-(.*72',"c!%B&!'*+&!*D!(!%B)6_&$&'!).!%*!'&0=6&!%B&!H(%&'!6*$%&$%! *D!%B&!.+=01&C!RB).!)3@'*<&.!%B&!@&'D*'3($6&!*D!($8!0*H$.%'&(3!0&@('%3&$%!D*'! 3&6B($)6(+!0&B80'(%)*$C! ! RB&!%B)6_&$)$1!@B(.&!6($!*66='!>8c! 3*:#'8-+4a*.&0)3&$%(%)*$!*D!%B&!B&(<)\ &'!@('%)6+&.!9.&&!A)1='&!P:C* 3*G1%'+'+-%(a*%B&!@')$6)@+&!).!%B&!(0B&\ .)*$!*D!+)%%+&!1(.!>=>>+&.a!1&$&'(++8!()'a! %*! %B&! .*+)0! @('%)6+&.a! )$! *'0&'! %*! '&\ 0=6&! %B&! %*%(+! .@&6)D)6! H&)1B%! *D! %B&! D*'3&0! (11+*3&'(%)*$a! %B=.! @&'3)%\ %)$1!)%.!D'&&!D+*(%(%)*$!%*!%B&!.='D(6&!*D! %B&!H(%&'C! RB&!(0<($%(1&.!*D!%B).!.8.%&3!6*3@('&0!%*!.&0)3&$%(%)*$!('&c! \ D(.%&'!.*+)0\+)b=)0!.&@('(%)*$! * G-.5#"*<*M*:#'8-+'+-%('1*+2-)`"("#*%$* B#"8-,%*SSB!*

(10)

! "L! \ 6(@(6)%8!%*!.&@('(%&!&<&$!.3(++!@('%)6+&.!%B(%!('&!B('0!%*!.&0)3&$%C! QD%&'! D+*(%(%)*$a! %B&! @('%)6+&.! ('&! '&3*<&0! >8! (! .=@&'D)6)(+! ._)33&'! 95%*00('0a!&%!(+Ca!PLLK:C!

P:!O-.",+-%(*72',"c!%B).!@'*6&..!'&0=6&.!%B&!(3*=$%!*D!*'1($)6!3(%%&'!($0!%B&! $=3>&'! *D! 0).&(.&\6(=.)$1! 3)6'**'1($).3.! @'&.&$%! )$! %B&! .*+)0.a! %B'*=1B! %B&! 0&6*3@*.)%)*$! *D! 6*3@+&e! +('1&\3*+&6=+&! *'1($)6! 6*3@*=$0.a! '&.=+%)$1! )$! .+=01&!.%(>)+)h(%)*$C!RB&!3*.%!6*33*$!%8@&.!*D!0)1&.%)*$!('&!(&'*>)6!($0!($(&'\ *>)6c!

!!

<'X* 9('"#%/-)* 0-.",+-%(c! (! >(6%&')(+!

@'*6&..!9A)1='&!K:a!6('')&0!*=%!)$!%B&!(>\ .&$6&! *D! *e81&$i! %B&! 0&1'(0(%)*$! *D! *'\ 1($)6!3(%%&'!0&%&'3)$&.!%B&!D*'3(%)*$!*D! <(')*=.! @'*0=6%.a! %B&! 3*.%! (>=$0($%! *D! HB)6B!('&!%H*!1(.&.a!3&%B($&!97UM:!($0! 6('>*$!0)*e)0&!97WP:C!#%!)$<*+<&.!<(')*=.! )$%&'(6%)$1!3)6'*>)(+!1'*=@.c! \ B80'*+8%)6!>(6%&')(i! \ (6)0)D8)$1!>(6%&')(i! \ 3&%B($*1&$!>(6%&')(a!%B(%!@'*0=6&!7UM!($0!7WP!($0!*66=@8!*$+8!%B&!D)$(+! @*.)%)*$!)$!%B&!($(&'*>)6!%'*@B)6!6B()$!95%*00('0a!&%!(+Ca!PLLK:C! </X*9"#%/-)*0-.",+-%(a*H)%B!%B&!@'&.&$6&!*D!*e81&$a!>(6%&')(!'(@)0+8!6*$\ .=3&!*'1($)6!3(%%&'!($0!6*$<&'%!)%!)$%*!6('>*$!0)*e)0&C!FB&$!%B&!(<()+(>)+\ )%8!*D!$*=').B3&$%!D*'!3)6'**'1($).3.!&$0.a!%B&8!.%('%!%*!6*$.=3&!$=%')\ &$%.!)$.)0&!%B&)'!@'*%*@+(.3!%*!*>%()$!%B&!$&6&..('8!&$&'18!D*'!%B&)'!.=>\ .).%&$6&C!RB).!@B&$*3&$*$!).!6(++&0!f&$0*1&$*=.!'&.@)'(%)*$gC!Q&'*>)6!0)\ 1&.%)*$!).*(@@+)&0!H)%Bc! • &e6&..!.+=01&i! • 3)e%='&!*D!&e6&..!.+=01&!*'!.+=01&!D'*3!@&'6*+(%)*$!D)+%&'!H)%B!@')\ 3('8!.+=01&i! • &e6&..!.+=01&!D'*3!>)1!(&'(%)*$!@+($%.i! • .+=01&!D'*3!(6%)<(%&0!.+=01&!@+($%.!H)%B*=%!@')3('8!.&0)3&$%(%)*$! 95%*00('0a!&%!(+Ca!PLLK:C! G-.5#"*?*M*B2"*9("#%/-)*0-.",+-%(* 7#%)",,*(IBW, 2009)*

(11)

  11    

It  can  be  observed  that  every  phase  has  a  different  result  in  the  sludge  composi-­‐ tion:   the   thickener   increases   the   solid   content   while   the   digestion   reduces   the   organic  content  and  the  amount  of  bacteria.  

