Contents lists available atScienceDirect
Physics
Letters
B
www.elsevier.com/locate/physletb
Measurement
of
the
branching
fraction
for
the
decay
K
S
→
π μν
with
the
KLOE
detector
The
KLOE-2
Collaboration
D. Babusci
d,
M. Berlowski
v,
C. Bloise
d,
F. Bossi
d,
P. Branchini
s,
A. Budano
r,
s,
B. Cao
u,
F. Ceradini
r,
s,
P. Ciambrone
d,
F. Curciarello
a,
d,
E. Czerwi ´nski
c,
G. D’Agostini
n,
o,
E. Danè
d,
V. De Leo
n,
o,
E. De Lucia
d,
A. De Santis
d,
P. De Simone
d,
A. Di Cicco
r,
s,
A. Di Domenico
n,
o,
D. Domenici
d,
A. D’Uffizi
d,
A. Fantini
p,
q,
P. Fermani
d,
S. Fiore
t,
o,
A. Gajos
c,
P. Gauzzi
n,
o,
S. Giovannella
d,
E. Graziani
s,
V.L. Ivanov
g,
h,
T. Johansson
u,
X. Kang
d,
D. Kisielewska-Kami ´nska
c,
E.A. Kozyrev
g,
h,
W. Krzemien
v,
A. Kupsc
u,
P.A. Lukin
g,
h,
G. Mandaglio
f,
b,
M. Martini
d,
m,
R. Messi
p,
q,
S. Miscetti
d,
D. Moricciani
d,
P. Moskal
c,
S. Parzych
c,
A. Passeri
s,
V. Patera
l,
o,
E. Perez del Rio
n,
o,
P. Santangelo
d,
M. Schioppa
j,
k,
A. Selce
r,
s,
∗
,
M. Silarski
c,
F. Sirghi
d,
e,
E.P. Solodov
g,
h,
L. Tortora
s,
G. Venanzoni
i,
W. Wi´slicki
v,
M. Wolke
uaDipartimentodiFisicaeAstronomia“EttoreMajorana”,UniversitàdiCatania,Italy bINFNSezionediCatania,Catania,Italy
cInstituteofPhysics,JagiellonianUniversity,Cracow,Poland dLaboratoriNazionalidiFrascatidell’INFN,Frascati,Italy
eHoriaHulubeiNationalInstituteofPhysicsandNuclearEngineering,Mˇagurele,Romania
fDipartimentodiScienzeMatematicheeInformatiche,ScienzeFisicheeScienzedellaTerradell’UniversitàdiMessina,Messina,Italy gBudkerInstituteofNuclearPhysics,Novosibirsk,Russia
hNovosibirskStateUniversity,Novosibirsk,Russia iINFNSezionediPisa,Pisa,Italy
jDipartimentodiFisicadell’UniversitàdellaCalabria,Rende,Italy kINFNGruppocollegatodiCosenza,Rende,Italy
lDipartimentodiScienzediBaseedApplicateperl’Ingegneriadell’Università“Sapienza”,Roma,Italy mDipartimentodiScienzeeTecnologieapplicate,Università“GuglielmoMarconi”,Roma,Italy nDipartimentodiFisicadell’Università“Sapienza”,Roma,Italy
oINFNSezionediRoma,Roma,Italy
pDipartimentodiFisicadell’Università“TorVergata”,Roma,Italy qINFNSezionediRomaTorVergata,Roma,Italy
rDipartimentodiMatematicaeFisicadell’Università“RomaTre”,Roma,Italy sINFNSezionediRomaTre,Roma,Italy
tENEA,DepartmentofFusionandTechnologyforNuclearSafetyandSecurity,Frascati(RM),Italy uDepartmentofPhysicsandAstronomy,UppsalaUniversity,Uppsala,Sweden
vNationalCentreforNuclearResearch,Warsaw,Poland
a
r
t
i
c
l
e
i
n
f
o
a
b
s
t
r
a
c
t
Articlehistory:
Received13December2019
Receivedinrevisedform14February2020 Accepted18March2020
Availableonline20March2020 Editor:L.Rolandi
Keywords: e+e−collisions
Based ona sampleof300 million KS mesonsproduced inφ→KLKS decays recorded by theKLOE experimentattheDANEe+e− colliderwehavemeasuredthebranchingfractionforthedecayKS→
π μν
.The KS mesonsare identifiedbytheinteraction ofKL mesonsinthedetector. The KS→π μν
decays are selectedby aboosted decisiontreebuilt with kinematic variablesand by atime-of-flight measurement. Signalefficiencies are evaluated withdata control samples of KL→
π μν
decays.A fit tothereconstructedmuonmassdistributionfinds 7223±180 signalevents.NormalisingtotheKS→π
+π
−decayeventstheresultforthebranchingfractionisB(KS→π μν
)= (4.56±0.11stat±0.17syst)×*
Correspondingauthorat:DipartimentodiMatematicaeFisicadell’Università“RomaTre”,Roma,Italy. E-mailaddress:[email protected](A. Selce).https://doi.org/10.1016/j.physletb.2020.135378
K0meson Semileptonicdecay
10−4.Itisthefirstmeasurementofthisdecaymodeandtheresultallowsanindependentdetermination
of|Vus|andatestofthelepton-flavouruniversality.
