• Non ci sono risultati.

Lysobacter capsici AZ78 can be combined with copper to effectively control Plasmopara viticola on grapevine

N/A
N/A
Protected

Academic year: 2021

Condividi "Lysobacter capsici AZ78 can be combined with copper to effectively control Plasmopara viticola on grapevine"

Copied!
10
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Microbiological

Research

jo u r n al ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / m i c r e s

Lysobacter

capsici

AZ78

can

be

combined

with

copper

to

effectively

control

Plasmopara

viticola

on

grapevine

Gerardo

Puopolo

,

Oscar

Giovannini,

Ilaria

Pertot

DepartmentofSustainableAgro-EcosystemsandBioresources,ResearchandInnovationCentre,FondazioneEdmundMach(FEM),ViaE.Mach1,38010S. Micheleall’Adige,Trento,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received20August2013 Receivedinrevisedform 16September2013 Accepted21September2013 Availableonline27September2013 Keywords: Lysobactercapsici Plasmoparaviticola Biofilm Copper Environmentalstress

a

b

s

t

r

a

c

t

ThebacterialgenusLysobacterrepresentsastillunderdevelopedsourceofbiocontrolagentsableto protectplantsagainstpathogenicoomycetes.InthisworktheL.capsicistrainAZ78wasevaluatedwith regardtothebiologicalcontrolofPlasmoparaviticola,thecausalagentofgrapevinedownymildew.L. capsiciAZ78isabletoresistcopperionsanditsresistancetothismetalisprobablyduetothepresence ofgenescodingforcopperoxidase(copA)andcopperexportingPIB-typeATPases(ctpA).Thepresenceof

bothgeneswasalsodetectedinothermembersoftheLysobactergenus.Resistancetocopperallowed L.capsiciAZ78tobecombinedwithalow-doseofacopper-basedfungicide,leadingtomoreeffective controlofgrapevinedownymildew.Notably,prophylacticapplicationofL.capsiciAZ78alonetograpevine leavesreduceddownymildewdiseasetothesamedegreeasacopper-basedfungicide.Furthermore,L. capsiciAZ78persistsinthephyllosphereofgrapevineplantsandtoleratesenvironmentalstressessuch asstarvation,freezing,mildheatshockandUVlightirradiation.ThesetraitssuggestthatL.capsiciAZ78 couldbeasuitablecandidatefordevelopinganewbiofungicidetobeusedincombinationwithcopper tocontrolgrapevinedownymildew.

©2013ElsevierGmbH.Allrightsreserved.

1. Introduction

Downymildewisoneofthemostseriousdiseasesofgrapevine (Vitisvinifera)worldwide.Itiscausedbythebiotrophicoomycete Plasmoparaviticola,whichcanattackallgreenpartsoftheplant (Gessleretal.2011).Thesedays,controlofdownymildewrelies mainlyon frequent applicationsof chemical fungicides in con-ventional agriculture or copper in organic production (Wong et al. 2001; Gessler et al. 2011). Growing concerns regarding the negative impactof copperin agricultural soils (Wightwick et al. 2008; Komarek et al. 2010) are giving rise to a search for new natural active ingredients against P. viticola. Naturally occurringmicroorganismswithfavourabletoxicologicaland eco-toxicologicalprofilesofferapotentialsolution.Notonlyorganic, butalsoconventionalagriculturemaybenefitfromtheuseofsuch low-impactbiofungicides.

Althoughin recent years severalbacterialstrains havebeen selectedforbiological controlofplantdiseases causedby fungi and oomycetes(Lugtenberg andKamilova 2009), noneof them havereachedthemarketfor thecontrolof P.viticola.The liter-aturereports astrainofErwiniaherbicola showinginhibition of

∗ Correspondingauthor.Tel.:+3904615502.

E-mailaddress:gerardo.puopolo@fmach.it(G.Puopolo).

germinationofP.viticolasporangiainvitro(Tilcheretal.1994)and somebacterialstrainsbelongingtoErwinia,Pseudomonasandother generahaveyieldedpromisingresults(Tilcheretal.2002),butno follow-upstudiesonthesebacteriahavebeenreported,inspiteof enormousresearcheffortsdedicatedtofindingalternativestothe useofcopperagainstP.viticola.Someoftheweaknessesof micro-bialfungicidesregardtheirpoorsurvivalinthephyllosphereand theirincompatibilitywithcopper-basedfungicides,sothey can-notbeintegratedwithinastrategyaimingtoreducecopperdosage (Dagostinetal.2011).

The bacterialgenus Lysobacter (Christensenand Cook1978) includesspeciesthat maybepotentiallydeveloped as biofungi-cides(Haywardetal.2010).SomeLysobacterstrainshavealready beenshowntoactivelyprotectplantsfromattackbysoil-borne oomycetes. For example L. enzymogenes strain 3.1T8 inhibits mycelial growthof Phytophthora(Ph.)capsici,Pythium(Py.) ulti-mumandPy.aphanidermatuminvitro.Productionofextracellular proteases,lipasesandunidentifiedbiosurfactantsandantifungal moleculesbyL.enzymogenesstrain3.1T8isinvolvedinthecontrol ofinfectionscausedbyPy.aphanidermatumoncucumberplantlets (Folmanetal.2003,2004).TheLysobactersp.strainSB-K88 syn-thesisesXanthobaccinA,BandC,macrocycliclactams,whichare highlyeffectiveinvitroagainstAphanomycescochlioides,Ph. vig-naef.sp.adzukicolaandPy.ultimum(Nakayamaetal.1996)and insuppressingdamping-offofsugarbeetcausedbyPythiumspp.

0944-5013/$–seefrontmatter©2013ElsevierGmbH.Allrightsreserved. http://dx.doi.org/10.1016/j.micres.2013.09.013

(2)

insoil(Hommaetal. 1993;Nakayamaet al.1996).SimilarlyL. capsiciYC5194inhibitsthegrowthofPy.ultimumandother phy-topathogenicfungiinvitro(Parketal.2008).Anothermemberof thisspecies,theL.capsicistrainPG4,reducesmycelialgrowthof severalfungiandoomycetesinvitroand,whenappliedtotomato seeds,controlstomatofootandrootrotcausedbyFusarium oxys-porumf.sp.radicis-lycopersici(Puopoloetal.2010).Recentlyanew L.capsicistrain,namedAZ78,isolatedfromthetobaccoplant rhi-zospherewascharacterised(unpublished).Thus,inordertofinda newbiofungicidewhichcanreplacecopper,weassessedthe effi-cacyofL.capsiciAZ78incontrollingP.viticolaongrapevine.

Nostudiesexistregardingthepossibilityofcombiningbacterial strainswithcopper.Forthefirsttimeweshowthatresistanceto copperisatraitsharedbyLysobacterspeciesandassociatedwith thepresenceofgenescodingforcopperoxidase(copA)and cop-perexportingPIB-typeATPase(ctpA).Wehavedemonstratedthat

resistancetocopperinL.capsiciAZ78allowsthisbacterialstrain tobeappliedwithlowdosesofacopper-basedfungicideandthis combinationledtoanincreaseintheefficacyofgrapevinedowny mildewcontrol.Sincesurvivalofmicrobialbiocontrolagentsinthe plantphyllosphereiscrucialforachievingconsistentactivityandas verylittleisknownaboutthepersistenceofLysobactermembers intheplantphyllosphere(GieslerandYuen1998;Jochumetal. 2006)atthemoment,weevaluatedthistraitinL.capsiciAZ78. Fur-thermore,wealsoassessedL.capsiciAZ78tolerancetostarvation, freezing,mildheatshockandUVlightirradiation,whichare impor-tantcharacteristicsthatmaybehelpfulforthedevelopmentofL. capsiciAZ78asabiofungicideforthecontrolofgrapevinedowny mildew.