 

1.1.3  Existing  sludge–dewatering  methods  

Large   amounts   of   sludge  are  produced  from  a  WWTP  every  day.  For  this  rea-­‐

son,  various  technologies  for  sludge  dewatering  have  been  developed.  In  this   section,  the  most  common  existing  methods  are  presented;  from  an  overall  per-­‐ spective,  they  can  be  divided  into  natural  or  artificial  methods:  

-­‐ Natural   methods:  the  sludge  is  arranged  on  an  open-­‐air  bed  where  it  is   dehydrated  through  evaporation.  Reinforced  concrete  tanks  are  normally   used,  with  the  bottom  covered  by  a  draining  layer,  made  of  coarse  gravel,   over  fine  gravel  and  sand.  The  main  problem  with  this  method  is  rainfall,   which  causes  most  of  the  water  lost  by  evaporation  to  be  reintroduced  in-­‐ to  the  system.  Other  disadvantages  are  the  large  ground  space  required,   the  noxious  fumes  produced  and  the  possibility  of  retaining  viruses  and   bacteria  in  the  sludge  (with  the  hazard  of  spreading  pathogens  by  air).   -­‐ Artificial   methods:  they  are  all  the  techniques  that  include  the  applica-­‐

tion  of  machinery.  They  can  be  distinguished  into:   • Mechanical  treatments:  

o Filtration:  the  sludge  passes  through  a  filtering  medium  such  as  a   vacuum  pump  or  pressure  plate  partially  immersed  in  the  sludge   itself  (belt  or  filter  press,  Figure  5).  

(12)

! "P!

!

o :.95-834;05869c!.&@('(%&.!%B&!H(\ %&'! D'*3! %B&! .+=01&! %B'*=1B! %B&! (@@+)6(%)*$!*D!(!6&$%')D=1(+!D*'6&a! H)%B! HB)6B! %B&! .*+)0.a! (D%&'! (! .B*'%!%)3&a!(0B&'&!%*!%B&!H(++.!*D! %B&! 6&$%')D=1&C! RB&! D)$(+! @'*0=6%a! B*H&<&'a!B(.!(!+*H!.*+)0!6*$%&$%! 9A)1='&!M:C! ! • B2"#&'1*+#"'+&"(+a* o "-<89;c!%B&!%'($.3)..)*$!*D!B&(%!%*!%B&!.+=01&!6($!>&!(6B)&<&0!)$! %B'&&!H(8.!*'!($8!6*3>)$(%)*$!%B&'&*Dc!! 7*$<&6%)*$! !!0)'&6%!0'8)$1! 7*$0=6%)*$! !!)$0)'&6%!0'8)$1! S(0)(%)*$! !!)$D'('&0!0'8)$1! RB&!@')$6)@+&!*D!%B&'3(+\0'8)$1!.8.%&3.!).!%*!>')$1!%B&!.+=01&!(%! B)1B!%&3@&'(%='&.!%*!&<(@*'(%&!%B&!)$%&'.%)%)(+!($0!6(@)++('8!H(\ %&'C! RB&! B&(%! 6*=+0! 6*3&! D'*3! (! >='$&'! (+)3&$%&0! H)%B! D*..)+! D=&+.a!HB)6B!B&(%.!=@!(!D+=)0!9<(@*='!*'!%B&'3(+!*)+:!+(@@)$1!%B&! .+=01&C! A*'!(!3*'&!0&%()+&0!0).6=..)*$!.&&!2('(1'(@B!"CMC! ! * * G-.5#"*K*M*C"1+*7#",,*W\\\R"#,'$R1%&/'#0-'R-+X*'(0* $-1+"#*7#",,*W62'(.'-*cPNDEE*E(8-#%(&"(+'1*7#%+")+-%(*Ed5-7&"(+*H%RX! ! G-.5#"*A*M*H"(+#-$5."*W$#%&*:F6B*M* 2++7a@@\\\R.%,+R-+@X!

(13)

  13   1.2  Wastewater  treatment  plant  at  Treviso  (Italy)  

The  WWTP  of  Treviso  is  here  described  as  it  is  where  part  of  the  experimenta-­‐ tion  took  place  and  the  sludge  samples  were  collected.  It  can  be  also  taken  as  an   example  of  how  a  common  WWTP  is  organised  and  which  treatment  processes   operate  in  it.  

 

The  plant   of   the   City   of   Treviso   is  located  in  the  area  of  “Sant’Antonino”  (via  

Cesare  Pavese  n.  18)  and  discharges  the  treated  water  into  a  final  dead  branch  of  

the  Sile  River.  The  plant  has  been  in  operation  since  1975  with  an  original  capac-­‐ ity   of   30000   Population   Equivalent   (PE)   and   a   conventional   line   of   activated   sludge  (Regione  del  Veneto,  2011).  

Due  to  the  increase  in  the  hydraulic  load  and  with  the  aim  of  ensuring  the  strict-­‐ er  standards  of  new  directives,  the  plant  was  enlarged  and  restored  until  achiev-­‐ ing  a  total  capacity  of  70000  PE  and  the  presence  of  machinery  both  for  water   and  sludge  treatment  (see  Table  1).  

 

Table  1  –  Process  chain  of  the  WWTP  of  Treviso  (Regione  del  Veneto,  2011)  

Water  treatment   Sludge  treatment  

Coarse  screen   Thickener  F  and  H  

Lifting  station   Anaerobic  digester  

Grit  removal   Belt  press  

Biological  process  –     Anaerobic-­‐Anoxic-­‐Aerobic  

Gasometer  

 

Secondary  sedimentation   Cogenerator  

Disinfection   Torch  

 

Figure  6  presents  a  general  scheme  of  all  the  treatments  applied  in  the  WWTP  of   Treviso.  

(14)

  14    

Figure  6  –  Block  scheme  of  the  line  system  of  WWTP  in  Treviso  (Regione  del  Veneto,  2011)  

 

1.3  Sewage  sludge  management  and  regulation  in  Europe  

Sewage  sludge  management  is  a  complex  issue  worldwide  since  its  production  

is   continuously   increasing,  particularly  in  industrialized  countries  (Gálvez,  et  

al.,  2007).  Due  to  the  high  quantitative  produced  every  day,  in  fact,  the  treatment   of   wastewater   shows   huge   expenses   for   the   purification   process   and   for   the   sludge   disposal.   It   is   from   this   market   request   of   new   sludge   disposal   method   that  the  research  described  in  this  thesis  take  its  origin.    

 

In  Europe,  sewage  sludge  production  was  nearly  11  million  tons  of  dry  matter   (DM)   in   2012   and   is   expected   to   increase   by   at   least   10%   by   2020   (Oikonomidis  &  Marinos,  2014).  The  progressive  implementation  of  the  Urban  

Waste   Water   Treatment   Directive  91/271/CEE  on  urban  WWT  in  all  the  EU  

Member  States  has  been  increasing  the  amount  of  sewage  sludge  requiring  dis-­‐ posal:   this   Directive   stated   that   waste   waters   from   agglomeration   with   more   than  2000  Population  Equivalent  (PE)  had  to  undergo  to  secondary  treatment  by  

(15)

  15   the  end  of  2005:  this  increased  the  number  of  houses  connected  to  the  sewage   system  (EC, 2014a).    