©2020PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.
1. Introduction
Thebranching fractionforsemileptonicdecaysofchargedand neutralkaonstogetherwiththelifetimemeasurementsareusedto determine the
|
Vus|
element ofthe Cabibbo–Kobayashi–Maskawa quark mixingmatrix.The relationamong thematrixelements of thefirstrow,|
Vud|
2+ |
Vus|
2+ |
Vub|
2=
1,providesthemost strin-genttestoftheunitarityofthequarkmixingmatrix.Different fac-torscontribute totheuncertaintyindetermining|
Vus|
fromkaon decays [1–3] andamongthesixsemileptonicdecaysthe contribu-tionofthelifetimeuncertaintyissmallestfortheKS meson. Nev-ertheless, giventhe lack ofpure high-intensity KS mesonbeams contrarytothecaseofK±and KL mesons,the KS→
π
eν
decay providestheleastprecisedeterminationof|
Vus|
,andthe branch-ingfractionB(
KS→
π μν
)
hasnot yetbeenmeasured. Measure-ment of this decay mode allows an independent determination of|
Vus|
and to extend the test of lepton-flavour universality toKS semileptonicdecaysbycomparisonwiththeexpectedvalueof
(
4.
69±
0.
06)
×
10−4 [4] derivedfromB(
KS
→
π
eν
)
.Wepresentameasurement ofthe KS
→
π μν
branching frac-tionperformedbythe KLOEexperimentattheDANE
φ
–factory of theFrascati National Laboratory based on an integrated lumi-nosityof1.6fb−1.DANE [5] isanelectron–positroncollider run-ning at the centre-of-mass energy of 1.02 GeV colliding e+ and
e− beamsatan angleof
π
−
0.025 radandwithabunch-crossing periodof2.71ns.Theφ
mesonsareproducedwithasmall trans-versemomentumof13MeVandKL–KS pairsareproducedalmost back-to-back witha crosssectiontimestheφ
→
KLKS branching fractionof about1 μb.The beam energy, theenergy spread,the beamstransverse momentum andthe position ofthe interaction pointaremeasuredusingBhabhascatteringevents [6].The KS (KL) mesons are identified (tagged) by the observa-tion of a KL (KS) meson in the opposite hemisphere. This tag-ging procedure allows the selection efficiency for KS
→
π μν
to be evaluated with good accuracy using a sample of the abun-dant decay KL→
π μν
tagged by the detection of KS→
π
+π
− decays.The branchingfractionis extractednormalisingthe num-ber of KS→
π μν
eventsto the numberof KS→
π
+π
− events recordedinthesamedataset.2. TheKLOEdetector
Thedetector1 consistsofalarge-volumecylindricaldrift
cham-ber, surrounded by a lead/scintillating fibres finely-segmented calorimeter. A superconducting coil around the calorimeter pro-vides a 0.52T axial magnetic field. The beampipe at the inter-actionregion issphericalin shapewith10cm radius,madeofa 0.5 mm thick beryllium-aluminumalloy. Final-focus quadrupoles are located at
±
50 cm from the interaction region. Two small lead/scintillating-tile calorimeters [7] are wrapped around the quadrupoles.The drift chamber [8], 4 m in diameterand 3.3 m long, has 12582driftcells arranged in58concentricringswithalternating stereoanglesandisfilled withalow-densitygas mixtureof90%
1 KLOEusesacoordinatesystemwherethez axisisthebisectoroftheelectron andpositronbeams,x andy axesdefinethetransverseplane,thepolarangleis relativetothez axis.
helium–10%isobutane.Thechambershellismadeofcarbon fibre-epoxy compositewithaninternal wallof1.1mmthicknessat25 cm radius. The spatial resolution is
σ
xy=
0.
15 mm andσ
z=
2 mm in the transverse and longitudinal projections, respectively. Themomentumresolutionisσ
pT/
pT=
0.
4%,tracksverticesare re-constructedwithaspatialresolutionofabout3mm.The calorimeter [9] is divided into a barrel andtwo endcaps andcovers98%ofthesolidangle.Thereadoutgranularityis4
.
4×
4.
4 cm2,foratotalof2440cellsarrangedinfivelayers.Eachcell isread outatbothendsbyphotomultipliers.Theenergydeposits areobtainedfromsignalamplitudeswhilethearrivaltimeandthe position along the fibres are obtainedfrom time differences be-tween thetwo signals. Cellscloseintime andspaceare grouped into energy clusters. The cluster energy E is the sumof the cell energies, theclustertime andpositionareenergy-weighted aver-ages.Energyandtimeresolutionsareσ
E/
E=
0.
057/
E (GeV) and
σ
t=
54ps/
E (GeV)
⊕
100 ps,respectively.Theclusterspatial res-olutionisσ
=
1.
4cm/
E (GeV) alongthefibres andσ
⊥=
1.