2. Materialsandmethods 2.1. Bacterialstrains

Thebacterialstrainsusedinthiswork,L.antibioticusDSM2044, L.enzymogenesDSM2043,L.gummosusDSM6980,L.capsiciYC5194 (typestrain),L.capsiciAZ78,L.capsiciM143 andL.capsiciPG4, werestoredatlengthinglycerol40%at−80◦Candroutinelygrown

onLuriaBertaniAgar(LBA)inPetridishes(90mmdiameter).The L.capsiciAZ78andM143strainswererespectivelyisolatedfrom tobaccoandtomatoplantrhizosphereandidentifiedonthebasis of theirgene coding for 16S rRNA, accordingto theprocedure describedbyPuopoloetal.(2010).Alltheexperimentswerecarried outat27◦Cexceptwhenotherwiseindicated.Ineachexperiment bacterialcellsuspensionswerepreparedaccordingtothefollowing procedure:after72hgrowth,Petridisheswerefloodedwith5ml ofsterilesalinesolution(0.85%NaCl)andcellswerescrapedfrom themediumsurfaceusingsterilespatulas.Bacterialcellswerethen collectedinsterile15mltubes.Bacterialcellsuspensionswere cen-trifuged(10,000rpm,5min)andpelletsweresuspendedinsterile distilledwatertoafinalopticaldensityat600nm(AOD600nm)of

0.1correspondingto1×108CFUml−1andusedinallexperiments,

exceptwhenotherwiseindicated.

2.2. EvaluationofresistancetocopperinLysobactermembers ThesurvivalofL.capisiciAZ78andtheotherLysobacterstrains reportedaboveonagarmediumamendedwithcopperions(Cu2+)

wasassessed according to Ritchie and Dittanpongpitch (1991), withsomemodifications.Briefly,volumesofafilter-sterilized cop-per sulphate solution (CuSO4, Sigma) were added to LBA then

poured into Petri dishes in order to obtainthe following final concentrations of CuSO4: 100, 200, 300, 400 and 500␮gml−1.

Foreachcopperconcentration,threePetridisheswerespot inoc-ulated withthree drops (30␮l) of a Lysobacter cell suspension

andplateswereincubatedfor72h. Thedevelopmentof macro-coloniesonthemediumreflectedtheabilityofLysobacterstrains totolerateincreasingly highcopperconcentrations(Ritchieand Dittanpongpitch1991).

TofurthercharacterisethelevelofresistanceofL.capsiciAZ78 tocopper,100␮lofaserialdilution(10−1to10−7)ofthecell sus-pensionwerespreadontoLBA,amendedwithcoppersulphateat theabovementionedconcentrations.CFUswerecountedafterfour daysof incubation.Threereplicates(Petridishes)of each com-bination(dilutionandcopperconcentration)wereprepared.The survivalratio(SR)wasobtainedbydividingtheCFUsgrownon LBAamendedwithCuSO4 bytheCFUsgrownonLBA(Stockwell etal.2009).

2.3. Detectionofgenesassociatedwithresistancetocopperin Lysobactermembers

ThegenomicDNAofL.capsiciAZ78,L.antibioticusDSM2044, L. enzymogenes DSM 2043, L. gummosus DSM 6980, L. capsici YC5194,L.capsiciM143andL.capsiciPG4wasextractedwitha GenomicDNAisolationKit(Qiagen)andusedasthetemplatein PCRreactionsaimingtodetectthepresenceofgenesinvolvedin resistancetocopperions.ThegenecopAcodingforacopper oxi-dasewasdetectedfollowingthemethoddevelopedbyLejonetal. (2007),while thegenectpA coding forcopperPIB-type ATPases

wasdetectedfollowingthemethodofDelaIglesiaetal.(2010)

andPavissichetal.(2010).TheprimerpairscopAUF(5-GGTGCT GATCATCGCCTG-3)/copAUR(5-GGGCGTCGTTGATACCGT-3), CoprunF2(5-GGSASBTACTGGTRBCAC-3)/CoprunR1(5-TGN GHCATCATSGTRTCRTT-3)andthesamemixturecomposition andtemperaturecyclesasreportedrespectivelybyPavissichetal. (2010)andLejonetal.(2007)wereusedinthePCRreactions.An additionalprimerpair(LctpAF:5-CTGTTGTTCGGTCAGCAC TG-3/LctpAR:5-CGGCGTCCTTGATCAGAATG-3)wasemployed inPCRreactionsforthedetectionofctpAhomologs.InthesePCR reactions,twomicrolitersofgenomicDNAwasusedastemplatein 25␮lreactionincluding1XDreamTaqGreenPCRMastermix (Fer-mentas,Lithuania)and0.2␮MofprimerLctpAF/LctpAR.These PCRreactionsinvolvedafirstcycleat94◦Cfor3minfollowedby 35cyclesof94◦Cfor1min,57◦Cfor1minand72◦Cfor1minwith afinalextensionstepat72◦Cfor5min.

PCR productswere purified using Exo-Sap (Euroclone S.p.a., Italy)accordingtothemanufacturer’sinstructions.Oncepurified, DNAampliconsweresequencedusingBigDyeTerminatorv3.1and theresultingnucleotidesequenceswereanalysedusingBLASTNto findhomologies withDNAsequencesalreadydepositedin Gen-Bank.

2.4. CloningofcopAandctpAgenesfromLysobactercapsiciAZ78 andphylogeneticanalysis

GenecodingforCopAandCtpAwereclonedinL.capsiciAZ78 byusinga setof differentprimerpairs and thePCRconditions reportedinTableS1.PCRproductswerepurified usingExo-Sap (EurocloneS.p.a.,Italy)accordingtothemanufacturer’s instruc-tionsandtheresultingpurifiedDNAfragmentsweresequenced usingBigDye Terminatorv3.1.Once sequenced,thenucleotide sequenceswerethenassembledbyusingthesoftwareGeneious version 6.1.4(Biomatters). Theassembled sequenceswere ana-lysedbyBLASTNsearchtofindhomologieswithDNAsequences inGenBank.

SeveralcopAandctpAgenesbelongingtootherbacterialstrains werecollectedfromGenBank and usedfor phylogenetic analy-ses.ThesesequenceswerealignedwithClustalX(Thompsonetal. 1997)and thealignmentprofilewasthen usedtoestablishthe evolutionarydistancesbyapplyingKimura’stwo-parametermodel

(3)

(Kimura1983)implementedintheMEGA3program(Kumaretal. 2004).Thesamesoftwarewasusedtoconstructthebest phylo-genetictreewiththeneighbour-joiningmethod(SaitouandNei 1987).Bootstrapanalysiswith1000replicateswasperformedto assessconfidencelevelsforthebranches(Felsenstein1985). 2.5. EvaluationofefficacyofLysobactercapsiciAZ78in combinationwithcopperforthecontrolofPlasmoparaviticola

EvaluationoftheabilityofL.capsiciAZ78toprotectgrapevine plantsagainstP.viticolawascarriedoutontwo-year-oldV.vinifera cv. Pinot Noir grapevine plants, grafted onto Kober 5BB. The plantsweregrowninagreenhouseundercontrolledconditions (20±0.5◦C;70±10%relativehumidity,RH)in2.5Lpots contain-ingamixtureofpeatandpumice(3:1)fortwomonths,untilthe plantshadproducedtwoshootswithatleastnineleaveseach.

P.viticolawasisolatedfromanuntreatedvineyardinS.Michele all’Adige(Italy)in2012andmaintainedongrapevineplantsby sub-sequentweeklyinoculations.Toobtainsporangia,plantsshowing oilspotsymptomswerekeptovernightin thedarkat20–21◦C and100%RH.TheinoculumofP.viticolawaspreparedby wash-ingthefreshlysporulatinglesionsontheabaxialleafsurfacewith cold(4–5◦C)distilledwater.Thesporangiasuspensionwasthen adjustedtoaconcentrationof2.5×105sporangiaml−1bycounting

withahaemocytometerunderalightmicroscope.

L.capsiciAZ78wascombinedwithafungicidebasedon cop-perhydroxidecontaining15%ofcopper(Kocide®3000,DuPontde Nemours,USA)at1.25and0.6125gL−1.Kocide®3000wasapplied aloneasapositivecontrolat2.5,1.25and0.6125gL−1 correspond-ingrespectivelyto375,187.5and93.75␮gofcopperml−1.The untreatedcontrolwastreatedwithwater.Treatmentswereapplied onadaxialandabaxialleafsurfacesusingahandsprayer.L.capsici AZ78cellsuspensionwasapplied24and6hbeforeinoculationwith P.viticola.Kocide®3000andwaterwereappliedsixhoursbefore inoculation.Eachplantwassprayedwith40mlofeachtreatment preparation.

