• Non ci sono risultati.

Understanding the mechanisms of iron-sulfur cluster biogenesis and regulation

N/A
N/A
Protected

Academic year: 2021

Condividi "Understanding the mechanisms of iron-sulfur cluster biogenesis and regulation"

Copied!
91
0
0

Testo completo

(1)

Index  

Index  of  abbreviations  

 

 

 

 

 

 

 

3  

Index  of  figures    

 

 

 

 

 

 

 

 

4  

Introduction  

 

 

 

 

 

 

 

 

 

6  

1 Iron  Sulfur  cluster  (Isc)    

 

 

 

 

 

 

8  

1.1 Structure  and  function  

 

 

 

 

 

 

9  

1.2 Iron-­‐sulfur  cluster  biosynthesis    

 

 

 

                   12  

2 Isc  System    

       

 

 

 

                   14  

2.1 IscR  

 

 

 

 

 

 

 

 

                   14  

2.2 IscS  

 

 

 

 

 

 

 

 

                   15  

2.3 IscU  

 

 

 

 

 

 

 

 

                   17  

2.4 IscA  

 

 

 

 

 

 

 

 

                   18  

2.5 HscA  and  HscB    

 

 

 

 

 

 

                   19  

2.6 Ferredoxin  (FdX)  

 

 

 

 

 

 

                   22  

2.7 YfhJ  

 

 

 

 

 

 

 

 

                   23  

2.8 Mechanism  of  Fe-­‐S  cluster  assembly  mediated  by  the  Isc  system              

24

 

3 Friedreich  ataxia    

 

 

 

 

 

 

                   28  

4 Frataxin  

 

 

 

 

 

 

 

 

                   31  

4.1 Structure    

 

 

 

 

 

 

 

                   31  

4.2 Iron-­‐binding  properties  

 

 

 

 

 

                   34  

4.3 Frataxin  function  

 

 

 

 

 

 

                   37  

4.4 Aconitases:  examples  of  frataxin  regulation    

 

                   40  

5 Reconstitution  experiments    

 

 

 

 

                   44  

5.1 Results    

 

 

 

 

 

 

 

                   46  

5.1.1 Optimization  of  IscU,  HscA,  HscB  and  ATP  concentration       47   5.1.2 Role  of  CyaY  anf  YfhJ  in  Fe-­‐S  cluster  biosynthesis         50  

(2)

5.1.3 Dependence  of  CyaY  activity  from  iron           52   5.1.4 Aconitase2  reconstitution               54  

5.2 Discussion  

 

 

 

 

 

 

 

                   55  

5.3 Methods    

 

 

 

 

 

 

 

                   57  

5.3.1 Protein  Purifications                 57   5.3.2 Reconstitution  experiments               58  

5.3.3 Aconitase2  reconstitution  experiments           59  

6 Circular  Dichroism  of  proteins  

 

 

 

 

                   60  

6.1 Circular  Dichroism  spectrometers  

 

 

 

                   61  

6.2 CD  of  polypeptides  and  proteins    

 

 

 

                   62  

6.2.1 Proteins  UV  spectroscopy               63  

6.2.2 Protein  CD  spectra                 64  

7 Yeast  frataxin  stability    

 

 

 

 

 

                   69  

7.1 Results    

 

 

 

 

 

 

 

                   72  

7.2 Discussion  

 

 

 

 

 

 

 

                   77  

7.3 Methods    

 

 

 

 

 

 

 

                   78  

7.3.1 Far-­‐UV  CD  measurements.               78   7.3.2 Thermal  unfolding  curves  measurements           79  

Final  Conclusions  

 

 

 

 

 

 

 

                   80  

Bibliography  

 

 

 

 

 

 

 

 

                   82  

(3)

Index  of  abbreviations  

CD     Circular  Dichroism  

DTT     Dithiothreitol  

EDTA     Ethylenediaminetetraacetic  acid   FdX     Ferredoxin  

FRDA     Friedreich  ataxia  

GST     Glutathione  S-­‐transferase  

IPTG     Isopropyl  β-­‐D-­‐1-­‐thiogalactopyranoside   IRP     Iron-­‐responsive  element-­‐binding  protein   Isc     Iron-­‐sulfur  cluster  

nif     Nitrogen  fixation  operon   Ni-­‐NTA   Ni-­‐nitrilotriacetic    

NMR     Nuclear  magnetic  resonance   OD     Optical  Density  

PCR     Polymerase  Chain  Reaction   PLP     Pyridoxal-­‐phosphate  

TCEP     Tris(2-­‐carboxyethyl)phosphine   TEV     Tobacco  Etch  Virus  

(4)

Index  of  figures

 

Introduction  

1 Iron  Sulfur  cluster  (Isc)  

1.1   Various  [Fe–S]  clusters  found  in  iron–sulfur  proteins                          10  

2 Isc  System  

2.1   Network  of  protein-­‐protein  interactions  involving  IscS                          16   2.2   Proposed  mechanism  of  NIFS  desulfuration  reaction                          17   2.3   Kinetic  scheme  of  the  Hsc66  ATPase  reaction  cycle                            20   2.4   A  model  for  the  IscU  binding  cycle  of  HscA                              21   2.5   Proposed   mechanistic   scheme   for   chaperone-­‐catalyzed   Fe-­‐S   cluster  transfer                                        27  

3 Friedreich  ataxia  

4 Frataxin  

4.1   Tertiary  structure  of  S_Fra                                  32   4.2   Alignment  of  frataxin  and  cyaY  sequences                              33

 

4.3   Mapping  the  residues  involved  in  iron  binding  onto  the  structures   of  CyaY  and  hfra                                        36

 

4.4   The   three   dimensional   structure   of   porcine   mitochondrial   aconitase                                          41  

5 Reconstitution  experiments  

5.1   Bacterial  growth  curve                                    45   5.2   Scan  of  IscU  concentration                                  47   5.3   Scan  of  HscA  concentration                                  48   5.4   Scan  of  HscB  concentration                                  48   5.5   Scan  of  ATP  concentration                                  49   5.6   Scan  of  CyaY  concentration                                  50   5.7   Scan  of  YfhJ  concentration                                  51  

(5)

5.8   Scan  of  YfhJ  concentration  in  presence  of  CyaY                            51   5.9   Scan  of  Fe2+  concentration                                  52   5.10   Scan  of  CyaY  concentration                                  53   5.11   Aconitase  reconstitution                                    54   5.12   Kinetic  curve  of  Aconitase2  reconstitution                              55   5.13   Glove  Box                                        59

