• Non ci sono risultati.

Measurement of the branching fraction for the decay KS → πμν with the KLOE detector

N/A
N/A
Protected

Academic year: 2021

Condividi "Measurement of the branching fraction for the decay KS → πμν with the KLOE detector"

Copied!
8
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Measurement

of

the

branching

fraction

for

the

decay

K

S

π μν

with

the

KLOE

detector

The

KLOE-2

Collaboration

D. Babusci

d

,

M. Berlowski

v

,

C. Bloise

d

,

F. Bossi

d

,

P. Branchini

s

,

A. Budano

r

,

s

,

B. Cao

u

,

F. Ceradini

r

,

s

,

P. Ciambrone

d

,

F. Curciarello

a

,

d

,

E. Czerwi ´nski

c

,

G. D’Agostini

n

,

o

,

E. Danè

d

,

V. De Leo

n

,

o

,

E. De Lucia

d

,

A. De Santis

d

,

P. De Simone

d

,

A. Di Cicco

r

,

s

,

A. Di Domenico

n

,

o

,

D. Domenici

d

,

A. D’Uffizi

d

,

A. Fantini

p

,

q

,

P. Fermani

d

,

S. Fiore

t

,

o

,

A. Gajos

c

,

P. Gauzzi

n

,

o

,

S. Giovannella

d

,

E. Graziani

s

,

V.L. Ivanov

g

,

h

,

T. Johansson

u

,

X. Kang

d

,

D. Kisielewska-Kami ´nska

c

,

E.A. Kozyrev

g

,

h

,

W. Krzemien

v

,

A. Kupsc

u

,

P.A. Lukin

g

,

h

,

G. Mandaglio

f

,

b

,

M. Martini

d

,

m

,

R. Messi

p

,

q

,

S. Miscetti

d

,

D. Moricciani

d

,

P. Moskal

c

,

S. Parzych

c

,

A. Passeri

s

,

V. Patera

l

,

o

,

E. Perez del Rio

n

,

o

,

P. Santangelo

d

,

M. Schioppa

j

,

k

,

A. Selce

r

,

s

,

,

M. Silarski

c

,

F. Sirghi

d

,

e

,

E.P. Solodov

g

,

h

,

L. Tortora

s

,

G. Venanzoni

i

,

W. Wi´slicki

v

,

M. Wolke

u

aDipartimentodiFisicaeAstronomia“EttoreMajorana”,UniversitàdiCatania,Italy bINFNSezionediCatania,Catania,Italy

cInstituteofPhysics,JagiellonianUniversity,Cracow,Poland dLaboratoriNazionalidiFrascatidell’INFN,Frascati,Italy

eHoriaHulubeiNationalInstituteofPhysicsandNuclearEngineering,Mˇagurele,Romania

fDipartimentodiScienzeMatematicheeInformatiche,ScienzeFisicheeScienzedellaTerradell’UniversitàdiMessina,Messina,Italy gBudkerInstituteofNuclearPhysics,Novosibirsk,Russia

hNovosibirskStateUniversity,Novosibirsk,Russia iINFNSezionediPisa,Pisa,Italy

jDipartimentodiFisicadell’UniversitàdellaCalabria,Rende,Italy kINFNGruppocollegatodiCosenza,Rende,Italy

lDipartimentodiScienzediBaseedApplicateperl’Ingegneriadell’Università“Sapienza”,Roma,Italy mDipartimentodiScienzeeTecnologieapplicate,Università“GuglielmoMarconi”,Roma,Italy nDipartimentodiFisicadell’Università“Sapienza”,Roma,Italy

oINFNSezionediRoma,Roma,Italy

pDipartimentodiFisicadell’Università“TorVergata”,Roma,Italy qINFNSezionediRomaTorVergata,Roma,Italy

rDipartimentodiMatematicaeFisicadell’Università“RomaTre”,Roma,Italy sINFNSezionediRomaTre,Roma,Italy

tENEA,DepartmentofFusionandTechnologyforNuclearSafetyandSecurity,Frascati(RM),Italy uDepartmentofPhysicsandAstronomy,UppsalaUniversity,Uppsala,Sweden

vNationalCentreforNuclearResearch,Warsaw,Poland

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received13December2019

Receivedinrevisedform14February2020 Accepted18March2020

Availableonline20March2020 Editor:L.Rolandi

Keywords: e+e−collisions

Based ona sampleof300 million KS mesonsproduced inφKLKS decays recorded by theKLOE experimentattheDANEe+e− colliderwehavemeasuredthebranchingfractionforthedecayKS

π μν

.The KS mesonsare identifiedbytheinteraction ofKL mesonsinthedetector. The KS

π μν

decays are selectedby aboosted decisiontreebuilt with kinematic variablesand by atime-of-flight measurement. Signalefficiencies are evaluated withdata control samples of KL

π μν

decays.A fit tothereconstructedmuonmassdistributionfinds 7223±180 signalevents.NormalisingtotheKS

π

+

π

−decayeventstheresultforthebranchingfractionisB(KS

π μν

)= (4.56±0.11stat±0.17syst)×

*

Correspondingauthorat:DipartimentodiMatematicaeFisicadell’Università“RomaTre”,Roma,Italy. E-mailaddress:[email protected](A. Selce).

https://doi.org/10.1016/j.physletb.2020.135378

(2)

K0meson Semileptonicdecay

10−4.Itisthefirstmeasurementofthisdecaymodeandtheresultallowsanindependentdetermination

of|Vus|andatestofthelepton-flavouruniversality.