 

In  the  EU  waste   disposal  (as  sludge  is  considered  a  waste)  is  regulated  by  the  

Waste   Framework   Directive   2008/98/CE   (EC, 2014b)   that   indicates   various  

measures   to   protect   the   environment   and   human   health,   based   on   prevention   and  reduction  of  the  negative  impacts  caused  by  waste  production  and  manage-­‐ ment.  In  particular,  risk  to  water,  air,  soil,  plants  or  animals  should  be  avoided.   The  main  criteria  established  by  the  Directive  are  summed  up  in  Figure  7:  

 

Figure  7  –  Waste  management  hierarchy  established  by  the   Waste  Framework  Directive  (EC,  2014a;  EC,  2014b)  

 

In   addition,   after   the   promulgation   of   the   Water   Framework   Directive   (Di-­‐ rective   2000/60/EC),   a   number   of   new   treatment   plants   have   been   built.   This   because  the  Directive  requires  that  all  inland  and  coastal  waters  within  defined   river  basin  districts  must  reach  at  least  good  status  by  2015  and  defines  how  this   should  be  achieved  through  the  establishment  of  environmental  objectives  and   ecological  targets  for  surface  waters (EC, 2014a).  

 

A  biological  sludge  is  defined  as  “treated”  when  it  has  been  subjected  to  “biolog-­‐ ical,  chemical  or  heat  treatment,  long-­‐term  storage  or  any  other  appropriate  pro-­‐ cess  so  as  significantly  to  reduce  its  fermentability  and  the  health  hazards  result-­‐ ing  from  its  use"  (EC, 2014a).  In  the  last  decades,  the  most  common  ways  to  treat   sludge  were  landfilling,  incineration,  agricultural  use  and  alternative  fuel  in  in-­‐ dustrial  processes.  In  addition  to  this,  sludge  was  recycled,  including  all  the  pro-­‐ cesses  that  resulted  in  the  reuse  of  the  sludge  (Suh  &  Rousseaux,  2002).    

(16)

  16   The   most   attractive   option   for   sludge   disposal   so   far   has   been   use   in   agricul-­‐

ture,  since  the  sewage  sludge,  due  to  the  physical-­‐chemical  processes  involved  in  

its  treatment,  is  rich  in  nutrients  (mainly  nitrogen  and  phosphorous)  and  valu-­‐

able  organic  matter,  useful  when  soils  are  depleted  or  subject  to  erosion.  This  

solution  has  been,  however,  recently  criticised  because  the  sludge  also  tends  to   concentrate  heavy  metals  and  poorly-­‐biodegradable  trace  organic  compounds   and  pathogens  (viruses,  bacteria  etc.)  present  in  wastewaters  (EC, 2014a).  These   substances   (in   particular   heavy   metals)   can   cause   soil   contamination,   even   though   European   regulations   limit   the   amount   of   metallic   materials   in   the   sludge.  

 

More   recently,   another   issue   has   emerged,   concerning   the   organic   pollutants   sludge  can  contain,  such  as  pharmaceuticals,  pesticides  and  personal  care  prod-­‐ ucts,   which   might   have   an   impact   on   the   food   chain   (Lederer   &   Rechberger,   2010).  European  legislation  also  restricts  the  final  disposal  of  sludge  in  landfills,   requiring  a  decrease  to  35%  biodegradable  content  in  it  by  2020  (Stehlik,  2009).    

Sludge  disposal  is  then  an  issue  that  is  going  to  worsen  in  the  next  future:  Euro-­‐ pean   regulations,   posing   stricter   limits   regarding   landfilling   and   agriculture,   is   trying   to   direct   the   producer   to   find   new   solutions   for   a   safe   disposal   even   though  it  seems  that  insufficient  effort  is  brought  for  a  regulation  that  should  fa-­‐ vour  this  alternatives.  

 

1.3.1  Sewage  sludge  management  and  regulation  in  Italy  

In  Italy  the  issue  of  sludge  disposal  is  urgent  as  well:  the  amount  of  sludge  pro-­‐ duced   was   around   1.7   million   tons   of   DM   in   2005.   For   sludge   from   urban   wastewater,  it  was  nearly  1  million  ton  DM/year  (ISTAT,  2005).  

(17)

  17  

Table  2  –  ISTAT  (2005)  data  for  sludge  amount  in  Italy  

  Primary  

[Mtons/year]   [Mtons/year]  Secondary   [Mtons/year]  Tertiary   [Mtons/year]  Total  

Italy   9002   6049   1850   16901   Northwest   3773   1744   429   5946   Northeast   2752   1109   514   4375   Centre   1452   1482   330   3264   South   907   1165   359   2431   Islands   118   549   218   885    

In  the  Italian  regulation,  sludge  is  defined  in  the  Testo  Unico  Ambientale  (D.  Lgs.   152/2006)   as   “treated   or   untreated   residue   coming   from   urban   wastewater   treatment  plant”  (art.  74).  It  is  then  considered  special   waste  and  its  manage-­‐ ment  is  governed  by  part   IV   of   D.  Lgs.   152/2006;  article  127,  however,  states   that   the   sludge   must   be   reused   whenever   it   is   appropriate.   Sludge   disposal   should  then  be  done  by:  

-­‐ Incineration,   aimed   at   energy   recovery   of   the   sludge   itself   or   together   with  the  organic  fraction  of  the  urban  wastes.  

-­‐ Disposal   in   controlled   landfills   for   special   waste   (resumed   from   D.  Lgs.   36/03  and  D.M.  03/08/2005).  

In  addition,  D.  Lgs.  99/1992  (embodied  in  the  D.  Lgs.  152/2006),  which  was  the   implementation   of   the   European   Directive   86/278/CEE,   regulates   the   use   of   sewage  sludge  in  agriculture.  This  Directive  enhances  the  use  of  sludge  for  agri-­‐ cultural  purposes  by  spreading  onto  the  soil,  trying  at  the  same  time  to  prevent   eventual  harmful  effects  on  agricultural  land,  vegetation,  animals  and  man.  Com-­‐ posting  of  the  sludge  is  suggested  for  a  subsequent  use  in  agriculture,  together   with  reuse  in  the  production  of  bricks,  asphalt  and  concrete.  The  spread  onto  the   soil  of  untreated  sludge,  however,  is  forbidden,  unless  it  is  injected  or  incorpo-­‐ rated  into  the  soil,  and  whenever  its  heavy  metals  content  does  not  meet  the  re-­‐ quirements  of  the  legislation.    