P.viticolainoculumwassprayedontotheabaxialsurfaceofeach fullyexpandedleafusingahandsprayer.Inoculatedplantswere subsequentlyincubatedat20±0.5◦C(80–99%RH)inthedarkfor 24h,thenmaintainedat25◦C(60–80%RH)witha16/8-hday/night lightregime.Sevendaysafterinoculation,theplantswere incu-batedovernightinthedarkat20±0.5◦Cand80–99%RHtoinduce sporulation.

Diseaseseverity(percentageofabaxialleafareacoveredwith sporulatinglesions)and diseaseincidence(percentageof leaves withvisiblesporulation)wereevaluatedsevendaysafterP.viticola inoculation.DiseasewasassessedbasedontheEPPOstandardscale (2004)andexpressedaspercentages.Eachtreatmentwascarried outonfiveplants(replicates).

2.6. LysobactercapsiciAZ78persistenceongrapevineleaves TheL.capsiciAZ78populationongrapevineleaveswasassessed onehourbeforeandsevendaysafterP.viticolainoculationusingthe dilutionplatingmethod.Atthesetwotimepoints,5gleafsections werecollectedfromtheplantsineachtreatment.Theywere fur-thercutandputindividuallyinto100mlbottlescontaining45mlof sterilesalinesolutionandshaken(200rpm)for2hatroom temper-ature.Aliquotsofthesuspensionswereseriallydilutedandspread ontothesurfaceofLBAamended withkanamycin(25␮gml−1), sinceL.capsiciAZ78,similarlytoL.capsiciPG4,isnaturallyresistant tothisantibiotic(Puopoloetal.2010).Plateswerethenincubated for72handcoloniesresistanttokanamycinwithL.capsiciAZ78 colonymorphologywerecountedtoestimatethenumberof bac-terialcellsg−1onthegrapevineleaves.

Additionalgreenhouseexperimentswerecarriedouttomonitor L.capsiciAZ78persistenceongrapevineleavesattwoRHlevels. TengrapevineplantsweresprayedwithL.capsiciAZ78suspension followingtheproceduredescribedaboveandmaintainedat25◦C. HalfoftheAZ78-treatedplantswerekeptat70±10%RHandthe otherhalfat90±10%RH.At1,3,6,8and10daysafterapplication, L.capsiciAZ78persistenceongrapevineleaveswasassessedusing thedilutionplatingmethoddescribedabove.

2.7. Biofilmproduction

L.capsiciAZ78wasevaluatedforitsabilitytoformbiofilmon polystyrenemicrotitreplatesusingamodifiedversionofthe pro-ceduredescribedbyMaddulaetal.(2006).Avolumeof1.5␮lof L.capsiciAZ78cellsuspension(1×107CFUml−1)wasinoculated

into150␮lperwellofthreeliquidmedia,LB,King’sB(KB)and NutrientBroth (NB),in 96-well polystyreneplates. Plates were incubatedfor60hwithoutshakingand finalcelldensitieswere determined(AOD600nm).Unattachedcellswereremovedby

invert-ingtheplateandtappingitontoabsorbentpaper.Theremaining adherentbacterialcellswerefixedtotheplatesfor20minat50◦C andthenstainedfor1minwith150␮lperwellofcrystalviolet solu-tion(0.1%insteriledistilledwater).Excessstainwasremovedby invertingtheplate,thenwashingtwicewithdistilledwater(each wash250␮lperwell).Adherentcells weredecolorizedwithan acetone/ethanol(20%/80%)solution(200␮lperwell)for5minto releasethedyeintothesolution.Avolumeof100␮lwas trans-ferredfromeachwelltoanother96-wellplateandtheamount ofdye(proportionaltothedensityofadherentcells)was quan-tified(AOD540nm).A96-wellpolystyreneplatewasusedforeach

timepointinthetime-courseexperiment.Twentywellswerefilled witheachofthetestedgrowthmediaineachmicrotitreplate.L. capsiciAZ78cellsweresimultaneouslyinoculatedintohalfofthe wellscontainingthegrowthmedia,whiletheotherhalfwasnot inoculated(negativecontrol).Celldensityandbiofilmformation weredeterminedattimezeroandat12hintervalsuntil60hafter inoculation(sixtimepoints).AOD540nmvalues(adherentcells)were

dividedbyAOD600nmvalues(bacterialgrowth)inordertoobtainthe

specificbiofilmformationvalue(SBF).

2.8. LysobactercapsiciAZ78tolerancetoenvironmentalstresses Stressresponseexperimentswerecarriedoutonsuspensions of L.capsiciAZ78according toStockwelland Loper (2005)and

Stockwelletal.(2009)withsomemodifications.Briefly,tolerance tostarvationstresswasassessedbyinoculatingL.capsiciAZ78into 15mlsteriletubescontaining5mlofsterilepotassiumphosphate buffer(1mM,pH7)and0.8%NaCltoobtainthefinalconcentration of1×108CFUml−1.Inoculatedtubesweremaintainedat27Cfor

15daysonarotaryshakerat200rpm.L.capsiciAZ78celldensity wasassessedusingthedilutionplatingmethodat0,3,6,9,12and 15dayspost-inoculation.SRwascalculatedbydividingthe popula-tionreachedatdays3,6,9,12and15bythepopulationregistered atthebeginningoftheexperiment(0days).Threetubes(replicates) wereinoculatedateachtimepoint.

Tolerancetomildheatshockwasmeasuredbyincubating ster-ile1.5mlmicrofugetubescontaining100␮lofL.capsiciAZ78cell suspensionfor20minatthefollowingtemperatures:30,33,36, 39and42◦C.Afterthisperiodoftime,avolumeof900␮lof ster-ilepotassiumphosphatebuffer(1mM,pH7)wasaddedandthe suspensionwasmixedinavortexfor30spriortodilution plat-ing.SRwascalculatedbydividingtheL.capsiciAZ78population afterexposuretoeachtemperaturebythepopulationafter expo-sureto27◦C.Threemicrofugetubes(replicates)wereusedforeach temperature.

(4)

Tolerance to freezing was assessed by transferring 100␮l aliquots of L. capsici AZ78 cell suspension into sterile 1.5ml microfugetubesthatweremaintainedat−20◦Cfor24h.The

via-bilityofL.capsiciAZ78cellswasassessedat6,12,18and24h. Atthesetimepoints,a volumeofsterile900␮lof10mM phos-phatebuffer(pH7)wasaddedtoeachtubeimmediatelyafterbeing removedfromthefreezer.Samplesweregentlymixedby pipet-tingandseriallydilutedinsterilesalinesolution(10−1 to10−7). Volumesof100␮lofthesedilutionswerespreadontoLBAand enu-merablecolonieswerecountedafterfourdaysofincubation.Three microfugetubes(replicates)wereusedforeachtimepoint.SRwas calculatedbydividingthepopulationafterexposureto−20◦Cby

thepopulationwhichwasnotexposedtofreezing.

Inordertoevaluatetolerancetoultravioletirradiation,dilutions from10−1 to10−7ofL.capsiciAZ78cellsuspensionwerespread ontoLBAandimmediatelyexposedtoUVirradiation(254nm)at thefollowingdoses:20,40,60,80and100Jm−2.Following expo-sure,plateswereincubatedinthedarkforfourdays,afterwhich colonyformingunitswerecounted.Threereplicates(Petridishes) wereusedforeachdilution.SRwascalculatedbydividingthe popu-lationafterexposuretoUVirradiationbythepopulationofL.capsici AZ78cellswhichwerenotexposedtoUV.

