• Non ci sono risultati.

Integrality and arithmeticity of solvable linear groups

N/A
N/A
Protected

Academic year: 2021

Condividi "Integrality and arithmeticity of solvable linear groups"

Copied!
8
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Journal

of

Symbolic

Computation

www.elsevier.com/locate/jsc

Integrality

and

arithmeticity

of

solvable

linear

groups

A.S. Detinko

a

,

D.L. Flannery

a

,

W.A. de

Graaf

b

aDepartmentofMathematics,NationalUniversityofIreland,Galway,Ireland bDepartmentofMathematics,UniversityofTrento,Italy

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received25October2013 Accepted10March2014 Availableonline11August2014

Keywords:

Arithmeticgroup Algorithm Algebraicgroup Lattice

We develop a practical algorithm to decide whether a finitely generated subgroupofasolvable algebraicgroupG isarithmetic. This incorporates a procedure to compute a generating set of an arithmetic subgroup of G. We also provide a simple new algorithmfor integralitytesting offinitelygenerated solvable-by-finite lineargroups over the rational field. The algorithms have beenimplementedin Magma.

©2014ElsevierLtd.All rights reserved.

1. Introduction

For K

GL

(

n

,

C)

anda subringR of

C

,denote K

GL

(

n

,

R

)

by KR.LetG be analgebraic group

definedover

Q

.Thispaperisconcernedwiththequestion:

Given a finitely generated subgroup H of GQ, is H an arithmetic subgroup of G? (

) Recallthat

H

GQisanarithmeticsubgroupof

G if

itiscommensurablewith

G

Z,i.e.,

H

GZ

=

HZ

has finiteindexinboth H and GZ. (More generally,amatrix group issaid tobe arithmetic ifitis an arithmetic subgroupofsome algebraic

Q

-group (Segal,1983, p. 119).)The significanceof (

) is evidenced by,e.g., Sarnak (2012). Decidability of(

) hasnot beensettled. However, itseems to be undecidable,evenfor

G

=

SL

(

n

,

C)

(Miller,2013).Weprovethat

(

)isdecidable

when G is solvable,

by givingapracticalalgorithmtoanswerthisquestion.

TheauthorsweresupportedbyScienceFoundationIrelandgrant11/RFP.1/MTH3212.

E-mailaddresses:alla.detinko@nuigalway.ie(A.S. Detinko),

dane.flannery@nuigalway.ie

(D.L. Flannery),

degraaf@science.unitn.it(W.A. deGraaf).

http://dx.doi.org/10.1016/j.jsc.2014.08.011

(2)

Asfurthermotivationforarithmeticitytestingweobservethatapositiveanswerenablestheuse ofarithmetic group theoryto investigatethegroup athand.Forexample,theautomorphism group ofafinitelygeneratednilpotentgroupisisomorphictoanarithmeticgroup(Segal,1983,Corollary 9, p. 122). There are polycyclic groupsthat are not isomorphic to any arithmetic group (Segal,1983, Proposition3,p. 259).Althoughwecantestwhetherapolycyclicsubgroupof

G

Qisarithmetic,testing arithmeticityofpolycyclicgroupsinthisbroadercontextisstillopen.

Our approach draws on recent progress (de Graaf and Pavan, 2009; Faccin et al., 2013) in the constructionofgeneratingsetsof

G

Zwhen

G is

unipotentoratorus.Wecombinethosetoconstruct afiniteindexsubgroupof

G

Zforasolvablealgebraicgroup

G—a

resultofinterestinitsownright.

WeadaptmethodsforcomputingwithSF (solvable-by-finite)lineargroups(Detinko et al.,2011, 2013a, 2013b).TodecidewhetherH is commensurablewith

G

Z,we usean algorithmfrom

Detinko

et al. (2013b) to compute the rankof an SF linear group. We alsodesign a simple newalgorithm totestwhetherafinitelygeneratedSF subgroupofGL

(

n

,

Q)

isconjugatetoa subgroupofGL

(

n

,

Z)

. Sinceintegralityisanimportantlineargroupproperty(Dixon,1971,Theorem 3.5,pp. 54–55),thisis anotherusefulresultofthepaper.Integralitytestingappearsasacomponentofearlieralgorithmsto testfiniteness(Babaiet al.,1993) andpolycyclicity(AssmannandEick,2007).

