• Non ci sono risultati.

Snow's case revisited: New tool in geographic profiling of epidemiology

N/A
N/A
Protected

Academic year: 2021

Condividi "Snow's case revisited: New tool in geographic profiling of epidemiology"

Copied!
4
0
0

Testo completo

(1)

braz j infect dis 2 0 1 7;21(1):112–115

w w w . e l s e v ie r . c o m / l o c a t e / b j i d

The

Brazilian

Journal

of

INFECTIOUS

DISEASES

Brief

communication

Snow’s

case

revisited:

new

tool

in

geographic

profiling

of

epidemiology

Alessio

Papini

a,∗

,

Ugo

Santosuosso

b

aUniversityofFlorence,DepartmentofBiology,Firenze,Italy

bUniversityofFlorence,DepartmentofClinicalandExperimentalMedicine,Firenze,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received27July2016 Accepted30September2016 Availableonline9November2016 Keywords: Geographicprofiling Geographicepidemiology Cholera JohnSnow

a

b

s

t

r

a

c

t

GeographicProfilingtechniqueisusedtofindtheoriginofaseriesofcrimes.Themethod wasrecentlyextendedtootherfields.Oneofthebestrenowneddatainepidemiologyisthat byJohnSnowduringanoutburstofcholerainLondon.WewrotePythonscriptstoperform theanalysestoapplytheGeographicProfilingforindividuatingthestartingoriginofan infectionbyusingtheoldSnow’sdataset.Wemodifiedthemethodbyapplyingaweightto eachpointofthemapwherecasesofcholerawerereported.Theweightwasproportional tothenumberofcasesinagivenlocation.

ThismodificationoftheGeographicProfilingmethodallowedtoindividuateinthemap anareaofmaximumprobabilityoftheinfectionsource,whichwasafewmeterswideand includingthehistoricallyknownsourceofcholera,thatisthe“classical”waterpumpat BroadStreet.

Themethodappearstobeausefulcomplementinordertoindividuatethesourceof epidemicswhenavailabledataaboutthecasesoftheinfectionscanbesummarizedona map.

©2016SociedadeBrasileiradeInfectologia.PublishedbyElsevierEditoraLtda.Thisisan openaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/ by-nc-nd/4.0/).

Introduction

GeographicProfiling(GP) isananalytictoolwidelyused in criminologyinordertoidentifyonamap anarea of high-estprobabilityassumedtocontaintheoriginoflinkedevents, typicallycrimesexecutedbyaserialoffender.1Themethod

wasextendedfromcriminologytootherfieldswhereitwas possibletoidentifyaseriesoflinkedeventswhichmighthave

Correspondingauthor.

E-mailaddress:[email protected](A.Papini).

originated from a starting point in the space (represented onatwodimensionalmap).Fieldsofapplicationotherthan criminologyhavebeen:invasionbyalienspecies,2–5

bumble-bees foraging and nest location,6,7 and infectious diseases

targeting.8,9

GP usesthecoordinatesonthemappedevents,creating aprobabilitysurface,theso-calledgeoprofile.1Thegeoprofile

does notindicatetheexact origin ofthe events,but rather prioritizeaseriesofgeographicalpoints,basedonthedata.1

http://dx.doi.org/10.1016/j.bjid.2016.09.010

1413-8670/©2016SociedadeBrasileiradeInfectologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

brazj infect dis.2017;21(1):112–115

113

Thegeoprofilewillprovideonthemapadecreasingprobability densityoffindingthesourceoftheeventsdrawnonthemap.1

Themodeldoesnotsearchsimplythegeographical cen-terofthe events,but instead it considersadistance-decay function,suchthattheprobabilityofaneventwillbelower byincreasingthe distancefromthe centeroforigin;and a bufferzone,withinwhichtheprobabilityofanevent tends tozero.1Thedistance-decayfunctionisrelatedto

maximiz-ingparsimonyinmovement,ineconomicalandenergyterms. Surprisingly,thesefunctionsrevealedtobefoundnotonlyfor humans(criminals),butalsoevenforinvasive(nothuman) species2,3andinfectiousdiseases.8–10

Theneedforanalyticaltoolstorecognizethesourceofthe spreadingof“something”(generallyathreat)hasalwaysbeen animportanttask.11Oneofthebestknowncasesis,in

epi-demiology,thatofcholeraoutbreakinLondon,1854,studied byJohnSnow12andwidelycitedasaseminalworkinspatial

epidemiology13[13andreferencestherein].Dr.Snowtagged

thecholeracasesandthewaterpumpsonthemapof Lon-donandsearchedforthearea withthehighestnumber of cases,sodiscoveringthattheoriginoftheoutbreak(the so-calledfocus ofinfection) wasa contaminated waterpump inBroadStreet.ThetaggedcholeracasesdrawnbySnowon themap ofLondon canbeconvertedinadatasetof coor-dinates,thatwasalreadyusedbyLeComberet al.8 totest

theGPmethodfortargetinginfectiousdiseases.LeComber etal.8wereabletomarkarestrictedareainthemapof

Lon-doncontainingthefamouswaterpumpofBroadStreet(see Fig.1CandDintheirarticle).Theseauthorsusedasinputdata theindividualaddresseswherecaseofdeathsduetocholera hadoccurred,thatis321addresses,whilethetotalnumber ofcasesamountedto575,sincemorethanonecasemight haveoccurredatthesameaddress.LeComberet al.8used

thisapproach“toavoidthepossibleproblemofspatial tempo-ralnon-independenceduetosecondaryinfectionsatagiven address”.Ourapproachincluded,instead,allcasesassigning aweighttoeachpoint(addresses)proportionaltothenumber ofcases.Weoverlookedpossiblesecondaryhuman-to-human contagions, since cholera should not easily transmit from person-to-person,whileitstransmissionisknowntobemore food-orwater-born.14 Forthisreason,weinterpretedmore

thanonecaseinthesameaddressasindependenteventsand hencesummable.