3 cm intheorthogonaldirection.The first-level trigger [10] uses both the calorimeter and the driftchamberinformation;thecalorimetertriggerrequirestwo en-ergydepositswithE
>
50 MeVinthebarrelandE>
150 MeVin the endcaps; the drift chamber trigger is based on the number andtopology ofhitdrift cells.A second-levelcosmic-ray veto re-jectseventswithatleasttwoenergydepositsabove30MeVinthe outermostcalorimeterlayer.Thetriggertimeisdeterminedbythe firstparticlereachingthecalorimeterandissynchronisedwiththe DANEradio frequencysignal. The time interval between bunch crossingsissmallerthan thetimespreadofthe signalsproduced by theparticles, thus the time ofthe bunch crossing originating theevent,T0,isdeterminedaftereventreconstructionandallthe times related to that event are shifted accordingly. Data for re-construction are selected by an on-linefilter [11] toreject beam backgrounds. Thefilteralsorecordstheeventsinto different out-put files for analysis according to their properties and topology (eventclassification),5%oftheeventsarerecordedwithout apply-ingthefiltertocontroltheefficiencyoftheeventclassification. 3. Datasampleandeventpreselection
Processes of interest for the analysis are simulated with the GEANFI Monte Carlo (MC) program [11] for an integrated lumi-nosityequaltothatofthedata.All
φ
decaysaregenerated accord-ing to their branching fractions aswell asother final states pro-duced in e+e− annihilation.The operating conditions ofDANE during data takingaswell asmeasurements ofbeamparameters are includedintheMConarun-by-runbasis.Calorimeterenergy deposits and drift chamber hitsfrom beambackground acquired witharandomtriggerareoverlaidontothesimulatedevents.The simulatedeventsareprocessedwiththesamereconstruction algo-rithmsasthedata.
Kaonsfrom
φ
-mesondecaysareemittedintwoopposite hemi-sphereswithmeandecaypathλ
S=
5.
9 mmandλ
L=
3.
4 m,thus about 50% of KL mesons reach the calorimeter before decaying. Thevelocity ofthe KL intheφ
referencesystemisβ
∗=
0.
22. KS mesons are taggedby KL interactions in the calorimeter, namedKL-crashinthefollowing,withaclearsignatureofalatesignalof about25 nsnot associatedto tracks.The following requirements areappliedtoselectKL-crash:
Table 1
Numberofdataandsimulatedeventsafter pre-selection. Events [103] Fraction [%] Data 301646 MC 312019 KS→π+π− 301976 96.78 φ→K+K− 9566 3.07 KS→πeν 259 0.08 KS→π μν 140 0.04 KS→π0π0 30 0.01 Others 47 0.02
Fig. 1. Distribution ofβ∗after preselection for data and simulated events.
•
aclusterwithenergyEclu>
100 MeVnotassociatedtotracks (neutralcluster);thecentroidoftheneutralclusterdefinestheKL directionwitharesolutionof
∼
1◦;•
polarangleoftheneutralcluster15◦< θ
clu<
165◦tosuppress small-anglebeambackgrounds;•
0.
17< β
∗<
0.
28 for the velocity in theφ
reference system of theparticle originatingthe neutralcluster;β
∗ is obtained fromthevelocityinthelaboratorysystem,β
=
rclu/
ctclu,withtclubeingtheclustertimeandrcluthedistancefromthe nomi-nalinteractionpoint,the
φ
transversemomentumdetermined run-by-runandtheanglebetweentheφ
momentumandtheKL-crashdirection.
Assumingtheneutralkaonmass,the KS 4-momentumisdefined by the KL-crash directionand the
φ
4-momentum: PKS=
Pφ−
PKL.TheKS
→
π μν
candidatesareselectedrequiringtwotracksof oppositecurvatureformingavertexinsidethecylinderdefinedbyρ
vtx=
x2vtx
+
y2vtx<
5 cm|
zvtx| <
10 cm.
(1) In casemore than one vertex is found, the closest to the inter-actionregionis chosen.The aboverequirements definethe event preselection.Afterpreselection, thedatasamplecontains about300million eventsanditscomposition,asevaluatedbysimulation,isshownin Table1.Thelargemajorityofeventsare KS
→
π
+π
−decays,and thereis alsoa large contributionfromφ
→
K+K− eventswhere onekaon oritsdecay productsgeneratea fake KL-crashandthe otherkaondecaysearlyintoπ
±π
0.The distribution of
β
∗ is shown in Fig. 1 fordata and simu-latedevents.Twopeaksarevisible,thefirstisassociatedtoevents triggeredby photonsor electrons,andthe second to events trig-geredbychargedpions.Thetriggerissynchronisedwiththebunch crossing andthe time difference betweena photon (or electron)andapion(ormuon)arrivingatthecalorimetercorresponds toa timeshiftofaboutonebunch-crossing.