 

1.3.2  Different  Situations  in  European  countries  

The   situation   of   sludge   production   and   disposal   varies   widely   by   country:   this   section  will  briefly  present  the  actual   situation   in   European   Union   Member  

States   (EU-­‐27)  and  the  future   predictions   by   2020  provided  by  Kelessidis  &  

(18)

  18      

In  the  European  Union  countries,  specific   sludge   production  ranges  from  0.1  

kg  per  PE  and  year  (Malta)  to  30.8  kg  per  PE  and  year  (Austria)  (Kelessidis  &  

Stasinakis,  2012).  As  said  before,  the  legislation  on  this  sector  is  outlined  by  the   European   Directive   86/278/EC   but   many   countries   have   adopted   more   strin-­‐

gent  regulations,  with  lower  limit  values  for  heavy  metals,  organic  micropollu-­‐

tants  and  pathogens  (Kelessidis  &  Stasinakis,  2012).    

The   type   of   treatments   adopted,   as   well,   varies   between   countries:   the   most   popular  stabilisation   methods  are  aerobic  (in  24  countries)  and  anaerobic  di-­‐ gestion  (in  20  countries);  mechanical  sludge  dewatering  is  generally  preferred   comparing  to  the  use  of  drying  beds  in  all  Member  states  (EU-­‐27),  while  thermal  

drying  is  the  most  common  practice  in  old  Member  States  (EU-­‐15  countries),  in  

particular  in  Germany,  Italy,  France  and  United  Kingdom.    

Regarding  the  final  disposal  of  sludge,  reuse  is  the  most  applied  in  EU-­‐15  coun-­‐ tries   (53%   of   produced   sludge),   followed   by   incineration   (21%   of   produced   sludge),  while  in  the  new  Member  States  that  joined  EU  after  2004  (EU-­‐12),  the   most   common   disposal   method   is   still   landfilling   (Kelessidis   &   Stasinakis,   2012).    

 

Based  on  current  trends,  Kelessidis  &  Stasinakis  (2012)  have  also  produced  fore-­‐ casts  for  sludge  management  by  2020,  dividing  the  countries  into  five  groups:  

• Group  1  –  Increasing  agriculture  use  only:  France,  Malta.   • Group  2  –  Status  quo:  Germany,  Estonia,  Netherlands,  Cyprus.  

• Group   3   –   Increasing   incineration   only:   Austria   Portugal   Slovakia,   Hungary,   Belgium   (mainly)   and   Latvia,   Denmark,   Ireland,   Luxembourg   (less).  

• Group   4   –   Increasing   (mainly)   agriculture   and   incineration:  Sweden   (major   shift   to   composting   and   co-­‐incineration),   Czech   Republic   (com-­‐ posting),   Lithuania,   Poland   (composting),   Romania,   Slovenia,   United   Kingdom.  

(19)

  19   • Group  5  –  Increasing  agriculture  and  (mainly)  incineration:  Spain,  It-­‐

aly   (composting),   Bulgaria,   Finland,   Greece   (Kelessidis   &   Stasinakis,   2012).  

 

It  is  then  interesting  to  observe  that  the  situation  is  very  faceted:  EU-­‐12  coun-­‐ tries  will  temporary  enhance  landfilling  since  they  will  have  to  face  at  first  a  ur-­‐ gent  situation  but  then  up  to  2020  an  increase  in  agricultural  reuse  can  be  ex-­‐ pected.   Regarding   EU-­‐15   countries,   agricultural   recycling   and   incineration   seems  to  be  the  practices  most  favourable  to  be  adopted  by  2020.  

 

1.4  Biological  sludge–drying    

 

Figure  8  –  Distribution  of  sludge  drying  plants  in  European  countries  (Kelessidis  &  Stasinakis,  2012)  

Sludge  drying  is  here  analysed  more  deeply,  since  the  projected  system  will  ex-­‐ ploit  both  thermal  drying  and  incineration  (see  Paragraph  1.5).  

Drying  the  sludge,  in  fact,  is  a  possibility  to  reduce  the  expenses  for  its  disposal;   this  is  an  important  step  showing  many  positive  results  (Oikonomidis  &  Marinos,   2014):  

1. Drying  means  a  reduction  in  mass  and  volume,  thus  saving  in  transpor-­‐ tation  costs  because  the  sludge  is  often  moved  by  truck  from  the  produc-­‐ tion  site  to  the  place  of  final  use;  a  smaller  amount  of  sludge  thus  means  

less   costs   for   transport,   handling   and   storage.   This   is   also   an   envi-­‐ As far as concerning the new EU countries, Czech Republic is the

region’s leader in sludge management innovation (Le Blanc et al., 2008). This can be illustrated by the full-scale use of mechanical sludge disintegration and the use of sludge lysate being produced during the disintegration or by rich experience on thermophilic anaerobic digestion (Zabranska et al., 2009). Such innovative tech-niques of disintegration by mechanical (ultrasound, mills, homog-enizers), thermal, chemical (acids, lyes) and biological (enzymes) means have also been studied and applied mainly in Germany and less in Sweden and Italy with encouraging results (WPCF, 1989; Kunz et al., 1996; Lee and Welander, 1996; Sakai et al.,

1997; Krogmann et al., 1997; Muller, 2000; Le Blanc et al., 2008).

On the other hand, sludge dewatering seems to be an important step in sludge management of most EU-27 countries. According to

Table 3, the majority of European WWTSs use mechanical

dewatering instead of drying beds that are preferred mainly in small WWTSs and are reported in 6 out of 27 European countries. From financial point of view, the prevailing sludge dewatering technologies in descending order are centrifuges (41%), belt filter presses (28%) and filter presses (23%) (www.frost.com).

