• Non ci sono risultati.

Molecular survey on the occurrence of arthropod-borne pathogens in wild brown hares (Lepus europaeus) from Central Italy

N/A
N/A
Protected

Academic year: 2021

Condividi "Molecular survey on the occurrence of arthropod-borne pathogens in wild brown hares (Lepus europaeus) from Central Italy"

Copied!
15
0
0

Testo completo

(1)

1 Molecular survey on the occurrence of arthropod-borne pathogens in wild brown hares (Lepus europaeus) from Central Italy

Guido Rocchigiani, Valentina Virginia Ebani*, Simona Nardoni, Fabrizio Bertelloni, Alice Bascherini, Alessandro Leoni, Francesca Mancianti, Alessandro Poli

Department of Veterinary Science, University of Pisa, viale delle Piagge 2, 56124 Pisa, Italy

*Corresponding author:

Valentina Virginia Ebani, DVM, PhD Department of Veterinary Science University of Pisa

Viale delle Piagge 2, 56124, Pisa, Italy

valentina.virginia.ebani@unipi.it

Authors:

Guido Rocchigiani guido.rocchigiani.g@gmail.com

Simona Nardoni simona.nardoni@unipi.it

Fabrizio Bertelloni fabrizio.bertelloni@vet.unipi.it

Alice Bascherini aliwonder@email.it

Alessandro Leoni alessandro.leony@libero.it Francesca Mancianti francesca.mancianti@unipi.it

(2)

2 Abstract

Data about the spreading of arthropod-borne pathogens among hare populations are very scant, so the aim of the present preliminary study was to investigate, through molecular analysis, the occurrence of Anaplasma phagocytophilum, Bartonella sp., Borrelia burgdorferi sensu lato, Coxiella burnetii, Francisella tularensis, Leishmania spp. and piroplasms DNA in blood of 51 wild hares (Lepus europaeus) living in protected areas in Tuscany. All hares resulted negative for A. phagocytophilum, Bartonella sp., B. burgdorferi s.l., C. burnetii and F. tularensis. Five animals (9.8%) were positive for L. infantum.Leishmania and o One hare (1.9%) tested positive for piroplasms. Sequencing of this sample showed a piroplasm similar but not identical to .already one Babesia isolate from the same animal species described in Turkey. Therefore, to the best of our knowledge, this is the first molecular report of piroplasms occurring in wild hares from Italy, and the second worldwide.

The examined hares appeared to be in good health status, corroborating the hypothesis of a chronic carrier state of some vector borne agents this animal species.

Babesia belonging to the clade I and comprehending most species of Babesia sensu stricto.

Key words: Hares; Arthropod-borne pathogens; Babesia sp.; Leishmania spinfantum

1. Introduction

The brown hare (Lepus europaeus Pallas, 1778) is widely present in Europe, including Italy. In the past years the wild hares population of Central Italy considerably decreased, but successively, about twenty years ago, these lagomorphs have been reintroduced from East Europe, mainly to restock protected and hunting areas.

Wild hares may be exposed to different hematophagous arthropods, such as ticks, mosquitoes, sandflies and fleas, that often are vectors of several pathogens, comprehending zoonotic agents. Anaplasma phagocytophilum is an obligate intracellular zoonotic bacterium able to infect several domestic and wild animal species. It is transmitted through ticks’ bite, in particular Ixodes ricinus. Small mammals, such as voles and mice, have been suggested as reservoir of this pathogen, whereas the role of wild lagomorphs is not fully understood (Hulinská et al., 2004).

Bartonella species are facultative intracellular bacteria, mainly transmitted by hematophagous arthropods, responsible for mild and severe clinical forms in animals and humans. Bartonella infections have been detected in asymptomatic animals too, in particular wild rodents that are considered the main reservoirs (Silaghi et al., 2016).

ha formattato: Non Evidenziato

ha formattato: Tipo di carattere: Non Corsivo, Non Evidenziato

ha formattato: Non Evidenziato ha formattato: Non Evidenziato ha formattato: Non Evidenziato

(3)

3 Several bird species and small mammals including rodents, shrews, hedgehogs and hares are considered the reservoirs of Borrelia burgdorferi sensu lato (s.l.), agent of Lyme disease in humans and animals (Lindgren and Jaenson, 2006).

Coxiella burnetii is a zoonotic bacterium traditionally related to domestic ruminants in which determines reproductive disorders. Even though a sylvan cycle involving wild animals and hematophagous arthropods is well known, data about the spreading of C. burnetii among hares are scant (Psaroulaki et al., 2014).

Lagomorphs are considered the main reservoir of Francisella tularensis. In these animals the agent causes acute septicemia or subacute-chronic disease with necrosis in livers, spleen, lung and bone marrow. Humans can acquired the infection by direct contact with infected animals, through inhalation of contaminated aerosol or ingestion of contaminated water and/or uncooked infected game. Transmission through bites by infected hematophagous arthropods are possible too (Runge et al., 2011).

Babesia and Theileria are two genera of Apicomplexan protozoa, commonly indicated as Piroplasms. They are both transmitted by ticks and able to infect red cells and/or leucocytes of mammals. Piroplasmosis is characterized by different clinical signs, comprehending fever, anaemia and jaundice (Schnittger et al., 2012). In hares the occurrence of clinical piroplasmosis is considered very rare (Baldelli, 1960; Vaccari et al, 1961) and only a few asymptomatic infections have been reported worldwide in this species. At the best of our knowledge, only two Babesia species from Turkey have been molecularly characterized (Orkun and Karaer, 2017)..