2.9. Statisticalanalysis

Each experiment was carried out twice, except theefficacy trialinthegreenhouse,whichwascarriedoutthreetimes.Asthe experiment factorwasnot significant,thedata oftherepeated experimentswerepooledand analysedbyANOVAusing Statis-tica7.1(StatSoft,Tulsa,OK,USA)andmeanswerecomparedwith Tukey’stest(˛=0.01).SRvaluesanddiseaseincidenceandseverity werelog10andarcsintransformedbeforehand.

3. Results

3.1. EvaluationofresistancetocopperofLysobactercapsiciAZ78 anddetectionandcloningofgenesassociatedwithresistanceto copper

PhylogeneticrelationsamongtheLysobacterstrainsusedinthis workaccordingtoanalysisoftheir16SrRNAgenesarereported inFig.S1.During thiswork,thesebacterialstrainswere evalu-atedfortheresistancetocopper.WhenspottedontoLBAamended withthismetalatconcentrationsrangingfrom100to500␮gml−1 bothL.capsiciAZ78andalltheremainingLysobacterstrains devel-opedmacrocolonies.AmendmentoftheLBAwithcoppersulphate upto300␮gml−1 didnotaffectthesurvivalofL.capsiciAZ78.A slightdecreaseinSRwasnoticedat400␮gml−1 ofcopper(log value−0.42±0.16),while a tenfoldreduction waspresent at a concentrationof500␮gml−1 (Fig.1).L.capsiciAZ78released a brownpigmentintothemediumwhengrownonLBAamended withCuSO4at400and500␮gml−1concentrations.Thereleaseof

abrownpigmentwasalsoobservedinthecaseofL.capsiciM143, butnotfortheotherLysobacterstrainsevaluated(Fig.2).

Anucleotideregionof≈1000bpwasamplifiedbyusingthe primerpairspecificforcopA(CopRunF2/R1)geneinallthe Lysobac-terstrains,theresultingnucleotidesequencesshowedthehighest sequenceidentitywiththegenecodingforacopperoxidasefrom thecompletegenomeofthebacterialstrainsPseudoxanthomonas suwonensis11-1,StenotrophomonasmalthophiliaD457andJV3.The partialsequencesofcopAgenefromLysobacter memberstested in this workformed two clusters, one containingsequences of L.antibioticusand L.capsicistrainsandtheothercontainingthe sequencesfromL.enzymogenesandL.gummosusstrains(Fig.S2A).

Fig.1.LysobactercapsiciAZ78resistancetocopperionsatdifferentconcentrations. AZ78resistancetocopperionsisexpressedasthelogarithmicvalueofthe sur-vivalratio(SRlog).Survivalratio(SR)wascalculatedastheratiooftheAZ78CFU developedonLBAamendedwithcoppersulphateatdifferentconcentrationstothe AZ78CFUdevelopedonLBA.Pointswiththesamelettersdonotdiffersignificantly accordingtoTukey’stest(˛=0.01).

PCRreactionsusingprimerpairCopAUF/RtodetecttheDNA region associated withthe copperPIB-type ATPase resulted in

amplificationofan726bpampliconinL.capsiciAZ78only,which showedthehighest sequenceidentityvaluewiththectpA gene fromthecompletegenomeofP.suwonensisstrain11-1.ThectpA gene from P.suwonensins strain 11-1 wasthus used to design anotherprimerpair(LctpAF/R)inordertodetectthepresenceof thectpAgeneinallLysobacterstrains.Theuseofthisnewprimer pairallowedamplificationofan840bpregionofthectpAgenein alltheLysobacterstrainsusedinthiswork.OnthebasisofBlastN analyses, the amplicons showed the highest sequence identity withthegenecodingforacopperPIB-typeATPasefrombacterial

strainsBurkholderiagladioliBSR3,MethylibiumpetroleiphylumPM1 andP.suwonensisstrain11-1.AllctpAsequencesoriginatedfrom Lysobacterstrainswerelocatedinasingleclusterwiththeexclusive exceptionofthectpAsequenceofL.antibioticusDSM2044,which clusteredwithB.vietnamiensisG4(Fig.S2B).

Onthebasisofsequenceidenty,newprimerpairsweredesigned inordertoobtainthecompletenucleotidesequenceofcopAand ctpAfromL.capsiciAZ78.Oncedeterminedthecompletenucleotide sequences,phylogeneticanalysisofthesetwogenesindicatedthat thecopAsequenceofL.capsiciAZ78clusteredwithgenehomologs from Azotobacter vinelandi strain CA6, Pseudomonas fluorescens strainPfO-1andP.stutzeristrainCCUG29243,bacterialspeciesthat arephylogeneticallydistantfromthegenusLysobacter(Fig.3A). Similarly,thectpAgenesequencefromL.capsiciAZ78was cluster-ingwithgenehomologsfromtheB.cenocepaciastrainJ2315and theB.gladiolistrainABSR3andwasdistantfromctpAhomologs of closely related bacterial genera,such as Pseudoxanthomonas, StenotrophomonasandXanthomonas(Fig.3B).

3.2. EvaluationoftheefficacyofLysobactercapsiciAZ78in combinationwithcopperforthecontrolofPlasmoparaviticolaon grapevine

Inthelight oftheresultsobtainedinvitro,theefficacyofL. capsiciAZ78incontrollingP.viticolawasevaluatedaloneandin combinationwithalow doseof acopper-basedfungicide (cop-perhydroxide),undercontrolledconditions(greenhouse).Allthe concentrationsofcopperhydroxideand L.capsiciAZ78reduced incidenceofdownymildewascomparedtotheuntreatedcontrol. Incidencerangedfrom63±16% to73±11%(average±standard

(5)

Fig.2.ReleaseofabrownpigmentinLBAgrowthmediumamendedwithCuSO4400␮gml−1.(A)LysobactercapsiciYC5194;(B)LysobactercapsiciAZ78;(C)Lysobactercapsici

M143.

deviation)incoppertreatments,andwas63±9%and100±3%inL. capsiciAZ78treatedplantsandtheuntreatedcontrolrespectively. ThecombinationofL.capsiciAZ78withcopperfurtherreducedthe incidenceofthedisease(30±14%and39±13%withtheadditionof 1.25and0.6250gL−1),indicatinganadditiveeffect(Table1).L. cap-siciAZ78stronglyreducedtheseverityofdownymildewonleaves, similarlytocopperatallthetested dosages.Inparticularwhen plantsweretreatedwithL.capsiciAZ78severitywas5%,whereas itwas67%intheuntreatedcontrol(Table1).ThecombinationofL. capsiciAZ78withcopperdidnotfurtherreduceseverity,probably becauseitwasalreadyverylow.

3.3. SurvivalofLysobactercapsiciAZ78cellsinthegrapevine phyllosphere

Atneitherofthetwotimepoints(1hbeforeand7daysafter pathogen inoculation) L. capsici AZ78 cells were isolated from untreatedcontrolplantsortreatedwiththedifferentcopperdoses alone,buttheywererecoveredfromleavesofplantstreatedwith thebacterium.Thebacterialcellpopulationrecoveredfromleaves collectedonehourbeforeP.viticolainoculationwas5.07±0.16 log10CFUg−1ofleaf,whileattheendoftrialtheAZ78cell

pop-ulationreached5.22±0.02log10CFUg−1ofleaf.Inplantstreated

withacombinationofL.capsiciAZ78andcopper,areductionofone orderofmagnitudeinthebacteriumpopulationsizewasrecorded: attheendoftheexperimentsthepopulationwas4.36±0.12and at4.28±0.14log10CFUg−1ofleafonplantstreatedwithcopperat

dosesof1.25andat0.6125gL−1respectively.

In the experiments assessing L. capsici AZ78persistence on grapevineleavesovertendays,L.capsiciAZ78wasrecoveredone dayafteritsapplicationat5.41±0.07and6.57±0.50log10CFUg−1

ofleafforplantskeptatnormal(60–80%)andhigh(80–99%) rel-ativehumidityrespectively(Fig.4).AZ78persistedataconstant

Table1

BiocontrolofPlasmoparaviticolathroughprophylacticapplicationofLysobacter cap-siciAZ78ongrapevineleaves.Diseaseincidenceisexpressedasthepercentageof symptomaticleaveswhilediseaseseverityisexpressedasthepercentageofleaf areacoveredwithsporulatinglesions.