 

6 Circular  Dichroism  of  proteins  

6.1   Schematic  representation  of  circularly  polarized  light                          60   6.2   Schematic  representation  of  a  circular  dichroism  spectrometer                                                  61   6.3   Circular  dichroism  spectra  of  pure  secondary  structures                          65  

Table  6.1  Characteristic  CD  bands  for  α-­‐helix,  β-­‐sheets,  β-­‐turns  and  random  coil

                                             67  

7 Yeast  frataxin  stability  

7.1   representations  of  the  structures  of  CyaY,  Yfh1  and  hfra                          70   7.2   Thermal  denaturation  curves  of  Yfh1                                73   7.3   Thermal  denaturation  curves  of  Yfh1                                74   7.4   CD  spectra  of  Yfh1                                      75   7.5   CD  spectra  of  Yfh1                                      76   7.6   Comparison  of  the  thermal  denaturation  curves                            77  

Final  Conclusions  

(6)

Introduction  

Iron   is   an   essential   and   ubiquitous   element   in   biology.   The   survival   of   both   prokaryotic   and   eukaryotic   organisms   depends   on   it;   this   ion   takes   part   in   the   prosthetic  group  as  a  hemoprotein  cofactor  and  in  Fe-­‐S  clusters[1].  Determining  its   homeostasis  and  how  its  cellular  forms  are  regulated  in  amount  and  allocation  is  thus   of  particular  importance  for  understanding  how  these  mechanisms  can  be  at  time  so   compromised   to   cause   pathological   conditions,   such   as   metabolic   and   neurodegenerative  diseases[2].  

The  concentration  of  iron  in  the  cell  must  however  be  tightly  regulated:  while  iron   deficiency   is   lethal   for   the   organisms,   iron   accumulation   is   highly   toxic.   Free   iron,   present  in  the  cytosol  as  Fe2+  can  participate  together  with  H2O2  to  Fenton  reactions   producing  free  radicals  and  cause  damage  to  lipid  membranes,  proteins  and  nucleic   acids[2].  

In  eukaryotes  the  majority  of  iron  is  present  in  mitochondria  where  it  takes  part  to   the   heme   and   Fe-­‐S   cluster   biosynthesis.   The   latter   process   is   a   sophisticated   machinery  that  involves  several  proteins  conserved  in  organisms.  In  bacteria  iron  is   under  the  control  of  the  operon  isc.  In  E.  coli,  for  instance,  this  operon  encoded  eight   proteins:  IscR,  IscS,  IscU,  IscA,  HscB,  HscA,  Fdx  and  Yfhj[3].    

An  intriguing  issue  is  that  of  better  understanding  the  mechanism  of  Fe-­‐S  cluster   biosynthesis   and   the   role   of   each   component   of   the   Isc   system.   This   information   is   important   not   only   for   the   interest   of   our   basic   knowledge   of   iron   metabolism   but   also   because   working   on   the   simpler   bacterial   model   system   may   help   us   to   understand   also   how   iron   is   correlated   to   human   diseases.   Abnormal   Fe-­‐S   protein   biogenesis   and   mitochondrial   iron   accumulation   in   hearth   and   neurones   are   for   instance   part   of   the   typical   phenotype   of   a   genetic   neurodegenerative   disease,  

(7)

Friedreich’s  Ataxia[4,  5].  This  pathology  is  caused  by  the  deficiency  of  a  mitochondrial   protein,   frataxin,   extremely   conserved   throughout   species[6].   Although   the   frataxin   function  is  still  unclear,  it  was  proved  that  this  protein  is  able  to  bind  iron  in  vitro  and  

in  vivo  so  that  it  was  suggested  a  role  as  iron  storage  or  as  iron  chaperone  in  the  Fe-­‐S  

cluster  biosynthesis[7-­‐13].  Despite  its  involvement  in  iron  metabolism,  frataxin  does   not  show  any  feature  commune  with  other  iron  binding  protein[14].  

To   determine   frataxin   structural   features   and   differences   between   species,   it   is   fundamental   to   completely   characterise   the   system   and   its   modification   through   evolution.  By  comparing  the  human  frataxin,  the  yeast  Yfh1  and  bacterial  CyaY,  it  was   shown  that  the  three  proteins  have  the  same  fold  but  different  thermal  stabilities[15]   and  iron-­‐binding  properties[16].  

The  final  aim  of  this  thesis  has  been  to  provide  evidence  to  clarify  frataxin’s  role  in   the  machinery  of  Fe-­‐S  cluster  biosynthesis  and  to  point  out  some  frataxin’s  structural   properties.  For  these  reasons:  

1. I   have   been   studying   the   kinetic   of   cluster   assembly   in   the   presence   not   only  of  the  desulphurase  IscS  and  scaffold  IscU,  but  also  the  chaperons  HscA   and  HscB  focusing  especially  on  the  effect  of  bacterial  frataxin  CyaY  and  of   the  little  known  YfhJ.    

2. I  used  CD  spectroscopy  to  detect  the  behaviour  of  the  less  stable  Yfh1  in  the   presence   of   different   environmental   conditions.   My   purpose   has   been   to   determine  if  the  ionic  composition  has  a  strong  effect  on  Yfh1  stability.   These   studies   will   hopefully   provide   important   pieces   of   information   useful   to   understand  frataxin  features  and  its  involvement  in  Isc  machinery.  

(8)

Iron  Sulfur  cluster  (Isc)  

 

 

 

 

 

1  

Iron   is   ubiquitous   in   the   environment   and   in   biology.   Eukaryotic   cells   (and   most   prokaryotic  organisms)  require  iron  for  survival  and  proliferation,  as  a  constituent  of   hemoproteins,   iron-­‐sulfur   (Fe-­‐S)   proteins   and   other   proteins   that   use   iron   in   functional   groups   to   carry   out   essential   housekeeping   functions   for   cellular   metabolism.  Cellular  iron  deficiency  arrests  cell  growth  and  leads  to  cell  death[2].  