4. Selectionofsignalandnormalisationevents
Theselectionofsignaleventsisperformedintwosteps;firsta selection basedonthe eventkinematics usingonlytracking vari-ables and then a selection based on the time-of-flight measured withthecalorimeter.Thetwogroupsofvariablesareuncorrelated. In order to assign a time to the particles each track is associ-atedto acluster. The track-to-clusterassociation(TCA) isapplied asfollows: foreach track connectedto the vertexa cluster with
Eclu
>
20 MeV and15◦< θ
clu<
165◦ isrequired whose centroid iswithin60cmofthetrackextrapolationtothecalorimeterfront surface.TheeventisretainedonlyifTCAissatisfiedbybothtracks. Five variables with good discriminating power against back-groundareusedinamultivariateanalysis.Aboosteddecisiontree (BDT)classifierisbuiltwiththefollowingvariables:p1
,
p2: thetracksmomenta;
α
1,2: theangleatthevertexbetweenthetwomomenta intheKS referencesystem;
α
S L: theanglebetweenpsum
=
p1+
p2andtheKL-crash direc-tion;p: thedifferencebetween
|
psum|
andtheabsolutevalue|
pKS|
ofthe KS momentumdeterminedusingthetaggingKL;
mππ : the invariant mass reconstructed from
p1 and
p2, in the hypothesisofcharged-pionmass.
ThedistributionsofthevariablesareshowninFig.2fordataand simulatedevents.
After preselection two cuts are applied to suppress the back-groundinthetailsofthedistributions:
p
<
320 MeV for both tracks andp
<
190 MeV.
(2)Thetraining oftheBDTclassifier isdone onasimulated sam-pleof5,000KS
→
π μν
eventsandasampleof50,000background events;samplesofthesamesizeareusedforthetest.After train-ing and test the classification is run on all events of the MC anddata sample. The distributionof the BDT classifier output is showninFig.3fordataandsimulatedevents.Thedata distribu-tionis well reproducedby simulationinthe regionpopulatedby thesignal. Tosuppressthelarge backgroundof KS→
π
+π
− andφ
→
K+K−events,acutisappliedB D T
>
0.
18 (3)chosen to maximise the ratio S
/
√
S+
B where S and B are the signalandbackgroundyields.The selected events contain
π π
, Kπ
, eπ
track pairs for the main backgrounds andμπ
for the signal. A selection based on time-of-flight measurement is performed to identifyμπ
pairs. Foreach trackassociatedtoa cluster, thedifference betweenthe timemeasuredbythecalorimeterandthetime-of-flightmeasured alongtheparticletrajectoryδt
i=
tclu,i−
Li/cβ
i i=
1,
2is computed, wheretclu,i is thetime of the cluster associatedto tracki,Liisthelengthofthetrack,and
β
i=
pi/
p2i
+
m2i is func-tionofthemasshypothesis fortracki.Toreduce theuncertainty duetotheT0 determination,thedifferenceFig. 2. Distributionsofthevariablesusedinthemultivariateanalysisfordataandsimulatedeventsafterpreselection.Fromtopleft:trackmomenta(p1,p2),anglebetween thetwotracksintheKSreferencesystem(α1,2),anglebetween KL and KSdirections(αS L),two-trackinvariantmassinthehypothesisofchargedpions(mπ π),p= | psum|− | pKS|.
isusedto determinethe massassignmentto thetracks.The
π π
hypothesisistestedfirst,thedistributionof
δ
tππ= δ
t1,π− δ
t2,π isshowninFig.4(left).Afairagreementisobserved betweendata andsimulation, the KS
→
π μν
and KS→
π
eν
distributions are wellseparatedandtheK+K−backgroundisisolatedinthetailsof thedistribution,howeverthesignalishiddenunderalarge KS→
π
+π
−background.Toreducethebackgroundacutisapplied1 ns
<
|δ
tπ π| <
3 ns.
(4)The
π μ
hypothesis is testedbyassuming the pionandmuon massforeithertrackδt
π μ= δ
t1,π− δ
t2,μ andδt
μπ= δ
t1,μ− δ
t2,π.
The two-dimensional
(δ
tπμ,
δ
tμπ)
distribution for simulated sig-nal events shows that the correct mass assignment corresponds tothesmallerabsolutevalueofthetwohypotheses.The distribu-tion ofthesigned valueofδ
tμ=
min|δ
tπμ|, |δ
tμπ|
isshownin Fig. 4 (right) for data andsimulated events. The distribution for thesignalisnarrowandpeakedatzerowhileitisbroaderforthe backgrounds.AfinalcutisappliedFig. 3. Distribution of the BDT classifier output for data and simulated events.
Table 2
Numberofeventsaftertheδtμselectionfor dataandsimulatedevents.
Events Fraction [%] Data 38686 MC 36444 KS→π+π− 25853 70.9 φ→K+K− 475 1.30 KS→πeν 448 1.23 KS→π μν 9424 25.9 Others 244 0.7 Table 3
Resultofthefittothem2
μdistribution. Fraction Events
π μν 0.23 7223±180
π+π− 0.77 23764±270
Total 30987
The number of surviving events in the data sample is 38686 anditscompositionasevaluatedbysimulationislistedinTable2. Afterthemassassignmenttothetwotrackstheinvariantmassof thechargedparticleidentifiedasthemuonisevaluatedas
m2μ
=
EKS−
Eπ−
pmiss 2−
p2μ withp2 miss= (
pKS−
pπ−
pμ)
2,EKS and
pKS beingtheenergyand
momentumreconstructed using thetagging KL, and
pπ ,
pμ, the momentaofthecandidatepionandmuontrack.