Regarding other sludge treatment methods applied in European countries, thermal drying has prevailing position in sludge man-agement of EU-15 (Table 3). It should be mentioned that 110 ther-mal drying plants were operated in EU in 1995 (Hall, 1995), the drying lines were increased to about 370 in 1999 (EC, 1999), while today they exceed 450. Most of these plants constitute the first stage of incineration units.Fig. 1represents distribution of sludge drying plants in European countries. Except of Luxembourg and Finland, all EU-15 countries apply this technology (Drace

medio-ambiente, 2010; Milieu Ltd., WRc and RPA, 2010). AsFig. 1reveals,

the big majority of thermal drying plants (almost half of them) are operated in Germany, following by Italy, UK and France. Rotary Drum Dryers (RDD) is the most commonly used system, following by other types as Fluidized Bed Dryers (FBD) or Belt Dryers (BD)

(http://www.web4water.com/library/print.asp?id=3539;

Arlabos-se et al., 2012). An innovative method called Direct Microwave

Drying has also been used in Ireland (Turovskiy and Mathai, 2006). On the other hand, excepting Slovenia, there are no thermal drying units in the new EU-12 countries (Fig. 1).

Long term storage is also applied in several old or new Member States (9 out of 27) as it is an easy and cheap method for sludge

management but it requires proper climates and great areas. Other methods such as cold fermentation, solar drying or pasteurization are scarcely referred in a limited number of countries (Table 3). 5. Sewage sludge disposal in EU-27

The change of sewage sludge disposal methods in EU-15 after implementation of 91/271 Directive (CEC, 1991) can be seen in

Fig. 2. It should be mentioned that the most recent available data

for all European countries are these of 2005. According to the re-sults, landfilling presents a significant and continuing decrease be-tween 1992 and 2005, from 33% to 15%. On the other hand, sludge incineration has been almost doubled (from 11% to 21%), following the estimate-target (EC, 1999). Biosolids reuse, which mainly in-cludes agricultural utilization and composting, has been slightly increased, while an important part of total sludge production (9% in 2005) has been managed using several practices. This part of sludge is reported in several reports as ‘‘others’’ and include meth-ods such as pyrolysis, temporary storage (e.g. Greece, Italy), long storage (e.g. Poland, Estonia, Lithuania), reuse in green areas and forestry (e.g. Ireland, Latvia, Slovakia), landfill cover (e.g. Sweden, Flanders), exportation of sludge amounts to other countries (e.g. granulated sludge from Netherlands to Germany for incineration, sludge for composting or incineration from Luxembourg to Ger-many) as well as possible differences between total sludge produc-tion and disposal amounts. Besides the banning of sludge dumping to the sea after 1998, it is possible that high values of ‘‘others’’ ob-served in 2000 could also be due to the continued apply of this practice in some European countries (EC, 2004).

Sludge disposal methods for year 2005 in EU-15 and EU-12 are presented inFig. 3a and b, respectively. As it can be seen, the phi-losophy of sludge management is quite different between old and new Member States. The prevailing technology in EU-15 is recy-cling in agriculture (44%). In contrary, the status in new countries is quite unclear, as for 35% of sludge no specific disposal manner is declared. This uncertainty mainly originates from Poland which, as it was mentioned in Section 2, is the greatest sludge producer in EU-12 countries. Almost half of produced sludge in Poland (48%) has no specific outlet, while according to data reported in BIOPROS project (2006), it seems that this percentage include stockpiling and lagooning. Taking into account this notice, landfilling (28%)

0% 10% 20% 30% 40% 50% 60% Germany Italy UK France Netherlands Spain Austria Denmark Belgium Ireland Sweden Portugal Greece Slovenia

Sludge drying plants in European countries (%)

Fig. 1. Distribution of sludge drying plants in European countries (EC, 1999; Le Blanc et al., 2008; HMEPPPW, 2009; Drace medioambiente, 2010; http://www.wat-erworld.com; http://andritz.com; http://www.environ.ie/en/; http://www.web4-water.com;http://www.waterworld.com;http://www.hse.gov.uk).

48 47 57 50 54 11 13 15 18 21 33 29 18 18 15 6 5 4 2 6 6 14 9 0 10 20 30 40 50 60 70 80 90 100 1992 1995 1998 2000 2005 Year

Sludge disposal methods used in EU-15 (%)

Reuse Incineration Landfill Surface waters Others

Fig. 2. Sludge disposal methods applied in EU-15 between 1992 and 2005 (year 1992 does not include Italy, Sweden, while year 1998 does not take into account Italy due to lack of data) (http://epp.eurostat.ec.europa.eu;Hall, 1995; EC, 1999, 2004, 2006; EEA, 2002; BIOPROS, 2006; HMEPPPW, 2007; Milieu Ltd., WRc and RPA, 2010).

(20)

! PL! #%(&"(+'1*.'-(!.)$6&!+&..!<*+=3&!%*!%'($.@*'%!3&($.!(!'&0=6%)*$!)$!%B&! 6*$.=3@%)*$!*D!D*..)+!D=&+.a!.*!+&..!7WP!&3)..)*$.C! PC RB&!B)1B!%&3@&'(%='&.!=.&0!)$!%B&!0'8)$1!@'*6&..!6($!`-11*,%&"*7'+2%3 ."(,a!%B=.!6*$%')>=%)$1!%*!%B&!.%(>)+).(%)*$!*D!%B&!.+=01&C!! KC ?')&0!($0!0)1&.%&0!.+=01&!9NLd!0)..*+<&0!.*+)0.!9?5:!($0!ZLd!3)$&'(+! D'(6%)*$!)$!?5:!B(.!(!2-.2"#*2"'+-(.*8'15"!9>=M>K*Tk*`.3>*O6:a!3(_)$1!)%! (!.=)%(>+&!6*3>=.%)>+&!.*='6&!9(!6(@(6)%8!&b=)<(+&$%!%*!>'*H$!6*(+:!97B()a! PLLO:!9A+(1(a!PLLN:C! MC ?')&0!.+=01&!6($!>&!&%#"* "',-14* ,+%#"0!0=')$1!%B*.&!3*$%B.!)$!HB)6B! .@'&(0)$1!.+=01&!).!@'*B)>)%&0!.)$6&!%B&!$&('!6*3@+&%&!(>.&$6&!*D!H(%&'! @'&<&$%.!%B&!*$.&%!*D!@=%'&D(6%)*$!@B&$*3&$(C! ZC ?'8)$1!0*&.*(%+*'1+"#*+2"*%#.'(-)*)%(+"(+!)$!%B&!.+=01&a!.)$6&!)%!).!$*%!(! 6*3>=.%)*$!@'*6&..C! ! RB&!0'8)$1!*D!.+=01&!6($!>&!(6B)&<&0!H)%B!,%1'#*%#*+2"#&'1*"("#.4c!%B&!0)DD&'\ &$6&!).!%B(%!.*+('!0'8)$1!=.&.!&<(@*'(%)*$a!HB)+&!)$!%B&!%B&'3(+!.8.%&3.!%B&!&e\ 6B($1&!*D!B&(%!>&%H&&$!()'!($0!.+=01&!).!(6B)&<&0!%B'*=1B!6*$<&6%)*$a!6*$0=6\ %)*$!($0!'(0)(%)*$!9A+(1(a!PLLN:C! !

