• Non ci sono risultati.

Towards the Modeling of Neuronal Firing by Gaussian processes.

N/A
N/A
Protected

Academic year: 2021

Condividi "Towards the Modeling of Neuronal Firing by Gaussian processes."

Copied!
10
0
0

Testo completo

(1)

TOWARDSTHE MODELINGOFNEURONALFIRINGBY GAUSSIAN

PROCESSES

E. Di Nardo,A.G.Nobile,E. Pirozzi andL.M.Ricciardi

ReceivedMarch26,2003

Abstract. This pap er fo cuses on the outline of some computational metho ds for

the approximate solution of the integral equations for the neuronal ring

probabil-ity densityandanalgorithmforthegenerationofsample-pathsinordertoconstruct

histograms estimating the ring densities. Our results originate from the study of

non-MarkovstationaryGaussianneuronalmo delswiththeaimtodeterminethe

neu-ron's ringprobability density function. Aparallelalgorithm hasb eenimplemented

in orderto simulate largenumb ersofsample paths ofGaussianpro cesses

character-izedbydamp edoscillatorycovariancesinthepresenceoftimedep endentb oundaries.

Theanalysisbasedonthesimulation pro cedureprovidesanalternativeresearchto ol

whenclosed-form resultsoranalyticevaluationoftheneuronal ringdensitiesarenot

available.

1 Introduction

This contributiondeals with theimplementationof pro ceduresand metho ds, worked out

in our group during the last few years, in order to provide algorithmic solutions to the

problem of determining the rst passagetime (FPT) probability density function (p df)

and its relevant statistics for continuous state-space and continuous parameter Gaussian

pro cessesdescribingthesto chasticmo delingofasingleneuron'sactivity.

In most mo deling approaches, it is customary to assume that aneuron is subject to

inputpulseso ccurringrandomlyintime,(see,forinstance,[13]andreferencestherein). As

aconsequenceof thereceivedstimulations,itreactsbypro ducingaresp onsethatconsists

of aspiketrain. Therepro ductionofthestatistical features of such spiketrainshas b een

thegoalofmanyresearcheswhohavefo cusedtheattentionontheanalysisoftheinterspike

intervals. Indeed,theimp ortanceoftheinterspikeintervalsisduetothegenerallyaccepted

hyp othesis that theinformationtransferredwithin thenervoussystemis usuallyenco ded

bythetimingofo ccurrenceofneuronalspikes.

To describ ethe dynamicsof the neuronal ringwe considerasto chastic pro cessX(t)

representingthechangeintheneuronmembranep otentialb etweentwoconsecutivespikes

(cf., for instance,[9]). In this context, thethreshold voltage is viewedas adeterministic

functionS(t)and theinstantwhenthemembranep otentialcrossesS(t)asaFPTrandom

variable.

Themo delingofasingleneuron'sactivitybymeansofasto chasticpro cesshasb eenthe

object of numerous investigations duringthe last four decades. A milestone contribution

inthis directionis themuch celebratedpap erby Gersteinand Mandelbrot[7]inwhich a

randomwalkanditscontinuousdi usionlimit(theWienerpro cess)wasprop osedwiththe

aim of describing a p ossible, highly schematized, spike generation mechanism. However,

despite the excellent ttingof avariety ofdata, this mo delhasb een thetarget of severe

criticismonthebaseofitsextreme idealizationincontrastwithsomeelectrophysiological

2000MathematicsSubjectClassi cation. 60G15;60G10;92C20;68U20;65C50.

(2)

evidence: forexample,this mo deldo esnottakeintoaccountthe sp ontaneousexp onential

decay of the neuron membranep otential. An improved mo del is the socalled

Ornstein-Uhlenb eck(OU) mo del,that emb o diesthepresence of such exp onential decay. However,

theOUmo deldo esnotallowtoobtainanyclosedformexpressionforthe ringp df,except

forsomeveryparticularcasesofnointerestwithintheneuronalmo delingcontext. Rather

cumb ersome computationsarethus required to obtain evaluations of thestatistics of the

ring time. Successively, alternative neuronal mo dels have b een prop osed, that include

morephysiologicallyfeatures. Theliteratureonthissubjectisto ovasttob erecalledhere.