Thepaperisorganized asfollows.Section 2givesaprocedure toconstructageneratingset ofa finiteindexsubgroupof

G

Z,where

G is

solvablealgebraic.InSection3weconsidertestingfiniteness of

|

K

:

KZ

|

for

K

GL

(

n

,

Q)

.Ifthisindexisfinite,weexplainhowtofind KZand g

GL

(

n

,

Q)

such that Kg

GL

(

n

,

Z)

.Section 4 thendescribesa newalgorithmto test integralityofSF subgroups of GL

(

n

,

Q)

.OurmainalgorithmispresentedinSection5.Adiscussion ofexperimentalresultsderived froma Magma (Bosmaet al.,1997) implementationofthealgorithmsconcludesthepaper.

2. Computinganarithmeticsubgroupofasolvablealgebraicgroup

Let

G be

asolvablealgebraic

Q

-group.Inthissectionwecombineresultsfrom

de Graaf

andPavan (2009)and

Faccin

et al. (2013)toconstructageneratingsetofafiniteindexsubgroupof

G

Z.

Thefirstresultis

Vinberg

et al. (2000,Proposition 7.2(3)).

Proposition2.1.

Suppose that G

=

A



N, where both A and N are algebraic subgroups of G, defined over

Q

. Let

ΓA

,

ΓN

be arithmetic subgroups of A and N respectively. Then

ΓA

 Γ

Nis an arithmetic subgroup of G.

From

Chevalley (1955,

Ch. 5,§3,No. 5,Propositions 20and 21)wegetthefollowing.

Proposition2.2.

Let G be connected and solvable, with Lie algebra

g

⊂ gl(

n

,

C)

. Let

n

be the ideal of

g

con-sisting of all nilpotent elements of

g

. Then there is a subalgebra

d

of

g

, consisting of commuting semisimple elements, such that

g

= d

⊕ n

. Moreover, both

n

,

d

are algebraic, and if we let N, D be the corresponding connected subgroups of G, then G

=

D



N.

Let G,

g

be asin Proposition 2.2. We suppose that

g

is givenby a basis consisting ofmatrices havingentriesin

Q

.In

de Graaf (2009)

,an algorithmthat computesbasesofsubalgebras

d

,

n

with thepropertiesof

Proposition 2.2

is given.Here we donotgo intothedetails butonly brieflyrecall thebasicsteps.

1. ComputeaCartansubalgebra

h

of

g

.

2. Let

a

1

,

. . . ,

ar beabasisof

h

,andlet

a

i

=

si

+

ni betheJordandecompositionof

a

i.

3. Let

d

be the space spanned by s1

,

. . . ,

sr and let

n

be the space spanned by n1

,

. . . ,

nr

along withthe Fitting1-component

g

1

(h)

.(The latteris the space



i≥1

[h

i

,

g]

, where

[h

i

,

g]

=

[h,

[h,

. . . ,

[h,

g

]

. . .

]]

(i factors

h

).)

Starting fromthegiven basisof

g

,we compute generators ofan arithmetic group in GZ by the following.

(3)

GeneratingArithmetic

(

G

)

Input:abasisoftheLiealgebra

g

ofthesolvablealgebraicgroup

G.

Output:ageneratingsetforafiniteindexsubgroupof

G

Z.

1. Computebasesof

d

and

n

asabove.Denoteby

D, N the

connectedsubgroupsof

G with

respective Liealgebras

d

,

n

.

2. Computegenerators of

N

Z usingthealgorithmfrom

de Graaf

andPavan (2009),andgenerators of DZusingthe algorithmfromFaccinet al. (2013).(These algorithmstake asinputbasesof

d

and

n

respectively.)

3. Returntheunionofthetwogeneratingsetsobtainedinthepreviousstep.

We notethat

GeneratingArithmetic

iscorrect.Indeed,let H be thegroup generatedbyits output.Then

H

GZ.Ontheother hand,H is anarithmetic subgroupof

G by Proposition 2.1

.So H

hasfiniteindexin

G

Z.