The  biological  importance  of  iron  is  largely  attributable  to  its  chemical  properties:   it  is  involved  in  one-­‐electron  oxidation-­‐reduction  reactions  with  transition  between   its  ferric  and  ferrous  states.  However,  the  same  chemical  property  explains  why  an   excess  of  free  and  reactive  iron  is  toxic.  In  the  cytoplasm,  a  significant  fraction  of  iron   is  reduced  and  can  participate  in  “Fenton-­‐type”  redox  chemistry:  ferrous  iron  reacts   with  hydrogen  peroxide  (H2O2)  or  lipid  peroxides  to  generate  ferric  iron,  OH-­‐,  and  the   highly  reactive  hydroxyl  radical  (OH•)  or  lipid  radicals  such  as  LO•  and  LOO•.  These   radicals  damage  lipid  membranes,  proteins,  and  nucleic  acids.  Since  both  cellular  iron   overload   and   iron   deficiency   cause   cell   death,   the   levels   of   reactive   iron   must   be   carefully  controlled  and  limited[2].  

Biological   iron–sulfur   clusters   have   been   identified   about   40   years   ago   as   acid-­‐ labile   prosthetic   groups   contained   within   a   class   of   electron   carrier   proteins   called   ferredoxins[17].  They  are  widely  distributed  in  nature  and  can  be  found  in  anaerobic,   aerobic  and  photosynthetic  bacteria,  fungi,  plants  and  mammals[18].  Most  known  Fe– S   proteins   of   a   eukaryotic   cell   are   located   in   the   mitochondria,   but   some   also   exist   outside   them.   Finally,   at   least   one   Fe–S   protein,   the   endonuclease   Ntg2p,   has   been   localized  to  the  cell  nucleus[19].  

(9)

Since  their  discovery,  [Fe-­‐S]  clusters  have  been  considered  ideal  agents  of  electron   transfer  because  of  their  versatile  electronic  properties[20].  Many  different  proteins   that  contain  these  clusters  have  been  described  with  different  functionality[21].  

[Fe–S]  clusters  are  now  known  to  have  roles  in  controlling  protein  structure  and  in   enzyme   active   sites   (see   for   instance   aconitase),   to   act   as   environmental   sensors   (FNR),  to  serve  as  modulators  of  gene  regulation  (IRP  and  soxR),  and  to  participate  in   radical   generation[20].   Such   functional   diversity   almost   reflects   the   chemical   versatility   of   iron   and   sulfur,   leading   to   the   suggestion   that   prebiotic   iron–sulfur   complexes  could  have  played  an  important  role  in  the  emergence  of  life  on  earth.  The   importance   of   [Fe–S]   clusters   is   furthermore   underlined   by   their   involvement   in   three   major   processes   required   to   sustain   life   on   earth:   nitrogen   fixation,   photosynthesis  and  respiration[17].  

 

1.1  Structure  and  function  

The  most  common  [Fe–S]  clusters  found  in  nature  are  [2Fe–2S]  and  [4Fe–4S]  clusters   and  these  are  usually  coordinated  to  proteins  by  cysteine  ligands.  However,  biological   [Fe–S]  clusters  of  higher  nuclearity  have  been  discovered,  and  not  all  are  attached  to   their   protein   partners   by   cysteine   ligands.   Despite   the   apparent   diversity   in   the   overall   structure,   reactivity,   electronic   properties   and   polypeptide   environments   of   [Fe–S]   clusters,   polynuclear   [Fe–S]   clusters   are   all   constructed   from   [2Fe–2S]   rhombs[17].  For  example  two  [2Fe-­‐2S]  units  may  be  converted  to  the  cubane  [4Fe-­‐ 4S].   Even   if   cuboidal   cluster   [3Fe-­‐4S]   is   considerably   less   stable   and   it   could   be   converted  in  linear  [2Fe-­‐2S]  or  cubane  [4Fe-­‐4S],  it  has  been  assembled  from  [4Fe-­‐4S]   via  loss  of  one  iron  atom[20].  

(10)

In  addition,  not  all  [Fe–S]  proteins  contain  clusters  with  Fe  as  the  only  metal:  the   nitrogenase  MoFe  protein  for  example,  contains  a  cluster  which  has  a  [7Fe–9S–Mo]   core[17].  

 

Figure  1.1  Various  [Fe–S]  clusters  found  in  iron–sulfur  proteins.  The  most  common  (a)  [2Fe–2S]   and   (b)   [4Fe–4S]   clusters   are   coordinated   to   their   protein   partners   by   cysteine   ligands.   Iron–sulfur   clusters  of  higher  nuclearity  such  as  (c)  the  [8Fe–7S]  P  cluster  and  (d)  the  [Mo–7Fe–9S]  FeMo-­‐cofactor   from   nitrogenase   represent   just   some   of   the   intricate   possibilities   of   more   complex   biological   iron– sulfur  clusters.  (Iron  is  represented  in  green,  sulfur  in  yellow  and  molybdenum  in  magenta)[17].  

 

Because   of   their   structural   and   chemical   versatility,   Fe-­‐S   clusters   present   an   extreme  functional  flexibility.  The  electronic  structures  of  oligonuclear  Fe-­‐S  clusters   have  been  studied  by  a  variety  of  spectroscopic  techniques[22]  showing  that  they  are   ideal   agents   for   electron   storage   and   transfer,   signaling   and   regulation,   via   their   tunable  sensitivity  to  various  oxidants  or  reductants.  Furthermore  Fe-­‐S  clusters  are   well  suited  to  supply  single  electrons,  as  required  in  homolytic  reactions[23].  

These   are   also   the   properties   that   can   make   them   sensors   of   molecules   in   their   immediate  environment.  In  fact  Fe-­‐S  clusters  are  sensitive  to  cellular  oxidants  and  in  

favourable conditions and appropriate organization of the necessary ligands, certain biologically relevant [Fe–S] clusters have the capacity to form spontaneously. Never-theless, spontaneous, intracellular assembly of [Fe–S] clusters using free Fe2þ/3þand S2"is not an attractive physiological prospect because these elements are meta-bolic poisons, especially in the concentrations and under the conditions required to achieve chemical [Fe–S] cluster assembly. A more reasonable expectation was that [Fe–S] clusters are formed biologically by protein-directed activation and specific delivery of Fe and S to the assembly site, and this possibility turned out to be correct. Here we discuss the origins of the identification of proteins involved in [Fe–S] cluster assembly in bac-teria and our current understanding of the functions of those proteins.