Thenumberofsignal eventsisextractedwithafit tothem2μ
distributionwiththeMCshapesofthreecomponents:KS
→
π μν
,KS
→
π
+π
− andthesumofallotherbackgrounds.Thefitis per-formedintherange−
6000<
m2μ
<
24000 MeV2 with48degreesoffreedom.The thirdcomponent, which ispeakedaroundm2e,is constrainedtoa negligiblevalue by the fit.Fig.5 showsthe dis-tributionofm2
μ fordata,simulatedeventsandthefit,andTable3
presentstheresultofthefit.Thenumberofsignaleventsis
Nπ μν
=
7223±
180 withχ
2/
ndf=
30/
48.
ThenormalisationsampleofKS
→
π
+π
−eventsisselectedby requiring140<
p<
280 MeVforbothtracks(Fig.2).This require-mentselects Nππ= (
282.
314±
0.
017)
×
106 eventswithapurity of99.9%asdeterminedbysimulation.5. Determinationofefficiencies
ThebranchingfractionfortheKS
→
π μν
decayisevaluatedasB
(K
S→
π μν
)
=
Nπ μνπ μν
×
π π Nπ π
×
R×
B
(K
S→
π
+π
−),
(6)where Nπμν andNππ arethenumbersof KS
→
π μν
andKS→
π
+π
− events,π μν and
π π aretherespectiveselection
efficien-cies,and R istheratiooftheefficiencies forthetrigger,on-line filterandpreselectionforthetwodecays.
The signal selection efficiency is determined with KL
→
π μν
controlsamples(CS)andevaluatedasπ μν
=
CS
×
MC π μν
MC CS
,
(7)where
CSistheefficiencyofthecontrolsampleand
π μν ,MC
CSMCare theefficienciesobtainedfromsimulationforthesignalandcontrol samples,respectively.
The KL
→
π μν
decay [12,13] iskinematically identicalto the signal,the onlydifferencebeingthemuch longerdecaypath.For thecontrolsample thetaggingisdonewithKS→
π
+π
− decays, preselected in the same way as for the signal sample with the additional cut|
mππ−
mK0|
<
15 MeVtoincrease thepurity.The radialdistanceoftheKL vertexisrequiredtobesmallerthan5 cm to matchthe signal selection,butgreaterthan 1cmto minimise the ambiguityin identifying the KL and KS vertices. Thecontrol sample is composed mainly of KL→
π
eν
, KL→
π
+π
−π
0 andKL
→
π μν
decays,while most of KL→
π
0π
0π
0 decays are re-jected by the requirement of two tracks. The distribution of the missingmass,m2miss,ofthetwotracksconnectedtothe KL vertex, assigning the charged-pion mass, shows a narrow isolated peak atthe
π
0 mass; a cutm2miss
<
15000 MeV2 efficientlyrejects the
KL
→
π
+π
−π
0 decays.Thenumberofeventsinthecontrol sam-pleis911757.Inordertoevaluatethesignal selectionefficiency,twocontrol samplesare used, oneselected basedon kinematicvariables and theotherbasedontime-of-flight(TOF),thetwogroupsofvariables beinglargelyuncorrelated.
Thecontrol sample forevaluating theefficienciesofthe selec-tionwithkinematicvariablesandBDTclassifierisselected apply-ing a cut on the two-dimensional
(δ
tπμ,
δ
tμπ)
distribution that removesmostofthe KL→
π
eν
events.The purityofthesample asdeterminedwithsimulationis86%.Theresolutionsinthe mea-surementofthetaggingKS (controlsample)aresimilartothoseof thetagging KL (signalsample)andthesameBDTclassifierisused forbothsamples.TheBDTMCdistributionsforthesignaland con-trolsample are comparedin Fig.6 (left).Applying to thecontrol samplethesameselectionsasforthesignal,theefficiencies eval-uatedwithEq. (7) are(
kinem. sel.)
=
0.
982±
0.
004stat and(
BDT)
=
0.
417±
0.
003stat.
ToevaluateTCAandTOFefficienciesforthesignal,the T0 de-termination using the earlier among the two clusters associated withthe KS decayhas to be considered. The control sample se-lectionthereforerequirestheearliestclustertobeassociatedwith oneofchargedsecondaryparticlesfromKL decayandacutonthe
(
mππ,
m2miss
)
distributiontorejectKL→
π
eν
events.Thepurityof thesample asdetermined withsimulationis87%. TheMC distri-butions ofδ
tμ forthesignalandcontrolsample arecompared in Fig. 6(right). Applying to thecontrol sample theanalysis proce-dureasforthesignaltheefficienciesevaluatedwithEq. (7) areFig. 4. Distributions ofδtπ π(left) andδtμ(right) for data and simulated events.
Fig. 5. The m2
μdistribution for data, MC signal and background (left); comparison of data with the fit (right).
Fig. 6. Normalised Monte Carlo distributions of the BDT classifier output (left) andδtμ(right) for KL→π μνand KS→π μνevents.
(
TCA)
=
0.
347±
0.
002stat and(
TOF)
=
0.
392±
0.
003stat.
Thecorrection factorsinEq. (7) differ fromoneby lessthan10% butfor(TOF)whereitdiffersby20%.