Leishmania spp. are flagellate protozoa, transmitted by phlebotomine sandfly species. In Mediterranean area dogs are the major reservoir hosts of Leishmania infantum; Iberian hares (Lepus granatensis) were recently found infected by this agent and proven to be infective for Phlebotomus perniciosus, the main cyclic vector in Europe (Molina et al., 2012). Furthermore hares have in fact been considered responsible for the outbreak of human leishmaniasis, affecting metropolitan Madrid (Jimenez et al., 2013) and were reported as preferred blood meal by sandflies (Gonzalez et al., 2017).

Wild hares, if infected by zoonotic agents, may be source of infection for humans, particularly hunters during the carcasses manipulation. Moreover, hares can favorite the spreading of arthropods harboring pathogens able to infect other animals, other than people.

In view of these considerations and being the above reported pathogens scarcely investigated in wild hares populations in Italy, aim of the present study was to evaluate the occurrence of A. phagocytophilum, Bartonella sp., B. burgdorferi., C. burnetii, F. tularensis, Leishmania spp. and piroplasms in wild hares captured in protected areas in Tuscany.

(4)

4 2. Material and methods

2.1 Animals

Blood samples were collected from 51 wild brown hares captured in three different protected areas of the province of Pisa (Central Italy; 43°43’N – 10°24’E) with nets during 2016-2017 winter (average temperature 6.9° C). In a previous survey for the same areas a population density ranging from 2 to 16 hares per 100 hectares (247 acres) was estimated (Ebani et al., 2016). Hares were stocked in wood cages and blood samples were drawn from the saphenous vein prior to their release. Animals were checked for the presence of ectoparasites and the age was estimated by palpation of the growing cartilage of the radius and ulna bones, so animals were divided into juvenile hares (<9 months) and adult hares (> 9 months). Nineteen animals were juvenile (8 females and 11 males) while 32 were adult (10 males and 22 females).

Blood samples were collected in sterile tubes with ethylenediaminetetraacetic acid (EDTA) and maintained a 4°C until arrival to laboratory. Diff-Quick stained smears and DNA extraction, with blood/cultured cells genomic DNA extraction mini kit (Trevose, PA, U.S.A.) were performed. DNA samples were stored at 4°C until used in PCR assays.

2.2 Molecular analysis

All DNA samples were submitted to different PCR assays to detect A. phagocytophilum, Bartonella sp., B. burgdorferi sensu lato, C. burnetii, F. tularensis, Leishmania sp. and Babesia sp./Theileria sp., respectively. To detect the first five pathogens the protocols previously described were performed (Relman et al., 1991; Massung et al., 1998; Chang et al., 2000; Milutinovic et al., 2008; Berri et al., 2009).

Piroplasmid DNA was detected following the protocols reported by Cacciò et al. (2002) and Beck et al. (2009). In detail, a nested PCR was performed to amplify a final segment of approximately 560 bp of the 18S rRNA gene.

For the detection of Leishmania DNA, ITS1 gene was chosen as PCR target, as described previously (El Tai et al., 2001); this gene was also used for the discrimination of the Leishmania species involved. Table 1 reports target genes, primers sequences and PCR conditions for each protocol.

PCR amplifications were performed in 50 l of reaction mixtures containing 200 M of deoxynucleoside triphosphates, 0.5 M of each primer, 1.25 U of Taq polymerase (Lucigen Corporation, Middleton, Wisconsin, USA) and 2 l of extracted DNA. All amplifications were

(5)

5 performed in the automated thermal cycler Gene-Amp PCR System 2700 (Perkin Elmer, Norwalk, Connecticut, USA).

PCR products were analysed by electrophoresis on 1.5% agarose gel at 100V for 45 min; gel was stained with ethidium bromide and observed. SharpMassTM 100 Plus Ladder (Euroclone, Milano, Italy) was used as DNA marker.

Positive samples were then sequenced on both strands by commercial laboratory BMR- Genomics (Padova, Italy), using the inner primers. The sequence obtained was assembled and corrected by visual analysis of the electropherogram using Bioedit v.7.0.233 and compared with those available in GenBank ® 4 using the BLASTn ® program (http://www.ncbi.nlm.nih.gov/BLAST).

For piroplasmid DNA, the sequence obtained was aligned with 190 sequences described by Lack et al. (2012) using Clustal W (Thompson et al., 1994) and manually trimmed. Then a Bayesian phylogenetic tree was generated in Mr Bayes version 3.1 (Ronquist and Huelsenbeck, 2003) using a general time reversible model including invariable sites (GTR +I). The Bayesian phylogeny was obtained using Monte Carlo Markov chains, which sample every 100 generations over one million generations. Of these trees, 25% were discarded as burn-in material. The remaining trees were used to construct a majority consensus tree using the software FigTree.

3. Results

All the animals appeared in a good health status and nNo ectoparasites were found on examined haresthem.

All hares resulted negative for A. phagocytophilum, Bartonella sp., B. burgdorferi s.l., C. burnetii and F. tularensis.

No haemoparasites were observed in blood smears on 51 hares examined. One sample (1.9%) showed piroplasmid DNA. The sequence obtained, deposited with accession number MF356682, appeared most closely related (showed 97% identity) to with a Babesia isolate obtained from a swine in Sardinia (accession number HQ437690). The phylogenetic analysis collocated this isolate in the clade I (Lack et al., 2012), comprehending most species of Babesia "sensu stricto", asis

shown in Figure 1.