Origins of the concept of molecular scaffolds for complex metallocluster assembly Observations leading to the discovery of proteins involved in [Fe–S] cluster assembly did not initially come from an analysis of the formation of simple [2Fe–2S] or [4Fe–4S] clusters, but rather emerged from attempts to understand the assembly of one of nature’s most complex [Fe–S] clusters, the FeMo-cofactor of the nitrogenase MoFe protein. FeMo-cofactor (Figure 1d) has attracted the attention of the bioinorganic community for many years because it provides the site for biological nitrogen reduction. Genetic and biochemical studies established that a consortium of proteins is required to assemble FeMo-cofactor. Two general pathways for this process were initially considered. Namely, FeMo-cofactor could either be assembled directly on the MoFe protein or it Figure 1 Cys Cys Cys Cys Cys Cys Cys Cys Cys Cys Cys Cys His Cys Homocitrate (a) (b) (c) (d)

Current Opinion in Chemical Biology

Various [Fe–S] clusters found in iron–sulfur proteins. The most common(a) [2Fe–2S] and (b) [4Fe–4S] clusters are coordinated to their protein partners by cysteine ligands. Iron–sulfur clusters of higher nuclearity such as(c) the [8Fe–7S] P cluster and (d) the [Mo–7Fe–9S] FeMo-cofactor from nitrogenase represent just some of the intricate possibilities of more complex biological iron–sulfur clusters. (Iron is represented in green, sulfur in yellow and molybdenum in magenta.)

Formation of iron–sulfur clusters in bacteria Frazzon and Dean 167

(11)

vitro,   they   may   also   respond   to   strong   reducing   agents   or   ligands   for   iron   that   are  

stronger   than   their   sulfur   ligands.   Oxidation   of   Fe-­‐S   clusters   may   cause   cluster   rearrangement   or   total   disassembly.   An   example   is   FNR,   an   E.   Coli   regulator   controlling  the  synthesis  of  proteins  required  for  anaerobic  respiration  with  nitrate,   fumarate,  trimethylamine  oxide  and  similar  electron  acceptors  replacing  oxygen.  FNR   is  functional  only  in  its  dimeric  form,  stabilized  by  [4Fe-­‐4S]  cluster,  binding  DNA  with   high  affinity  thus  controlling  gene  expression.  The  [4Fe-­‐4S]  cluster  is  very  sensitive  to   oxygen,  which  rapidly  converts  it  to  the  more  air-­‐stable  [2Fe-­‐2S]  form  making  FNR   inactive  and  monomeric[21,  23].    

Cytoplasmic  aconitase  is  converted  to  IRP1  through  loss  of  its  Fe-­‐S  cluster.  Binding   to   iron-­‐responsive   elements   (IREs),   IRPs   regulate   translation   of   ferritin   mRNA   (ferritin   is   an   iron   storage   protein)   and   transferrin   receptor   mRNA   (transferrin   receptor   transfers   iron   into   the   cell).   The   Fe-­‐S   clusters   of   the   aconitases   are   also   readily  attacked  by  oxidants  and  converted  to  [3Fe-­‐4S]  clusters.  As  a  result  they  can   be  considered  as  sensors  for  oxygen,  which  destroy  the  cluster,  and  also  as  sensors   for  iron,  as  iron  is  nedeed  for  resynthesis  of  the  cluster[23].  

SoxR  contains  [2Fe-­‐2S]  cluster  and  is  activated  on  exposure  of  cells  specifically  to   O2  and  NO,  but  not  to  H2O2  or  OH.  Active  SoxR  activates  transcription  of  only  a  single   gene,  soxs,  leading  to  the  formation  of  the  SoxS  protein.  SoxS  regulates  expression  of  a   number  of  genes  whose  products  function  in  the  defense  against  02  and  NO[23].  

Fe-­‐S  clusters  can  serve  as  active  sites  of  enzymes  as,  for  instance,  in  mitochondrial   aconitase  involved  in  the  tricarboxylic  acid  cycle.  Thus,  destruction  or  (re)synthesis   of  this  cluster  will  determine  the  activity  of  aconitase  and  hence  control  the  citric  acid   cycle[23]:  the  iron  of  a  [4Fe-­‐4S]  cluster,  which  has  no  Cys  ligand,  serves  as  a  Lewis   acid  in  catalyzing  the  transformation  of  the  substrate[24].  

(12)

 

1.2  Iron-­sulfur  cluster  biosynthesis  

In   proteins,   Fe-­‐S   clusters   can   be   spontaneously   assembled   from   the   required   components  under  the  proper  conditions,  just  as  we  can  do  it  in  vitro  from  purified   apoproteins.   However,   in   both   prokaryotes   and   in   eukaryotes,   enzymes   have   been   identified   that   use   pyridoxal   phosphate   for   desulfurase   activity,   transforming   cysteine  in  alanine  and  elemental  sulfur.  Similarly,  specific  carrier-­‐proteins  for  Fe  are   likely  to  be  used.  Thus,  the  formation  of  clusters  is  driven  by  the  availability  of  iron   and   three   cysteines:   one   to   provide   sulfur   for   the   synthesis   and   three   others   to   stabilize   the   Fe-­‐S   cluster   created.   When   only   two   Cys   are   available   per  peptide,   the   peptide  will  dimerize  to  make  a  [4Fe-­‐4S]  cluster[24].  

Investigation  on  Fe-­‐S  cluster  maturation  in  bacteria  has  led  to  the  identification  of   two  operons  termed  nif  (nitrogen  fixation)  and  isc  (iron–sulfur  cluster  assembly)  that   function   in   Fe–S-­‐cluster   biosynthesis.   The   nif   operon   encodes   proteins   that   execute   specific   functions   in   the   assembly   of   nitrogenase,   a   complex   metalloenzyme   that   catalyses  the  fixation  of  nitrogen.  The  isc  operon  encodes  proteins  necessary  for  the   maturation  of  bacterial  Fe–S  proteins.  Many  of  the  gene  products  encoded  by  the  nif   and   isc   operons   have   sequence   similarity   to   the   eukaryotic   components   of   Fe–S-­‐

protein  maturation[19].  

The   molybdenum-­‐dependent   nitrogenase   is   a   complex   metalloenzyme   composed   of   two   component   proteins   called   the   Fe   protein   and   the   MoFe   protein.   The   Fe   protein   acts   as   a   specific,   ATP-­‐binding,   one-­‐electron   reductant   of   the   MoFe   protein,   which  contains  the  active  site  for  substrate  binding  and  reduction.  A  single  [4Fe-­‐4S]   cluster  is  believed  to  be  symmetrically  bridged  between  the  Fe  protein  subunits.  In  A.  

(13)

gene   products   are   required   for   the   full   activation   or   the   catalytic   stability   of   the   nitrogenase   Fe   protein.   Deletion   of   the   nifV   gene   resulted   in   lower   MoFe   protein   activity,  probably  resulting  from  the  accumulation  of  an  altered  FeMo-­‐cofactor[25].  