GeneratingArithmetic

(

G

)

formsavitalpartofourmainalgorithm.Noticethat

G need

not be connected.Indeed, let G◦ be theconnected component ofthe identity of G. Since

|

GZ

:

GZ

|

is finite,

GeneratingArithmetic

(

G

)

returnsageneratingsetofanarithmeticsubgroupof

G.

3. IntegralityandGL

(

n

,

ZZZ)

-intercepts

Thissectionandthenextdependonsomeideasfrom

Babai

et al. (1993).

An element or subgroup ofGL

(

n

,

Q)

that has a conjugatein GL

(

n

,

Z)

issaid to be

integral.

Let

H

GL

(

n

,

Q)

.

Lemma3.1.

(See

Babai et al., 1993, Proposition 2.3.) H is integral if and only if there exists a positive integer d such that dh

Mat

(

n

,

Z)

for all h

H .

Proof. Suppose that Hg

GL

(

n

,

Z)

for some g

GL

(

n

,

Q)

. Then

m

2H

Mat

(

n

,

Z)

wherem is any commonmultipleofthedenominatorsoftheentriesin g and g−1.

Supposethat

dH

Mat

(

n

,

Z)

.Let

g be

anymatrixwhosecolumnscomprisea

Z

-basis ofthelattice generatedby

dH

Z

n.Then g

GL

(

n

,

Q)

andHg

GL

(

n

,

Z)

.

Call d

=

d

(

H

)

asin Lemma 3.1 a common denominator for H . As the above proof demonstrates, knowing

d

(

H

)

isequivalenttoknowing g

GL

(

n

,

Q)

suchthat

H

g

GL

(

n

,

Z)

.Amethodtoconstruct d may beextractedfrom

Babai

et al. (1993,Section 2);wegiveanalgorithmthatisamodificationof thisforourpurposesinSection4.IfH is finitelygeneratedthenwecalculate g from d by meansof thefollowing(cf.

Babai

et al.,1993,Section 3).

BasisLattice

(

S

,

d

)

Input:afiniteset S

GL

(

n

,

Q)

and

d

=

d

(

H

)

,H

=

S

. Output:abasisforthelatticegeneratedby

dH

Z

nin

Z

n.

1.

L

:=

d

Z

n.

2. While

h

S

S−1 suchthat

h

L



L

do

L

:=

the lattice generated by

L

h

L

.

3. Returnabasisof

L

.

Wewrite L

f H to indicatethatthesubgroup

L has

finiteindexin

H .

(4)

Proof. Suppose that H1 is integral. By Lemma 3.1, d1H1

Mat

(

n

,

Z)

for some d1

∈ Z

. Choose a transversal

{

h1

,

. . . ,

hr

}

for the cosets of H1 in H , and let d2 be a positive integer such that

d2hi

Mat

(

n

,

Z)

forall

i.

Since

d

1d2H

Mat

(

n

,

Z)

,

H is

integralby

Lemma 3.1

again.

Lemma3.3.

Suppose that d is a common denominator for H , and let

L

be the lattice generated by dH

Z

n.

(i)

L

⊆ Z

n

1

d

L

.

(ii) H acts

by left multiplication on the (finite) set of lattices lying between

L

and 1

d

L

.

(iii) HZis the stabilizer of

Z

nunder the action in (ii).

Proof. (i)Clear:

dH

Mat

(

n

,

Z)

and

d

Z

n

dH

Z

n

L

.

(ii)Wehave

H

L

=

L

.Thus

H acts

onthesetoflattices

L

suchthat

L

L



1d

L

.

(iii)Let

h

H . Ifh

HZ then

Z

n

=

h

(

h−1

Z

n

)

h

Z

n, so h

Z

n

= Z

n. Conversely, ifh

Z

n

= Z

n then

everyentryin

h is

aninteger.

Proposition3.4.

H is integral if and only if H

Z

f H .

Proof. Thisisaconsequenceof

Lemmas 3.2 and

3.3.