©2020PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Thebranching fractionforsemileptonicdecaysofchargedand neutralkaonstogetherwiththelifetimemeasurementsareusedto determine the

|

Vus

|

element ofthe Cabibbo–Kobayashi–Maskawa quark mixingmatrix.The relationamong thematrixelements of thefirstrow,

|

Vud

|

2

+ |

Vus

|

2

+ |

Vub

|

2

=

1,providesthemost strin-genttestoftheunitarityofthequarkmixingmatrix.Different fac-torscontribute totheuncertaintyindetermining

|

Vus

|

fromkaon decays [1–3] andamongthesixsemileptonicdecaysthe contribu-tionofthelifetimeuncertaintyissmallestfortheKS meson. Nev-ertheless, giventhe lack ofpure high-intensity KS mesonbeams contrarytothecaseofK±and KL mesons,the KS

π

e

ν

decay providestheleastprecisedeterminationof

|

Vus

|

,andthe branch-ingfraction

B(

KS

π μν

)

hasnot yetbeenmeasured. Measure-ment of this decay mode allows an independent determination of

|

Vus

|

and to extend the test of lepton-flavour universality to

KS semileptonicdecaysbycomparisonwiththeexpectedvalueof

(

4

.

69

±

0

.

06

)

×

10−4 [4] derivedfrom

B(

K

S

π

e

ν

)

.

Wepresentameasurement ofthe KS

π μν

branching frac-tionperformedbythe KLOEexperimentattheDA



NE

φ

–factory of theFrascati National Laboratory based on an integrated lumi-nosityof1.6fb−1.DA



NE [5] isanelectron–positroncollider run-ning at the centre-of-mass energy of 1.02 GeV colliding e+ and

e− beamsatan angleof

π

0.025 radandwithabunch-crossing periodof2.71ns.The

φ

mesonsareproducedwithasmall trans-versemomentumof13MeVandKL–KS pairsareproducedalmost back-to-back witha crosssectiontimesthe

φ

KLKS branching fractionof about1 μb.The beam energy, theenergy spread,the beamstransverse momentum andthe position ofthe interaction pointaremeasuredusingBhabhascatteringevents [6].

The KS (KL) mesons are identified (tagged) by the observa-tion of a KL (KS) meson in the opposite hemisphere. This tag-ging procedure allows the selection efficiency for KS

π μν

to be evaluated with good accuracy using a sample of the abun-dant decay KL

π μν

tagged by the detection of KS

π

+

π

− decays.The branchingfractionis extractednormalisingthe num-ber of KS

π μν

eventsto the numberof KS

π

+

π

− events recordedinthesamedataset.

2. TheKLOEdetector

Thedetector1 consistsofalarge-volumecylindricaldrift

cham-ber, surrounded by a lead/scintillating fibres finely-segmented calorimeter. A superconducting coil around the calorimeter pro-vides a 0.52T axial magnetic field. The beampipe at the inter-actionregion issphericalin shapewith10cm radius,madeofa 0.5 mm thick beryllium-aluminumalloy. Final-focus quadrupoles are located at

±

50 cm from the interaction region. Two small lead/scintillating-tile calorimeters [7] are wrapped around the quadrupoles.

The drift chamber [8], 4 m in diameterand 3.3 m long, has 12582driftcells arranged in58concentricringswithalternating stereoanglesandisfilled withalow-densitygas mixtureof90%

1 KLOEusesacoordinatesystemwherethez axisisthebisectoroftheelectron andpositronbeams,x andy axesdefinethetransverseplane,thepolarangleis relativetothez axis.

helium–10%isobutane.Thechambershellismadeofcarbon fibre-epoxy compositewithaninternal wallof1.1mmthicknessat25 cm radius. The spatial resolution is

σ

xy

=

0

.

15 mm and

σ

z

=

2 mm in the transverse and longitudinal projections, respectively. Themomentumresolutionis

σ

pT

/

pT

=

0

.

4%,tracksverticesare re-constructedwithaspatialresolutionofabout3mm.

The calorimeter [9] is divided into a barrel andtwo endcaps andcovers98%ofthesolidangle.Thereadoutgranularityis4

.

4

×

4

.

4 cm2,foratotalof2440cellsarrangedinfivelayers.Eachcell isread outatbothendsbyphotomultipliers.Theenergydeposits areobtainedfromsignalamplitudeswhilethearrivaltimeandthe position along the fibres are obtainedfrom time differences be-tween thetwo signals. Cellscloseintime andspaceare grouped into energy clusters. The cluster energy E is the sumof the cell energies, theclustertime andpositionareenergy-weighted aver-ages.Energyandtimeresolutionsare

σ

E

/

E

=

0

.

057

/



E (GeV) and

σ

t

=

54ps

/



E (GeV)

100 ps,respectively.Theclusterspatial res-olutionis

σ



=

1

.

4cm

/



E (GeV) alongthefibres and

σ

=

1

.

3 cm intheorthogonaldirection.

