• Non ci sono risultati.

Detection of colorectal cancer biomarkers in the presence of interfering gases

N/A
N/A
Protected

Academic year: 2021

Condividi "Detection of colorectal cancer biomarkers in the presence of interfering gases"

Copied!
7
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Sensors

and

Actuators

B:

Chemical

j ou rn a l h o m ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / s n b

Detection

of

colorectal

cancer

biomarkers

in

the

presence

of

interfering

gases

G.

Zonta

a,c,∗

,

G.

Anania

d

,

B.

Fabbri

a,c

,

A.

Gaiardo

a,e

,

S.

Gherardi

a

,

A.

Giberti

a,b

,

V.

Guidi

a,b,c

,

N.

Landini

a

,

C.

Malagù

a,c

aDepartmentofPhysicsandEarthScience,UniversityofFerrara,ViaSaragat1/c,44122Ferrara,Italy bMISTE-Rs.c.r.l.,ViaP.Gobetti101,40129Bologna,Italy

cCNR-INOIstitutoNazionalediOttica,LargoEnricoFermi6,50124Firenze,Italy

dDepartmentofMorphology,SurgeryandExperimentalMedicine,UniversityofFerrara,ViaLuigiBorsari,46,44121Ferrara,Italy eMNFMicroNanoFacility,BrunoKesslerFoundation,ViaSommarive18,38123Trento,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Availableonline18May2015 Keywords: VOC Colorectalcancer Sensor Benzene 1-Iodo-nonane Decanal

a

b

s

t

r

a

c

t

Medicalstudieshaveshownthattumorgrowthisaccompaniedbyproteinchangesthatmayleadtothe peroxidationofthecellmembrane,withconsequentemissionofvolatileorganiccompounds(VOCs). VOCscanbedetectedthroughbreathorintestinalgasesandarebiomarkersforcolorectalcancer(CRC). TheanalysisofVOCsrepresentsanon-invasiveandpotentiallyinexpensivepre-screeningtechnique.An arrayofchemoresistivegassensors,basedonscreen-printedMetalOXide(MOX)semiconductingfilms, hasbeenselectedtoidentifygaseouscompoundsofoncologicalinterest,i.e.benzene,1-iodo-nonane anddecanal,fromthemaininterferersthatcanbefoundintheintestine.MOXsensorsareabletodetect concentrationsdowntoabout10thppb,asexperimentallyproveninpreviousworks,sotheycanidentify veryslightdifferencesinconcentrationamonggasmixtures.Inthisworkithasbeenproventhatthearray usedisabletoidentifytumormarkerssingularlyandincombinationwithothergasesbothinwetand dryconditions.Moreover,thesensorschosencandiscriminatetargetVOCsfrominterferersevenatlow concentrations.

©2015ElsevierB.V.Allrightsreserved.

1. Introduction

Nano-materialscanofferpromisingnon-invasivemethodsto detectand preventcancer[1].It isknownthatVOCs emissions, producedbytheperoxidationofthecellmembraneorbycellular metabolism,arelinkedtotumorpresenceandgrowthandtheycan bedetecteddirectlyfromtheheadspaceofcancercellsorthrough exhaledbreath[2,3].Indeed,changesinthebloodchemistrylead to measurablemodifications in the breath composition due to exchangesinsidethelungs,e.g.intherangeof20–100ppbfor sev-eralVOCs[4],aswellasinfecesfromnormaldigestion[5].Aimof thisworkistostudythedetectionofVOCsindicatorsofCRC, iden-tifyingthemostselectivesensorsforthesecompounds,inorderto analyzeintestinalgasesinwhichthesebiomarkersshouldconvey.

夽 SelectedpaperspresentedatEUROSENSORS2014,theXXVIIIeditionofthe conferenceseries,Brescia,Italy,September7–10,2014.

∗ Correspondingauthorat:DepartmentofPhysicsandEarthScience,University ofFerrara,ViaSaragat1/c,44122Ferrara,Italy.Tel.:+390532974286.

E-mailaddress:giulia.zonta@unife.it(G.Zonta).