In   E.   coli   are   present   two   systems   for   the   Fe-­‐S   cluster   biosynthesis.   Although   Isc   and  Suf  are  systems  relied  on  the  same  activities  (presented  by  cysteine  desulfurase,   scaffold,   ATPase   and   carrier)   genetic   and   biochemical   characterizations   revealed   differences   in   the   ability   of   the   Isc   and   Suf   systems   to   function   under   stress   conditions.   In   fact   they   are   considered   the   house-­‐keeping   and   stress-­‐dedicated   systems,  respectively.  First  of  all  it  was  pointed  that  the  Isc  system  is  inactivated  by   ROS   since   a   solvent-­‐exposed   Fe–S   cluster,   built   on   the   scaffold   IscU,   can   be   easily   oxidized  by  ROS.  On  the  other  hand,  Suf  might  have  evolved  to  be  efficient  when  Fe   and   S   levels   are   in   present   in   limited   amount.   As   a   result   of   that   Isc   is   the   primary   system   used   in   exponentially   growing   cells,   whereas   Suf   is   used   transiently   under   oxidative  stress  and  iron  starvation  conditions[26].    

In   Eukaryotes   a   Isu   system   has   been   discovered   to   be   able   to   mediate   the   Fe-­‐S   cluster   assembly   and   to   transfer   it   to   apo-­‐acceptor.   Isu   and   Isc   proteins   are   very   similar  in  sequence  and  function[18].  

(14)

Isc  system    

 

 

 

 

 

 

 

 

2  

Understanding   the   functions   of   Isc   proteins   in   prokaryotes   is   important   to   provide   insights  into  Fe-­‐S  cluster  assembly  in  mitochondria,  with  potential  relevance  in  iron-­‐ storage  diseases  and  the  control  of  cellular  iron  uptake.    

The  isc  operon  in  the  bacterium  E.  Coli  encodes  eight  proteins:  IscR,  IscS,  IscU,  IscA,   HscB,  HscA,  Fdx  and  YfhJ.  The  role  of  YfhJ  is  not  clear  yet.  Furthermore  mutants  with   inactivated  iscR  or  orf3  showed  no  differences  from  wild-­‐type  cells  while  inactivation   of  the  iscS  gene  elicited  the  most  drastic  alteration.  Strains  with  mutations  in  the  iscU,  

hscB,   hscA,   and   fdx   genes   exhibited   conspicuous   phenotypical   consequences   almost  

identical   to   one   another.   The   effect   of   the   inactivation   of   iscA   was   small   but   appreciable  on  Fe-­‐S  enzymes[27].  

 

2.1   IscR  

IscR   shares   amino   acids   similarity   with   MarA   (multiple   antibiotic   resistance),   suggesting   a   function   as   a   regulator.   Schwartz   et   al.   discovered   that   iscR   is   co-­‐ transcribed   with   iscSUA   and   that   transcription   of   iscRSUA   originates   from   a   single   promoter  upstream  of  iscR  that  is  repressed  by  IscR  itself[28].    

IscR   contains   a   [2Fe-­‐2S]   cluster   bound   with   an   atypical   ligation   scheme   of   three   cysteines  and  one  histidine[29].  Its  activity  is  decreased  in  mutants  lacking  the  Fe-­‐S   cluster  assembly  proteins  leading  to  consider  that  there  may  be  a  link  between  the   levels  of  [2Fe-­‐2S]IscR  and  the  rate  of  Fe-­‐S  cluster  formation.  In  fact  when  Fe-­‐S  cluster   assembly  becomes  rate  limiting,  levels  of  [2Fe-­‐2S]IscR  would  decrease  as  a  result  of  a   diminution  in  its  rate  of  synthesis,  and  repression  of  iscRSUA  would  be  relieved.  The   resulting   increase   in   the   Isc   assembly   proteins   would   subsequently   lead   to   an  

(15)

thus  reset  repression  of  the  isc  operon[28].  

IscR  acquires  an  Fe-­‐S  cluster  via  the  Isc  proteins  once  the  cellular  demand  for  Fe-­‐S   cluster   biogenesis   is   satisfied,   suggesting   that   the   Isc   proteins   might   be   able   to   distinguish   between   IscR   and   other   apo-­‐protein   targets.   The   proposed   (Cys)3(His)1   ligation   scheme   of   IscR   could   differentiate   it   from   other   apo-­‐proteins.   Perhaps   by   making  IscR  a  poor  substrate  for  the  Isc  proteins  via  one  atypical  amino  acid  ligand,   IscR  is  able  to  sense  the  cellular  demand  for  Fe-­‐S  cluster  biogenesis  indirectly  by  the   availability  of  the  Isc  machinery  to  associate  with  IscR[29].    

Giel   et   al.   reported   that   the   isc   operon   was   more   repressed   under   anaerobic   conditions  rather  than  under  aerobic  conditions.  Some  Fe–S  clusters  are  sensitive  to   O2  and/or  reactive  oxygen  species[30]  so  it  is  likely  that  Fe–S  clusters  are  continually   being   damaged   or   destroyed   during   aerobic   growth.   As   a   result   of   that,   levels   of   substrate  proteins  that  need  Fe–S  biogenesis  or  repair  increases.  The  higher  rate  of   cluster  turnover  in  aerobic  condition  leads  to  decrease  isc  repression.  It  suggests  that   there   may   be   more   competition   between   IscR   and   substrate   proteins   for   the   Isc   machinery   when   O2   is   present.   In   contrast,   under   anaerobic   conditions,   the   Isc   machinery   appears   to   satisfy   the   Fe–S   demand   more   efficiently   due   to   decreased   general   cluster   turnover,   and   thus   less   competition   among   substrate   proteins.   The   increased   repression   of   isc   under   anaerobic   conditions   is   due   to   increased   of   [2Fe– 2S]IscR[31].    

These  mechanisms  would  provide  an  additional  level  of  global  regulation  to  ensure   that  Fe-­‐S  clusters  are  synthesized  when  there  is  an  increased  demand.  

 

2.2   IscS  

(16)

is  a  pyridoxal  phosphate  (PLP)  binding  enzyme  that  catalyzes  the  desulfurization  of   L-­‐cysteine   to   yield   L-­‐alanine   and   sulfur   S0   or   sulphide   in   presence   of   a   reducing   agent[32].    