The first-level trigger [10] uses both the calorimeter and the driftchamberinformation;thecalorimetertriggerrequirestwo en-ergydepositswithE

>

50 MeVinthebarrelandE

>

150 MeVin the endcaps; the drift chamber trigger is based on the number andtopology ofhitdrift cells.A second-levelcosmic-ray veto re-jectseventswithatleasttwoenergydepositsabove30MeVinthe outermostcalorimeterlayer.Thetriggertimeisdeterminedbythe firstparticlereachingthecalorimeterandissynchronisedwiththe DA



NEradio frequencysignal. The time interval between bunch crossingsissmallerthan thetimespreadofthe signalsproduced by theparticles, thus the time ofthe bunch crossing originating theevent,T0,isdeterminedaftereventreconstructionandallthe times related to that event are shifted accordingly. Data for re-construction are selected by an on-linefilter [11] toreject beam backgrounds. Thefilteralsorecordstheeventsinto different out-put files for analysis according to their properties and topology (eventclassification),5%oftheeventsarerecordedwithout apply-ingthefiltertocontroltheefficiencyoftheeventclassification. 3. Datasampleandeventpreselection

Processes of interest for the analysis are simulated with the GEANFI Monte Carlo (MC) program [11] for an integrated lumi-nosityequaltothatofthedata.All

φ

decaysaregenerated accord-ing to their branching fractions aswell asother final states pro-duced in e+e− annihilation.The operating conditions ofDA



NE during data takingaswell asmeasurements ofbeamparameters are includedintheMConarun-by-runbasis.Calorimeterenergy deposits and drift chamber hitsfrom beambackground acquired witharandomtriggerareoverlaidontothesimulatedevents.The simulatedeventsareprocessedwiththesamereconstruction algo-rithmsasthedata.

Kaonsfrom

φ

-mesondecaysareemittedintwoopposite hemi-sphereswithmeandecaypath

λ

S

=

5

.

9 mmand

λ

L

=

3

.

4 m,thus about 50% of KL mesons reach the calorimeter before decaying. Thevelocity ofthe KL inthe

φ

referencesystemis

β

=

0

.

22. KS mesons are taggedby KL interactions in the calorimeter, named

KL-crashinthefollowing,withaclearsignatureofalatesignalof about25 nsnot associatedto tracks.The following requirements areappliedtoselectKL-crash:

(3)

Table 1

Numberofdataandsimulatedeventsafter pre-selection. Events [103] Fraction [%] Data 301646 MC 312019 KSπ+π− 301976 96.78 φK+K− 9566 3.07 KSπeν 259 0.08 KSπ μν 140 0.04 KSπ0π0 30 0.01 Others 47 0.02

Fig. 1. Distribution ofβ∗after preselection for data and simulated events.

aclusterwithenergyEclu

>

100 MeVnotassociatedtotracks (neutralcluster);thecentroidoftheneutralclusterdefinesthe

KL directionwitharesolutionof

1◦;

polarangleoftheneutralcluster15◦

< θ

clu

<

165◦tosuppress small-anglebeambackgrounds;

0

.

17

< β

<

0

.

28 for the velocity in the

φ

reference system of theparticle originatingthe neutralcluster;

β

∗ is obtained fromthevelocityinthelaboratorysystem,

β

=

rclu

/

ctclu,with

tclubeingtheclustertimeandrcluthedistancefromthe nomi-nalinteractionpoint,the

φ

transversemomentumdetermined run-by-runandtheanglebetweenthe

φ

momentumandthe

KL-crashdirection.

Assumingtheneutralkaonmass,the KS 4-momentumisdefined by the KL-crash directionand the

φ

4-momentum: PKS

=

PKL.

TheKS

π μν

candidatesareselectedrequiringtwotracksof oppositecurvatureformingavertexinsidethecylinderdefinedby

ρ

vtx

=



x2

vtx

+

y2vtx

<

5 cm

|

zvtx

| <

10 cm

.

(1) In casemore than one vertex is found, the closest to the inter-actionregionis chosen.The aboverequirements definethe event preselection.

Afterpreselection, thedatasamplecontains about300million eventsanditscomposition,asevaluatedbysimulation,isshownin Table1.Thelargemajorityofeventsare KS

π

+

π

−decays,and thereis alsoa large contributionfrom

φ

K+K− eventswhere onekaon oritsdecay productsgeneratea fake KL-crashandthe otherkaondecaysearlyinto

π

±

π

0.

The distribution of

β

∗ is shown in Fig. 1 fordata and simu-latedevents.Twopeaksarevisible,thefirstisassociatedtoevents triggeredby photonsor electrons,andthe second to events trig-geredbychargedpions.Thetriggerissynchronisedwiththebunch crossing andthe time difference betweena photon (or electron)

andapion(ormuon)arrivingatthecalorimetercorresponds toa timeshiftofaboutonebunch-crossing.

4. Selectionofsignalandnormalisationevents

Theselectionofsignaleventsisperformedintwosteps;firsta selection basedonthe eventkinematics usingonlytracking vari-ables and then a selection based on the time-of-flight measured withthecalorimeter.Thetwogroupsofvariablesareuncorrelated. In order to assign a time to the particles each track is associ-atedto acluster. The track-to-clusterassociation(TCA) isapplied asfollows: foreach track connectedto the vertexa cluster with

Eclu

>

20 MeV and15◦

< θ

clu

<

165◦ isrequired whose centroid iswithin60cmofthetrackextrapolationtothecalorimeterfront surface.TheeventisretainedonlyifTCAissatisfiedbybothtracks. Five variables with good discriminating power against back-groundareusedinamultivariateanalysis.Aboosteddecisiontree (BDT)classifierisbuiltwiththefollowingvariables:

p1

,

p

2: thetracksmomenta;

α

1,2: theangleatthevertexbetweenthetwomomenta inthe

KS referencesystem;

α

S L: theanglebetween

psum

=

p1

+

p2andtheKL-crash direc-tion;

p: thedifferencebetween

|

psum

|

andtheabsolutevalue

|

pKS

|

ofthe KS momentumdeterminedusingthetaggingKL;

mππ : the invariant mass reconstructed from

p1 and

p2, in the hypothesisofcharged-pionmass.