Welimitourselvestomentioningthatareviewof mostsigni cantneuronalmo delscanb e

found in [10], [13] and in the references therein. In particular, in [10] it is presented an

outlineofappropriatemathematicaltechniquesbywhichto approachtheFPTproblemin

theneuronalcontext.

We shall now formally de ne the ringp df for amo delbased ona sto chastic pro cess

X(t)withcontinuoussamplepaths. First,assumeP[X(t

0 )=x 0 ]=1,withx 0 <S(t 0 );i.e.

weview thesamplepathsofX(t)asoriginatingatapreassignedstatex

0 atinitialtimet 0 . Then, T x0 = inf tt 0  t:X(t)>S(t) ; x 0 <S(t 0 )

istheFPTofX(t)throughS(t),and

g[S(t);tjx 0 ;t 0 ]= @ @t P(T x0 <t) isitsp df. Henceforth,theFPTp dfg[S(t);tjx 0 ;t 0

]willb eidenti edwiththe ringp dfofaneuron

whosemembranep otentialismo deledbyX(t) andwhose ringthresholdisS(t).

Throughout this pap er, we shall fo cus our attention on neuronal mo dels ro oted on

di usionandGaussianpro cesses,partiallymotivatedbythegenerallyacceptedhyp othesis

that in numerous instances the neuronal ring is caused by the sup erp osition of a very

large numb er of synaptic input pulses which is suggestive of the generation of Gaussian

distributionsbyvirtueofsomesortofcentrallimittheorems.

Itmustb eexplicitlyp ointedoutthatmo delsbasedondi usionpro cessesare

character-izedbythe\lackofmemory"asaconsequenceoftheunderlyingMarkovprop erty. However,

in the realistic presence of correlated input stimulations, the Markov assumption breaks

downand onefacesthe problemofconsideringmoregeneralsto chasticmo dels, forwhich

the literature on FPT problem app ears scarce and fragmentary. Simulation pro cedures

thenprovidep ossiblealternativeinvestigation to olsesp ecially iftheycanb eimplemented

onparallelcomputers,(see[3]). Thegoalofatypicalsimulationpro cedureistosampleN

valuesoftheFPTbyasuitableconstructionofN time-discretesamplepathsofthepro cess

and thento recordtheinstantswhen suchsamplepaths rst crosstheb oundary. Insuch

a way, one is led to obtainestimates of the ring p df and of its statistics, that may b e

implementedfordata ttingpurp oses.

Theaimofthispap eristooutlinenumericalandtheoreticalmetho dstocharacterizethe

FPTp dfforGaussianpro cesses. Attentionwillb efo cusedonMarkovmo delsinSection2,

andonnon-Markovmo delsinSection3. Finally,Section4willb edevotedtothedescription

ofsomecomputationalresults.

2 Gauss-Markov processes

Westartbrie yreviewingsomeessentialprop ertiesofGauss-Markovpro cesses. LetfX(t);t2

Ig,whereIisacontinuousparameterset,b earealcontinuousGauss-Markovpro cesswith

(3)

(i) m(t):=E[X(t)]iscontinuousinI;

(ii) thecovariancec(s;t):=E 

[X(s) m(s)][X(t) m(t)]

iscontinuousinII;

(iii) X(t)isnon-singular,exceptp ossiblyattheendp ointsofIwhereitcouldb e equalto

m(t)withprobabilityone.

AGaussianpro cessisMarkovifandonlyifitscovariancesatis es

c(s;u)=

c(s;t)c(t;u)

c(t;t)

8s;t;u2I;stu: (1)

Itiswellknown[8],thatwell-b ehavedsolutionsof(1)areoftheform

c(s;t)=h 1 (s)h 2 (t); st; (2) where r (t):= h 1 (t) h 2 (t) (3)

is a monotonically increasing function by virtue of the Cauchy-Schwarz inequality, and

h

1 (t)h

2

(t)>0b ecauseoftheassumednonsingularityofthepro cessonI. Theconditional

p dff(x;tjx

0 ;t

0

)ofX(t)isanormaldensitycharacterizedresp ectivelybyconditionalmean

andvariance M(tjt 0 ) = m(t)+ h 2 (t) h 2 (t 0 ) [x 0 m(t 0 )] V(tjt 0 ) = h 2 (t)  h 1 (t) h 2 (t) h 2 (t 0 ) h 1 (t 0 )  ; with t;t 0 2 I; t 0