ThemostrelevantVOCswhichmayindicateCRCpresenceare ben-zenecompounds,1-iodo-nonane(C9H19I)anddecanal(C10H20O)

[4–6].ThemaingasesthatcaninterfereinthiscontextareH2,CH4,

H2S,SO2,N2,NO2andNO,thesebeingthemaincomponentsofthe

intestinalgasmixture.

2. Materialandmethods

2.1. Sensorsproperties

WetestedseveralMOXforthisdedicatedexperiment,andthe selectedsensingmaterials,themostpromisingones,asconfirmed bythereporteddata,arelistedinTable1.Sensorsarepreparedvia screen-printingtechnique,afterthedepositionoftheMOXpaste onaluminasubstrate.Theyareprovided witha heatermadeof platinum onthebackside,whilethecontactsaremadeof gold. Thescreen-printingprocedureisreportedinPrintedfilms:Materials scienceandapplicationsinsensors,electronicsandphotonics[11].

Atypicalscreenconsistsofanetwork offinelytwistedsteel wires(of100␮m),stretchedoveraframeofaluminum.Sensors havebeenelectricallycharacterizedinalaboratorysetupusinggas http://dx.doi.org/10.1016/j.snb.2015.04.080

(2)

Fig.1. Schemeoftheexperimentalsetupforgasesfrombottles.Thebottlesare connectedtomassflowcontrollers.Thefirstlineconveysthetargetgas(e.g.C6H6

orinterferers),thesecondlineconveysdryair,thethirdoneisemployedoncethe measureistakeninwetconditions.Airandgasesarriveatthesensorschamber.

Fig.2. Laboratorysetup.

bottlesasoriginforgastargetsandinterferences.Thesystemis

sketchedinFig.1,whilethesetupfortheacquisitionofthesignal

isshowninFig.2.

WeselectedZnO(withtwodifferentthermaltreatments,650 and850◦C),foursolid solutionsofSnO2 andTiO2,asolutionof

TiO2,Ta2O5andvanadiumoxideandasolutionofSnO2,TiO2and

Nb2TiO7(allthesematerialweretreatedthermallyat650◦C).The

annealingtemperaturessynthesis and structural,morphological and thermal characterizations of these nanostructured materi-als are reported in literature [7–9]. The increase of the firing temperatureis directly related tothe increase of theradius of thenano-spherescomposingthesensingmaterial. Aftertesting MOX sensors, in previous works [10,11], with firing tempera-turesrangingbetween650and950◦C,wehavechosenthefiring

temperatures650◦C (for tin/titanium-oxide-based sensors) and 850◦C (for the zinc-oxide-based sensor) as the ones at which theygivethehighest response. Themost commonformulation forscreen-printablepasteislistedinTab.11.9ofthebookPrinted films:Materialsscienceandapplicationsinsensors,electronicsand photonics[13].Asreportedonpag.298ofthebook,specificpaste compositionsarehighlyproprietary.Thethicknessofthesensing layersisabout30␮m(thickfilmsensors)andtheywereobtained byscreen-printpastessynthetizedfromthesepowders(byadding aproperamountoforganicvehicles)ontominiaturizedalumina substratesequippedwithpre-depositedelectrodesandtheheater [12].Thegassensingmeasurementswereperformedbymeansof theflow-throughtechnique[13–15].

Responsesfromsensorsaregivenbythedimensionlessformula:

R= Vplateau

Vbaseline,

(1) whichremovesallthedependenceofthesensorsresponseonthe geometry.Fig.3showsanexampleofsensorsresponsetoC6H6

beforenormalization.Thematerialcharacterizationwascarriedout byusingscanningelectronmicroscopy(SEM).ASEMimageofthe filmisshowninFig.4toappreciatethemorphology.

2.2. Experimentalsetup

Thesensorswerelocatedintoagasflowchamber,insidewhich anartificialatmospherewereinjectedandcontrolledbypc-driven mass-flowcontrollers.Thegaseswerefromcertifiedbottlesand

(3)

Fig.5.SubtractionbetweensuccessiveplateausofN2anddrysyntheticair

inter-ferences,normalizedovertheirbaseline.Theshowsthedifferenceofresponses forthattemperaturetothevariation,foraddition,of5sccmofO2inthe500sccm

ofthechamber.