Treatments Disease incidenceb (%) Disease severityb (%) Untreateda 100±3a 67±27a Kocide®3000(2.5gL−1) 63±16b 3±2b Kocide®3000(1.25gL−1) 66±10b 8±22b Kocide®3000(0.6125gL−1) 73±11b 5±5b

L.capsiciAZ78+Kocide®3000(1.25gL−1) 30±14c 2±2b L.capsiciAZ78+Kocide®3000(0.6125gL−1) 39±13c 1±1b

L.capsiciAZ78 63±9b 5±5b

aUntreated:plantstreatedwithwateronly.

bMeanvalues±standarddeviationsarereportedforeachtreatment.Thesame

lettersindicatevalueswhichdonotdiffersignificantlyaccordingtoTukey’stest (˛=0.01).Dataoriginatingfromthreeindependentexperimentswerepooled.

ratefor10daysonplantsexposedtohighhumidity(6.47±0.16 log10CFUg−1ofleafaftertendays)whileatnormalhumiditythe

AZ78populationwasconstantuntilthe6thdaypost-inoculation andthendecreasedto2.39±0.04log10CFUg−1ofleafafter8days;

AZ78wasstillpresentaftertendays,butatalowconcentration (2.24±0.24log10CFUg−1ofleaf).

3.4. AssessmentoftheabilityofLysobactercapsiciAZ78toform biofilmandresistenvironmentalstress

TheabilityofL.capsiciAZ78toformbiofilmoninertsurfaces wasinvestigatedinthiswork.L.capsiciAZ78grewdifferentlyin thethreemediausedinthebiofilmproductionassayandKBwas foundtobethemedium sustainingthehighest cellproduction (Fig.5A).Bacterialgrowthintheothertwoliquidmedia(LBandNB), wasalmostidenticalandafter60hL.capsiciAZ78reachedsimilar AOD600nmvalues(Fig.5A).Nonetheless,atthistimepointtheSBF

valueregisteredinNBwashigherthanthequantityreachedinLB (Fig.4B).BiofilmwasnotproducedinLBuntil48handitattainedits highestvalue(SBF=2.62±0.04)after60h;L.capsiciAZ78startedto formbiofilmbetween24and36hinNB(Fig.5B);thehighestSBF valueinKBwasreachedat12handthereafterdecreased(Fig.5B). WealsowishedtoinvestigatewhethertheabilityofL.capsici AZ78topersistongrapevineleaveswasassociatedwithresistance todifferentabioticstresses,soaseriesofexperimentswerecarried outinvitro.Intheexperimentsaimedatassessingresistanceto starvation,whenL.capsiciAZ78wasincubatedinphosphatebuffer andtheconcentrationwasmonitoredoverfifteendays,its viabil-ityslowlydecreasedandbytheendoftheexperiments(15thday) thetotal reduction was0.70±0.13 log10 (Fig.S3A). Whenmild

heatshockwasinducedbyexposingL.capsiciAZ78cell suspen-siontotemperaturesrangingfrom30to42◦Cfortwentyminutes, exposureto30and33◦Cdidnotresultinanylossofcellviability, whereasexposureto36,39and42◦Creducedviabilitybylog10

−0.19±0.06,−0.12±0.08and−0.35±0.18respectively(Fig.S3B). Incubationat−20◦C slightlydecreasedtheviabilityofL.capsici

AZ78cells,althoughbylessthanoneorderofmagnitudeatallthe timepointsinthisexperiment,andthedifferenceswerenot signif-icant(Fig.6A).WithrespecttoL.capsiciAZ78tolerancetoUVlight irradiation,thesurvivalratiodrasticallydecreasedwhenthestrain wasexposedto60,80and100Jm−2,thereductionbeingalmost six-tenfold,whileexposureto20and40Jm−2reducedviabilityby log10−1andlog10−3respectively(Fig.6B).

4. Discussion

Identificationofnewmicroorganismsthatcaneffectively con-trolP. viticola mayplay an important role in the development of biofungicides helping to reduce the use of copper against downy mildew on organic grapevines. Previous studies have shownthatotherLysobacterstrainscancontrolsoil-borneplant

(6)

Fig.3.PhylogenetictreesderivingfromanalysisofthecopA(A)andctpA(B)genefromLysobactercapsiciAZ78.Thetreeswereobtainedusingtheneighbour-joiningmethod andevolutionarydistanceswerecalculatedusingKimuratwoparametermodel(Kimura1983).Bootstrapvalues(Felsenstein1985)higherthan50areshownatthebranch points.

(7)

Fig.4. LysobactercapsiciAZ78persistenceongrapevineleaves.Thelinewith trian-glesrepresentspersistenceonplantsmaintainedat25◦Cwith70±10%RH;theline

withsquaresrepresentspersistenceonplantsmaintainedat25◦Cwith90±10%

RH.Bacterialcelldensityisexpressedaslog10CFUg−1ofleaf.Pointswiththesame

lettersdonotdiffersignificantlyaccordingtoTukey’stest(˛=0.01).adpi=dayspost

inoculation.

pathogenicoomycetessuchasA.choclioidesandPy. aphaniderma-tum(Nakayamaetal.1996;Folmanetal.2001,2003,2004;Islam etal. 2005).However tothebestof ourknowledge,this isthe firstevidenceofthebiologicalcontrolofgrapevinedownymildew achievedthroughtheapplicationofamemberofgenusLysobacter. Moreover,L.capsiciAZ78isoneofthefewbacterialstrains identi-fiedsofarshowingefficacyagainstthisdisease(Tilcheretal.1994, 2002).Interestingly,applicationofL.capsiciAZ78cellstograpevine leavesresultedinareductionofP.viticolaincidenceandseverity comparabletotheapplicationofacopper-basedfungicide.Inorder

Fig.5.AbilityofLysobactercapsiciAZ78toproducebiofilmindifferentgrowth media.(A)BacterialcelldensitywasmonitoredbyscoringtheAOD600nmvalueevery

twelvehours.(B)SpecificBiofilmFormation(SBF)wascalculatedastheratioof adherentcells(AOD540nmvalue)tobacterialcelldensity(AOD600nmvalue).The

liq-uidmediawere:KB(triangles),LB(squares)andNB(circles).Pointswiththesame lettersdonotdiffersignificantlyaccordingtoTukey’stest(˛=0.01).

Fig.6.LysobactercapsiciAZ78tolerancetoabioticstress.(A)Toleranceto24h expo-sureto−20◦C.(B)SurvivalofAZ78cellsexposedtoincreasingUVlightirradiation.

TheabilityofAZ78totolerateabioticstressisexpressedasthelogarithmicvalueof thesurvivalratio(SRlog).Survivalratio(SR)wascalculatedastheratioofAZ78 treatedcellstoAZ78untreatedcells.Pointswiththesamelettersdonotdiffer significantlyaccordingtoTukey’stest(˛=0.01).

todevelopacommercialbiofungicidefutureresearchshould con-firmthehighlevelofefficacyattainedundercontrolledconditions andidentifythemechanismofactionofL.capsiciAZ78involvedin controllinggrapevinedownymildew.

However,buildingonthisknowledge,ourstudyprovidesthe firstevidenceofcopper-resistanceinmembersoftheLysobacter genus.Thisbiologicaltraitisprobablyassociatedwiththe pres-enceofnucleotideregionshavinghighsequencehomologywith genescodingforcopperoxidase(copA)andcopperPIB-typeATPase

(ctpA).Thelatterproteinbelongstotheheavymetaltransporter ATPases,ubiquitousmembraneproteinsdeputedtotheeffluxof copperionsinvariousmicroorganisms(Fuetal.1995;Geetal. 1995;PetersenandMøller2000;Arguelloetal.2007),while cop-peroxidaseisdeputed totheoxidation ofcopperionsandthis activityprotectsperiplasmicenzymesfromcopper-induced dam-age(Solomonetal.1996;GrassandRensing2001).Escherichiacoli strainssharingthemulti-copperoxidasegene(pcoA)onthe plas-midpRJ1004produced browncolonies whengrown ongrowth mediacontainingCuSO4(TetazandLuke1983).Similarly,L.capsici

AZ78andM143releasedabrownpigmentonLBAplatesamended withCuSO4400␮gml−1althoughthisbehaviourwasnotobserved

inthestrainL.capsiciYC5194.