A*'! %B&! .(_&! *D! %B).! %B&.).a! %B).! .&6\ %)*$! H)++! D*6=.! 3*'&! *$! %B&! .*+('! 0'8)$1!.8.%&3.C!Q!6%1'#*6150."*O#43 -(.* !1'(+! 955?2:! 1&$&'(++8! B(.! %B&! D*++*H)$1! 0&.)1$! 9A)1='&! N:! 9W)_*$*3)0).!n!-(')$*.a!PL"M:c! ": RB&! 3()$! >*08! ).! (! .#""(3

2%5,"* )2'&/"#! HB&'&! %B&!

.+=01&! ).! .@'&(0! )$! +(8&'.! *$! %B&!D+**'a!B&(%&0!($0!%B&!H(\ %&'!&<(@*'(%&0a!%B($_.!%*!%B&! 1'&&$B*=.&!&DD&6%C!

P: N(0%%#*8"(+-1'+%#,!6'&(%&!%='>=+&$6&a!(&'(%)$1!%B&!.='D(6&!*D!%B&!.+=01&! ($0! '&3*<)$1! %B&! .(%='(%&0! ()'! +(8&'! (66=3=+(%&0! *$! )%a! HB)+&! "b2'5,+* !

G-.5#"*Y*M*9*6%1'#*,150."*0#4-(.*71'(+* WL5/"#*B")2(%1%.4*M*\\\R25/"#+")R-+X*

(21)

  21  

fans   discharge   the   saturated   air   stored   in   the   plant   and   provide   air   re-­‐

newal.    

3) Robots   or   drums  with  rotating  scrapers  (or  similar  devices)  renew  the   sludge  by  mixing  it.  

 

A  SSDP  can  be  pure  when  the  only  source  of  energy  is  the  solar  one,  or  hybrid   when  there  is  a  second  source,  e.g.  waste  heat  from  combined  heat  and  power   (CHP)  unit  (Oikonomidis  &  Marinos,  2014).  

 

The  economic  and  environmental  advantages  (since  no  fossil  fuel  are  burned)  of   solar   systems   are   clearly   described   in   Figure   10,   an   analysis   provided   by   the   multinational  Parkson  Company  (the  worldwide  leader  in  the  field)  (Parkson  &   KET,  2010),  which  compares  the  traditional  technology  with  the  solar  one  (gas  

fired  dryer  costs  vs  solar  dryer  costs):  

 

Figure  10  –  Thermal  energy  consumption  comparison  between  gas-­‐fired  and  solar  dryer   (Parkson  &  KET,  2010)  

It  is  starting  from  an  analysis  of  the  current  situation  on  sludge  disposal  by  dry-­‐ ing  that  the  idea  of  an  innovative  system  came  out,  since  the  market  seems  to  be   very  favourable  to  this  new  disposal  solution.  

 

1.5  Biological  sludge  incineration    

The  innovative  idea  behind  the  projected  system  is  that  solar/thermal   drying   should  be  combined  with  incineration  of  the  dry  sludge  (for  a  fully  description  

(22)

  22   see  Paragraph  2.3).  The  incineration  is  here  described  for  a  better  comprehen-­‐ sion  of  the  mechanism  involved  in  the  system.  

 

Incineration   can   be   defined   as   the   complete   combustion   with   a   rapid   exo-­‐

thermic   oxidation   of   the   fuel   elements   contained   in   the   sludge:   it   requires  

temperatures  of  420°-­‐500°  C  and  the  presence  of  oxygen.  Complete  combustion   of   all   organic   solids   requires   temperatures   over   760°-­‐820°C.   (Turovskiy   &   Mathai,   2006).   During   the   incineration   process,   the   organic   components   of   sludge  are  converted  into  oxidised  end  products,  such  as  carbon  dioxide  (CO2),   water  vapour  and  ash;  particulates  and  other  gases  could  also  be  present  in  the  

final   product,   which   is   why   these   gases   are   brought   into   a   post-­‐combustion   chamber  before  being  released  into  the  atmosphere.  

 

 

Figure  11  –  Heating  Values  of  Sludge  and  Other  Residuals  (Turovskiy  &  Mathai,  2006)    

One   of   the   principal   parameter   that   has   to   be   taken   into   account   in   the   sludge   incineration  is  moisture  content.  Sludge  cake  with  30  to  50%  of  solids  content   (50   to   70%   of   moisture)   is   autogenous,   which   means   that   it   can   be   burned   without  auxiliary  fuel.  Percentages  lower  than  those  ones  (20-­‐30%  solids)  could   indicate  that  an  auxiliary  fuel  for  combustion  is  required.  For  this  reason,  there  is   the   necessity   of   reducing   the   moisture   content   of   the   sludge   by   mechanical   dewatering  or  thermal  drying  before  incineration  (Turovskiy  &  Mathai,  2006).  

Another important parameter of sludge incineration is the heating value of sludge. It represents the quantity of heat released per unit mass of solids. The amount of heat released from sludge is a function of the types and com-bustible elements present in sludge. The primary comcom-bustible elements in sludge (and in most available auxiliary fuels) are carbon, hydrogen, and sulfur. Carbon burned to carbon dioxide has a heating value of 34 MJ/kg

(14.6 × 103 Btu/lb), hydrogen has a heating value of 144 MJ/kg (62 × 103 Btu/

lb), and sulfur has a heating value of 10 MJ/kg (4.5 × 103 Btu/lb).

Conse-quently, any changes in the carbon, hydrogen, or sulfur content of sludge will raise or lower its heating value. Table 8.4 shows the heating values of various types of sludge, grease and scum, and screenings.

8.3.1 Methods of Incineration

The process of sludge incineration in furnaces can be divided into the follow-ing stages: heatfollow-ing, dryfollow-ing, distillation of volatile matter, combustion of the organic fuel matter, and calcination to burn the residual carbon. Heating the sludge to 100°C (212°F) and then drying it at about 200°C (392°F) consume the principal quantity of heat and are generally required for the incineration process. These parameters also affect the selection of the size of the main and auxiliary equipment and consequently, determine the cost in general. In the course of moisture evaporation in the drying zone, volatile substances are liberated together with the moisture, which sometimes results in objection-able odors.