Fig.6.SubtractionbetweensuccessiveplateausofN2andwetsyntheticair

inter-ferences,normalizedovertheirbaseline.Theshowsthedifferenceofresponses forthattemperaturetothevariation,foraddition,of5sccmofO2inthe500sccm

ofthechamber.

Fig.7. Analysisofthetotalandpartialresponserates(ratiobetweenresponses)of thesensorsarraytoC6H6(5ppm)inamixtureofCH4(10ppm),H2(60ppm)and

dryair(N2:80%,O2:20%).Humidityisusedasaninterferer.

Fig.8.analysisofthetotalandpartialresponserates(ratiobetweenresponses)of thesensorsarraytoC6H6(2ppm)inamixtureofCH4(10ppm),H2(60ppm)and

wetair(N2:80%,O2:20%,RH:38%).

Fig.9. SensorresponsestoC6H6(2ppm)insideamixtureofwetair(RH∼20%)and

twominorintestinalinterferinggasesNO2(2ppm)andH2S(20ppm).

Tempera-turechosenaretheonesatwhichthesensorresponsestoNO2becomenegligible.

Benzeneiswelldetectedintothispartialinterferingambient.

Fig.10.SensorresponsestoC6H6(2ppm)insideamixtureofwetair(RH∼34%)and

twominorintestinalinterferinggasesNO(2ppm)andSO2(2ppm).Temperature

chosenaretheonesatwhichthesensorresponsestoNObecomenegligible.Benzene iswelldetectedintothispartialinterferingambient.

thevaporsof1-iodo-nonaneanddecanalweresuppliedbymeans ofabubblerwiththeproperamountoftheliquids.Theschemeof theexperimentalsetupisshowninFig.5publishedinourprevious workMalagùetal.[1].

(4)

Fig.11.Sensorresponses,asafunctionoftime,toSO2(1stpeak),C6H6+SO2+NO(2ndpeak),C6H6+SO2+NO+wetair(3rdpeak),C6H6(4thpeak)indryconditions.

TemperaturechosenaretheonesatwhichthesensorresponsestoNObecomenegligible.

Fig.12.Sensorresponses,asafunctionoftime,toH2S(1stpeak),C6H6+H2S+NO2(2ndpeak),C6H6(3rdpeak)inwetconditionsRH:20%.Temperaturechosenaretheones

atwhichthesensorresponsestoNO2becomenegligible.

Theresponse to thetarget gaseswasobserved for different workingtemperaturesbothindry(RH∼0%)andinwetconditions (18%<RH<60%).Choosingthemostfavorabletemperaturesofeach sensorforbenzenedetection,theintestinalstandardgasmixture

wasapproximatelyreproducedintothesensorschamber.CO2 is

notconsideredbecauseitiswellknownthatitishardlydetectedby chemoresistivesensors[13].Duringtheexperimenttesting mea-surementsweredoneondryandwetairwiththepurposetocheck

(5)

Fig.14.SensorresponsestoC9H19Iindryconditions.Temperaturesrangesbetween350and600◦Cwithstepsof50◦C.Underparenthesisisshownthequantityofreagent

(moles)takenforeachmeasure.

thedifferencesofresponseonthevariationofhumidity, operat-ingtemperature,andoxidationofthefilms.Itisimportanttostate theeffectsofthevariationsofoxygenonthesensorsresponsesfor threemainreasons:(i)intheintestinetherearevariationsof oxy-genproductionduetothedigestive,bacterialandcellularactivity; (ii)therearesomechemicalreactionthatoccurbetweenoxygen andothercompoundsbothintheintestineandinthe experimen-talsetup;(iii)somebottlesusedintheexperimentaltestscannot containoxygenforsafetyreasonsbutcontainN2(i.e.H2).Forthese

reasonsthetotalvolumeofthechamberwasfilledwithN2andO2

indifferentconcentrations,usingatfirstaflowofsyntheticdry orwetair with20%O2 and80%N2.Then,withtheadditionof

aflowofpureN2andtheloweringofthesyntheticairflow,the

ratiobetweenO2andN2inthechamberwasmodified(increasing

O2volumeconcentrationof1%),obtainingsoadetailedanalysis

ofthedisturbancefromenvironmentalchangesand differences onmetaloxidefilms(Figs.5and6).Wedefinedwiththesymbol

thedifferencebetweenresponsesinthetwocasesdescribed before.