ItisworthnotingthatcopAandctpAgenesfromL.capsiciAZ78 clusteredwiththegenesofbacterialstrainsbelongingtospecies thatarephylogeneticallydistantfromthegenusLysobacter(i.e.P.

(8)

fluorescens).BothcopAandctpAcouldbelocatedonthebacterial chromosomeoronplasmids,asinthecaseofcopABCDoperoninP. syringae,containedintheplasmidpPT23D(ChaandCooksey1991). Fromanecologicalpointofview,itwouldbeofgreatinterestto assesswhethercopAandctpAinL.capsiciAZ78arelocatedonthe chromosomeoronplasmids,inordertoassesswhetherhorizontal genetransfereventshaveoccurredbetweenaLysobactermember andotherbacterialspecies.

Ontheotherhandandfromapracticalpointofview,resistance tocopperisa highlydesirabletrait, becausecopperisroutinely applied in the control of P. viticola in organic agriculture, and theexistenceofabiofungicidewhichtoleratescopperionsopens upthepossibilityofcombiningitwithlow dosesofcopperand graduallyreducingitsuse(Dagostinetal.2011).Wefoundthat concurrentapplicationwithL.capsiciAZ78wasmoreeffectiveas comparedtotheapplication ofL.capsici AZ78or copperalone. Moreover,theapplicationofcoppertoL.capsiciAZ78-treatedplants reducedthebacterialpopulationbyonlyoneorderofmagnitude, showingthatthedecreaseincellviabilityobservedinvitrois par-tiallyconservedinplanta.

TheL.capsiciAZ78populationsongrapevineleavesunder con-trolledconditionsweresimilaratthebeginningand attheend oftheexperiments.Inconcurrentexperimentsaimedat monitor-ingthepersistence ofL.capsici AZ78cellsongrapevine leaves, we showed that the L. capsici AZ78 populationremained con-stantlyhighuntilsixdaysafterapplicationonplantsmaintained at25◦Cwitha60–80%RH.However,thereweresome discrepan-ciesbetweenthedegreeofpersistencemeasuredinthegreenhouse efficacytrialandthat measuredin theexperimentsspecifically designedtoassessL.capsiciAZ78persistence.Inthelatter exper-iments,theL.capsiciAZ78populationdecreasedover8daysfrom 105to102cellspergramofleaf,whileafterthesameperiod105

cellspergramofleafwererecoveredfromplantsinthegreenhouse efficacytrials.Thisdiscrepancywasprobablyduetothedifferent conditionsthebacteriumencounteredduringthetwoexperiments. Whilehumidityremainedconstantoverthetendaysofthe per-sistenceexperiments,duringthebiocontrolexperimentsrelative humiditywasincreasedtwice, upon infectionand upon sporu-lationofP.viticola.Thishypothesisisconfirmedbytheconstant persistenceofL.capsiciAZ78onplantsmaintainedathighHRfor theentiredurationof thepersistenceexperiments.Humidityis knowntoinfluencebacterialgrowth(Leben1988;Wilsonetal. 1999;Cooleyetal.2003),sohighhumiditycontributestowards sustainingalargeL.capsiciAZ78populationonleaves.

ItisalsoworthnotingthatL.capsiciAZ78surviveswellinthe grapevinephyllosphere,althoughitwasisolatedfromthe rhizo-sphereoftobaccoplants.Atthemoment,mostoftheLysobacter strainsevaluatedforbiologicalcontrolofplantdiseaseshavebeen isolatedfromthesoilorrhizosphereofcultivatedplants,withthe singleexceptionofL.enzymogenesC3,whichwasobtainedfrom thephylloplaneofKentuckybluegrass (GieslerandYuen 1998). Interestingly,onlythis strain hasbeenevaluatedfor biocontrol ofplantpathogens attackingpartsoftheplantthatgrowabove ground (Kilic-Ekici and Yuen 2003; Kobayashiand Yuen 2005; Jochum et al. 2006), while most of theLysobacter strains have beenevaluatedforbiocontrolofsoil-bornepathogenicfungiand oomycetes(Nakayama et al.1996; Rondon etal. 1999;Folman etal.2003;Postmaetal.2008;Puopoloetal.2010).Theresults ofourstudysuggestthatsoil-borneLysobacterspeciesmightalso beassessed,atleastundercontrolledconditions,forbiological con-trolofpathogenicmicroorganismsattackingtheaerialpartsofthe plants.

LittleisknownaboutbiofilmformationbyLysobacterstrains.

Islametal.(2005)showedthatstrainSB-K88formsdense micro-coloniesontherhizoplaneofsugarbeetplantletsgrownfromseeds coatedwiththis bacteriumand theyalso reportedthatSB-K88

adherestotheplantsurfacebyformingfimbriae.Sinceitiswell documentedthat bacteriasurvive onplantsurfacesbyforming largeaggregatesindicatedasbiofilm(Morrisetal.1997;Dullaand Lindow2008)andbecauseofthehighpersistenceofL.capsiciAZ78 ontheleafsurface,weinvestigateditsbiofilmability.Theabilityof L.capsiciAZ78toformbiofilmwastestedoninertsurfacesandour resultsshowedforthefirsttimethataL.capsicistraincandothis, atleastinvitro.However,thisabilitydependedonthecomposition ofthegrowthmedium,asshownbythefactthattheKBmedium sustaineddevelopmentofthegreatestquantityofbacterialcells, withouthoweverleadingtotheformationofbiofilm.

Since KB contains low amounts of available iron ions (King etal.1954),itisreasonabletoassumethatthismetalaffectsthe formationofbiofilmbyL.capsiciAZ78,asisreportedinother Gram-negativebacteriasuchasAcinetobacterbaumanniiandP.aeruginosa, wherebiofilmformationishighlyinfluencedbyironsource, con-centrationand bioavailability (Tomaraset al.2003; Baninetal. 2005).Moreover,ithaspreviouslybeenshownthattheotherL. cap-sicimember,strainPG4,isunabletoproducesiderophoresandthat supplementingtheKBmediumwithFeCl3enhancesits

antibacte-rialproperties(Puopoloetal.2010).Onthebasisofthesedata,we surmisethatironavailabilitymayplayanimportantroleinterms ofpersistenceintheenvironmentandthebiocontrolpotentialofL. capsicimembers.

Whenbacteriaformabiofilmtheybecomemoreresistantto var-iousenvironmentalfactorsthataffecttheirpersistence(Ophirand Gutnick1994;Perrotetal.1998;ElasriandMiller1999).Themost frequentlyinvestigatedlimitingenvironmentalfactorsfor bacte-rialpersistenceinthephyllospherearestarvation,temperatureand exposuretoUVlightirradiation(Wilsonetal.1999;Stockwelletal. 2009).Sincelittleinformationisavailableregardingtheabilityof Lysobacterspeciestosurvivefollowingexposuretothesefactors, weinvestigatedhowAZ78respondstothem.

TheviabilityofL.capsiciAZ78cellswasnotnegativelyaffected bystresscausedbylackofnutrients(starvation)nordidtheysuffer followingexposuretoincreasingtemperatures(mildheatshock). Interestingly,L.capsiciAZ78couldtolerateexposuretoUV irradi-ationandfreezingtemperatures(−20◦C).ThesurvivalratioofL.

capsiciAZ78cellsafterexposuretotheseenvironmentalstresses wascomparablewiththatoftheepiphyticstrainP.fluorescens122 andthesoil-bornestrainP.fluorescensPf5,asreportedbyStockwell etal.(2009).