The combustion of the sludge takes place at temperatures between 200 and 500°C (392 and 932°F), due to the thermal radiation of the fl ame and the incandescent walls of the combustion chamber, as well as the convection heat transfer from the exhaust gases. The calcination of the ash fraction of the sludge is completed by its cooling to a temperature at which it can be removed from the site.

The design temperature in the furnace should not exceed the melting point of ash [usually, about 1050°C (1922°F)] and should not be below 700°C (1292°F), thus providing reliable deodorizing of the gases. Systems for sludge incineration should provide complete combustion of the organic fraction of the sludge and utilization of the heat of the exhaust gases.

INCINERATION 291

TABLE 8.4 Heating Values of Sludge and Other Residuals Dry Solids

Type of Sludge/Residual MJ/kg Btu/lb

Primary sludge 20–28 8600–12,000

Activated sludge 16–22 6,900–9,500

Digested sludge 10–15 4,300–6,500

Grease and scum 39 16,800

(23)

  23  

 

 

Figure  12  –  Advantages  and  Disadvantages  of  Incineration  (Turovskiy  &  Mathai,  2006)  

 

As   said   in   Paragraph   1.3.2,   incineration   (together   with   agricultural   recycling)   seems  to  be  the  practice  most  applied  by  2020  in  the  Old  Member  States  (EU-­‐ 15)   of   the   European   Union   (which   are   also   the   more   industrialised).   In   these   countries  thermal  treatment  with  energy  recovery  is  expected  to  have  a  share  

till  37%  (double  compared  to  EU-­‐12  countries)  (Kelessidis  &  Stasinakis,  2012).    

 

There   has   been   already   important   improvements   in   the   incineration   tech-­‐ niques  during  the  last  years,  in  terms  of  technological  level,  cost  reduction  and  

environmental  protection.  Innovative  technologies,  such  as  pyrolysis  or  phos-­‐

phorous   recovery   from   sewage   sludge   have   been   already   developed   in   large-­‐ scale   project   worldwide   but   it   is   possible   that   current   technology,   like   co-­‐ incineration  in  coal-­‐fires,  use  of  cement  kilns  plants  of  incineration  of  Municipal   Solid   Waste   (WSW)   will   still   be   preferred   in   the   following   years   (Kelessidis   &   Stasinakis,  2012).  One  key  point  is  that  the  adoption  of  sludge  incineration  tech-­‐ nologies  is  strictly  related  to  the  adoption  of  drying  technology,  being  the  ne-­‐ cessity  of  increase  sludge  heating  value  and  transfer  cost  reduction.  A  favoura-­‐

ble  alternative  to  current  drying  technologies,  as  described  in  the  previous  sec-­‐

tion,  is  solar  drying.    

290 THERMAL DRYING AND INCINERATION

or supplement plant heating requirements. The dried sludge itself has a fuel value and may be used as a heat source for the drying medium.

8.3 INCINERATION

Incineration is complete combustion, which is the rapid exothermic oxidiza-tion of combustible elements in sludge. Dewatered sludge will ignite at temperatures of 420 to 500°C (788 to 932°F) in the presence of oxygen. Tem-peratures of 760 to 820°C (1400 to 1508°F) are required for complete combus-tion of organic solids. In the incineracombus-tion of sludge, the organic solids are converted to the oxidized end products, primarily carbon dioxide, water vapor, and ash. Particulates and other gases will also be present in the exhaust, which determines the selection of the treatment scheme for the exhaust gases before venting them to the atmosphere.

The principal advantages and disadvantages of incineration over other methods of sludge stabilization are listed in Table 8.3. Sludge is incinerated if its utilization is impossible or economically infeasible, if storage area is limited or unavailable, and in cases where it is required for hygienic reasons.

One of the principal parameters of sludge incineration is the sludge mois-ture. Sludge cake with 30 to 50% solids (50 to 70% moisture) is autogenous; that is, it can be burned without auxiliary fuel. Sludge cake with 20 to 30% solids (70 to 80% moisture) may require an auxiliary fuel for combustion. Therefore, before incineration, the moisture content of the sludge should be reduced by mechanical dewatering or thermal drying.

TABLE 8.3 Advantages and Disadvantages of Incineration

Advantages Disadvantages

1. Reduces the volume and weight of wet 1. High capital and operating costs. sludge cake by approximately 95%, 2. Reduces the potential benefi cial thereby reducing disposal requirements. use of biosolids.

2. Complete destruction of pathogens. 3. Highly skilled and experienced 3. Destroys or reduces toxins. operating and maintenance staffs 4. Potentially recovers energy through the are required.

combustion of waste products, thereby 4. If residuals (ash) exceeds the reducing the overall expenditure prescribed maximum pollutant

of energy. concentrations, they may be

classifi ed as hazardous waste, which requires special disposal. 5. Discharges to atmosphere (particulates and other toxic or noxious emissions) require extensive treatment to assure protection of the environment.

(24)

  24   Despite   the   many   improvements   of   the   last   years,   incineration   presents   some  

important   issues:   in   the   emissions,   dioxins   and   furans   are   often   detected,  

which  are  very  hazardous  compounds,  and  heavy  metals  are  generally  released;  

flue   gases   and   ashes   (side-­‐products   of   the   process)   lead   to   high   cost   of   treat-­‐

ment,   while   solid   residues   present   the   problem   of   their   handling   (Fytili   &   Zabaniotou,  2008).  

 

1.5.1  Advantages  of  sludge-­‐drying  and  incineration    

Drying   combined   with   incineration   is   a   sludge   disposal   method   that   clearly   opens  to  wide   economic   chances:  many  sludge-­‐producing  plants,  in  fact,  have   to  transport  the  sludge  by  truck  from  the  site  of  production  to  a  treatment  plant,   which  could  be  many  kilometres  far  from  it.  The  cost  of  transport,  together  with   the   price   required   for   the   treatment,   are   generally   huge   expenses   for   the   plant’s  owner.  Suffice  to  say  that  50-­‐60%  of  the  management  costs  of  a  depura-­‐ tion  plant  are  made  by  sludge  treatment  and  disposal.    