Five hares (9.8%) were positive for Leishmania spp. DNA and sequence analysis revealed in all cases 10099% homology (401/401 bp) with L. infantum, as well as with Leishmania donovani complex, reported in Greece (Tsokana et al., 2016)in all cases.

4. Discussion

The present transversal study was carried out on blood as unique biological specimen since

(6)

6 investigate animals were kept in cages, then released after sampling.

XxxxxxAll the animals were not harboring ectoparasites when captured, even if in studies previously carried out on hares living in the same area in past years very few ticks identified as Ixodes ricinus were recovered (data not shown). From a general point of view hares would seem not to be prone to ectoparasites, except for subjects investigated by Psaroulaki et al, (2014a) and Orkun and Karaer (2017) who reported heavy infection by ticks (Rhipicephalus spp. and Ixodes ventalloi and Hyalomma spp., Haemaphysalis parva, Rhipicephalus turanicus, respectively). Other reports deal with fleas (Psaroulaki et al., 2014b), Anoplura such as Hemodipsus lyriocephalus (Girard, 1950) and ticks as I. ricinus (Girard, 1950; Astobiza et al., 2011; Tomaso et al., 2017)

zecche non trovate discorso su ectoparassiti temperature average. Eventuale impatto non a gennaioHowever, the sampling time (winter) is not very favorable to occurrence of ticks on the host.

The present transversal preliminary study was carried out on blood as unique biological specimen since investigate animals were kept in cages, then released after sampling, for these reasons it was not possible to have other samples to perform analysis on further genes to carry out phylogenetic investigation.

All the tested hares resulted negative for the investigated bacterial pathogens. The negative results for F. tularensis, compared with those obtained in previous studies testing other wild animal species, suggest that currently the agent is not present in this geographic area.

In the past, F. tularensis was known as causative agent of human outbreaks in northern and central Italy (Greco et al., 1987; Fabbi et al., 2009), but epidemiological data about the spreading of this pathogen among wildlife in that period are not available. A recent investigation among wild rodents did not find F. tularensis infection cases (Pascucci et al., 2015). Even though F. tularensis currently seems to be not present in Italy, it has been frequently reported in European countries. In fact, molecular investigations have found infected humans and wild animals, including hares, in Germany (Müller et al., 2013), France (Moinet et al., 2016), the Netherlands (Rijks et al., 2013), Norway (Nordstoga et al., 2014), Hungary (Kreizinger et al., 2013), Czech Republic (Hubálek and Rudolf, 2017), Poland (Moniuszko et al., 2011), Spain (Ariza-Miguel et al., 2014), Denmark (Byström et al., 2005), Switzerland (Origgi et al., 2014).

Information about bartonellosis in lagomorphs come from two previous investigations that found B. alsatica in European wild rabbits (Oryctolagus cuniculus) in Spain (Márquez, 2010; Márquez, 2015), whereas a study carried out in California did not detect bartonellae in blood specimens from riparian brush rabbits (Sylvilagus bachmani riparius) (Schmitz et al., 2014).

ha formattato: Tipo di carattere: Corsivo ha formattato: Non Evidenziato

ha formattato: Tipo di carattere: Corsivo ha formattato: Tipo di carattere: Corsivo ha formattato: Tipo di carattere: Corsivo ha formattato: Tipo di carattere: Corsivo ha formattato: Tipo di carattere: Corsivo ha formattato: Tipo di carattere: Corsivo ha formattato: Non Evidenziato

(7)

7 Considering the spreading of Bartonella species in wild environments, including the Italian ones (Sanogo et al., 2003, Ebani et al., 2015), it could be supposed that hares are animals not very sensitive to these bacteria.

Wild hares seem to have no relevant role in the epidemiology of A. phagocytophilum. Our negative results are in agreement with previous studies that did not found positive hares for this agent (Polin et al., 2004; Yang et al., 2017)

Similarly, C. burnetii infection seems to be rare among hare population. Astobiza et al. (2011) found 9.1% of PCR positive hares in an endemic area of Spain, and Psaroulaki et al. (2014a) found the 48% in Cyprus, but other reports about coxiellosis in lagomorphs are not present in literature. Our negative results could be related to a low prevalence of the pathogen in wildlife and/or a hares’ low sensitivity.

Even though wild hares are considered reservoir hosts for B. burgdorferi s.l. in Europe (Lindgren and Jaenson, 2006), it seems that spirochaetal infections rarely occur in these animals. Also for what concerns this pathogen in lagomorphs, only few data are available in literature. Kjelland et al. (2011) found B. afzelii and B. burgdorferi sensu stricto in hares’ skin samples in Norway and serological surveys detected prevalence values of 41.6% in Czech Republic (Sykora et al., 1990) and 65.8% in Italy (Ebani et al., 2016).

There are few reports of piroplasms in hares and the parasites were mostly morphologically described. The first report of a piroplasm species from hares is due to Dschunkowsky and Luhs (1909) who described a polymorph piroplasm named Piroplasma leporis polymorphe. Later Babesia leporina (Baldelli, 1960) and Theileria leporis (Vaccari et al., 1961) were described in Italy in dead free ranging L. europaeus. Babesia leporis was originally described in hares (L. europaeus) (Levine, 1971; Ristic and Levis, 1977) and in 1995 Horak et al. referred the occurrence of this parasite species in blood smears from scrub hares (L. saxatilis) in South Africa. The unique molecular characterization of Babesia from hare was recently reported from Turkey (Orkun and Karaer, 2017). Therefore, at the best of our knowledge, this is the first molecular report of piroplasms occurring in wild hares from Italy, and the second worldwide.