ThedistributionsofthevariablesareshowninFig.2fordataand simulatedevents.

After preselection two cuts are applied to suppress the back-groundinthetailsofthedistributions:

p

<

320 MeV for both tracks and

p

<

190 MeV

.

(2)

Thetraining oftheBDTclassifier isdone onasimulated sam-pleof5,000KS

π μν

eventsandasampleof50,000background events;samplesofthesamesizeareusedforthetest.After train-ing and test the classification is run on all events of the MC anddata sample. The distributionof the BDT classifier output is showninFig.3fordataandsimulatedevents.Thedata distribu-tionis well reproducedby simulationinthe regionpopulatedby thesignal. Tosuppressthelarge backgroundof KS

π

+

π

− and

φ

K+K−events,acutisapplied

B D T

>

0

.

18 (3)

chosen to maximise the ratio S

/

S

+

B where S and B are the signalandbackgroundyields.

The selected events contain

π π

, K

π

, e

π

track pairs for the main backgrounds and

μπ

for the signal. A selection based on time-of-flight measurement is performed to identify

μπ

pairs. Foreach trackassociatedtoa cluster, thedifference betweenthe timemeasuredbythecalorimeterandthetime-of-flightmeasured alongtheparticletrajectory

δt

i

=

tclu,i

Li

/cβ

i i

=

1

,

2

is computed, wheretclu,i is thetime of the cluster associatedto tracki,Liisthelengthofthetrack,and

β

i

=

pi

/



p2i

+

m2i is func-tionofthemasshypothesis fortracki.Toreduce theuncertainty duetotheT0 determination,thedifference

(4)

Fig. 2. Distributionsofthevariablesusedinthemultivariateanalysisfordataandsimulatedeventsafterpreselection.Fromtopleft:trackmomenta(p1,p2),anglebetween thetwotracksintheKSreferencesystem(α1,2),anglebetween KL and KSdirections(αS L),two-trackinvariantmassinthehypothesisofchargedpions(mπ π), p= | psum|− | pKS|.

isusedto determinethe massassignmentto thetracks.The

π π

hypothesisistestedfirst,thedistributionof

δ

tππ

= δ

t1

− δ

t2,π is

showninFig.4(left).Afairagreementisobserved betweendata andsimulation, the KS

π μν

and KS

π

e

ν

distributions are wellseparatedandtheK+K−backgroundisisolatedinthetailsof thedistribution,howeverthesignalishiddenunderalarge KS

π

+

π

−background.Toreducethebackgroundacutisapplied

1 ns

<

tπ π

| <

3 ns

.

(4)

The

π μ

hypothesis is testedbyassuming the pionandmuon massforeithertrack

δt

π μ

= δ

t1

− δ

t2 and

δt

μπ

= δ

t1

− δ

t2

.

The two-dimensional

tπμ

,

δ

tμπ

)

distribution for simulated sig-nal events shows that the correct mass assignment corresponds tothesmallerabsolutevalueofthetwohypotheses.The distribu-tion ofthesigned valueof

δ

=

min



tπμ

|, |δ

tμπ

|



isshownin Fig. 4 (right) for data andsimulated events. The distribution for thesignalisnarrowandpeakedatzerowhileitisbroaderforthe backgrounds.Afinalcutisapplied

(5)

Fig. 3. Distribution of the BDT classifier output for data and simulated events.

Table 2

Numberofeventsaftertheδtμselectionfor dataandsimulatedevents.

Events Fraction [%] Data 38686 MC 36444 KSπ+π− 25853 70.9 φK+K− 475 1.30 KSπeν 448 1.23 KSπ μν 9424 25.9 Others 244 0.7 Table 3

Resultofthefittothem2

μdistribution. Fraction Events

π μν 0.23 7223±180

π+π− 0.77 23764±270

Total 30987

The number of surviving events in the data sample is 38686 anditscompositionasevaluatedbysimulationislistedinTable2. Afterthemassassignmenttothetwotrackstheinvariantmassof thechargedparticleidentifiedasthemuonisevaluatedas

m2μ

=



EKS

pmiss



2

p2μ withp2 miss

= (

pKS

)

2,E

KS and

pKS beingtheenergyand

momentumreconstructed using thetagging KL, and

pπ ,

pμ, the momentaofthecandidatepionandmuontrack.

Thenumberofsignal eventsisextractedwithafit tothem2μ

distributionwiththeMCshapesofthreecomponents:KS

π μν

,

KS

π

+

π

− andthesumofallotherbackgrounds.Thefitis per-formedintherange

6000

<

m2

μ

<

24000 MeV2 with48degrees

offreedom.The thirdcomponent, which ispeakedaroundm2e,is constrainedtoa negligiblevalue by the fit.Fig.5 showsthe dis-tributionofm2

μ fordata,simulatedeventsandthefit,andTable3

presentstheresultofthefit.Thenumberofsignaleventsis

Nπ μν

=

7223

±

180 with

χ

2

/

ndf

=

30

/

48

.

ThenormalisationsampleofKS

π

+

π

−eventsisselectedby requiring140

<

p

<

280 MeVforbothtracks(Fig.2).This require-mentselects Nππ

= (

282

.