Increasing  evidence  has  revealed  an  important  role  of  IscS  in  the  biosyntheses  of   Fe-­‐S   clusters,   thiamine,   thionucleosides   in   tRNA,   biotin,   lipoic   acid,   molybdopterin,   and  NAD.  The  enzymes  are  also  proposed  to  be  involved  in  cellular  iron  homeostasis   and  in  the  biosynthesis  of  selenoproteins[33].  

 

 

Figure  2.1  Network  of  protein-­protein  interactions  involving  IscS.  IscS  initiates  intracellular  sulfur   trafficking,   delivering   the   sulfur   to   several   sulfur-­‐accepting   proteins   such   as   IscU,   ThiI,   TusA,   and   MoaD/MoeB  that  commit  the  sulfur  to  different  metabolic  pathways.  IscU  is  the  primary  scaffold  for   assembly  of  Fe-­‐S  clusters.  Frataxin/CyaY  has  been  postulated  as  an  Fe  chaperone,  an  Fe  donor  for  Fe-­‐S   cluster   assembly,   or   a   regulator   of   Fe-­‐S   cluster   formation.   In   the   schematic,   sulfur   delivering   is   indicated   by   red   arrows   and   IscS-­‐interacting   proteins   are   framed   by   ovals   (red,   in   sulfur   accepting   proteins)[34].  

 

Similarly   to   what   was   suggested   for   NIFS   (the   A.   vinelandii   homologue)   mechanism,  IscS  catalyzes  the  formation  of  an  external  aldimine  Shiff  base  between   the   amino   group   of   the   substrate   and   PLP.   The   cysteinyl   thiolate   anion   of   Cys328   generated  in  the  active  site  makes  a  nucleophilic  attack  on  the  sulfur  of  the  cysteine-­‐

Fe-S cluster formation [14]. The network of known IscS protein interactions is shown in Figure 1.

Thiolated nucleotides are found in several tRNAs. In E. coli and Salmonella enterica serovar Typhimurium, these are s4U8, s2C32, ms2i(o)6A37, and (c)mnm5s2U34, which, with the exception of s4U8,

are located within the anticodon loop and are crucial for proper mRNA decoding [21]. The base thiolations are mediated by several acceptor proteins, falling into two distinct pathways [21]. In the iron-sulfur cluster independent pathway, direct transfer of sulfur from IscS to the acceptor ThiI leads to the s4U8 modification [22], while transfer to TusA results in the (c)mnm5s2U34 modification [23]. ThiI also participates in thiamine biosynthesis [24]. The second pathway proceeds through the formation of an iron-sulfur cluster and is dependent on the IscU acceptor protein. The enzymes TtcA and MiaB accept sulfur from IscU [3] and are responsible for the s2C32 [25] and ms2i(o)6A37 modification [26], respectively. The unique tRNA thiolation pattern associated with sulfur transfer from IscS to TusA, IscU or ThiI provides a convenient readout system to assess the in vivo effects of IscS mutations on its interaction with these proteins.

The proteins involved in sulfur utilization have been extensively studied both functionally and structurally. Structures of IscS [27], the sulfur acceptor proteins TusA [28], ThiI [29], IscU [30,31], rhodanese [32], and the modulators human frataxin [33,34] and its bacterial homologue CyaY [35,36], as well as IscX [16,37] have been determined by X-ray crystallography or NMR. All of these proteins adopt different folds and the acceptor proteins receive sulfur from IscS by molecular mechanisms that are not fully understood.

Despite this wealth of structural information, the question of how IscS is able to communicate with such a broad spectrum of proteins and deliver sulfur to a wide range of structurally divergent partners is unresolved as no structural information on its complex(es) with binding partner(s) is presently known. To begin addressing this question, we have determined the crystal structure of the IscS-TusA and the IscS-IscU complexes, which reveal different modes of binding of these proteins and provide a framework for understanding sulfur transfer from IscS. Further, we performed extensive mutagenesis of the IscS surface followed by in vitro (pull-down) and in vivo (tRNA complementation assay)

Figure 1. Network of protein-protein interactions involving IscS. IscS initiates intracellular sulfur trafficking, delivering the sulfur to several sulfur-accepting proteins such as IscU, ThiI, TusA, and MoaD/MoeB that commit the sulfur to different metabolic pathways. IscU is the primary scaffold for assembly of Fe-S clusters. Frataxin/CyaY has been postulated as an Fe chaperone, an Fe donor for Fe-S cluster assembly, or a regulator of Fe-S cluster formation. In the schematic, sulfur delivering is indicated by red arrows and IscS-interacting proteins are framed by ovals (red, in sulfur accepting proteins).

doi:10.1371/journal.pbio.1000354.g001

Author Summary

Sulfur is incorporated into the backbone of almost all proteins in the form of the amino acids cysteine and methionine. In some proteins, sulfur is also present as iron–sulfur clusters, sulfur-containing vitamins, and cofac-tors. What’s more, sulfur is important in the structure of tRNAs, which are crucial for translation of the genetic code from messenger RNA for protein synthesis. The biosyn-thetic pathways for assembly of these sulfur-containing molecules are generally well known, but the molecular details of how sulfur is delivered from protein to protein are less well understood. In bacteria, one of three pathways for sulfur delivery is the isc (iron-sulfur clusters) system. First, an enzyme called IscS extracts sulfur atoms from cysteine. This versatile enzyme can then interact with several proteins to deliver sulfur to various pathways that make iron–sulfur clusters or transfer sulfur to cofactors and tRNAs. This study describes in atomic detail precisely how IscS binds in a specific and yet distinct way to two different proteins: IscU (a scaffold protein for iron–sulfur cluster formation) and TusA (which delivers sulfur for tRNA modification). Furthermore, by introducing mutations into IscS, we have identified the region on the surface of this protein that is involved in binding its target proteins. These findings provide a molecular view of the protein– protein interactions involved in sulfur transfer and advance our understanding of how sulfur is delivered from one protein to another during biosynthesis of iron–sulfur clusters.

IscS Interactions with Partner Proteins

(17)

  17   PLP  adduct  and  finally  the  cysteine  persulfide  and  an  enamine  derivative  of  alanine   are  formed[35,  36].  

 

  Figure  2.2  Proposed  mechanism  of  NIFS  desulfuration  reaction[35].  