Thefollowingprocedureconstructs HZ ifH is finitelygeneratedand

d

(

H

)

isknown.

IntegralIntercept

(

S

,

d

)

Input:afiniteset

S

GL

(

n

,

Q)

and

d

=

d

(

H

)

,

H

=

S

. Output:ageneratingsetofHZ.

1.

L

:=

the lattice generated by

BasisLattice

(

S

,

d

)

. 2.

Λ

:=

the set of all lattices

L

suchthat

L

L



1d

L

.

3. Returnageneratingsetforthestabilizerof

Z

n undertheactionof

H on

Λ

.

Remark3.5. Step(3)maybecarriedout usingstandardalgorithms forfinitepermutation groupsto obtainatransversalfor HZ in H , thenwritingdownSchreiergenerators.More practicalapproaches are possiblein specialsituations; say forpolycyclic H (e.g., arithmetic H

GQ andsolvable G). In thatcaseanalgorithmcanbebasedonanorbit-stabilizer approach.Thisissimilartothealgorithm describedin

Laue

et al. (1984).Such analgorithmenumeratestheorbitof

Z

n underactionby

H ,

in theprocessobtaininggeneratorsofthestabilizer.Theefficiencyofthisapproachdependsheavilyon orbitsize.

4. Integralityofsolvable-by-finitesubgroupsofGL

(

n

,

Q

Q

Q)

We next describe how to test integrality of a finitely generated SF subgroup of GL

(

n

,

Q)

, and computeacommondenominatorifthegroupisintegral.

Let H

=

h1

,

. . . ,

hr

GL

(

n

,

Q)

.We have H

GL

(

n

,

R

)

where R

=

1b

Z

= {

a

/

bi

|

a

∈ Z,

i

0

}

for

some positive integer

b determined

by theentries inthe hi andhi1.Forany prime p

∈ Z

not

di-viding

b,

reductionmodulo p of matrixentriesdefinesacongruencehomomorphism

ϕ

p

:

GL

(

n

,

R

)

GL

(

n

,

p

)

. If H is SF and p

=

2 then Hp

=

ker

ϕ

p

H is torsion-free andunipotent-by-abelian (see Dixon, 1985, Lemma 9, or Detinko et al., 2011, Section 2.2.1). Assume that p has been so chosen whenever

H is

SF.

Denotetheunipotent radicalof K

GL

(

n

,

Q)

by

U

(

K

)

.Replace K if necessarybya conjugatein block triangularformwithcompletelyreduciblediagonal blocks.If

π

denotes projection of K onto

(5)

Lemma4.1.

The following are equivalent.

(i) H is

integral.

(ii)

π

(

H

)

is integral.

(iii)

π

(

Hp

)

is integral.

Proof. By

Babai

et al. (1993,Theorem 2.4),afinitelygeneratedsubgroup K of GL

(

n

,

Q)

isintegral if andonlyif

{

tr

(

x

)

|

x

K

}

⊆ Z

.Thus(i)

(ii).Since

|

π

(

H

)

:

π

(

Hp)

|

= |

H

:

HpU

(

H

)

|

<

,

Lemma 3.2

gives(ii)

(iii).

Denotethecharacteristicpolynomialof

h

GL

(

n

,

C)

by

χ

h

(

X

)

.

Proposition4.2.

(Cf. Lemma 8 and Theorem 9 of

Assmann and Eick, 2007.) Suppose that each element of H is equal to hm1

1

· · ·

h

mr

r for some mi

∈ Z

. Then H is integral if and only if each hiis integral, i.e., χhi

(

X

)

∈ Z[

X

]

and det

(

hi)

= ±

1 for1

i

r.

Proof. If

χ

hi

(

X

)

∈ Z[

X

]

has constant term

±

1 for all i then

hi

⊆ {



n−1

j=0ajhij

|

aj

∈ Z}

. So there

exist positive integers di, 1

i

r, such that di

hi

Mat

(

n

,

Z)

. Hence d

=

d1

· · ·

dr is a common

denominatorfor

H .