Molecular analysis appears to be very useful in defining the taxonomy of these parasites, since classical taxonomy criteria (morphology, host range) hold limited value (Lack et al., 2012). Sequences of 18S rRNA gene were used to study the phylogeny of these parasites. Lack et al (2012) and Schnittger et al. (2012) in fact, although reporting not completely agreeing results, converge upon one single clade for Babesia "microti group". Phylogenetic analysis strongly suggests the attribution of the parasite described in this study to clade I.

Comparison with piroplasms isolated from hares available from literature, seems to indicate that

ha formattato: Evidenziato ha formattato: Evidenziato

Formattato: SpazioDopo: 0 pt, Nessun controllo righe isolate, Non regolare lo spazio tra testo asiatico e in alfabeto latino, Non regolare lo spazio tra testo asiatico e caratteri numerici

(8)

8 Babesia found in the present study would be closely related to 1 of the 2 isolates reported from Turkey (MF040152), differing from it for 1 single nucleotide. Additional phylogenetic analysis based on other genes would be welcome to an epidemiological investigation ((Paparini et al., 2014; Paparini et al., 2015; Aktas and Ozubek, 2017).

Five hares harbored L. infantumLeishmania DNA in blood, with a sequence similarity of 99% with both L. infantum and L. donovani complex from hares in Greece (Tsokana et al., 2016). The prevalence obtained in the present survey (9.8%) was lower than 43.6% reported from spleen of hares in Spain (Ruiz-Fons et al., 2013). However, blood is considered a less sensitive tissue specimen, so the real occurrence of Leishmania DNA would be underestimated. Dogs are the main reservoirs for these parasites and canine leishmaniasis is endemic in Italy, even though it has been also described in cats, equines, and wild mammals including lagomorphs. Furthermore, both L. granatensis and L. europaeus were proven to harbor parasite DNA in spleen, suggesting that hares may play an unexpected role in the epidemiology of L. infantumLeishmania in Spain (Ruiz-Fons et al., 2013) and Greece (Tsokana et al., 20165). Even though clinical leishmaniosis has never been reported in hares, these animals are considered able to act as reservoirs for both human and dogs in endemic foci. In a previous serologic survey carried out on free ranging hares living in the same area, low antibody titers were reported (Ebani et al., 2016), so suggesting a circulation of the parasite.

5. Conclusion

The obtained results would suggest a limited role of wild hares in the epidemiology of the investigated bacterial pathogens.,A. phagocytophilum, as suggested by a previous serological investigation, too (Ebani et al., 2016). Negative results for F. tularensis and C. burnetii may be related to the absence/low presence of the pathogens in the environment where hares livedwere living. For what concerns B. burgdorferi, Iit could be supposed that the obtained negative results can be due to a short bacteraemic phase. would occur in hares, so better results could be obtained analyzing tissue specimens other from blood.

Twhile these animals would seem to contribute have an active role in maintaining the cycle of examined parasites, considered that among hares sharing the same environment, Leishmania seropositive subjects have been previously detected (Ebani et al., 2016). The occurrence of a piroplasm DNA appears of interest; further research is needed in hares from this area. would contribute to a more comprehensive knowledge. Furthermore, the examined hares appeared to be in

ha formattato: Tipo di carattere: Corsivo

ha formattato: Tipo di carattere: Corsivo ha formattato: Tipo di carattere: Corsivo ha formattato: Tipo di carattere: Corsivo

ha formattato: Tipo di carattere: Corsivo

(9)

9 good health status, corroborating the hypothesis of a chronic carrier state of some vector borne agents for this animal species.

It could be supposed that a short bacteraemic phase would occur in hares, so better results could be obtained analyzing tissue specimens other from blood. Siccome sono vivi la quantità di sangue che si preleva è limitata quindi per la sierologia abbiamo tenuto conto dei dati presenti in letteratura da lepri viventi nella stessa zona. Si tratta di lavoro preliminare e ulteriori indagini saranno svolte su further hares.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

Aktas, M., Ozubek, S., 2017. A survey of canine haemoprotozoan parasites from Turkey, including molecular evidence of an unnamed Babesia. Comp. Immunol. Microbiol. Infect. Dis. 52, 36-42.

Ariza-Miguel, J., Johansson, A., Fernández-Natal, M., Martínez-Nistal, C., Orduña, A., Rodríguez-Ferri, E.F., Hernández, M., Rodríguez-Lázaro, D., 2014. Molecular Investigation of Tularemia Outbreaks, Spain, 1997–2008. Emerg. Infect. Dis. 20, 754-761.

Astobiza, I., Barral, M., Ruiz-Fons, F., Barandika, J.F., Gerrikagoitia, X., Hurtado, A., García-Pérez, A.L., 2011. Molecular investigation of the occurrence of Coxiella burnetii in wildlife and ticks in an endemic area. Vet. Microbiol 147, 190-194.

Baldelli, B., 1960. Un caso di piroplasmosi delle lepre (Lepus europaeus) da Babesia leporina n.sp. Parassitologia 2, 16-20.

Beck, R., Vojta, L., Mrljak, V., Marinculić, A., Beck, A., Zivicnjak, T., Cacciò, S.M., 2009. Diversity of Babesia and Theileria species in symptomatic and asymptomatic dogs in Croatia. Int. J. Parasitol. 39, 843-848.