314

±

0

.

017

)

×

106 eventswithapurity of99.9%asdeterminedbysimulation.

5. Determinationofefficiencies

ThebranchingfractionfortheKS

π μν

decayisevaluatedas

B

(K

S

π μν

)

=

Nπ μν



π μν

×



π π Nπ π

×

R

×

B

(K

S

π

+

π

),

(6)

where Nπμν andNππ arethenumbersof KS

π μν

andKS

π

+

π

− events,



π μν and



π π aretherespectiveselection

efficien-cies,and R istheratiooftheefficiencies forthetrigger,on-line filterandpreselectionforthetwodecays.

The signal selection efficiency is determined with KL

π μν

controlsamples(CS)andevaluatedas



π μν

=



CS

×



MC π μν



MC CS

,

(7)

where



CSistheefficiencyofthecontrolsampleand



π μν ,MC



CSMCare theefficienciesobtainedfromsimulationforthesignalandcontrol samples,respectively.

The KL

π μν

decay [12,13] iskinematically identicalto the signal,the onlydifferencebeingthemuch longerdecaypath.For thecontrolsample thetaggingisdonewithKS

π

+

π

− decays, preselected in the same way as for the signal sample with the additional cut

|

mππ

mK0

|

<

15 MeVtoincrease thepurity.The radialdistanceoftheKL vertexisrequiredtobesmallerthan5 cm to matchthe signal selection,butgreaterthan 1cmto minimise the ambiguityin identifying the KL and KS vertices. Thecontrol sample is composed mainly of KL

π

e

ν

, KL

π

+

π

π

0 and

KL

π μν

decays,while most of KL

π

0

π

0

π

0 decays are re-jected by the requirement of two tracks. The distribution of the missingmass,m2

miss,ofthetwotracksconnectedtothe KL vertex, assigning the charged-pion mass, shows a narrow isolated peak atthe

π

0 mass; a cutm2

miss

<

15000 MeV

2 efficientlyrejects the

KL

π

+

π

π

0 decays.Thenumberofeventsinthecontrol sam-pleis911757.

Inordertoevaluatethesignal selectionefficiency,twocontrol samplesare used, oneselected basedon kinematicvariables and theotherbasedontime-of-flight(TOF),thetwogroupsofvariables beinglargelyuncorrelated.

Thecontrol sample forevaluating theefficienciesofthe selec-tionwithkinematicvariablesandBDTclassifierisselected apply-ing a cut on the two-dimensional

tπμ

,

δ

tμπ

)

distribution that removesmostofthe KL

π

e

ν

events.The purityofthesample asdeterminedwithsimulationis86%.Theresolutionsinthe mea-surementofthetaggingKS (controlsample)aresimilartothoseof thetagging KL (signalsample)andthesameBDTclassifierisused forbothsamples.TheBDTMCdistributionsforthesignaland con-trolsample are comparedin Fig.6 (left).Applying to thecontrol samplethesameselectionsasforthesignal,theefficiencies eval-uatedwithEq. (7) are



(

kinem. sel.

)

=

0

.

982

±

0

.

004stat and



(

BDT

)

=

0

.

417

±

0

.

003stat

.

ToevaluateTCAandTOFefficienciesforthesignal,the T0 de-termination using the earlier among the two clusters associated withthe KS decayhas to be considered. The control sample se-lectionthereforerequirestheearliestclustertobeassociatedwith oneofchargedsecondaryparticlesfromKL decayandacutonthe

(

mππ

,

m2

miss

)

distributiontorejectKL

π

e

ν

events.Thepurityof thesample asdetermined withsimulationis87%. TheMC distri-butions of

δ

tμ forthesignalandcontrolsample arecompared in Fig. 6(right). Applying to thecontrol sample theanalysis proce-dureasforthesignaltheefficienciesevaluatedwithEq. (7) are

(6)

Fig. 4. Distributions ofδtπ π(left) andδtμ(right) for data and simulated events.

Fig. 5. The m2

μdistribution for data, MC signal and background (left); comparison of data with the fit (right).

Fig. 6. Normalised Monte Carlo distributions of the BDT classifier output (left) andδtμ(right) for KLπ μνand KSπ μνevents.



(

TCA

)

=

0

.

347

±

0

.

002stat and



(

TOF

)

=

0

.

392

±

0

.

003stat

.

Thecorrection factorsinEq. (7) differ fromoneby lessthan10% butfor



(TOF)whereitdiffersby20%.

Thetailsofthem2μ distributioninFig.5(left)arenotincluded inthefittoimproveitsstability,therelativeefficiencyis0

.

991

±

0

.

001.

The signal selection efficiencies are summarised in Table 4

whereonlythestatisticalerrorsareshown. Combiningthevalues accounting for the correlation of the control samples we obtain



π μν

=

0

.

0552

±

0

.

0005.

Table 4

Efficiencies forthe signalselections.Theerrors arestatistical,theerrorofthetotalefficiency ac-countsforthecorrelationofthecontrolsamples.

Selection Efficiency Kinematic selection 0.982±0.004 BDT selection 0.417±0.003 TCA selection 0.347±0.002 TOF selection 0.392±0.003 FIT range 0.991±0.001 Total 0.0552±0.0005

(7)

Table 5

Contributions tothe ratioofefficienciesR in Eq. (6). The error on R is calculatedas the quadraticsumoftheerrorsofthesingleratios.