If H is polycyclicwithpolycyclicsequence

(

h1

,

. . . ,

hr),then H satisfies thehypothesisof

Proposi-tion 4.2.Anygeneratingsetof H is similarlysuitablewhen

H is

abelian.

Lemma4.3.

Suppose that H

K

GL

(

n

,

Q)

and the normal closure HKis finitely generated abelian. Then HKis integral if and only if each h

iis integral.

Proof. If the hi are integral then Proposition 4.2 guaranteesthat H is integral. Since HK isfinitely

generated, there are x1

,

. . . ,

xt

H and y1

,

. . . ,

y

t

K such that HK

=

xiyi

:

1

i

t

. By

Proposi-tion 4.2again,

H

K isintegral.

Lemma4.4.

Suppose that H is SF and Y is a normal generating

set for Hp(p

=

2),

i.e., H

p

=

Y

H. Then H is integral if and only if each element of Y is integral.

Proof. If each element of

Y is

integral then thesameholds for

π

(

Y

)

. Hence thefinitelygenerated abeliangroup

π

(

Hp)

=

π

(

Y

)

π(H)isintegralby

Lemma 4.3

.Theclaimnowfollowsfrom

Lemma 4.1

. We compute

Y from

apresentation

P

of

ϕ

p(H

)

GL

(

n

,

p

)

on

ϕ

p(h1

),

. . . ,

ϕ

p(hr)usingthe func-tion

NormalGenerators

asin

Detinko

et al. (2011, Section 3.2): thisevaluates therelatorsof

P

, replacing

ϕ

p(hi) everywhere by hi, 1

i

r. Proposition 4.2and Lemma 4.4consequently provide

ourstraightforwardproceduretotestintegralityof

H .

IsIntegralSF

(

S

)

Input:afinitesubset

S of

GL

(

n

,

Q)

suchthat

H

=

S

isSF. Output:

true

ifH is integral;

false

otherwise.

1. Y

:= NormalGenerators(

S

)

.

2. Ifeveryelementof

Y is

integralthenreturn

true

; elsereturn

false

.

Remark4.5.When H is finitewe have Hp

=

1,so

IsIntegralSF

always returns

true

forsuch

(6)

A major class of SF groups is PF (polycyclic-by-finite) groups. According to Assmann and Eick (2007, Corollary 10), one may test integrality of a PF subgroup H of GL

(

n

,

Q)

after computing a polycyclicsequence andtransversalfora finiteindexpolycyclic normalsubgroupof H . Bycontrast,

IsIntegralSF

doesnotrequireH to bePFandjusttestsintegralityofseveralmatricesinHp.

ToconjugateanintegralSFgroup

H into

GL

(

n

,

Z)

,ortocomputegeneratorsofitsfiniteindex sub-group HZvia

IntegralIntercept

,wemustknow

d

(

H

)

.Themethodbelowtofindthiscommon denominatorisasimplificationof

Babai

et al. (1993,p. 120)forSFinput.

Firstdetermineablockuppertriangularconjugateof

H with

completelyreduciblediagonalblocks; this maybe done as in Detinko et al. (2013b,Section 4.2). Let

{

a1

,

. . . ,

am

}

π

(

H

)

be a basis of

the envelopingalgebra

π

(

H

)

Q. Ifc is a common multiple ofthe denominators of entries inthe

ai then d1

:=

c det

(

[

tr

(

aiaj)

]

1≤i,jn)

=

d

(

π

(

H

))

. Define ui

=

hi

π

(

hi) and vi

=

hi1

π

(

hi1

)

. Let d2

=

en−1 where

e is

acommonmultipleofdenominatorsofentriesinthe

u

i and vi.Eachelement

of H is asumofterms x

=

π

(

g1

)

w1

· · ·

π

(

gk)wkwhere gj

H and wj

=

1 orsome

u

i or vi.Since

π

(

h

)

uj and

π

(

h

)

vj arenilpotent,ifthereareatleast

n occurrences

of

u

jsand vjs inx then x

=

0.

Thus

dH

Mat

(

n

,

Z)

where

d

=

dn1d2.Notethatforcompletelyreducible H (e.g., H is finite),

d

(

H

)

=

d

(

π

(

H

))

=

d1.