Thetailsofthem2μ distributioninFig.5(left)arenotincluded inthefittoimproveitsstability,therelativeefficiencyis0
.
991±
0.
001.The signal selection efficiencies are summarised in Table 4
whereonlythestatisticalerrorsareshown. Combiningthevalues accounting for the correlation of the control samples we obtain
π μν
=
0.
0552±
0.
0005.Table 4
Efficiencies forthe signalselections.Theerrors arestatistical,theerrorofthetotalefficiency ac-countsforthecorrelationofthecontrolsamples.
Selection Efficiency Kinematic selection 0.982±0.004 BDT selection 0.417±0.003 TCA selection 0.347±0.002 TOF selection 0.392±0.003 FIT range 0.991±0.001 Total 0.0552±0.0005
Table 5
Contributions tothe ratioofefficienciesR in Eq. (6). The error on R is calculatedas the quadraticsumoftheerrorsofthesingleratios.
Selection R Trigger 1.0649±0.0005 On-line filter 1.0113±0.0002 Event classification 1.1406±0.0007 T0determination 1.0135±0.0002 KL-crash andβ∗ 1.1283±0.0022 KSidentification 1.0481±0.0012 R 1.472±0.004
Theratio R inEq. (6) accountsforseveraleffects all depend-ing on the global properties of the event: trigger, on-line filter, eventclassification,T0 determination, KL-crashand KS identifica-tion.ThevariouscontributionstoR evaluatedwithsimulationare listedinTable5whereonlythestatisticalerrorsareshown.
The efficiency of the KS
→
π
+π
− normalisation sample is measuredusingthepreselecteddatabyvaryingthecutonthe ver-textransverseposition,asinEq. (1),in1cmstepsfromρ
maxvtx
=
1 cmtoρ
maxvtx
=
4 cm,based on the observationthatρ
vtx andthe tracks momenta are very loosely correlated. Using Eq. (7) and extrapolating toρ
maxvtx
=
5 cm the efficiency isπ π
= (
96.
569±
0
.
004)
%.Alternatively, theefficiencyisevaluated usingthe KS→
π
+π
−datasample(withρ
maxvtx
=
5 cm):π π
= (
96.
657±
0.
002)
%.The latter value is used asthe efficiencyand the difference be-tweenthetwovaluesistakenassystematicuncertainty.The num-berofKS
→
π
+π
−eventscorrectedfortheefficiencyisNπ π
/
π π
= (
292.
08±
0.
27)
×
106.
6. Systematicuncertainties
Three main systematic uncertainties affect the signal count: BDTandtime-of-flightselection,andthem2
μ fit.
Thedistributions oftheBDT classifieroutput forthedataand simulatedsignalandcontrolsampleeventsareingoodagreement as shown in Figs. 3 and 6. The resolution of the BDT variable predictedby simulationcomparing thereconstructedevents with thoseatgenerationlevelis
σ
BDT=
0.
005.Theanalysisisrepeated varyingtheBDTcutofEq. (3),thenumberofsignaleventsisfound tobestableandthermsvalueofthedifferencescorrespondstoa relativeuncertaintyof0.3%.ThemainsourceofuncertaintyintheTOFselection isthecut on
δ
tππ inEq. (4) becausethesignalandbackgrounddistributions inFig.4(left)aresteepandwithoppositeslopes;thesubsequent selection onδ
tμ in Eq. (5) has a minor effect.The resolution of theδ
tππ variableevaluatedwithsimulationandKS→
π
+π
−data control samples is 0.27 ns. The analysis is repeated varying theδ
tππ lowercutintherange0.5–1.25ns,thermsvalueofthe dif-ferencescorresponds toa relativeuncertaintyof3.0%. Thisisthe mainsystematicuncertaintyaffectingthemeasurement.The fittothemμ2 distributioninFig.5isrepeatedvaryingthe rangeandthebinsize.The relativesystematicuncertaintyonthe numberofeventsis0.3%obtainedshiftingtherangeby fivebins oneithersideandincreasingthebinsizebyafactoroftwo.
Thestatisticaluncertaintiesofthesimulationsignalandcontrol samples,andofthedatacontrolsample contributewitharelative uncertaintyof0.8%(Table4).
The dependence of R on systematic effects has been stud-ied in previous analyses for different KS decays selected with the KL-crash method: KS
→
π
+π
− and KS→
π
0π
0 [14], andKS
→
π
eν
[15]. The systematicuncertainties are evaluated by a comparisonofdatawithsimulation,asdescribedinthefollowing.Table 6
Summaryofsystematicuncertaintiesofπ π,π μν andR. Source π π[%] π μν [%] R[%] KS→π+π−selection 0.1 BDT selection 0.3 TOF selection 3.0 Fit m2 μdistribution 0.3
MC and data CS statistics 0.8
Trigger 0.1
T0determination <0.1
KL-crash andβ∗ 0.1
KSidentification 1.7
Total 0.1 3.1 1.7
Trigger– Two triggers are used forrecording the events, the calorimetertriggerandthedriftchambertrigger.Thevalidationof the MC relative efficiency isderived fromthe comparisonof the single-trigger andcoincidence rates withthe data.The dataover MCratiois0.999withnegligibleerror.