Selection R Trigger 1.0649±0.0005 On-line filter 1.0113±0.0002 Event classification 1.1406±0.0007 T0determination 1.0135±0.0002 KL-crash andβ∗ 1.1283±0.0022 KSidentification 1.0481±0.0012 R 1.472±0.004

Theratio R inEq. (6) accountsforseveraleffects all depend-ing on the global properties of the event: trigger, on-line filter, eventclassification,T0 determination, KL-crashand KS identifica-tion.ThevariouscontributionstoR evaluatedwithsimulationare listedinTable5whereonlythestatisticalerrorsareshown.

The efficiency of the KS

π

+

π

− normalisation sample is measuredusingthepreselecteddatabyvaryingthecutonthe ver-textransverseposition,asinEq. (1),in1cmstepsfrom

ρ

max

vtx

=

1 cmto

ρ

max

vtx

=

4 cm,based on the observationthat

ρ

vtx andthe tracks momenta are very loosely correlated. Using Eq. (7) and extrapolating to

ρ

max

vtx

=

5 cm the efficiency is



π π

= (

96

.

569

±

0

.

004

)

%.Alternatively, theefficiencyisevaluated usingthe KS

π

+

π

−datasample(with

ρ

max

vtx

=

5 cm):



π π

= (

96

.

657

±

0

.

002

)

%.

The latter value is used asthe efficiencyand the difference be-tweenthetwovaluesistakenassystematicuncertainty.The num-berofKS

π

+

π

−eventscorrectedfortheefficiencyis

Nπ π

/



π π

= (

292

.

08

±

0

.

27

)

×

106

.

6. Systematicuncertainties

Three main systematic uncertainties affect the signal count: BDTandtime-of-flightselection,andthem2

μ fit.

Thedistributions oftheBDT classifieroutput forthedataand simulatedsignalandcontrolsampleeventsareingoodagreement as shown in Figs. 3 and 6. The resolution of the BDT variable predictedby simulationcomparing thereconstructedevents with thoseatgenerationlevelis

σ

BDT

=

0

.

005.Theanalysisisrepeated varyingtheBDTcutofEq. (3),thenumberofsignaleventsisfound tobestableandthermsvalueofthedifferencescorrespondstoa relativeuncertaintyof0.3%.

ThemainsourceofuncertaintyintheTOFselection isthecut on

δ

tππ inEq. (4) becausethesignalandbackgrounddistributions inFig.4(left)aresteepandwithoppositeslopes;thesubsequent selection on

δ

tμ in Eq. (5) has a minor effect.The resolution of the

δ

tππ variableevaluatedwithsimulationandKS

π

+

π

−data control samples is 0.27 ns. The analysis is repeated varying the

δ

tππ lowercutintherange0.5–1.25ns,thermsvalueofthe dif-ferencescorresponds toa relativeuncertaintyof3.0%. Thisisthe mainsystematicuncertaintyaffectingthemeasurement.

The fittothe2 distributioninFig.5isrepeatedvaryingthe rangeandthebinsize.The relativesystematicuncertaintyonthe numberofeventsis0.3%obtainedshiftingtherangeby fivebins oneithersideandincreasingthebinsizebyafactoroftwo.

Thestatisticaluncertaintiesofthesimulationsignalandcontrol samples,andofthedatacontrolsample contributewitharelative uncertaintyof0.8%(Table4).

The dependence of R on systematic effects has been stud-ied in previous analyses for different KS decays selected with the KL-crash method: KS

π

+

π

− and KS

π

0

π

0 [14], and

KS

π

e

ν

[15]. The systematicuncertainties are evaluated by a comparisonofdatawithsimulation,asdescribedinthefollowing.

Table 6

Summaryofsystematicuncertaintiesofπ π,π μν andR. Source π π[%] π μν [%] R[%] KSπ+π−selection 0.1 BDT selection 0.3 TOF selection 3.0 Fit m2 μdistribution 0.3

MC and data CS statistics 0.8

Trigger 0.1

T0determination <0.1

KL-crash andβ∗ 0.1

KSidentification 1.7

Total 0.1 3.1 1.7

Trigger– Two triggers are used forrecording the events, the calorimetertriggerandthedriftchambertrigger.Thevalidationof the MC relative efficiency isderived fromthe comparisonof the single-trigger andcoincidence rates withthe data.The dataover MCratiois0.999withnegligibleerror.

On-linefilter and eventclassification– Theeventclassification produces differentstreams fortheanalyses.The KLKS stream se-lectseventsbasedonthepropertiesofKS andKL decays.Inmore than99%ofthecasestheeventsareselectedbasedonthe KS de-cay topologyandthe KL-crash signatureanddifferencesbetween MCanddataareaccountedforinthesystematicuncertainties de-rivedbelowfortheKS identificationandKL-crash.

T0– Thesystematicuncertaintyisevaluatedanalysing thedata and MC T0 distributions for the decays with the most different timing properties: KS

π

+

π

− and KS

π

0

π

0 [14]. The data overMCratiosisonewithanuncertaintyoflessthan0.1%.

KL-crash and

β

selection – The systematic uncertainty is evaluated comparing dataandsimulated eventstagged by KS

π

+

π

− and KS

π

0

π

0 decays which havedifferent timing and topologycharacteristics.ThedataoverMCratiois1.001with neg-ligibleerror.