5. Arithmeticitytestinginsolvablealgebraicgroups

Inthissectionweapplyresultsof

Detinko

et al. (2013b)andtheprevioussectionstotestwhether afinitelygeneratedsubgroup

H

GQofasolvablealgebraicgroup

G is

arithmetic.

DenotetheHirschnumberofa group K with finitetorsion-freerankby h

(

K

)

.Finitelygenerated SFsubgroupsofGL

(

n

,

Q)

havefinitetorsion-freerank(Detinkoet al.,2013b,Proposition 2.6). Lemma5.1.

Let L be a finitely generated SF subgroup of

GL

(

n

,

Q)

, and let K

L. Then K

f L if and only if

h

(

K

)

=

h

(

L

)

.

Proof. ThisfollowsfromProposition 2.3andCorollary 3.3of

Detinko

et al. (2013b).

Corollary5.2.

H is an arithmetic subgroup of G if and only if H is integral and

h

(

H

)

=

h

(

GZ

)

. In particular, H

GZis arithmetic if and only if h

(

H

)

=

h

(

GZ

)

.

Proof. This is immediate from Proposition 3.4 and Lemma 5.1, using that h

(

H

)

=

h

(

HZ

)

when

HZ

f H .

Remark5.3. If G is a unipotent

Q

-group then we have a more general statement (Detinko et al., 2013b, Lemma 3.7): H

GQ is arithmetic in G if andonly if h

(

H

)

=

h

(

GQ

)

, i.e., h

(

H

)

equals the dimensionof

G.

Fornon-unipotentsolvable(evenabelian)

G this

isnottrue;

G

Qneednotevenhave finiterank.

Wenowstateourarithmeticitytestingalgorithm.Thisusestheprocedure

HirschNumber

from

Detinko et al. (2013b, Section 4.4), which returns h

(

K

)

fora finitely generated SF subgroup K of

GL

(

n

,

Q)

.

IsArithmeticSolvable

(

S

,

G

)

Input:afinitesubset S of GQ,

G a

solvablealgebraicgroup. Output:

true

ifH

=

S

isarithmetic;

false

otherwise. 1. If

IsIntegralSF

(

S

)

= false

thenreturn

false

. 2. T

:= GeneratingArithmetic(

G

)

.

3. If

HirschNumber

(

S

)

= HirschNumber(

T

)

thenreturn

false

; elsereturn

true

.

(7)

Table 1

Runningtimes(inseconds)ofthestepsinIsArithmeticSolvable.

n dimg(n) h(G(n)Z) IsInt(S) T:= GA(G(n)) h( S ) h( T )

2 6 5 0.12 0.05 0.51 0.68

3 15 14 0.29 0.19 2.10 2.28

4 28 27 0.86 1.12 11.28 12.77

Remark5.4.Steps(1)and(3)arejustifiedby

Corollary 5.2

.If

G is

unipotentthen H is integral(Segal, 1983,Lemma 2,p. 111),andstep(1)canbeomitted.

6. Practicalperformance

We have implemented our algorithms in Magma. The implementation relies on the package

‘Infinite’ (Detinko et al.,2013c) andproceduresavailableat

de Graaf (2013)

.Althoughthemaingoal hasbeentoestablishthatarithmeticityisdecidable,inthissectionweshowthatouralgorithmscan beappliedinpracticetonontrivialexamples.

One ofthemainbottlenecks of

GeneratingArithmetic

liesinthecomputation ofthetorus

part.Let

g

= d

⊕ n

and

D be

asin

Proposition 2.2

.Thefirststepofthealgorithmgivenin

Faccin

et al. (2013)forcomputinggeneratorsof

D

Zconstructstheassociativealgebra

A with

unitygeneratedby

d

. Subsequently A is writtenasadirectsumofnumberfields

Q(

α

)

.Foreachsuch field,generators of the unit group of

Z[

α

]

arecomputed. Butthe algorithm forthistask (asimplemented in Magma) becomes extremelydifficultto applyin practiceifthedegreeof