Regardingdecanaland1-iodo-nonane,itisimportanttonotice that thereported number of moles represents an upper limit, obtainedfromthesubtractioninweightofthedropsofcompounds fromthepipette;duetotheuncontrollabilityoftheevaporative processandthenon-hermeticallockupofthegasbubbler,partof thedosecanbeassumednottohavereachedthesensorsatall.

Testswith1-iodo-nonaneweremadeindryconditions,usingan emptygasbubblertoevaporateit;nosolventswereusedtohaste theevaporationofC9H19I,duetothehighresponsesofsensorsto

alcoholsandotherorganicreagentslikedichloromethane(CH2Cl2).

Theweightofthereagentwasmeasuredwithaprecisionbalance, tocalculatethenumberofmolesandtoobtainanaveragevalueof theconcentration.Toidentifythebestdetectingtemperaturefor eachtypeofsensingmaterial,wetestedtheresponseatseveral workingtemperatures(350,400,450,500,550,600◦C).

Fig.15.SensorresponsestoC10H20Oindryconditions.Temperaturesrangesbetween350and600◦Cwithstepsof50◦C.Underparenthesisisshownthequantityofreagent

(6)

NOweremadebothindryandwetconditions.Theconcentrations oftheseinterfereswere20ppmforH2Sand2ppmforallothers,to

reproducerealconcentrationsintheintestine[16].Measurements weremadeatthebestworkingtemperatureforeachsensor(Tbest)

tohavethehigherselectivityforbenzenewithrespecttothe con-tributionofinterferes.ObservingFigs.11and12itisevidentthat, bothinwetanddryconditions,thesensorsresponsestobenzene isconsiderablyhighercomparedtothatofinterferers.These inter-fererswerechosenbecausetheyaregasotransmitters(NO) [17] normallypresentinhumangut,productsofthebacterialactivity inhumanstomachandintestine(NOxfamily[17–19])orofhighly

reactivedigestionprocesses(H2S).

SO2wastestedtoverifytheoccurringofthechemicalreaction

2H2S+3O2→2H2O+2SO2, (2)

whichrepresentsthecombustionofH2Swhichhappensathigh

temperatures on the surface of the sensing films (H2S

auto-combustionoccursat260◦C)[20,21].Itssignatureisvisiblefrom theinitialpeakofresponse beforereachingtheplateau,then it graduallyreduceswithtime,duetotheincreasingrelative humid-itycausedbythesurfacereaction(1)(Fig.13).

3.2. 1-Iodo-nonane(C9H19I)

ObservingFig.14,theZnO850sensor(zincoxide,firedat850◦C) andSTN(tin,tantalum,niobiumoxides)aretheonesthatgivethe bestresponsestothiscompound,confirmingresultsfortin oxide-basedsensorsofapreviouswork[1],inwetconditions.Humidity doesnotchangethetrendoftheresponsesto1-iodo-nonanebut reducesonly their value. TiTaV, which is selective to benzene, showsalowresponsetothiscompound.1-iodo-nonaneissensitive tolight,soallthedroppingproceduresandweightmeasurements havebeendoneinconditionsofdarknesstopreservetheoriginal stateofthecompound[22].