On-linefilter and eventclassification– Theeventclassification produces differentstreams fortheanalyses.The KLKS stream se-lectseventsbasedonthepropertiesofKS andKL decays.Inmore than99%ofthecasestheeventsareselectedbasedonthe KS de-cay topologyandthe KL-crash signatureanddifferencesbetween MCanddataareaccountedforinthesystematicuncertainties de-rivedbelowfortheKS identificationandKL-crash.
T0– Thesystematicuncertaintyisevaluatedanalysing thedata and MC T0 distributions for the decays with the most different timing properties: KS
→
π
+π
− and KS→
π
0π
0 [14]. The data overMCratiosisonewithanuncertaintyoflessthan0.1%.KL-crash and
β
∗ selection – The systematic uncertainty is evaluated comparing dataandsimulated eventstagged by KS→
π
+π
− and KS→
π
0π
0 decays which havedifferent timing and topologycharacteristics.ThedataoverMCratiois1.001with neg-ligibleerror.KS identification– Thesystematic uncertaintydue to the re-quirementoftwo tracksforming avertexinthe cylinderdefined by Eq. (1) is evaluated separately for signal and normalisation samples. The first is evaluated with KL
→
π μν
events selected withthesamevertexrequirementsasforthesignalbuttaggedbyKS
→
π
0π
0 decays.Forthe KS→
π
+π
− sampletheefficiencyis evaluatedbytaggingwithKL-crashandremovingtherequirement ofthevertex.Combiningthetwo valuesgivesadataoverMC ra-tio of1.002±
0.017 where theerror isdueto the purityof the samples.The R total systematicuncertaintyisestimatedby combining thedataoverMCratiosandamountsto1.7%.
IncludingthesystematicuncertaintiesthefactorsinEq. (6) are:
π μν
=
0.
0552±
0.
0017 and R=
1.
472±
0.
025.
AllsystematicuncertaintiesaresummarisedinTable6. 7. Result
From Eq. (6) with Nπμν
=
7223±
180, Nππ/
π π
= (
292.
08±
0
.
27)
×
106,thevaluesoftheefficienciesπ μν
=
0.
0552±
0.
0017, R=
1.
472±
0.
025, andthe valueB(
KS→
π
+π
−)
=
0.
69196±
0.
00051 measuredbyKLOE [15],wederivethebranchingfractionB
(K
S→
π μν
)
= (
4.
56±
0.
11stat±
0.
17syst)
×
10−4= (
4.
56±
0.
20)
×
10−4.
This isthe first measurement ofthis decaymode andcompletes the set of kaon semileptonic decays. The branching fraction for
Vusthroughtherelation
B
(K
S→
π
ν
)
=
G2|
f +(
0)V
us|
2 192π
3τ
sm 5 KIKSEW(
1+ δ
EMK)
2 (8) where f+(
0)
isthehadronicformfactoratzeromomentum trans-fer,mK andτ
S aretheKS massandlifetime,IK isthephasespace integral, SEW is the short-distance electroweak correction [17] andδ
EMK is the long-distance electromagnetic correction [18,19]. Assuming universality of the kaon–lepton coupling the expected value [4] isB
(K
S→
π μν
)
PDG=
B
(K
S→
π
eν
)
×
R(IK)
×
(
1+ δ
EMKμ)
2(
1+ δ
EMK e)
2= (
4.
69±
0.
06)
×
10−4asderivedfromthevalueofthebranchingfraction
B(
KS→
π
eν
)
measured by KLOE [15] and the ratio R(
IK
)
of the phase space integralsfor the semileptonic decays KL→
π μν
and KL→
π
eν
measuredbyKTeV [16].InvertingEq. (8) andusingIμK
=
0.
10262±
47 [3] wederive|
f+(
0)V
us|
KS→π μν=
0.
2126±
0.
0046.
The ratioto thevalue for KS
→
π
eν
decay,|
f+(
0)
Vus|
KS→πeν=
0
.
2153±
14 [3],allowstoconfirmtheassumptionofkaon–lepton couplinguniversalityrμe
=
|
f+(
0)V
us|
2KS→π μν|
f+(
0)V
us|
2KS→πeν=
0.
975±
0.
044.
Theseresults are consistent withthose determined forthe other kaonsemileptonicdecays[1,3] though lessprecisemainlydueto theintrinsiclimitationsrelatedto
μ
–π
discriminationinthemo-mentumrange100–250MeV.
8. Conclusion
Ameasurement ofthebranching fractionforthedecay KS
→
π μν
is presented based on data collected with the KLOEex-periment atthe DA
NEe+e− collidercorresponding to an inte-gratedluminosityof1.6fb−1.The
φ
→
KLKS decaysareexploited to select samples of pure and quasi-monochromatic KS mesons anddata control samples of KL→
π μν
decays. The KS→
π μν
decays are selected by a boosted decision tree built with kine-matic variables and by a measurement of time-of-flight. The ef-ficiencies for detecting the KS→
π μν
decays are derived fromKL
→
π μν
data control samples. A fit to the m2μ distributionfinds7223
±
180 signalevents.NormalisingtoKS→
π
+π
−decay events, the resultfor the branching fractionisB(
KS→
π μν
)
=
(
4.