Q(

α

)

is toolarge,say30 or more. Ontheother hand,ifall fieldsthat occurare equalto

Q

thenthecomputation ofgenerators of DZ

istrivial.Forthesereasonsweconstructedtestexampleswherethefieldextensionshavedegree

2 (andsomeextensionsofdegree2 dooccur).Thisconstructionworksasfollows.FirstwedefineaLie algebra

g(

n

)

⊂ gl(

2n

,

C)

,

n

2.Forthiswedividethematricesof

gl(

2n

,

C)

into2

×

2 blocks.OurLie algebra

g(

n

)

isthedirectsum

g(

n

)

= t

⊕ n

oftwosubalgebras.Thesubalgebra

t

hasdimension

n,

and the

ith

basiselementhasonits

ith

diagonalblockthematrix



0 1 2i

1 0



andzeroselsewhere.

Let

e

i,jbetheelementarymatrixwith1 inposition

(

i

,

j

)

andzeroselsewhere.Then

n

isspanned

bythe

e

i,jwhere

(

i

,

j

)

appearsinablockabovethediagonal.Sodim

n

=

4



n

2



.

The Lie algebra

g(

n

)

is algebraic,and welet G

(

n

)

<

GL

(

2n

,

C)

be the connectedalgebraic group withLiealgebra

g(

n

)

.

Nowlet

m be

a2n

×

2n matrixproducedbythefollowingrandomizedconstruction.Theentriesof

m are randomlyanduniformlychosenfrom

(

0

,

0

,

1

)

(sowemakeittwiceaslikelythata0 ischosen). Wecontinuetoproducematriceslikethisuntilthedeterminantisnot0 or

±

1.

Set



G

(

n

)

=

mG

(

n

)

m−1.Thisisanalgebraic groupwithLiealgebra

m

g(

n

)

m−1.The Liealgebra has basis Bn consisting of all mum−1, for u in the above constructed basis of

g(

n

)

. Let g1

,

. . . ,

gr be

generatorsofanarithmeticsubgroupof

G

(

n

)

Z.For1

i

r let kibechosenrandomlyanduniformly

from

{

1

,

2

}

.Then

S

= {(

mgim−1

)

ki

|

1

i

r

}

generatesasubgroupof



G

(

n

)

Q(andnotethatitalways

is arithmetic).The inputon whichwe testedour implementationof

IsArithmeticSolvable

is

theset

S,

togetherwiththealgebraicgroup



G

(

n

)

givenbyitsLiealgebra,inturngivenbyitsbasis Bn.

In Table 1 we report on the running times of our algorithm with the input as above for n

=

2

,

3

,

4. Allexperiments were performed on a 3.16 GHzmachine running Magma V2.19-9. The first three columns ofTable 1list n, dim

g(

n

)

,andthe Hirschnumber of



G

(

n

)

Z. The other columnslist running times of

IsIntegralSF

(

S

)

, T

:= GeneratingArithmetic(

G

(

n

))

,

HirschNumber

(

S

)

and

HirschNumber

(

T

)

.

From

Table 1

we seethat ouralgorithm isefficientenough tohandlequite nontrivialexamples. Moreover,thebulkoftherunningtimegoesintocomputingHirschnumbers.Ofcourse,thisdepends onourparticulartestexample.Ifwetookexampleswhereitisdifficulttocomputegeneratorsof DZ,

(8)

thenamuchlargerproportionofthetimewouldgointocomputinganarithmeticsubgroup.However, thecurrent implementationis rathersensitive torandomness ofthe input. Occasionallyit happens that generators in T have coefficientswith many digits (up to 10, forexample). This then causes problemswhencomputingtheHirschnumber.So wehaveaveragedtimesover 50 runsinorderto dampentheeffectsofrandomnessoftheinput.

References

Assmann,B.,Eick,B.,2007.Testingpolycyclicityoffinitelygeneratedrationalmatrixgroups.Math.Comput. 76,1669–1682. Babai,L.,Beals,R.,Rockmore,D.N.,1993.Decidingfinitenessofmatrixgroupsindeterministicpolynomialtime.In:Proc.of

InternationalSymposiumonSymbolicandAlgebraicComputation.ISSAC ’93.ACMPress,pp. 117–126.