< t. It satis es the Fokker-Planckequation and the asso ciated initial

condition @f(x;tjy;) @t = @ @x [A 1 (x;t)f(x;tjy;)]+ 1 2 @ 2 @x 2 [A 2 (t)f(x;tjy;)]; lim "t f(x;tjy;)=Æ(x y); withA 1 (x;t)andA 2 (t)givenby A 1 (x;t)=m 0 (t)+[x m(t)] h 0 2 (t) h 2 (t) ; A 2 (t)=h 2 2 (t)r 0 (t);

theprimedenotingderivativewithresp ect totheargument.

Theclass of the Gauss-Markovpro cesses fX(t);t 2 [0;+1)g, such that f(x;tjy;)

f(x;t jy);ischaracterizedbymeansand covariancesofthefollowingtwoforms:

m(t)= 1 t+c; c(s;t)= 2 s+c 1 (0st<+1; 1 ;c2R; c 1 0; 6=0) or m(t)= 1 2 +ce 2t ; c(s;t)=c 1 e 2t  c 2 e 2s  2 2c 1 2 e 2s   0st<+1; 1 ;c;c 2 2R; 6=0; c 1 6=0; 2 6=0; c 1 c 2  2 2 0  .

(4)

The rsttyp eincludestheWienerpro cess,usedin[7]todescrib etheneuronal ring,while

thesecondtyp e includestheOrnstein{Uhlenb eckpro cessthat hasoftenb een invokedasa

mo delforneuronalactivity(see,forinstance,[13]).

Any Gaussian pro cess with covariance as in (2) can b e represented in terms of the

standardWienerpro cessfW(t);t0gas

X(t)=m(t)+h 2 (t)W  r (t)  ; (4)

andisthereforeMarkov. ThislastequationsuggeststhewaytoconstructtheFPTp dfofa

Gauss-Markovpro cessX(t)intermsoftheFPTp dfofthestandardWienerpro cessW(t):

Asanexample,from(4)fortheconditionedFPTp dfonehas:

g[S(t);tjx 0 ;t 0 ]= dr (t) dt g W  S  [r (t)];r (t)jx  0 ;r (t 0 ) ; (5)

wherer (t)isde nedin(3)andg

W [S  (#);#jx  0 ;# 0 ]istheFPTp dfofW(#)fromx  0 attime # 0

tothecontinuousb oundaryS  (#), with x  0 = x 0 m[r 1 (# 0 )] h 2 [r 1 (# 0 )] ; S  (#)= S[r 1 (#)] m[r 1 (#)] h 2 [r 1 (#)] :

Results on the FPT p df for the standard Wiener pro cess can thus in principle b e used

via(5) to obtainthe FPT p dfof any continuousGauss-Markovpro cess. For instance,if

S  (#) is linearin #, g W [S  (#);#jx  0 ;# 0 ] is known and g[S(t);tjx 0 ;t 0

] canb e obtainedvia

(5). Instead, if g W [S  (#);#jx  0 ;# 0

] is not known, anumerical algorithm, ora simulation

pro cedure,shouldb e used forthestandardWienerpro cess and,after that,g[S(t);tjx

0 ;t

0 ]

canb eobtainedviatheindicatedtransformation.