L.capsiciAZ78cellviabilitywasnotnegativelyaffectedbythe lowestUVirradiationdosetestedinthisstudy(20Jm−2).Sundin and Jacobs (1999) reported that the minimum inhibitory dose fortheUV-sensitivestrainP.aeruginosaPAO1was5Jm−2,from which we can conclude that thesensitivity threshold of strain L.capsiciAZ78ishigherthanthatofasensitivebacterialstrain. Recently,Wangetal.(2013)haveshownthatL.enzymogenesstrain OH11synthesisesa yellowpigment that shows similarity with xanthomonadinproducedbyXanthomonadaceaemembers.These xanthomonadin-likearylpolyenemetaboliteshavebeenshownto beinvolvedintheprotectionofOH11cellsagainstUVirradiation andH2O2(Wangetal.2013),thusshowingforthefirsttimethat

membersoftheLysobactergenushaveevolvedmolecular mecha-nismsassociatedwithresistancetothesefactors.

Theresultspresented hereexplain someaspectsof the biol-ogyand ecology ofL. capsiciAZ78.We show for thefirst time thatresistancetocopperassociatedwiththepresenceofgenes coding for CopA and CtpAis a commonbiological trait infour Lysobacterspeciesandthatatleastonememberofthisbacterial genus,L.capsiciAZ78,cantolerateabioticstressessuchas starva-tion,coldtemperature,mildheatshockandUVirradiation.Allthese characteristicsmakeL.capsiciAZ78asuitablecandidatefor devel-oping newsustainablestrategies for controllingdowny mildew inthegrapevine,sinceitisresistanttocopperandcanestablish

(9)

itselfinthegrapevinephyllosphere,cantolerateenvironmental stressand,mostimportantly,drasticallyreducestheseverityof downymildew.Thenextstepswillbethedevelopmentofa suit-ableformulationforL.capsiciAZ78inordertoevaluateitinopen fieldconditionsandtoassessitsefficacyagainstdownymildewin vineyards,incombinationoralternationwithlowdosesof copper-basedfungicides.

Acknowledgements

The authors wish to thank Dr. D. Angeli for the fruitful discussion and D. Ress for technical assistance. The present researchwassupportedby“ENVIROCHANGE”projectfundedby theAutonomousProvinceofTrentoandtheEU-projectCO-FREE (themeKBBE.2011.1.2-06,grantagreementnumber289497).

AppendixA. Supplementarydata

Supplementarymaterial relatedto thisarticle canbe found, in the online version, at http://dx.doi.org/10.1016/j.micres. 2013.09.013.

References

ArguelloJM,ErenE,Gonzalez-GuerreroM.Thestructureandfunctionofheavymetal transportPIB-ATPases.Biometals2007;20:233–48.

BaninE,VasilML,GreenbergEP.IronandPseudomonasaeruginosabiofilmformation. ProcNatlAcadSciUSA2005;102:11076–81.

ChaJS,CookseyDA.CopperreistanceinPseudomonassyringaemediatedby periplas-micandoutermembraneproteins.ProcNatlAcadSciUSA1991;88:8915–9. ChristensenP,CookFD.Lysobacter,anewgenusofnonfruiting,glidingbacteriawith

ahighbaseratio.IntJSystBacteriol1978;28:367–93.

CooleyMB,MillerWG,MandrellRE.ColonizationofArabidopsisthaliana with SalmonellaentericaandenterohemorrhagicEscherichiacoliO157:H7and com-petitionbyEnterobacterasburiae.ApplEnvironMicrobiol2003;69:4915–26. DagostinS,SchaererHJ,PertotI,TammL.Aretherealternativestocopperfor

control-linggrapevinedownymildewinorganicviticulture?CropProt2011;30:776–88. DelaIglesiaR,Valenzuela-HerediaD,PavissichJP,FreyhofferS,AndradeS,Correa JA,etal.Novelpolymerasechainreactionprimersforthespecificdetectionof bacterialcopperP-typeATPasesgenesequencesinenvironmentalisolatesand metagenomicDNA.LettApplMicrobiol2010;50:552–62.

DullaG,LindowSE.QuorumsizeofPseudomonassyringaeissmallanddictatedby wateravailabilityontheleafsurface.ProcNatlAcadSciUSA2008;105:3082–7. ElasriMO,MillerRV.StudyoftheresponseofabiofilmbacterialcommunitytoUV

radiation.ApplEnvironMicrobiol1999;65:2025–31.

EPPO.EPPOStandardsPP1/31(3).Efficacyevaluationoffungicides&bactericides. 2004;2:37–9.

FelsensteinJ.Confidencelimitsonphylogenies:anapproachusingbootstrap. Evo-lution1985;39:783–91.

FolmanLB,PostmaJ,VanVeenJA.Ecophysiologicalcharacterizationofrhizosphere bacterialcommunitiesatdifferentrootlocationsand plantdevelopmental stagesofcucumbergrownonrockwool.MicrobEcol2001;42:586–97. FolmanLB,PostmaJ,vanVeenJA.CharacterizationofLysobacterenzymogenes

(Chris-tensenandCook1978)strain3.1T8,apowerfulantagonistoffungaldiseasesof cucumber.MicrobiolRes2003;158:107–15.

FolmanLB,DeKleinMJEM,PostmaJ,vanVeenJA.Productionofantifungal com-poundsbyLysobacterenzymogenesstrain3.1T8underdifferentconditionsin relationtoitsefficacyasabiocontrolagentofPythiumaphanidermatumin cucumber.BiolControl2004;31:145–54.

FuD,BeelerTJ,DunnTM.Sequence,mappinganddisruptionofCCC2,agene thatcross-complementstheCa(2+)-sensitivephenotypeofcsg1mutantsand

encodesa P-typeATPasebelonging tothe Cu(2+)-ATPase subfamily.Yeast

1995;11:283–92.

GeZ,HiratuskaK,TaylorDE.Nucleotidesequenceandmutationalanalysisindicate thattwoHelicobacterpylorigenesencodeaP-typeATPaseandcation-binding proteinassociatedwithcoppertransport.MolMicrobiol1995;15:97–106. GesslerC,PertotI,PerazzolliM.Plasmoparaviticola:areviewofknowledgeondowny

mildewofgrapevineandeffectivediseasemanagement.PhytopatholMediterr 2011;50:3–44.

GieslerLJ,YuenGY.EvaluationofStenotrophomonasmaltophiliastrainC3for bio-controlofbrownpatchdisease.CropProt1998;17:509–13.

GrassG,RensingC.CueOisamulti-copperoxidasethatconferscoppertolerancein Escherichiacoli.BiochemBiophysResCommun2001;286:902–8.

HaywardAC,FeganN,FeganM,StirlingGR.StenotrophomonasandLysobacter: ubiq-uitousplant-associatedgamma-proteobacteriaofdevelopingsignificancein appliedmicrobiology.JApplMicrobiol2010;108:756–70.

HommaY,UchinoH,KanzawaK,NakayamaT,SayamaM.Suppressionofsugarbeet damping-offandproductionofantagonisticsubstancesbystrainsof rhizobac-teria.AnnPhytopatholSocJpn1993;59:282.

IslamMT,HashidokoY,DeoraA,ItoiT,TaharaS.Suppressionofdamping-offdisease inhostplantsbyrhizoplanebacteriumLysobactersp.strainSB-K88islinked toplantcolonizationandantibiosisagainstsoilbornepenosporomycetes.Appl EnvironMicrobiol2005;71:3786–96.

JochumCC,OsborneLE,YuenGY.Fusariumheadblightbiologicalcontrolwith LysobacterenzymogenesstrainC3.BiolControl2006;39:336–44.

Kilic-EkiciO,YuenGY.Inducedresistanceasamechanismofbiologicalcontrolby LysobacterenzymogenesstrainC3.Phytopathology2003;93:1103–10. KimuraM.Theneutraltheoryofmolecularevolution.Cambridge,UK:Cambridge

UniversityPress;1983.

KingEO,WardMK,RaneyDE.Twosimplemediaforthedemonstrationofpyocyanin andfluorescin.JLabClinMed1954;44:301–7.

KobayashiDY,YuenGY.Theroleofclp-regulatedfactorsinantagonismagainst MagnaporthepoaeandbiologicalcontrolofsummerpatchdiseaseofKentucky bluegrassbyLysobacterenzymogenesC3.CanJMicrobiol2005;51:719–23. KomarekM,CadkovaE,ChrastnyV,BordasF,BollingerJ-C.Contaminationof

vine-yardsoilswithfungicides:areviewofenvironmentalandtoxicologicalaspects. EnvironInt2010;36:138–51.