Bosma,W.,Cannon,J.,Playoust,C.,1997.TheMagmaalgebrasystem.I.Theuserlanguage.J.Symb.Comput. 24(3–4),235–265. Chevalley,C.,1955.ThéoriedesGroupesdeLie,TomeIII.ThéorèmesgénérauxsurlesalgèbresdeLie.Hermann,Paris. deGraaf,W.,2009.ConstructingalgebraicgroupsfromtheirLiealgebras.J.Symb.Comput. 44,1223–1233.

deGraaf,W.,2013.

http://www.science.unitn.it/~degraaf/arith/arithgrp.m

.

deGraaf,W.,Pavan,A.,2009.Constructingarithmeticsubgroupsofunipotentgroups.J.Algebra 322,3950–3970.

Detinko,A.S.,Flannery,D.L.,O’Brien,E.A.,2011.AlgorithmsfortheTitsalternativeandrelatedproblems.J.Algebra 344,397–406. Detinko,A.S.,Flannery,D.L.,O’Brien,E.A.,2013a.Recognizingfinitematrixgroupsoverinfinitefields.J.Symb.Comput. 50,

100–109.

Detinko,A.S.,Flannery,D.L.,O’Brien,E.A.,2013b.Algorithmsforlineargroupsoffiniterank.J.Algebra 393,187–196.

Detinko,A.S.,Flannery,D.L.,O’Brien,E.A.,2013c.

http://magma.maths.usyd.edu.au/magma/

.

Dixon,J.D.,1971.TheStructureofLinearGroups.VanNostrandReinhold,London.

Dixon,J.D.,1985.Theorbit-stabilizerproblemforlineargroups.Can.J.Math. 37(2),238–259.

Faccin,P.,deGraaf,W.,Plesken,W.,2013.Computinggeneratorsoftheunitgroupofanintegralabeliangroupring.J. Alge-bra 373,441–452.

Laue,R.,Neubüser,J.,Schoenwaelder,U.,1984.AlgorithmsforfinitesolublegroupsandtheSOGOSsystem.In:Computational GroupTheory.Durham,1982.AcademicPress,London,pp. 105–135.

MillerIII,C.F.,2013.Personalcommunication.

Sarnak,P.,2012.Notesonthinmatrixgroups.

http://arxiv.org/abs/1212.3525

.

Segal,D.,1983.PolycyclicGroups.CambridgeUniversityPress,Cambridge.

Vinberg,E.B.,Gorbatsevich,V.V.,Shvartsman,O.V.,2000.DiscretesubgroupsofLiegroups.In:LieGroupsandLieAlgebras,II. Encycl.Math.Sci.,vol. 21.Springer,Berlin,pp. 1–123,217–223.

Riferimenti

Documenti correlati

Abstract. We build a new bridge between geometric group theory and commutative algebra by showing that the virtual cohomological dimension of a Coxeter group is essentially

The second-order wave groups when a large crest-to-trough wave height occurs Figure 9 shows the non-linear wave group in space domain, when a large crest-to-trough wave height

For example, the FAA found discrepancies in the dissemi- nation of requirements for the primary electrical power panel from Boeing to United Technologies Aerospace Systems (UTAS),

It can be seen that the simultaneous conjugacy problem is equivalent to solving the conjugacy problem for two elements y and z with the restriction that the conjugator g must lie in

In this paper our aim is to give a description of the p-Quillen complex in the more general case of solvable groups whose Sylow p-subgroups have a cyclic derived group.. Theorem 1.2

We answer in the affirmative a question posed by Ivanov and Vassilev [13] on the existence of a seven dimensional quaternionic contact manifold with closed fundamental 4-form

In this paper we classify, under local detached feedback equivalence, the full-rank left-invariant control affine systems evolving on certain solvable three-dimensional Lie groups..

particular, linear groups in which the family L icd (G) satisfies either the minimal or the maximal condition and some rank restriction were considered. The weak minimal and