3.3. Decanal(C10H20O)

Testswithdecanalweremadeindryambientwiththesame pro-cedureusedfor1-iodo-nonaneandwiththesamesensorsarray. ResponsesaresummarizedinFig.15.ThesensorsST20650,STN andST25650arethebestrespondingonestodecanal.This evi-dencehighlightsthepropertyoftinoxide-basedfilmstohaveahigh responsetothisVOC,insteadTiTaVdoesnotshowmuchaffinityto it.Aswith1-iodo-nonane,theweighinganddepositionofthedrops ofdecanalhavebeendoneindarkness;C10H20Oisinfactalsoair

sensitive,butitisstilllightactivatingtheprocessofauto-oxidation leadingtofirstperoxo-acidsproductionandthustoalterationon thecompound[23].

Table2

SensorresponsesattheirbestworkingtemperaturetovariousVOC.Responsesare givenasratesbetweenthetensionsmeasuredfortheplateausovertheiroriginal baseline.

Sensors Temperature(◦C) Gastarget Response

TiTaV 450 Benzene 1.9 ZnO850 450 1-Iodo-nonane 56.9 STN 450 1-Iodo-nonane 45.1 ST20650 450 Decanal 58.4 STN 450 Decanal 41.6 ST25650 450 Decanal 34.8 ZnO650 450 Decanal 31.6

3.4. Interferencetestsinwetair:C9H19IandC10H20O

We made a test with 1-iodo-nonane (2.57×10−4mol) and

decanal (7.46×10−4mol)in combination, in wet conditions,to

checkiftheinterferenceof thetwoVOCs canalterthesensors

responsesobserved in the previousmeasurements.The chosen

workingtemperaturewasthesameforallsensors(450◦C).Results

are shown in Fig.16. The response of tin oxide-based sensors

remainshighwhiletheZnO850,themostsensitivematerialfor 1-iodo-nonane,showsalowresponse.

4. Conclusions

Asetofsensorsmadeofsingleandmixedmetaloxideshasbeen selectedtodetectbenzene,1-iodo-nonaneanddecanal.Anarray ofsensorswasthenobtainedcombiningdifferentmaterials work-ingattheirbesttemperatures,whichprovedtobehighlyselective tothesegases,alsoinabackgroundofrealisticconcentrationsof H2, CH4, H2S, SO2, N2,NO2 and NO,indifferent environmental

conditions.TiTaVshowedthehighestselectivitytoC6H6 against

primaryinterferersasH2andCH4,emergingasthebestsensorfor

thisbiomarker.Testsonaldehydes(1-iodo-nonaneanddecanal) showedrefractorinessofTiTaVonrespondingtothisfamilyof com-pounds,whiletinoxideandzincoxide-basedsensors(inparticular, ZnO850andSTNfor1-iodo-nonaneandST20650,STNandST25 650for decanal)arepreferablefor thedetectionofthiskindof markers.Infacttheirrelativeresponsesareupto20timeshigher (Figs.13and14)thanthoseofTiTaV.

According to these results, we proved that, even for really lowconcentrations(2–5ppmforbenzene,anddosesontheorder of 10−4mol of 1-iodo-nonane and decanal), and withdifferent temperatureandhumidityconditions,chemoresistivesensorscan showhugeresponsesoncesetattheirproperworking tempera-tures(Table2).Thisconfirmstheapplicabilityofchemoresistive gas sensors as tumor marker detectors, leading to interesting

(7)

possibilitiestoenhancethehealthsystemandimprovingchances forpreventivescreeningoftumors.

References

[1]C.Malagù,B.Fabbri,S.Gherardi,A.Giberti,V.Guidi,N.Landini,G.Zonta, Chemoresistivegassensorsfordetectionofcolorectalcancerbiomarkers, Sen-sors(2014)18982–18992.

[2]H.Haick,Y.Y.Broza,P.Mochalsky,V.Ruzsanyi,A.Amann,Assessment, ori-ginandimplementationofbreathvolatilecancermarkers,Chem.Soc.Rev.43 (2014)1423–1449.

[3]B.Tan,Y.Qi,X.Zou,T.Chen,G.Xie,Y.Cheng,T.Dong,L.Zhao,B.Feng,X. Hu,L.X.Xu,A.Zhao,M.Zhang,G.Cai,S.Cai,Z.Zhou,M.Zheng,Y.Zhang,W. Jia,Metabonomicsidentifiesserummetabolitemarkersofcolorectalcancer,J. ProteomeRes.12(6)(2013)3000–3009.