KumarS,TamuraK,NeiM.MEGA3:integratedsoftwareformolecularevolutionary geneticsanalysisandsequencealignment.BriefBioinform2004;5:150–63. LebenC.Relativehumidityandthesurvivalofepiphyticbacteriawithbudsand

leavesofcucumberplants.Phytopathology1988;78:179–85.

LejonDPH,NowakV,BoukoS,PascaultN,MougelC,MartinsJMF,etal.Fingerprinting anddiversityofbacterialcopAgenesinresponsetosoiltypes,soilorganicstatus andcoppercontamination.FEMSMicrobiolEcol2007;61:424–37.

LugtenbergB,KamilovaF.Plant-growth-promotingrhizobacteria.AnnuRev Micro-biol2009;63:541–56.

MaddulaVSRK,ZhangZ,PiersonEA,PiersonLSIII.Quorumsensingandphenazines areinvolvedinbiofilmformationbyPseudomonaschlororaphis(aureofaciens) strain30-84.MicrobEcol2006;52:289–301.

MorrisCE,MonierJM,JacquesMA.Methodsforobservingmicrobialbiofilmsdirectly onleafsurfacesandrecoveringthemforisolationofculturablemicroorganisms. ApplEnvironMicrobiol1997;63:1570–6.

NakayamaT,HommaY,HashidokoY,MizutaniJ,TaharaS.Possibleroleof xan-thobaccinsproducedbyStenotrophomonassp.strainSB-K88insuppressionof sugarbeetdamping-offdisease.ApplEnvironMicrobiol1996;65:4334–9. OphirT,GutnickDL.Aroleforexopolysaccharidesintheprotectionof

microorgan-ismsfromdessication.ApplEnvironMicrobiol1994;60:740–5.

ParkJH,KimR,AslamZ,JeonCO,ChungYR.Lysobactercapsicisp.nov,with antimicro-bialactivity,isolatedfromtherhizosphereofpepper,andemendeddescription ofthegenusLysobacter.IntJSystBacteriol2008;58:387–92.

PavissichJP,MacarenaS,GonzalezB.Sulfatereduction,moleculardiversity,and copperamendmentseffectsinbacterialcommunitiesenrichedfromsediments exposedtocopperminingresidues.EnvironToxicolChem2010;29:256–64. PerrotF,JouenneT,FeuilloleyM,VaudryH,JunterG-A.Gelimmobilizationimproves

survivalofEscherichiacoliundertemperaturestressinnutrient-poornatural water.WaterRes1998;32:3521–6.

PetersenC, MøllerLB. Controlof copperhomeostasisinEscherichia coli bya P-typeATPase,CopAandaMerR-liketranscriptionalactivator,CopR.Gene 2000;261:289–98.

PostmaJ,SchilderMT,BloemJ,vanLeeuwen-HaagsmWK.Soilsuppressivenessand functionaldiversityofthesoilmicroflorainorganicfarmingsystems.SoilBiol Biochem2008;40:2394–406.

Puopolo G, RaioA, Zoina A. Identification and characterization of Lysobacter capsicistrainPG4:anewhealthpromotingrhizobacterium.JPlantPathol 2010;92:159–66.

RitchieDF,DittanpongpitchV.Copper-andstreptomycin-resistantstrainsandhost differentiatedracesofXanthomonascampestrispv.vesicatoriainNorthCarolina. PlantDis1991;75:733–6.

RondonMR,BorleeBR,BradySF,GrossJA,GuenthnerBJ,ManskeB,etal. Bio-controlandrootcolonizationbytheglidingbacteriumLysobacterantibioticus. Phytopathology1999;89:S66.

SaitouN,NeiM.Theneighbor-joiningmethod:anewmethodforreconstructing phylogenetictrees.MolBiolEvol1987;4:406–25.

SolomonEI,SundaramUM,MachonkinTE.Multicopperoxidasesandoxygenases. ChemRev1996;96:2563–606.

Stockwell VO, Loper JE. The sigma factor RpoS is required for stress toler-anceandenvironmentalfitnessofPseudomonasfluorescensPf-5.Microbiology 2005;151:3001–9.

StockwellVO,HockettK,LoperJE.RoleofRpoSinstresstoleranceand environmen-talfitnessofthephyllospherebacteriumPseudomonasfluorescensstrain122. Phytopathology2009;99:689–95.

SundinGW,JacobsJL.Ultravioletradiation(UVR)sensitivityanalysisandUVR sur-vivalstrategiesofabacterialcommunityfromthephyllosphereoffield-grown peanut(ArachishypogeaeL.).MicrobEcol1999;38:27–38.

TetazTJ,LukeRK.Plasmid-controlledresistancetocopperinEscherichiacoli.J Bac-teriol1983;154:1263–8.

ThompsonJD,GibsonTJ,PlewniakF,JeanmouginF,HigginDG.TheCLUSTALX Win-dowsinterface:flexiblestrategiesformultiplesequencealignmentaidedby qualityanalysistools.NucleicAcidRes1997;25:4876–82.

TilcherR,WolfGA,BrendelG.Effectsofmicrobialantagonistsonleaf infesta-tion,sporangiagerminationandzoosporebehaviourofPlasmoparaviticola

(10)

(Berk.&Curtis)Berl.&deToni.Mededelingen–FaculteitLandbouwkundige enToegepasteBiologischeWetenschappen.UniversiteitGent1994;59:919–29. TilcherR,SchmidtC,LorenzD,WolfGA.Abouttheuseofantagonistic bacte-riaandfungi.In:BoosM,editor.10thInternationalconferenceoncultivation techniqueandphytopathologicalproblemsinorganicfruit-growingand viti-culture.Proceedingstotheconferencefrom4thto7thFebruary2002;2002.p. 142–5.

TomarasAP,DorseyCW,EdelmannRE,ActisLA.Attachmenttoandbiofilm for-mationonabioticsurfacesbyAcinetobacterbaumannii:involvementofanovel chaperone-usherpiliassemblysystem.Microbiology2003;149:3473–84. WangY, QianG,LiY,WangY,WangY, WrightS,etal. Biosynthetic

mecha-nismforsunscreensofthebiocontrolagentLysobacterenzymogenes.PlosOne 2013;8:e66633.

WightwickA,MollahM,PartingtonD,AllinsonG.Copperfungicideresiduesin Australianvineyardsoils.JAgricFoodChem2008;56:2457–64.

WilsonM,HiranoSS,LindowSE.Locationandsurvivalofleaf-associatedbacteriain relationtopathogenicityandpotentialforgrowthwithintheleaf.ApplEnviron Microbiol1999;65:1435–43.

WongFP,BurrHN,WilcoxWF.HeterothallisminPlasmoparaviticola.PlantPathol 2001;50:427–32.

Riferimenti

Documenti correlati

The Wide Field Camera 3 (WFC3) yields near-infrared spectra of the cluster cores covering the wavelength range 0.81-1.69µm through grisms G102 and G141, while the

Based on the experimental data, we propose a methodology for the measurement of the CBBP triplet-sensitization rate constants from steady-state irradiation

In the project MultiMa (Multiple solutions for mathematics teaching oriented toward students’ self-regulation), we investigated the effects of prompting students to use

4 6 A ambito disciplinare environmental humanities (studi umanistici ambientali) autrice Daniela Fargione agency “anthropos” Homo sapiens...

alla passata sconfitta e spiega che i Persiani, pur scoraggiati dalla sconfitta in mare, ritenevano ancora di essere superiori sulla terraferma (Legrand 1953 che

thesis, the new deep learning architecture ConvSG based on stacked generalization is presented, introducing novel concepts for deep learning in precipitation nowcasting: ConvSG

In Europe today, we deal with a threefold concept of citizenship and we need to understand how it is built up in order to assess some recent trends in citizenship, third

This chapter provides a survey of methods designed mainly to assess core aspects or facets of play such as playfulness, the environment of play and the child’s play style, rather