(10)

10 Berri, M., Rekiki, A., Boumedine, A., Rodolakis, A., 2009. Simultaneous differential detection of Chlamydophila abortus, Chlamydophila pecorum, and Coxiella burnetii from aborted ruminant’s clinical samples using multiplex PCR. BMC Microbiol. 9, 130. Doi:10.1186/1471-2180-9-130. Byström, M., Böcher, S., Magnusson, A., Prag, J., Johansson, A., 2005. Tularemia in Denmark: Identification of a Francisella tularensis subsp. holarctica Strain by Real-Time PCR and High-Resolution Typing by Multiple-Locus Variable-Number Tandem Repeat Analysis. J. Clin. Microbio. 43, 5355-5358.

Cacciò, S.M., Antunovic, B., Moretti, A., Mangili, V., Marinculic, A., Baric, R.R., Slemenda, S.B., Pieniazek, N.J., 2002. Molecular characterisation of Babesia canis canis and Babesia canis vogeli from naturally infected European dogs. Vet. Parasitol. 106, 285-292.

Chang, Y.F., Novosol, V., McDonough, S.P., Chang, C.F., Jacobson, R.H., Divers, T., Quimby, F.W., Shin, S., Lein, D.H. 2000. Experimental infection of ponies with Borrelia burgdorferi by exposure to Ixodid ticks. Vet. Pathol. 37, 68-76.

Dschunkowsky, E.P., Luhs, I., 1909. Entwicklungsformen von Piroplasmen in Zecken. 9. The Proceedings of the 9th International Veterinary Congress, Den Haag, pp. 51-61.

Ebani, V.V., Bertelloni, F., Turchi, B., Filogari, D., Cerri, D., 2015. Molecular survey of tick-borne pathogens in Ixodid ticks collected from hunted wild animals in Tuscany, Italy. Asian Pac. J. Trop. Med. 8, 714-717.

Ebani, V.V., Poli, A., Rocchigiani, G., Bertelloni, F., Nardoni, S., Papini, R.A., Mancianti, F., 2016. Serological survey on some pathogens in wild brown hares (Lepus europaeus) in Central Italy. Asian Pac. J. Trop. Med. 9, 465-469.

El Tai, N.O., El Fari, M., Mauricio, I., Miles, M.A., Oskam, L., El Safi, S.H., Presber, W.H., Schönian, G., 2001. Leishmania donovani: intraspecific polymorphisms of Sudanese isolates revealed by PCR-based analyses and DNA sequencing. Exp. Parasitol. 97, 35-44.

Fabbi, M., Messeri, D., Vicari, N., Marino Merlo, L., 2009. An outbreak of tularemia in Tuscany, central Italy, linked to a natural spring water. 6th International Conference on Tularemia, Tularemia Network.

ha formattato: Car. predefinito paragrafo, Tipo di carattere: (Predefinito) Times, 24 pt, Grassetto, Italiano ha formattato: Car. predefinito paragrafo, Tipo di carattere: (Predefinito) Times, 24 pt, Grassetto, Italiano ha formattato: Car. predefinito paragrafo, Tipo di carattere: (Predefinito) Times, 24 pt, Grassetto, Italiano ha formattato: Car. predefinito paragrafo, Tipo di carattere: (Predefinito) Times, 24 pt, Grassetto, Italiano ha formattato: Car. predefinito paragrafo, Tipo di carattere: (Predefinito) Times, 24 pt, Grassetto, Italiano ha formattato: Tipo di carattere: Non Grassetto

ha formattato: Tipo di carattere: Italiano (Italia)

(11)

11 Girard, G., 1950. Hemodipsus lyriocephalus Burmeister, Ixodes ricinus Linné, ectoparasites of hares, possible vectors of tularemia in France. C.R. Seances Soc. Biol. Fil. 144, 364-365.

González, E., Jiménez, M., Hernández, S., Martín-Martín, I., Molina, R., 2017. Phlebotomine sand fly survey in the focus of leishmaniasis in Madrid, Spain (2012-2014): seasonal dynamics, Leishmania infantum infection rates and blood meal preferences. Parasit. Vectors. 10, 368.

Greco, D., Allegrini, G., Tizzi, T., Ninu, E., Lamanna, A., Luzi, S., 1987. A waterborne tularemia outbreak. Eur. J. Epidemiol. 3, 35-38.

Horak, I.G., Spickett, A.M., Braack, L.E.O., Penzhorn, B.L., Bagnall, R.J., Uys, A.C., 1995. Parasites of domestic and wild animals in South Africa. XXXIII. Ixodid ticks on scrub hares in the north-eastern regions of Northern and Eastern Transvaal and of KwaZulu-Natal. Onderstepoort J. Vet. 62, 123-131.

Hubálek, Z., Rudolf., I., 2017. Francisella tularensis prevalence and load in Dermacentor reticulatus ticks in an endemic area in Central Europe. Med. Vet. Entomol. 31, 234-239.

Hulinská, D., Langrová, K., Pejcoch, M., Pavlásek, I., 2004. Detection of Anaplasma phagocytophilum in animals by real-time polymerase chain reaction. APMIS 112, 239-247.

Jiménez, M., González, E., Iriso, A., Marco, E., Alegret, A., Fúster, F., Molina, R., 2013. Detection of Leishmania infantum and identification of blood meals in Phlebotomus perniciosus from a focus of human leishmaniasis in Madrid, Spain. Parasitol. Res. 112, 2453-2459.

Kjelland, V., Ytrehus, B., Vikorren, T., Stuen, S., Skarpaas, T., Slettan, A., 2011. Borrelia burgdorferi sensu lato detected in skin of Norwegian mountain hares (Lepus timidus) without signs of dissemination. J. Wildl. Dis. 47, 293-299.