[4]G.Peng,M.Hakim,Detectionoflung,breast,colorectal,andprostatecancers fromexhaledbreathusingasinglearrayofnanosensors,Br.J.Cancer103(2010) 542–551.

[5]C.S.J.Probert,I.Ahmed,T.Khalid,E.Johnson,S.Smith,N.Ratcliffe,Volatile organiccompoundsasdiagnosticbiomarkersingastrointestinalandliver dis-eases,J.Gastrointest.LiverDis.18(3)(2009)337–343.

[6]D.F. Altomare,M.Di Lena,Exhaled Volatile OrganicCompoundsIdentify PatientsWithColorectalCancer,WileyOnlineLibrary,2013.

[7]G.Ghiotti,A.Chiorino,PreparationandcharacterizationofWOx/SnO2

nano-sizedpowdersforthickfilmsgassensor,Stud.Surf.Sci.Catal.140(2001) 287–296.

[8]M.Benetti,M.Blo,Symplecticgelco-precipitationofTixSn1-xO2solidsolutions

forgassensing,in:ProceedingsoftheEurosensorsXIX,Barcelona,Spain,11–14 September,2005.

[9]M.C.Carotta,M.Benetti,Nanostructured(Sn,Ti,Nb)O2solidsolutionsfor

hydrogensensing,in:ProceedingsoftheMaterialsResearchSocietySpring Meeting,SanFrancisco,CA,USA,17–21April,2000,p.68210.

[10]M.C.Carotta,A.Cervia,V.diNatale,S.Gherardi,A.Giberti,V.Guidi,D. Puz-zovio,B.Vendemiati,G.Martinelli,M.Sacerdoti,D.Calestani,A.Zappettini, M.Zha,L.Zanotti,ZnOgassensors:acomparisonbetweennanoparticlesand nanotetrapods-basedthickfilms,Sens.ActuatorsB137(1)(2009)164–169.

[11]M.C.Carotta,M.Feroni,D.Gnani,V.Guidi,M.Merli,G.Martinelli,M.C.Casale, M.Notaro,NanostructuredpureandNb-dopedTiO2asthickfilmgassensors

forenvironmentalmonitoring,Sens.ActuatorsB58(1999)310–317.

[12]M.C.Carotta,V.Guidi,Vanadiumandtantalum-dopedtitaniumoxide(TiTaV): anovelmaterialforgassensing,Sens.ActuatorsB108(2005)89–96.

[13]V.Guidi,C.Malagu’,M.C.Carotta,B.Vendemiati,PrintedFilms:Materials ScienceandApplicationsinSensors,ElectronicsandPhotonics,Woodhead PublishingSeriesinElectronicandOpticalMaterials,2012,pp.278–334.

[14]M.C.Carotta,A.Cervi,Metal–oxidesolidsolutionsforlightalkanesensing,Sens. ActuatorsB133(2008)516–520.

[15]M.C. Carotta, A. Cervi, Ethanol interference in light alkane sensing by metal–oxidesolidsolutions,Sens.ActuatorsB136(2009)405–409.

[16]A.B.Sahakian,S.R.Jee,M.Pimentel,Methaneandthegastrointestinaltract,Dig. Dis.Sci.55(8)(2010)2135–2143.

[17]J.Vermeiren,T.VandeWiele,W.Verstraete,P.Boeckx,N.Boon,Nitricoxide pro-ductionbythehumanintestinalmicrobiotabydissimilatorynitratereduction toammonium,J.Biomed.Biotechnol.2009(2009).

[18]A.Tari,K.Kodama,K.Kurihara,M.Fujihara,K.Sumii,G.Kajiyama,Doesserum nitriteconcentrationreflectgastriccarcinogenesisinJapaneseHelicobacter pylori-infectedpatients,Dig.Dis.Sci.47(1)(2002)100–106.