Theab ovepro cedureoftenexhibitstheseriousdrawbackofensuingunacceptabletime

dilations(see[4]). Forinstance,exp onentiallylargetimes areinvolvedwhentransforming

theOrnstein-Uhlenb eckpro cesstotheWienerpro cess,whichmakessuchametho dhardly

viable. Hence,it isdesirableto disp oseof adirectand eÆcientcomputational metho dto

obtainevaluation ofthe ringp df. Alongsucha direction,in[4]it hasb een provedthat

the conditioned FPT density of a Gauss-Markovpro cess can b e obtainedby solving the

non-singularVolterrasecondkindintegralequation

g[S(t);tjx 0 ;t 0 ]= 2 [S(t);tjx 0 ;t 0 ]+2 Z t t0 g[S();jx 0 ;t 0 ] [S(t);tjS();]d x 0 <S(t 0 )  (6) withS(t);m(t);h 1 (t);h 2 (t)2C 1 (I)and [S(t);tjy;]=  S 0 (t) m 0 (t) 2 S(t) m(t) 2 h 0 1 (t)h 2 () h 0 2 (t)h 1 () h 1 (t)h 2 () h 2 (t)h 1 () y m() 2 h 0 2 (t)h 1 (t) h 2 (t)h 0 1 (t) h 1 (t)h 2 () h 2 (t)h 1 ()  f[S(t);tjy;] (7)

wheref[x;tjy;]isthetransitionp dfofX(t): Closedformsolutionsof(6)areavailablein

[4]fordi erentfamiliesofb oundaries.

By makinguseofthisresult,in[4]aneÆcientnumericalpro cedurebasedonarep eated

Simpson'srule has b een prop osed to evaluate FPT densities of Gauss-Markovpro cesses,

thatcanb eimplementedtoobtainreliableevaluationsof ringdensitiesforneuronalmo dels

(5)

3 Gauss non-Markovprocesses

Themetho dsprop osedinthepreviousSectionrestonthestrongMarkovassumptiononthe

sto chasticpro cessmo delingtheneuron'smembranep otential,whichgrantsthep ossibilityof

makinguseofthementionedanalyticandcomputationalmetho dsforFPTp dfevaluations.

Thisisnotthecasewhenthesto chasticpro cessusedtomo deltheneuron's ringmechanism

isnon-Markov.Hereweshallfo cusourattentiononGaussnon-Markovpro cesses. However,

thusdoingwefacethelackofe ectiveanalyticalmetho dsforobtainingmanageable

closed-formexpressionsfortheFPTp df,althoughsomepreliminaryanalyticalresultshaveb een

obtainedbyRicciardiandSatoin[11] foraclassofstationaryGaussianpro cesses.

Indeed,ifX(t)isone-dimensionalnon-singularstationaryGaussianpro cessmeansquare

di erentiable,aseriesexpansionfortheFPTp dfwasderived(see,[12]). Inthefollowing,

forconvenience,weshalltaket

0

=0asinitialtimeand,withoutlossof generality,assume

that E[X(t)] = 0 and P[X(t

0 ) = x

0

] = 1, with x

0

an arbitrarily sp eci edinitial state.

Furthermore,thecovariancefunctionE[X(t)X()]:= (t )will b eassumedto b esuch

that (0)=1; (0)_ =0and (0) <0(this last assumptionsb eing equivalentto themean

square di erentiableprop erty). TheFPT p df of X(t) through S(t) is then given bythe

followingexpression g[S(t);tjx 0 ]=W 1 (tjx 0 )+ 1 X i=1 ( 1) i Z t 0 dt 1 Z t t 1 dt 2  Z t t i 1 dt i W i+1 (t 1 ;:::;t i ;tjx 0 ); (8) with W n (t 1 ;::: ;t n jx 0 ) = Z 1 _ S(t1) dz 1  Z 1 _ S(tn) dz n n Y i=1 [z i _ S(t i )]p 2n [S(t 1 );:::;S(t n );z 1 ;:::;z n jx 0 ]; where p 2n (x 1 ;:::;x n ;z 1 ;:::;z n jx 0 ) is the joint p df of fX(t 1 );::: ;X(t n );Z(t 1 ) = _ X(t 1 ); ::: ; Z(t n )= _ X(t n )g conditional up on X(0) = x 0

. Due to the great complexity of the

involvedmultipleintegrals,expression(8)do esnotapp earto b emanageablefor practical

uses, even though it has recently b een shown that it allows to obtain some interesting

asymptotic results[5]. Since(8) is aLeibnitz series foreach xedt >0;estimates ofthe

FPT p dfcaninprincipleb e obtainedsinceitspartialsumof ordernprovidesaloweror

anupp erb oundto gdep endingonwhethernisevenoro dd. However,alsotheevaluation

ofsuchpartialsumsisextremelycumb ersome.