56±
0.
11stat±
0.
17syst)
×
10−4 to be compared with the ex-pectedvalueof(
4.
69±
0.
06)
×
10−4assuminglepton-flavour uni-versality.Declarationofcompetinginterest
Theauthorsdeclarethattheyhavenoknowncompeting finan-cialinterestsorpersonalrelationshipsthatcouldhaveappearedto influencetheworkreportedinthispaper.
Acknowledgements
We warmly thank our former KLOE colleagues for the
ac-cess to the data collected during the KLOE data taking
cam-paign. We thank the DA
NE team for their efforts in
main-taining low background running conditions and their collabora-tion during all data taking. We thank our technical staff: G.F. Fortugno and F. Sborzacchi for their dedication in ensuring ef-ficient operation of the KLOE computing facilities; M. Anelli for his continuous attention to the gas system and detector safety; A. Balla, M. Gatta, G. Corradi and G. Papalino for electronics maintenance; C. Piscitelli for his help during major maintenance
periods. This work was supported in part by the Polish
Na-tionalScienceCentrethroughtheGrantsNo.2013/11/B/ST2/04245, 2014/14/E/ST2/00262,2014/12/S/ST2/00459,2016/21/N/ST2/01727, 2016/23/N/ST2/01293,2017/26/M/ST2/00697.
References
[1]M.Antonelli,etal.,Anevaluationof
|
Vus|andprecisetests oftheStandardModelfromworlddataonleptonicandsemileptonickaondecays,Eur.Phys.J. C69(2010)399,arXiv:1005.2323 [hep-ph].
[2]M. Moulson, Experimental determination of Vus from kaon decays, PoS
CKM2016(2017)033,arXiv:1704.04104 [hep-ex].
[3]F.Ambrosino,etal.,
|
Vus|andleptonuniversalityfromkaondecayswiththeKLOEdetector,J.HighEnergyPhys.04(2008)059,arXiv:0802.3009 [hep-ex]. [4]M.Tanabashi,etal.,Particle DataGroup,Thereviewofparticlephysics,Phys.
Rev.D98(2018)030001.
[5]A.Gallo,etal.,DANEstatusreport,in:EuropeanParticleAccelerator Confer-ence,26-30June2006,Edinburgh,Scotland,Conf.Proc.C060626(2006)604. [6]F.Ambrosino,et al.,MeasurementoftheDANEluminositywith theKLOE
detectorusinglargeangleBhabhascattering,Eur.Phys. J.C47(2006)589, arXiv:hep-ex/0604048.
[7]M.Adinolfi,etal.,TheQCALtilecalorimeterofKLOE,Nucl.Instrum.Methods Phys.Res.,Sect.A483(2002)649.
[8]M.Adinolfi,etal.,ThetrackingdetectoroftheKLOEexperiment,Nucl.Instrum. MethodsPhys.Res.,Sect.A488(2002)51.
[9]M.Adinolfi,etal.,TheKLOEelectromagneticcalorimeter,Nucl.Instrum. Meth-odsPhys.Res.,Sect.A482(2002)364.
[10]M.Adinolfi,etal.,ThetriggersystemoftheKLOEexperiment,Nucl.Instrum. MethodsPhys.Res.,Sect.A492(2002)134.
[11]F.Ambrosino,etal.,Datahandling,reconstructionandsimulationfortheKLOE experiment,Nucl.Instrum.MethodsPhys.Res.,Sect.A534(2004)403,arXiv: physics/0404100.
[12]F.Ambrosino, etal., Measurementsofthe absolutebranchingratiosfor the dominantKL decays,theKL lifetimeand VuswiththeKLOEdetector,Phys.
Lett.B632(2006)43,arXiv:hep-ex/0509045.
[13]F.Ambrosino,etal.,MeasurementoftheKL→π μνformfactorparameters
withtheKLOEdetector,J.HighEnergyPhys.12(2007)105,arXiv:0710.4470 [hep-ex].
[14]F.Ambrosino, et al., Precise measurementof (KS→π+π−(γ))/(KS→
π0π0), with the KLOE detector at DANE,Eur. Phys. J. C 48(2006) 767,
arXiv:hep-ex/0601025.
[15]F.Ambrosino,etal.,Studyofthebranchingratioandchargeasymmetryfor thedecay KS→πeν withthe KLOEdetector,Phys. Lett.B636(2006)173,
arXiv:hep-ex/0601026.
[16]T.Alexopoulos,etal.,Measurementsofsemileptonic KL decayformfactors,
Phys.Rev.D70(2004)092007,arXiv:hep-ex/0406003.
[17]W.J.Marciano,A.Sirlin,Radiativecorrectionstoπ2decays,Phys.Rev.Lett.71
(1993)3629.
[18]V.Cirigliano,M.Giannotti,H.Neufeld,ElectromagneticeffectsinK3decays,J.
HighEnergyPhys.11(2008)006,arXiv:0807.4507 [hep-ph]. [19]T.C.André,RadiativecorrectionsinK0
3decays,Ann.Phys.332(2007)2518,