KS identification– Thesystematic uncertaintydue to the re-quirementoftwo tracksforming avertexinthe cylinderdefined by Eq. (1) is evaluated separately for signal and normalisation samples. The first is evaluated with KL

π μν

events selected withthesamevertexrequirementsasforthesignalbuttaggedby

KS

π

0

π

0 decays.Forthe KS

π

+

π

− sampletheefficiencyis evaluatedbytaggingwithKL-crashandremovingtherequirement ofthevertex.Combiningthetwo valuesgivesadataoverMC ra-tio of1.002

±

0.017 where theerror isdueto the purityof the samples.

The R total systematicuncertaintyisestimatedby combining thedataoverMCratiosandamountsto1.7%.

IncludingthesystematicuncertaintiesthefactorsinEq. (6) are:



π μν

=

0

.

0552

±

0

.

0017 and R

=

1

.

472

±

0

.

025

.

AllsystematicuncertaintiesaresummarisedinTable6. 7. Result

From Eq. (6) with Nπμν

=

7223

±

180, Nππ

/



π π

= (

292

.

08

±

0

.

27

)

×

106,thevaluesoftheefficiencies



π μν

=

0

.

0552

±

0

.

0017, R

=

1

.

472

±

0

.

025, andthe value

B(

KS

π

+

π

)

=

0

.

69196

±

0

.

00051 measuredbyKLOE [15],wederivethebranchingfraction

B

(K

S

π μν

)

= (

4

.

56

±

0

.

11stat

±

0

.

17syst

)

×

10−4

= (

4

.

56

±

0

.

20

)

×

10−4

.

This isthe first measurement ofthis decaymode andcompletes the set of kaon semileptonic decays. The branching fraction for

(8)

Vusthroughtherelation

B

(K

S

π



ν

)

=

G2

|

f +

(

0

)V

us

|

2 192

π

3

τ

sm 5 KIKSEW

(

1

+ δ

EMK

)

2 (8) where f+

(

0

)

isthehadronicformfactoratzeromomentum trans-fer,mK and

τ

S aretheKS massandlifetime,IK isthephasespace integral, SEW is the short-distance electroweak correction [17] and

δ

EMK is the long-distance electromagnetic correction [18,19]. Assuming universality of the kaon–lepton coupling the expected value [4] is

B

(K

S

π μν

)

PDG

=

B

(K

S

π

e

ν

)

×

R(IK

)

×

(

1

+ δ

EM

)

2

(

1

+ δ

EMK e

)

2

= (

4

.

69

±

0

.

06

)

×

10−4

asderivedfromthevalueofthebranchingfraction

B(

KS

π

e

ν

)

measured by KLOE [15] and the ratio R

(

I

K

)

of the phase space integralsfor the semileptonic decays KL

π μν

and KL

π

e

ν

measuredbyKTeV [16].

InvertingEq. (8) andusingK

=

0

.

10262

±

47 [3] wederive

|

f+

(

0

)V

us

|

KSπ μν

=

0

.

2126

±

0

.

0046

.

The ratioto thevalue for KS

π

e

ν

decay,

|

f+

(

0

)

Vus

|

KSπeν

=

0

.

2153

±

14 [3],allowstoconfirmtheassumptionofkaon–lepton couplinguniversality

rμe

=

|

f+

(

0

)V

us

|

2KSπ μν

|

f+

(

0

)V

us

|

2KSπeν

=

0

.

975

±

0

.

044

.

Theseresults are consistent withthose determined forthe other kaonsemileptonicdecays[1,3] though lessprecisemainlydueto theintrinsiclimitationsrelatedto

μ

π

discriminationinthe

mo-mentumrange100–250MeV.

8. Conclusion

Ameasurement ofthebranching fractionforthedecay KS

π μν

is presented based on data collected with the KLOE

ex-periment atthe DA



NEe+e− collidercorresponding to an inte-gratedluminosityof1.6fb−1.The

φ

KLKS decaysareexploited to select samples of pure and quasi-monochromatic KS mesons anddata control samples of KL

π μν

decays. The KS

π μν

decays are selected by a boosted decision tree built with kine-matic variables and by a measurement of time-of-flight. The ef-ficiencies for detecting the KS

π μν

decays are derived from

KL

π μν

data control samples. A fit to the m2μ distribution

finds7223

±

180 signalevents.NormalisingtoKS

π

+

π

−decay events, the resultfor the branching fractionis

B(

KS

π μν

)

=

(

4

.

56

±

0

.

11stat

±

0

.

17syst

)

×

10−4 to be compared with the ex-pectedvalueof

(

4

.

69

±

0

.

06

)

×

10−4assuminglepton-flavour uni-versality.

Declarationofcompetinginterest

Theauthorsdeclarethattheyhavenoknowncompeting finan-cialinterestsorpersonalrelationshipsthatcouldhaveappearedto influencetheworkreportedinthispaper.

Acknowledgements

We warmly thank our former KLOE colleagues for the

ac-cess to the data collected during the KLOE data taking

cam-paign. We thank the DA



NE team for their efforts in

main-taining low background running conditions and their collabora-tion during all data taking. We thank our technical staff: G.F. Fortugno and F. Sborzacchi for their dedication in ensuring ef-ficient operation of the KLOE computing facilities; M. Anelli for his continuous attention to the gas system and detector safety; A. Balla, M. Gatta, G. Corradi and G. Papalino for electronics maintenance; C. Piscitelli for his help during major maintenance

periods. This work was supported in part by the Polish

Na-tionalScienceCentrethroughtheGrantsNo.2013/11/B/ST2/04245, 2014/14/E/ST2/00262,2014/12/S/ST2/00459,2016/21/N/ST2/01727, 2016/23/N/ST2/01293,2017/26/M/ST2/00697.