In conclusion, at the present time for this class of Gaussian pro cesses, no e ective

analytical metho ds, nor viable numerical algorithms are available to evaluate the FPT

p df. Asimulationpro cedureseemstob etheonlyresidualwayofapproach.

Tothisaim,wehaverestoredandup datedanalgorithmduetoFranklin[6]inorderto

constructsamplepathsofastationaryGaussianpro cesswithsp ectraldensityofarational

typ eanddeterministicstartingp oint. Theideaisthefollowing. Letus considerthelinear

lter X(t)= Z 1 0 h(s)W(t s)ds (9)

where h(t) is the impulse resp onse function and W(t) is the input signal. By Fourier

transformation,(9)yields X (!)=jH(!)j 2 W (!) (10)

(6)

0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure1: Plotoftheb oundaryS(t)givenin(13)for =0:5andd=0:25;0:50(b ottomtotop).

where

W

(!)and

X

(!)arethesp ectraldensitiesofinputW(t)andoutputX(t),resp

ec-tively, andwhere H(!) denotestheFouriertransformofh(t):Equation(10) is suggestive

of a metho d to construct a Gaussianpro cess X(t) having a preassignedsp ectral density

X

(!) (!). ItisindeedsuÆcienttoconsiderawhitenoise(t);havingsp ectraldensity

W

(!)1;astheinputsignalandthenselecth(t)insuchawaythat jH(!)j 2

= (!). If

thesp ectraldensityof X(t)isofrationaltyp e, namelyif

(!):= Z 1 1 (t)e i!t dt= P(i!) Q(i!) 2 (11)

whereP andQarep olynomialswithdeg(P)<deg(Q);settingH(!)=P(i!)=Q(i!),from

(10)itfollows

X(t)= P(D )

Q(D ) (t)

where D = d=dt: To calculate the output signal X(t) it is thus necessary to solve rst

thedi erentialequationQ(D )(t)=(t)to obtainthestationary solution(t), andthen

evaluateX(t)=P(D )(t):Thesimulationpro cedureisdesignedtoconstructsamplepaths

ofthepro cessX(t)attheinstantst=0;t;2t;::: wheretisap ositiveconstanttime

increment. The underlying idea can b e appliedto any Gaussian pro cess havingsp ectral

densitiesof arational typ e and,since thesample pathsof the simulatedpro cess are

gen-erated indep endentlyof one another, this simulationpro cedure is particularlysuited for

implementationonsup ercomputers.

Extensivecomputationshaveb eenp erformedonparallelcomputersto explorethe

dif-ferent shap es of the FPT p df asinduced bythe oscillatory b ehaviors of covariances and

thresholds(cf.,forinstance,[1]and[2]).

4 Numericalcomparisons

(7)

0

1

2

3

4

0

0.5

1

1.5

0

1

2

3

4

0

0.5

1

1.5

0

1

2

3

4

0

0.5

1

1.5

0

1

2

3

4

0

0.5

1

1.5

(a)

(b)

(c)

(d)

Figure2: PlotsrefertoFPTp dfg(t)throughtheb oundary(13)with =0:5andd=0:25fora

zero-mean Gaussianpro cess characterized bycorrelation function (12). InFigure2(a)g(t)given

by(14)hasb een plotted. TheestimatedFPT p df ~g (t)with =10 10

isshownin Figure2(b),

with =0:25inFigure2(c)andwith =0:5in Figure2(d).

pro cessesandGaussiannon-Markovpro cesses,inordertoanalyzehowthelackofmemory

a ects the shap e of the density, also with reference to the sp eci ed typ e of correlation

function. Forsimplicity,set x

0

=0and P[X(0)=0]=1;sothatinthefollowingweshall

considertheFPTp dfg(t):=g[S(t);tj0;0].

To b e sp eci c, we consider a stationary Gaussian pro cess X(t) with zero mean and

correlationfunction (t):=e jtj cos( t); 2IR + (12)

which is the simplest typ e of correlation having a concrete engineering signi cance [14].