[19]T.Kondo,T.Mitsui,M.Kitagawa,Y.Nakae,Associationoffastingbreathnitrous oxideconcentrationwithgastricjuicenitrateandnitriteconcentrationsand Helicobacterpyloriinfection,Dig.Dis.Sci.45(10)(2000)2054–2057.

[20]J.A.Rodriguez,S.Chaturvedi,M.Kuhn,J.Hrbek,ReactionofH2SandS2with

metal/oxidesurfaces:band–gapsizeandchemicalreactivity,J.Phys.Chem.B 102(28)(1998)5511–5519. [21]<http://www.inchem.org/documents/icsc/icsc/eics0165.htm>. [22]<http://www.chemspider.com/Chemical-Structure.19101.html>. [23]<http://www.chemicalbook.com/ChemicalProductPropertyENCB2208008. htm>. Biographies

GiuliaZontaShereceivedtheBachelor’sDegreeinPhysicsandAstrophysicsin December2010(110/110cumlaude)andtheMaster’sDegreeinPhysicsinOctober

2013(110/110),attheUniversityofFerrara.InJanuary2014shestartedherPh.D.in MatterPhysics,workingwiththeSensorsTeam,coordinatedbyDr.CesareMalagù. IntheAprilofthesameyearsheobtainedtherecognition“FerraraSchoolofPhysics”, thatrewardstheinternationalityofherMaster’sthesiswork.Currentlyherresearch focusesonthestudyofthephysic-chemicalbehaviorofchemoresistive nanostruc-turedgassensors,putincontactwithvolatileorganiccompounds(VOCs)ofmedical interest.WithherteamshewonUnifeCup2013,abusinessplancompetitionthat rewardsinnovativestart-upsandStartCupEmiliaRomagna2014,withtheobjective tocreateastart-upfortherealizationofdevicesformedicalscreenings.Nowsheis theco-supervisoroftwostudentswhoareworkingfortheBachelor’sandMaster’s DegreeinPhysics,respectively.

GabrieleAnaniawasbornin1962,Italy.In2013heresultedadequatefortherole ofAssociatedprofessorincompetitiveexamofScientificNationalAbilitation,in sector06/C1–GeneralSurgery(Bando2012DDn.222/2012).In2001heresulted winnerofthetitleofacademicresearcherreservedto“UniversitàdegliStudidi Ferrara”personnelwithalltherequirementsaskedbythelaw4/1999declared withL.D.n.159on26/09/2000.1stlevelmedicalsupervisoratsurgerydepartment of“AziendaOspedale-UniversitàS.AnnadiFerrara”.In1999hewasassignedat Surgeryclinicsectionofsurgery,radiologyandanestheticsciencesdepartmentof “FacoltàdiMedicinaeChirurgiadell’UniversitàdegliStudidiFerrara”directedby Prof.IppolitoDonini.NowhehastheroleofAssociatedProfessorattheUniversityof Ferrara.

BarbaraFabbriSheobtainedherMasterDegreeinPhysicsatUniversityofFerrara in2011.CurrentlysheisaPhDstudentinvolvedinthefieldofgassensorsand micromachining.

AndreaGaiardoHeobtainedhisDegreeinChemistryattheUniversityofFerrarain 2011andtheMaster’sDegreeinChemicalSciencesattheUniversityofFerrarain 2013.Now,hisworkisfocusedinthefieldofinnovativeinorganicsemiconductors forapplicationsingassensing.HestartedhisPhDinPhysicsattheUniversityof FerrarainNovember2014.

SandroGherardiBachelorinPhysicsTechnologiesattheUniversityofFerrarain 2002.ResearchactivitycarriedoutattheSensorsandSemiconductorslaboratoryof theUniversityofFerraraaboutgassensingandindustrialapplicationsofmonitoring devicesbynanostructuredsemiconductorbasedsensors.

AlessioGibertiBachelorinTheoreticalPhysicsattheUniversityofFerrarain2000, heobtainedPhDinPhysicsofMatterin2004atthePhysicsDepartmentofthe UniversityofFerrara.HisresearchsincePhDisfocusedonthefieldofsemiconductor gassensorsbasedonnanostructuredmetaloxides,withparticularinteresttoward theelectricalandselectivityproperties.