Kreizinger, Z., Hornok, S., Dan, A., Hresko, S., Makrai, L., Magyar, T., Bhide, M., Erdélyi, K., Hofmann-Lehmann, R., Gyuranecz, M., 2013. Prevalence of Francisella tularensis and Francisella-like endosymbionts in the tick population of Hungary and the genetic variability of Francisella-like agents. Vector Borne Zoonotic Dis. 13, 160–163.

Levine, N.D., 1971. Taxonomy of the piroplasms. Trans. Amer. Micros. Soc. 90, 2-33.

Formattato: Interlinea: 1.5 righe

ha formattato: Tipo di carattere: Times New Roman

ha formattato: Tipo di carattere: Non Grassetto

ha formattato: Car. predefinito paragrafo, Tipo di carattere: (Predefinito) Times, 24 pt, Grassetto

(12)

12 Lindgren, E., Jaenson, T.G.T., 2006. Lyme borreliosis in Europe: influence of climate and climate change, epidemiology, ecology and adaptation measures. World Health Organization 1-35.

Márquez, F.J., 2010. Molecular detection of Bartonella alsatica in European wild rabbits (Oryctolagus cuniculus) in Andalusia (Spain). Vector Borne Zoonotic Dis. 10, 731-734.

Márquez, F.J., 2015. Detection of Bartonella alsatica in European wild rabbit and their fleas (Spilopsyllus cuniculi and Xenopsylla cunicularis) in Spain. Parasit. Vectors 8, 56.

Massung, R.F., Slater, K., Owens, J.H., Nicholson, W.L., Mather, T.N., Solberg, V.B., Olson, J.G. 1998. Nested PCR assay for detection of granulocytic Ehrlichiae. J. Clin. Microbiol. 36, 1090-1095.

Milutinović, M., Masuzawa, T., Tomanović, S., Radulović, Z., Fukui, T., Okamoto, Y., 2008. Borrelia burgdorferi sensu lato, Anaplasma phagcoytophilum, Francisella tularensis and their co-infections in host-seeking Ixodes ricinus ticks collected in Serbia. Exp. Appl. Acarol. 45, 171-183.

Moinet, M., Decors, A., Mendy, C., Faure, E., Durand, B., Madani, N., 2016. Spatio-temporal dynamics of tularemia in French wildlife: 2002-2013. Prev. Vet. Med. 130, 33-40.

Molina, R., Jiménez, M.I., Cruz, I., Iriso, A., Martín-Martín, I., Sevillano, O., Melero, S., Bernal, J., 2012. The hare (Lepus granatensis) as potential sylvatic reservoir for Leishmania infantum in Spain. Vet. Parasitol. 190, 268-271.

Moniuszko, A., Zajkowska, J., Pancewicz, S., Kondrusik, M., Grygorczuk, S., Czupryna, P., 2011. Arthropod-borne tularemia in Poland: a case report. Vector Borne Zoonotic Dis. 11, 1399-1401.

Müller, W., Hotzel, H., Otto, P., Karger, A., Bettin, B., Bocklisch, H., Braune, S., Eskens, U., Hörmansdorfer, S., Konrad, R., Nesseler, A., Peters, M., Runge, M., Schmoock, G., Schwarz, B.A., Sting, R., Myrtennäs, K., Karlsson, E., Forsman, M., Tomaso, H., 2013. German Francisella tularensis isolates from European brown hares (Lepus europaeus) reveal genetic and phenotypic diversity. BMC Microbiol. 13:61.

ha formattato: Tipo di carattere: Times New Roman

ha formattato: Car. predefinito paragrafo, Tipo di carattere: (Predefinito) +Corpo (Calibri), 11 pt, Italiano ha formattato: Car. predefinito paragrafo, Tipo di carattere: (Predefinito) +Corpo (Calibri), 11 pt, Italiano ha formattato: Car. predefinito paragrafo, Tipo di carattere: (Predefinito) +Corpo (Calibri), 11 pt, Italiano ha formattato: Car. predefinito paragrafo, Tipo di carattere: (Predefinito) +Corpo (Calibri), 11 pt, Italiano ha formattato: Car. predefinito paragrafo, Tipo di carattere: (Predefinito) +Corpo (Calibri), 11 pt, Italiano ha formattato: Car. predefinito paragrafo, Tipo di carattere: (Predefinito) +Corpo (Calibri), 11 pt, Italiano ha formattato: Car. predefinito paragrafo, Tipo di carattere: (Predefinito) +Corpo (Calibri), 11 pt ha formattato: Tipo di carattere: Non Grassetto ha formattato: Car. predefinito paragrafo, Tipo di carattere: (Predefinito) Times, 24 pt, Grassetto, Italiano ha formattato: Car. predefinito paragrafo, Tipo di carattere: (Predefinito) Times, 24 pt, Grassetto, Italiano ha formattato: Car. predefinito paragrafo, Tipo di carattere: (Predefinito) Times, 24 pt, Grassetto, Italiano ha formattato: Car. predefinito paragrafo, Tipo di carattere: (Predefinito) Times, 24 pt, Grassetto, Italiano ha formattato: Car. predefinito paragrafo, Tipo di carattere: (Predefinito) Times, 24 pt, Grassetto, Italiano ha formattato: Car. predefinito paragrafo, Tipo di carattere: (Predefinito) Times, 24 pt, Grassetto, Italiano ha formattato: Car. predefinito paragrafo, Tipo di carattere: (Predefinito) Times, 24 pt, Grassetto, Italiano

(13)

13 Nordstoga, A., Handeland, K., Johansen, T.B., Iversen, L., Gavier-Widén, D., Mattsson, R., Wik-Larssen, K., Afset, J.E., Næverdal, R., Lund, A., 2014. Tularaemia in Norwegian dogs. Vet. Microbiol. 173, 318-322.