Whenthecorrelationfunctionisoftyp e(12),X(t)isnotmeansquaredi erentiable,since

_

(0)6=0. Thus theseries expansion(8)do es nothold. However,sp eci c assumptionson

theparameter helpuscharacterizetheshap eoftheFPTp df.

Westartassuming =0;sothatthecorrelationfunction(12) canb efactorizedas

(t)=e  e (t ) 2R + ;0< <t:

Hence,cho osingh

1 (t)=e t andh 2 (t)=e t

in(2), X(t) b ecomesGauss-Markov.

(8)

0

0.5

1

1.5

0

1

2

3

4

5

0

0.5

1

1.5

0

1

2

3

4

5

0

0.5

1

1.5

0

1

2

3

4

5

0

0.5

1

1.5

0

1

2

3

4

5

(a)

(b)

(c) (d)

Figure3: SameasinFigura2withd=0:5.

integralequation(6). Inthefollowing,weconsiderb oundariesoftheform

S(t)=de t ( 1 e 2 t 1 2d 2 ln " 1 4 + 1 4 s 1+8exp  4d 2 e 2 t 1  #) ; (13)

with d > 0. It is evident that lim

t!0

S(t) = d and that S(t) tends to 0 ast increases.

Furthermore,asddecreases,theb oundaryb ecomes atter. InFigure1,theb oundaryS(t)

given in(13) isplottedfor =0:5 and fortwochoicesof the parameterd, i.e. d=0:25

andd=0:5.

As provedin[4]forb oundariesofthe form(13), theFPTp dfg(t) ofaGauss-Markov

pro cessadmitsthefollowingclosedform:

g(t)= 4d e t e 2 t 1 s 1+8exp  4d 2 e 2 t 1  1+ s 1+8exp  4d 2 e 2 t 1  f[S(t);tj0;0]; (14)

wheref[S(t);tj0;0]isthetransitionp dfoftheGauss-Markovpro cessX(t):

Fora zero-meanGauss-Markovpro cess characterized by the correlation function(12)

with = 0:5 and = 0, the FPT p df g(t) given by (14) through the b oundary (13) is

plottedinFigure2(a)ford=0:25and inFigure3(a) ford=0:5. Notethatasdincreases

(9)

Setting 6=0in(12),theGaussianpro cess X(t) isno longerMarkovandits sp ectral densityisgivenby (!)= 2 (! 2 + 2 + 2 ) ! 4 +2! 2 ( 2 2 )+( 2 + 2 ) 2 ; (15)

thus b eing of arational typ e. Since in(15) thedegree of the numerator is lessthan the

degree of the denominator, it is p ossibleto apply the simulationalgorithm describ ed in

Section 3inordertoestimatetheFPTp df~g(t)ofthepro cess.

Thesimulationpro cedurehasb eenimplementedbyaparallelFORTRAN90co deona

128-pro cessorIBMSP4sup ercomputer,basedonMPIlanguageforparallelpro cessing.The

numb erofsimulatedsamplepathshasb eenset equalto10 7

. TheestimatedFPTp df~g (t)

throughtheb oundary(13)with =0:5andd=0:25areplottedinFigures2(b)2(d)for

Gaussianpro cesseswith correlationfunction(12) having =10 10

;0:25;0:5, resp ectively.

Forthesamepro cesses, Figures3(b)3(d) showthe estimated FPTp df~g(t)throughthe

b oundary(13) with =0:5 andd=0:5. Note thatas increases,theshap e ofthe FPT

p df~g(t)b ecomes atterandtherelatedmo deincreases. Furthermore,asFigures2(a)-2(b)

andFigures3(a)-3(b)show,g(t)~ isverysimilartog(t)forsmallvaluesof .

Acknowledgement Workp erformedwithinajointco op erationagreementb etweenJapan

Science and Technology Corp oration (JST) and Universita di Nap oli Federico I I, under

partialsupp ortbyINdAM(G.N.C.S).

References

[1] E.DiNardo,E.Pirozzi,L.M.RicciardiandS.Rinaldi,Firstpassagetimedensitiesevaluation

forsimulatedGaussianpro cesses.CyberneticsandSystem1,(2000),301{306.