VincenzoGuidiBachelorinPhysicsattheUniversityofFerrarain1990,fellowat “BudkerInstituteforNuclearPhysics”ofNovosibirsk(Russia)in1991.Thesisof doc-torateinexperimentalphysicsatLegnaroNationalLaboratoriesin1994.Researcher inexperimentalphysicsatUniversityofFerrara.Researchactivity,carriedoutatthe SensorsandSemiconductorslaboratoryoftheUniversityofFerrara,hasconsisted ofinvestigationsonbasicphenomenainsemiconductorsandtopractical imple-mentationsofsensingdevices.Authorofmorethan140articlesinpeer-reviewed journalsandofmorethan100contributionstotheproceedingsofinternational conferences,reviewerand/oreditorsofnumerousjournalsofPhysicsand Electron-ics,organizerofseveralnationalandinternationalconferencesandeditorofthe proceedings.

NicolòLandiniBachelorinPhysicsandAstrophisicsattheUniversityofFerrarain 2011.HeisagraduatingstudentinPhysics(Master’sDegree)underthesupervision ofDr.CesareMalagù,workingwithchemoresistivegassensorswithbiomedical applications.

CesareMalagùCesareMalagùwasbornin1974inFerrara,Italy.Hereceivedadegree inPhysicsattheUniversityofFerrarain1997(SummaCumLaude)andthePh.D. degreeinexperimentalphysicsin2001.HehasbeenteachingGeneralPhysicssince 2001andworksasaLecturerandAggregatedProfessorsince2007.Hisresearch activityismainlybasedonmodelingoftransportphenomenainnanostructured semiconductors.Hisexpertiseisinthickfilmtechnologyappliedtoenvironmental andenergeticsustainability.Hehasmorethan60papersinpeerreviewedjournals (Hirschindex23)andnumerousproceedingsandinvitedlectures,moreoverheis intheeditorialboardofseveraljournals.Hecoordinatesthesensorsgroupatthe UniversityofFerraraandteachesGeneralPhysicsIIandacourseofSensorsatthe DepartmentofPhysicsandEarthScience.

Figura

Fig. 4. SEM image of the sensor ST30 (tin and titanium oxide) fired at 650 ◦ C.
Fig. 5. Subtraction between successive plateaus of N 2 and dry synthetic air inter-
Fig. 11. Sensor responses, as a function of time, to SO 2 (1st peak), C 6 H 6 + SO 2 + NO (2nd peak), C 6 H 6 + SO 2 + NO+ wet air (3rd peak), C 6 H 6 (4th peak) in dry conditions.
Fig. 14. Sensor responses to C 9 H 19 I in dry conditions. Temperatures ranges between 350 and 600 ◦ C with steps of 50 ◦ C

Riferimenti

Documenti correlati

The high concordance in Her2 status and serum ECD level may be affected also by the lack of ECD-Her2 expression, as one of the mechanisms of resistance to Trastuzumab

contain an elevated numbers of proteins that can participate to signal generation (e.g.: uorescence, charge distribution) hiding the signal coming from (few) specic

Definition (the preorder induced by a separable capitalization factor). Let ≥ fe the usual preorder of the financial events. We shall give two proofs: algebraic and geometrical. the

We will relate the transmission matrix introduced earlier for conductance and shot noise to a new concept: the Green’s function of the system.. The Green’s functions represent the

E’ importante poi definire a priori nella parte di metodo (come è stato suggerito più nel dettaglio nel testo) il perché è stata fatta un’indagine qualitativa integrativa delle

Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions.. Nirenberg, Estimates near the boundary

settentrionale, in «Realtà Nuova», XVI, 11, 1951, pp. Alivia, in questo passo, fa un chiaro riferimento alla politica autarchica fascista di quegli anni. Sulla posizione di Alivia

A possible limitation in the application of BERT for procedural sentence classification in surgical texts is that the language model is pre-trained on general domain texts (800M