Origgi, F.C., Frey, J., Pilo, P., 2014. Characterization of a new group of Francisella tularensis subsp. holarctica in Switzerland with altered antimicrobial susceptibilities, 1996 to 2013. Euro Surveill. 19(29). pii: 20858.

Orkun, Ö., Karaer, Z., 2017. Molecular characterization of Babesia species in wild animals and their ticks in Turkey. Infect. Genet. Evol. 55, 8-13. doi: 10.1016/j.meegid.2017.08.026.

Paparini, A., Senanayake, S.N., Ryan, U.M., Irwin, P.J., 2014. Molecular confirmation of the first autochthonous case of human babesiosis in Australia using a novel primer set for the beta-tubulin gene. Exp. Parasitol.141, 93-97.

Paparini, A., Macgregor, J., Ryan, U.M., Irwin, P.J., 2015. First Molecular Characterization of Theileria ornithorhynchi Mackerras, 1959: yet Another Challenge to the Systematics of the Piroplasms. Protist 166: 609-620

Pascucci, I., Di Domenico, M., Dall’Acqua, F., Sozio, G., Cammà, C., 2015. Detection of Lyme disease and Q fever agents in wild rodents in central Italy, Vector Borne Zoonotic Dis. 15, 404-411.

Polin, H., Hufnagl, P., Haunschmid, R., Gruber, F., Ladurner, G., 2004. Molecular evidence of Anaplasma phagocytophilum in Ixodes ricinus ticks and wild animals in Austria. J. Clin. Microbiol. 42, 2285-2286.

Psaroulaki, A., Chochlakis, D., Angelakis, E., Ioannou, I., Tselentis, Y., 2014a. Coxiella burnetii in wildlife and ticks in an endemic area. Trans. R. Soc. Trop. Med. Hyg. 108, 625-631.

Psaroulaki, A., Chochlakis, D., Ioannou, I., Angelakis, E., Tselentis, Y. 2014b. Presence of Coxiella burnetii in fleas in Cyprus. Vector Borne Zoonotic Dis. 14, 685-687.

ha formattato: Car. predefinito paragrafo, Tipo di carattere: (Predefinito) +Titoli (Cambria), 13 pt, Grassetto, Colore carattere: Evidenziatore 1, Italiano (Italia) ha formattato: Car. predefinito paragrafo, Tipo di carattere: (Predefinito) +Titoli (Cambria), 13 pt, Grassetto, Colore carattere: Evidenziatore 1, Italiano (Italia) ha formattato: Car. predefinito paragrafo, Tipo di carattere: (Predefinito) +Titoli (Cambria), 13 pt, Grassetto, Colore carattere: Evidenziatore 1, Italiano (Italia) ha formattato: Car. predefinito paragrafo, Tipo di carattere: (Predefinito) +Titoli (Cambria), 13 pt, Grassetto, Colore carattere: Evidenziatore 1, Italiano (Italia) ha formattato: Car. predefinito paragrafo, Tipo di carattere: (Predefinito) +Titoli (Cambria), 13 pt, Grassetto, Colore carattere: Evidenziatore 1, Italiano (Italia) ha formattato: Car. predefinito paragrafo, Tipo di carattere: (Predefinito) +Titoli (Cambria), 13 pt, Grassetto, Colore carattere: Evidenziatore 1, Italiano (Italia) ha formattato: Car. predefinito paragrafo, Tipo di carattere: (Predefinito) +Titoli (Cambria), 13 pt, Grassetto, Colore carattere: Evidenziatore 1, Italiano (Italia) ha formattato: Car. predefinito paragrafo, Tipo di carattere: (Predefinito) +Titoli (Cambria), 13 pt, Grassetto, Colore carattere: Evidenziatore 1, Italiano (Italia) ha formattato: Car. predefinito paragrafo, Tipo di carattere: (Predefinito) +Titoli (Cambria), 13 pt, Grassetto, Colore carattere: Evidenziatore 1, Italiano (Italia) ha formattato: Car. predefinito paragrafo, Tipo di carattere: (Predefinito) +Titoli (Cambria), 13 pt, Grassetto, Colore carattere: Evidenziatore 1, Italiano (Italia) ha formattato: Car. predefinito paragrafo, Tipo di carattere: (Predefinito) Times, 24 pt, Grassetto, Italiano ha formattato: Car. predefinito paragrafo, Tipo di carattere: (Predefinito) Times, 24 pt, Grassetto, Italiano ha formattato: Car. predefinito paragrafo, Tipo di carattere: (Predefinito) Times, 24 pt, Grassetto, Italiano ha formattato: Car. predefinito paragrafo, Tipo di carattere: (Predefinito) Times, 24 pt, Grassetto, Italiano Formattato: Giustificato, Interlinea: 1.5 righe Formattato: Interlinea: 1.5 righe

(14)

14 Relman, D.A., Falkow, S., LeBoit, P.E., Perkocha, L.A., Min, K.W., Welch, D.F., Slater, L.N., 1991. The organism causing bacillary angiomatosis, peliosis hepatis, and fever and bacteremia in immunocompromised patients. N. Engl. J. Med. 324, 1514.