[2] E. DiNardo, A.G.Nobile, E. Pirozzi andL.M. Ricciardi, Simulation of Gaussianpro cesses

and rstpassagetime densitiesevaluation.LectureNotesinComputerScience 1798,(2000),

319{333.

[3] E.DiNardo,A.G.Nobile,E.PirozziandL.M.Ricciardi,ParallelsimulationsinFPTproblems

forGaussianpro cesses. ScienceandSup ercomputingatCINECA.Rep ort2001,(2001), 405{

412.

[4] E.DiNardo,A.G.Nobile, E.Pirozzi andL.M.Ricciardi,Acomputational approachto

rst-passage-timeproblemforGauss-Markovpro cesses.Adv.Appl.Prob.33,(2001),453{482.

[5] E.DiNardo,A.G.Nobile, E.PirozziandL.M.Ricciardi,Ontheasymptoticb ehaviorof rst

passagetimedensitiesforstationaryGaussianpro cessesandvaryingb oundaries.Methodology

andComputinginAppliedProbability(toapp ear).

[6] J.N.Franklin,Numerical simulation ofstationary andnonstationaryGaussianrandom

pro-cesses.SIAMReview7,(1965),68{80.

[7] G.L. Gerstein and B. Mandelbrot, Random walk mo dels for the spike activity of a single

neuron.BiophysicalJournal4,(1964),41{68.

[8] C.B.Mehr and J.A.McFadden, Certain Prop erties of Gaussian Pro cesses and their

First-PassageTimes. J.R.Statist.Soc.(B)27,(1965),505{522.

[9] L.M.Ricciardi,Di usionPro cessesandRelatedTopicsinBiology.Springer-Verlag,NewYork,

(1977).

[10] L.M. Ricciardi, A. Di Crescenzo, V. Giorno and A.G. Nobile, An Outline of Theoretical

andAlgorithmic ApproachestoFirstPassageTimeProblemswithApplicationstoBiological

Mo deling.Math.Japonica50,(1999),247{322.

[11] L.M.Ricciardi andS.Sato,Anoteon rstpassage time forGaussianpro cessesandvarying

(10)

[12] L.M. Ricciardi and S. Sato, On the evaluation of rst passage time densities for Gaussian

pro cesses. SignalProcessing11,(1986),339{357.

[13] L.M.Ricciardi andP.Lansk y, Di usionmo delsofneuronactivity.InTheHandbookofBrain

TheoryandNeuralNetworks(M.A.Arbib,ed.),TheMITPress, Cambridge,(2002),343-348.

[14] A.M. Yaglom, Correlation Theory of Stationary Related Random Functions. Vol. I: Basic

Results.Springer-Verlag,NewYork,(1987).

E. Di Nardo: Dipartimento di Matematica,

Universit

a dellaBasilicata,

Con-trada MacchiaRomana, Potenza,Italy

A.G.Nobile: DipartimentodiMatematicaeInformatica,

Universit

adiSalerno,

ViaS. Allende,I-84081Baronissi(SA), Italy

E. Pirozzi and L.M. Ricciardi: Dipartimento di Matematica e Applicazioni,

Uni-versit

Riferimenti

Documenti correlati

Precise and redundant measurements of the sides and angles of the Unitarity Triangle provide a crucial test of CP violation in the Standard Model.. The present constraints on the (ρ,

In order to identify the source of the very high energy emis- sion and to constrain its spectral energy distribution, we used a deep observation of the field obtained with

Dividends received from companies resident in a country with which Finland has concluded a double taxation agreement are treated as 75% taxable income subject

L’arbitrariet` a della scelta delle coordinate per parametrizzare lo stato del nostro gas ci fa intuire come lo stato in s´ e sia una nozione pi` u generale rispetto alla

To test whether HERG channel expression in primary AML could be involved in the regulation of cell proliferation, as in the above reported leukemia cell lines, a clonogenic assay

Abstract—One of the main recent research trends of the Italian Interuniversity Research Center on Integrated Systems for Marine Environment (ISME) is the use of marine cooper-

Overall, the findings are consistent with the hypothesized effect of masking on different stages of object processing (Fig. 1 ).These results suggest a close link between