 

2.3   IscU  

IscU  has  been  widely  conserved  throughout  evolution  and  is  considered  to  be  one  of   the   most   conserved   protein   sequences   in   nature[37].   Since   it   contains   three   conserved  cysteine  residues  (Cys37,  Cys63,  and  Cys106)[38],  IscU  has  the  ability  to   accommodate   both   [2Fe-­‐2S]2+   and   [4Fe-­‐4S]2+   clusters.   This   supports   the   proposal   that  this  ubiquitous  protein  provides  a  scaffold  for  the  transient  assembly  of  clusters   mediated  by  IscS  and  subsequently  used  for  maturation  of  apo  Fe-­‐S  proteins[39].  IscU   interacts  with  IscS  to  accept  a  sulphur  atom  and,  since  E.  coli  IscU  does  not  interact   directly   with   iron   ions[40],   it   is   suggested   that   CyaY,   the   bacterial   orthologue   of  

Mechanism of L-Cysteine Desulfurase

Scheme 3: Proposed Mechanism of NIFS Desulfuration Reaction

"'7,

H H-S-vCOi N F S + H , S y C O i N Y ' L-Cy*&W

Biochemistry, Vol. 33, No. I S , 1994 4119 deuterated. Thus, during the formation of the alanine product, the a- and @-hydrogens are all readily exchanged. The observed complete exchange of the @-hydrogens can be explained by the rapid equilibration of the enamine form of the product (compound I, Scheme 3) with the ketimine form

of the product (compound 11, Scheme 3) before rearrangement and separation of thealanine from theenzyme. It wasobserved that the a-hydrogen of all the cysteine remaining in the reaction mixture had been exchanged as well. Thus, it appears that the slow step in the reaction involves displacement of the sulfur from the bound cysteine.

It was also found that the a-hydrogen and all three 8-hydrogens of a small fraction of L-alanine becamedeuterated when NIFS was incubated with L-alanine in 2H20. Thus, exchange occurred at all four positions or not at all. This result indicates that L-alanine reacts slowly with the enzyme but once the alanine-PLP adduct is formed there is rapid exchange of all four hydrogens. The mechanism for the rapid exchange of the 8-hydrogens is most likely explained as discussed above for the rapid equilbration of compounds I

and I1 shown in Scheme 3. The exchange of the a-hydrogen

would occur during the rearrangement of compound I1 to alanine. These results are similar to those of Babu and Johnston, who reported the complete exchange of the a- and 8-hydrogens of alanine catalyzed by glutamic-pyruvic tran- saminase and glutamic-oxaloacetic transaminase (Babu &

Johnston, 1976). Our results and the observation that millimolar amounts of L-alanine do not significantly inhibit NIFS-catalyzed cysteine desulfurase activity thus reflect a rather slow binding/dissociation of L-alanine with NIFS relative to formation of the enamine intermediate.

DISCUSSION

We have previously shown that the product of the n i p gene is an L-cysteine desulfurase which catalyzes the removal of cysteine sulfur to form L-alanine and elemental sulfur (Zheng et al., 1993). Our current hypothesis is that the reaction catalyzed by NIFS represents a step in the formation of the Fe-S cores contained within the nitrogenase component proteins. In particular, we have suggested that NIFS catalyzes formation of an enzyme-bound persulfide which is the active species for providing the inorganic sulfide necessary for Fe-S cluster biosynthesis. In Scheme 3 a model that describes the proposed mechanism for the formation of an enzyme-bound persulfide using PLP chemistry and cysteine substrate is shown. The salient and novel feature of the model is nucleophilic attack by an active site cysteinyl thiolate anion on the sulfur of a cysteine-PLP adduct. This nucleophilic attack results in formation of a cysteinyl persulfide and an enamine derivative of alanine. In the present study, three basic features predicted by such a mechanism were experimentally confirmed: An essential active site cysteinyl thiolate ( C Y S ~ ~ ~ ) was identified, formation of an enzyme-bound persulfide was demonstrated, and indirect evidence for formation of an enamine intermediate during L-alanine formation was obtained. Furthermore, derivatization of the active site cysteinyl residue by incubation of NIFS with the mechanism-based inhibitors, allylglycine or vinylglycine, to form an enzyme-bound y-methylcystathionyl or cystathionyl residue, respectively, clearly demonstrates that a cysteinyl thiolate is poised for nucleophilic attack at the appropriate substrate position (see Schemes 1-3). The observation that treatment of NIFS with L-allylglycine or L-vinylglycine specifically blocks alkylation of the Cys32s residue and the results of site-directed mutagenesis experi- ments, which show that Cys32s is required for cysteine

BH' H

\\

BH+ H B:

YK=Tx\\

H H w (I)

+-*

-

N Y ' L - M h H

enzyme-bound analog adducts to form either a y-methyl- cystathionyl or a cystathionyl residue.

Persul'de Formation Is an Intermediate in NIFS-

Catalyzed Desulfuration of L-Cysteine. In Scheme 3 a mechanism for NIFS is proposed in which L-cysteine des- ulfurization occurs by nucleophilic attack of the active site Cys325 thiolate on the substrate cysteine PLP adduct. If correct, this mechanism predicts the formation of an enzyme- bound persulfide as an intermediate in the reaction. We therefore tested for the formation of such a persulfide during NIFS catalysis by reacting the substrate-treated enzyme with thealkylating reagent 1 ,5-I-AEDANS and asking if a disulfide linkage was formed from an enzyme-bound persulfide and the alkylating reagent. In a separate control experiment the untreated enzyme was also reacted with 1S-I-AEDANS to form the stable thioether derivative. The rationale and results of these experiments are presented in Figure 1. The results show that reaction of 1,5-I-AEDANS with the substrate- treated form of NIFS results in formation of a DTT-reducible disulfide bond in more than 80% of the enzyme. The fluorescent species released from the substrate-treated enzyme by reducing this disulfide bond was shown to be N-(thioacetyl)-

N'-(5-sulfo-l-naphthyl)ethylenediamine. In contrast, the

fluorescent NIFS derivative obtained by reacting the untreated enzyme with 1,5-I-AEDANS could not be released by treatment with DTT.

Evidence for the Reversible Formation of an Enamine Intermediate during L-Cysteine Desulfurization Catalyzed by NIFS. To further characterize the mechanism by which NIFS catalyzes the desulfurization of L-cysteine, the reaction was carried out in the presence of 2H20 and the deuterium

incorporated into the reactants and products was determined by GC-MS analysis of their n-butyl trifluoroacetyl derivatives. Under these reaction conditions it was found that alanine

(18)

frataxin,  might  supply  iron  ions[10].    