References

[1]M.Antonelli,etal.,Anevaluationof

|

Vus|andprecisetests oftheStandard

Modelfromworlddataonleptonicandsemileptonickaondecays,Eur.Phys.J. C69(2010)399,arXiv:1005.2323 [hep-ph].

[2]M. Moulson, Experimental determination of Vus from kaon decays, PoS

CKM2016(2017)033,arXiv:1704.04104 [hep-ex].

[3]F.Ambrosino,etal.,

|

Vus|andleptonuniversalityfromkaondecayswiththe

KLOEdetector,J.HighEnergyPhys.04(2008)059,arXiv:0802.3009 [hep-ex]. [4]M.Tanabashi,etal.,Particle DataGroup,Thereviewofparticlephysics,Phys.

Rev.D98(2018)030001.

[5]A.Gallo,etal.,DANEstatusreport,in:EuropeanParticleAccelerator Confer-ence,26-30June2006,Edinburgh,Scotland,Conf.Proc.C060626(2006)604. [6]F.Ambrosino,et al.,MeasurementoftheDANEluminositywith theKLOE

detectorusinglargeangleBhabhascattering,Eur.Phys. J.C47(2006)589, arXiv:hep-ex/0604048.

[7]M.Adinolfi,etal.,TheQCALtilecalorimeterofKLOE,Nucl.Instrum.Methods Phys.Res.,Sect.A483(2002)649.

[8]M.Adinolfi,etal.,ThetrackingdetectoroftheKLOEexperiment,Nucl.Instrum. MethodsPhys.Res.,Sect.A488(2002)51.

[9]M.Adinolfi,etal.,TheKLOEelectromagneticcalorimeter,Nucl.Instrum. Meth-odsPhys.Res.,Sect.A482(2002)364.

[10]M.Adinolfi,etal.,ThetriggersystemoftheKLOEexperiment,Nucl.Instrum. MethodsPhys.Res.,Sect.A492(2002)134.

[11]F.Ambrosino,etal.,Datahandling,reconstructionandsimulationfortheKLOE experiment,Nucl.Instrum.MethodsPhys.Res.,Sect.A534(2004)403,arXiv: physics/0404100.

[12]F.Ambrosino, etal., Measurementsofthe absolutebranchingratiosfor the dominantKL decays,theKL lifetimeand VuswiththeKLOEdetector,Phys.

Lett.B632(2006)43,arXiv:hep-ex/0509045.

[13]F.Ambrosino,etal.,MeasurementoftheKLπ μνformfactorparameters

withtheKLOEdetector,J.HighEnergyPhys.12(2007)105,arXiv:0710.4470 [hep-ex].

[14]F.Ambrosino, et al., Precise measurementof (KSπ+π(γ))/(KS

π0π0), with the KLOE detector at DANE,Eur. Phys. J. C 48(2006) 767,

arXiv:hep-ex/0601025.

[15]F.Ambrosino,etal.,Studyofthebranchingratioandchargeasymmetryfor thedecay KSπeν withthe KLOEdetector,Phys. Lett.B636(2006)173,

arXiv:hep-ex/0601026.

[16]T.Alexopoulos,etal.,Measurementsofsemileptonic KL decayformfactors,

Phys.Rev.D70(2004)092007,arXiv:hep-ex/0406003.

[17]W.J.Marciano,A.Sirlin,Radiativecorrectionstoπ2decays,Phys.Rev.Lett.71

(1993)3629.

[18]V.Cirigliano,M.Giannotti,H.Neufeld,ElectromagneticeffectsinK3decays,J.

HighEnergyPhys.11(2008)006,arXiv:0807.4507 [hep-ph]. [19]T.C.André,RadiativecorrectionsinK0

3decays,Ann.Phys.332(2007)2518,

Figura

Fig. 2. Distributions of the variables used in the multivariate analysis for data and simulated events after preselection
Fig. 3. Distribution of the BDT classifier output for data and simulated events.
Fig. 6. Normalised Monte Carlo distributions of the BDT classifier output (left) and δ t μ (right) for K L → π μν and K S → π μν events.

Riferimenti

Documenti correlati

Al fine di indagare il diverso ruolo degli stimoli ambientali nella navigazione della berta maggiore mediterranea (Calonectris diomedea diomedea), alcuni

The structure of the Geodesign course under analysis, falling within to the Italian National official academic definition of the spatial planning discipline (i. ICAR20 SSD),

Among the 66 patients affected by idiopathic hypopituitarism, APAs were present at high titer (1:32–128) in 13 patients (19.6%) with pituitary dysfunctions including

Interest in iridium(III) cyclometalated complexes is continuously renewed due to their excellent and tuneable photophysical properties (i.e. high emission quantum yields,

Drawing on Old Institutional Economics (OIE), Burns and Scapens (2000a) recognize that demands for change can derive form intentional and rational selections of new

“sapere della tradizione pedago- gica” (Damiano, 2007; Gauthier, 1997), di tipo storico, ma a ciò che accomuna le diverse esperienze di insegnamento, quasi fossero

B ENNETT , John, Five Metaphysical Poets: Donne, Herbert, Vaughan, Crashaw, Cambridge Univ.. B LOOM , Harold, John Donne, Infobase Publishing,

Ciò mette in luce che, se da un lato non c’è da parte dell’autore nessuna pretesa di affrontare lo studio di fatti linguistici, come ad esempio, la sillaba e lo iato,