Ricstic, M., Levis G.E., 1977. Babesia in man and wild and laboratory-adapted mammals. In: Kreier, J.P (Ed), Parasitic Protozoa Volume IV. Academic Press, NewYork, pp53-76.

Rijks, J.M., Kik, M., Koene, M.G., Engelsma, M.Y., van Tulden, P., Montizaan, M.G., Oomen, T., Spierenburg, M.A., IJzer, J., van der Giessen, J.W., Gröne, A., Roest, H.J., 2013. Tularaemia in a brown hare (Lepus europaeus) in 2013: first case in the Netherlands in 60 years. Euro Surveill. 2013;18(49):pii=20655.

Ronquist, F., Huelsenbeck, J.P., 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572-1574.

Ruiz-Fons, F., Ferroglio, E., Gortázar, C., 2013. Leishmania infantum in free ranging hares, Spain, 2004-2010. Euro Surveill. 18, 20541.

Runge, M., Von Keyserlingk, M., Braune, S., Voigt, U., Grauer, A., Pohlmeyer, K., Wedekind, M., Splettstoesser, W.D., Seibold, E., Otto, P., Müller, W., 2011. Prevalence of Francisella tularensis in brown hare (Lepus europaeus) populations in Lower Saxony, Germany. Eur. J. Wildl, Res. 57, 1085-1089.

Sanogo, Y.O., Zeaiter, Z., Caruso, G., Merola, F., Shpynov, S., Brouqui, P., Raoult, D., 2003. Bartonella henselae in Ixodes ricinus ticks (Acari: Ixodida) removed from humans, Belluno province, Italy. Emerg. Infect. Dis. 9, 329-332.

Schmitz, K.M., Foley, J.E., Kasten R.W., Chomel, B.B., Larsen, R.S., 2014. Prevalence of vector-borne bacterial pathogens in riparian brush rabbits (Sylvilagus bachmani riparius) and their ticks. J. Wildl. Dis. 50, 369-373.

Schnittger, L., Rodriguez, A.E., Florin-Christensen, M., Morrison, D.A., 2012. Babesia: a world emerging. Infect. Genet. Evol. 12, 1788-1809.

(15)

15 Silaghi, C., Pfeffer, M., Kiefer, D., Kiefer, M., Obiegala, A., 2016. Bartonella, rodents, fleas and ticks: a molecular field study on host-vector-pathogen associations in Saxony, Eastern Germany. Microb. Ecol. 72, 965-974.

Sýkora, J., Pokorný, P., Bukovjan, K., Radek, J., 1990. Occurrence of Borrelia antibodies in field hares (Lepus europaeus). Cesk. Epidemiol. Mikrobiol. Imunol. 39, 120-125.

Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680.

Tomaso, H., Otto, P., Peters, M., Süss, J., Karger, A., Schamoni, H., Zuchantke, E., Hotzel, H., 2017. Francisella tularensis and other bacteria in hares and ticks in North Rhine-Westphalia (Germany) Ticks Tick Borne Dis. S1877-959X(17)30498-3.

Tsokana, C.N., Sokos, C., Giannakopoulos, A., Mamuris, Z., Birtsas, P., Papaspyropoulos, K., Valiakos, G., Spyrou, V., Lefkaditis, M., Chatzopoulos, D.C., Kantere, M., Manolakou, K., Touloudi, A., Burriel, A.R., Ferroglio, E., Hadjichristodoulou, C., Billinis, C., 2016. First evidence of Leishmania infection in European brown hare (Lepus europaeus) in Greece: GIS analysis and phylogenetic position within the Leishmania spp. Parasitol. Res. 115, 313-321. doi: 10.1007/s00436-015-4749-8.

Vaccari, I., Ballarini, G., Pieresca, G., 1961. Theileriasi delle lepri – “corpi di Koch” in Lepus europaeus. La Nuova Veterinaria 37, 1-7.

Yang, J., Liu, Z., Niu, Q., Luo, J., Wang, X., Yin, H., 2017. Molecular detection of Anaplasma phagocytophilum in wild cervids and hares in China. J. Wildl. Dis. 53, 420-423.

Riferimenti

Documenti correlati

Dynamic Movement Primitives: Volumetric Obstacle Avoidance Using Dynamic Potential Functions Michele Ginesi1.. Abstract Obstacle avoidance for Dynamic Movement Primitives DMPs is

Anche in Italia le aziende del comparto farmaceutico hanno iniziato ad abbracciare i social media come ulteriore opzione comunicativa, ma sono ancora poche

Il suo metodo di guaritore prescindeva in realtà dall’effetto farmacologico dei suoi rimedi, o meglio riservava a questi il solo effetto legato alla suggestione (effetto placebo,

Herein, we summarize data from the 16-week seawater feeding trial with salmon (initial body weight, 1.4kg) fed either a reference diet (REF) with a combination of fish meal,

In this multinational phase III study for women with advanced (stage IIB or higher) epithelial ovarian, peritoneal, or fallopian tube cancers, first-line therapy

I termini “fiaba” e “fiabesco” possono dunque essere associati con facilità all’opera di Calvino fin dai suoi inizi; lo stesso Pavese, recensendo Il sentiero dei nidi di

Nello specifi co, la scelta dell’et- nografi a politica (Schatz 2013; Baiocchi and Connor 2008; Wedeen 2010) come principale metodologia ha comportato una serie di os-

each confirmed locality, the ecological and population para- meters and the main threats were recorded; these data were used in a quantitative analysis of the species’ extinction