Whereas  IscU  homologues  generally  have  been  described  as  dimers,  e.g.  the  IscU   from   T.   maritima   was   shown   to   form   a   homodimer[41],   monomeric   form   were   identified   for   the   human   protein[42]   and   for   Haemophilus   influenzae   and   E.   coli   IscUs[40].  

Controversial   results   were   found   from   biophysical   studies   on   IscU.   Mansy   et   al.   reported   the   characterization   of   IscU   from   Thermatoga   maritima,   an   evolutionarily   ancient   hyperthermophilic   bacterium,   stabilized   by   a   D40A   mutation.   T.   maritima   IscU   is   a   thermally   stable   protein   with   a   thermally   unstable   cluster.   It   possesses   a   high  degree  of  secondary  structure  represented  by  36.7%  α-­‐helix,  13.1%  antiparallel   β-­‐sheet,  11.3%  parallel  β-­‐sheet,  20.2%  β-­‐turn,  and  19.1%  other  at  20  °C.  Furthermore   cluster   coordination   and   temperature   change   have   no   effect   on   the   secondary   structure  of  the  protein[43].  

Even   if   the   dispersion   of   signals   in   1H-­‐15N   heteronuclear   single   quantum   correlation   NMR   spectra   of   T.   maritima   IscU   supports   the   presence   of   significant   tertiary  structure  for  the  apo-­‐protein  and  shows  that  the  cofactor  coordination  is  not   necessary  for  proper  protein  folding,  consistently  with  a  scaffolding  role  [43],  Bertini   at   al.   stated   that   its   tertiary   structure   could   not   be   determined   because   the   protein   behaves  as  a  flexible  molten  globule-­‐like  state[41].  In  reverse,  Adinolfi  et  al.  showed   that   E.   coli   IscU   is   well   folded   with   a   high   melting   temperature   reversibility   of   the   thermal  unfolding  curve.  This  view  is  confirmed  by  the  excellent  dispersion  of  cross   peaks  in  the  1H-­‐15N  NMR  correlation  spectrum[40].  

 

2.4   IscA  

(19)

role  is  yet  unknown.  Deletion  of  iscA  gene  causes  slight  but  appreciable  decreases  in   these   Fe-­‐S   cluster   assembly   thus   IscA   protein   does   not   contribute   to   a   crucial   step[27].  

The   comparison   of   the   IscA   sequence   of   different   species   shows   the   presence   of   three  invariant  cysteine  residues  (C35,  C99,  C101)  in  IscA  implicated  in  Fe-­‐S  cluster   binding[44].  

Bilder  et  al.  had  recently  solved  and  refined  the  2.3  Å  resolution  crystal  structure   of  E.  coli  IscA,  a  polipeptide  of  107  residue  with  a  novel  fold  in  which  mixed  β-­‐sheets   form  a  compact  α-­‐β  sandwich  domain.  The  great  majority  of  the  amino  acids  that  are   conserved  in  IscA  homologues  are  located  in  elements  that  constitute  a  well-­‐ordered   fold.   However   the   C-­‐terminal   decapeptide   that   contains   two   of   the   three   invariant   cysteines  (C99  and  C101),  is  not  visible  in  the  electron  density  map.  The  lack  of  well-­‐ defined  electron  density  for  this  region  is  consistent  with  either  a  dynamic  disorder   or   multiple   ordered   conformations   of   the   region.   In addition,   the   crystal   packing   reveals   a   helical   assembly   that   is   based   on   domain   swapping   of   two   possible   tetramericoligomers  of  IscA.[44].  

Probabily   IscA   is   involved   in   the   assistance   of   Fe-­‐S   cluster   transfer   to   apo-­‐ protein[3],  infact  holo-­‐IscA  and  eukaryotic  homologues  of  IscA  have  been  shown  to   complex   and   transfer   [2Fe-­‐2S]   clusters   to   the   apo-­‐form   of   E.   coli   ferredoxin,   also   synthesized  from  the  isc  operon  [45].  

 

2.5   HscA  and  HscB  

The   hscA   and   hscB   genes   of   Escherichia   coli   encode   novel   chaperone   and   co-­‐ chaperone  proteins,  designated  Hsc66  and  Hsc20,  respectively.  Purified  HscA  exhibits   a  low  intrinsic  ATPase  activity  (0.6  min-­‐1  at  37°C  and  pH  7.5),  and  HscB  was  found  to  

Figura

Figure	
  1.1	
  Various	
  [Fe–S]	
  clusters	
  found	
  in	
  iron–sulfur	
  proteins.	
  The	
  most	
  common	
  (a)	
  [2Fe–2S]	
  
Figure	
  2.1	
  Network	
  of	
  protein-­protein	
  interactions	
  involving	
  IscS.	
  IscS	
  initiates	
  intracellular	
  sulfur	
   trafficking,	
   delivering	
   the	
   sulfur	
   to	
   several	
   sulfur-­‐accepting	
   proteins	
   such	
  
Figure	
  2.2	
  Proposed	
  mechanism	
  of	
  NIFS	
  desulfuration	
  reaction[35].	
  
Figure	
  2.3	
  Kinetic	
  scheme	
  of	
  the	
  Hsc66	
  ATPase	
  reaction	
  cycle[47].	
  
+7

Riferimenti

Documenti correlati

Disorders in imaging and planning the functional relationship between body parts and objects are also suggested by the typology of the errors which apraxic patients frequently

Al fine di incrementare il contenuto aromatico dei vini, si sono applicate tre differenti tecniche macerative prefer- mentative su uve provenienti da due diversi

Recently among the 100 Worst Invasive Alien Species in Europe, the invertebrates Corbicula fluminea, Dikerogammarus villosus and Procambarus clarkii, and the macrophytes

questi è stato possibile stabilire la correlazione tra attività labiale e schemi di opposizione tra suoni come quelli della figura seguente (suoni procheili in alto a sinistra

We searched through PubMed computerized database for observational studies (Obs.) per- forming a direct comparison of almost two of the newest heart valves: the balloon-expandable

S1 (B) display a high magnification SE-SEM cross sectional image of Er-doped PSi layer: the measured thickness of the porous layer is about 1.3 µm, and in order to understand

and human disturbance using the observed encounter rate of primate social groups as the response variable in a multivariate regression framework. Hence, they did not account

We assessed the prognostic role of HbA1c for short and long term mortality in 518 consecutive patients with ST elevation myocardial infarction (STEMI) and without previously