 

In  Italy,  the  cost  of  sludge  (20%  DM)  disposal  can  be  indicatively  estimated  as  

100-­‐300  euro/ton,  depending  on  the  distance  between  the  place  of  disposal  and  

the  depuration  plant,  on  the  type  of  disposal  (landfilling,  composting,  spreading   etc.)   and   on   the   region   in   which   the   plant   is   located.   This   expense   regards   a   product  that  is  80%  water:  it  clearly  emerges  that,  removing  the  water  content  of   the   sludge,   dramatically   reduces   the   cost   of   disposal.   Incinerating   the   sludge   gives,  in  fact,  an  amount  of  ashes,  which  is  approximately  10%  in  volume  com-­‐ pared  to  the  starting  product  (20%  DM  sludge).  This  would  mean  that  the  pro-­‐ ducer  should  have  to  dispose  of  an  amount  of  special  waste  significantly  low-­‐

er.  Future  research,  however,  will  have  to  focus  on  the  emissions  that  the  pro-­‐

cess  produces  into  the  atmosphere,  in  order  to  see  if  there  could  be  a  hazard  for   the  human  heath  (see  following  section).  

(25)

! PZ! >RKR<*E&-,,-%(,*$#%&*,150."*)%&/5,+-%(*

6150."*0#4-(.*'(0*/5#(-(.*"&-,,-%(,!'#"*+%7-),!5(0"##"7#","(+"0*-(*)5#3 #"(+* 1-+"#'+5#"a! .)$6&! H*'+0H)0&! %B&.&! @'*6&..&.! ('&! $*%! H)0&+8! =.&0C! #$! %B).!

.&6%)*$!.*3&!'&.=+%.!@'&.&$%&0!)$!'&6&$%!.6)&$%)D)6!('%)6+&!'&+(%&0!%*!.+=01&!)$6)$\ &'(%)*$!&3)..)*$.!('&!>')&D+8!0&.6')>&0C!

!

R*! @'*<)0&! ($! &.%)3(%)*$! *D! %B&! &3)..)*$.! D'*3! .+=01&! 0'8)$1a! S(1(hh)! &%! (+C! 9PLLY:!@'*@*.&0!(!)%&7'#-,%(*\-+2*"&-,,-%(,*$#%&*,150."*0#4-(.!($0!D'*3!(! @+($%!H)%B!(!,150."* -()-("#'+-%(* 7#%)",,C!A*'!0(%(!*$!0'8)$1a!&3)..)*$.!B(<&! >&&$!($(+8.&0!D'*3!D)<&!@+($%.!%B(%!=.&!(!6*$<&6%)<&!0')&'!H)%B!(!%')@+&!@(..!'*%(\ '8!0'=3i!D*'!)$6)$&'(%)*$a!0(%(!H(.!%(_&$!D'*3!(!@+($%!=.)$1!D+=)0!>&0!%&6B$*+*18C! RB&!'&.=+%.!*D!%B).!($(+8.).!('&!.=33(').&0!)$!R(>+&!Kc! ! B'/1"*?*M*H%&7'#-,%(*/"+\""(*"&-,,-%(,*$#%&*0#4-(.*'(0*-()-("#'+-%(*WJ'.'^^-e*"+*'1Re*<==QX* B47"*%$*"&-,,-%(* O#4-(.* W&.@`.*OTX* N()-("#'+-%(* W&.@`.*OTX* IF<*_*6F<* PPM! YLOCJON! ILA* OLCM! P"CZ"Z!

O5,+,* MNCY! KCYKY!

L"'84*&"+'1,* "CP"P! LCLPMJ!

!

Q.!6($!>&!.&&$!D'*3!%B&!%(>+&a!b=($%)%(%)<&+8a!%B&!+('1&'!&3)..)*$.!0&%&6%&0!H&'&!

IF<*_*6F<!>*%B!0=')$1!0'8)$1!($0!)$6)$&'(%)*$a!HB)+&!%B&!+*H&'!*$&.!H&'&!B&(<8!

3&%(+.C!#%!6($!(+.*!>&!$*%)6&0!%B(%!%B&!&3)..)*$.!*D!IWP!r!5WP!H&'&!B)1B&'!(D%&'!

)$6)$&'(%)*$! 6*3@('&0! %*! %B&! 0'8)$1! @'*6&..a! HB)+&! %B&! *@@*.)%&! B(@@&$&0! D*'!

ILAe* 05,+,* ($0* 2"'84* &"+'1,a!HB)6B!('&!.)1$)D)6($%+8!+&..!0&%&6%&0!0=')$1!%B&!

)$6)$&'(%)*$!@'*6&..C! !

W%B&'! .%=0)&.! *$! .+=01&! 0'8)$1! &3)..)*$.! H&'&! '&@*'%&0! )$! 7B)$(! (%! qB&`)($1! G$)<&'.)%8!9U($1hB*=:c!!

T=!&%!(+C!9PL"K:!0&<&+*@&0!(!$*<&+! .8.%&3! D*'! .+=01&! 0).@*.(+a! HB)6B!

6*3>)$&.! 0#4-(.* '(0* )%3

!

G-.5#"*>?*M*H%()"(+#'+-%(*%$*7%115+'(+,*$#%&* ,150."*0#4-(.*'+*>>]*F<*"&-,,-%(,*(Lu, et al., 2013)*

Riferimenti

Documenti correlati

In this PhD project, the use of the anaerobic membrane bioreactor (AnMBR) technology, for the organic matter removal of synthetic winery wastewater at low

The application of 30 g/dm 3 dosage of ash from willow combustion reduced the moisture content from 91.80 % (raw sludge) to 84.31% (conditioned sludge).. Low dosages did not reduce

The aim of the study was to characterize the physical and chemical properties of slag resulting from combustion of municipal sewage sludge in “Pomorzany” waste treatment plant

The physic-chemical characteristics of the WTS and the SS prior to the anaerobic digestion are shown in Table 1. The physic-chemical characteristics of the sludge. CST of the

Studies have shown that using disintegrated water treatment sludge during anaerobic digestion of sewage sludge increases the biogas production by about 20% (especially using

Il movimento punk ha sin da subito suscitato l’inte- resse degli studiosi di teoria della cultura: la cultura punk, dal suo nascere e suo prendere forma, attorno agli anni 1976-80,

Spesso, si isola troppo il commercio; nell’indagarne la riorganizzazione, si privilegiano le dinamiche intra-settoriali e le pratiche di consumo, dimenticando che le sue

Thus, the purpose of the study reported here was to determine the potential of topical administration as a treatment route in donkeys and to investigate the plasma disposition