Therefore,hereweproposeanewmethodofapplyingGP inwhichadifferentweightisassignedtoeachpointofthe mapproportionallytothenumberofcasesoccurredineach point.

Methods

The data about the positions of cases on the map were acquiredwith Neuronmorpho(http://www.southampton.ac. uk/∼dales/morpho/),apluginofImageJ(NationalInstituteof Health;http://rsb.info.nih.gov/ij/),thatcanreadamap posi-tion with amouse click, building a csv filecontaining the coordinatespointbypoint.Weightswereaddedmanually.Our methodcalculatestheGPbyweightingeachpointofthemap indirectproportionalitywiththenumberofcasesoccurredin agivenpointofthemap.Thatis,somepointsofthemapare

moreimportantthanothers.Thedatawereanalyzedwitha Pythonscript(Geoprof3.0.2.py).

CrucialfortheGPanalysisistheassignmentofthevalues B,correspondingtotheradiusofthebufferzone.2Inour

anal-ysisweusedB=30,correspondingtoabufferzoneof30pixels (about15monourmap),thatisquitesmall,withrespectto other GPanalysesinotherfields,suchasthose onmalaria casesinCairo.9WeevaluatedmoreBvalues,calculatingthe

impactontheanalysis.TheGPtechniqueisdescribedindetail inPapinietal.3ThevariableB(thebufferzone)isofcourse

dependentonthemapmagnificationandonthemap resolu-tion,sinceBisexpressedinpixels,whiletheactualmeaningof thebufferzonecanbeunderstoodonlyifexpressedinmeters orkm.

The Python scripts were written by the authors and can be retrieved from the site www.unifi.it/caryologia/ PapiniPrograms.html.ThescriptswereexecutedwithPython 2.7.3 (http://www.python.org/), running in Ubuntu 12.04 LTSoperatingsystem, kernel2.6.32.ThePython(>=2.6 ver-sion)programsneedNumPy(http://www.numpy.org/),SciPy (http://www.scipy.org/), Matplotlib (http://matplotlib.org/), Scikit-learn (http://scikit-learn.org), and Python Image Library – PIL – (http://www.pythonware.com/products/pil/) librariesinstalled.Anoteaboutthesoftwareisprovidedas

Supplementarymaterial(SoftwareUsesupplementary.pdf).

Fig.1–Resultsobtainedbyconsideringonlytheaddresses onthemapasdatasets.Noweightisassignedtoeach addressonthebasisofthenumberofrecordedcases.

(3)

114

braz j infect dis.2017;21(1):112–115

Results

and

discussion

Fig. 1 shows the results obtained by considering only the addressesonthemapasdatasets,correspondingtothe anal-ysisbyLeComberetal.,9thatis,noweightwasassignedtoan

addressonthebasisofthenumberofrecordedcases.InFig.2

weshowtheGPanalysiswithweightsassignedtoeachpoint ofthemaponthebasisofthenumberofcases.Theresult isquitestriking,sincetheredarea,representingtheareaof themapwiththepointswith95%ofhighestprobability com-prisedthepumpofBroadStreet.Thisareawasabout30min diameter.Withrespecttothemethodthatdoesnotconsider thenumberofcasesasweights(showninFig.1),thetotalarea ofhighestprobabilityofthepresenceofthesourcewashence muchsmaller.

Countingthepixelswithhighestprobabilityoffindingthe sourceof the crimes, we found that the red pixels (those withhighestprobability)decreasedsubstantiallypassingfrom consideringonlytheaddressestousingthewholedataset withweights,that isfrom 36533to10068 (visiblefrom the reductionindimensionoftheredareafromFig.1toFig.2).

Fig.2–GPanalysiswithweightsassignedtoeachpointof themaponthebasisofthenumberofcholeracases.The redarea(thatwithhighestprobabilitytofindtheinfection source)isonlyabout30mindiameteranditcomprisesthe famouspumpofBroadStreet.

Calculatingeachcaseasasinglepoint,alsoiflocatedinthe samepositiononthemap(thatisatthesameaddress), pro-ducedanareaofredpixelsonlyslightlyhigherwithrespect totheuseofweights(datanotshown).

Calculatingthedistanceonthemap,theGPanalysiswith weightsproducedanareaofmaximumprobabilityoffinding thesourceofabout30mindiameter,whichcontainsthewell knownsourceofcholeracasesinLondon,thatisthefamous pumpofBroadStreetrecognizedbySnow.12Thisresultshows

thattheuseofweightsproportionaltothenumberofcases ineachaddress largelyincreasetheprecisionofthe analy-sis,thatis,itreducestheareaofmaximumprobabilitywhere tolookforthesourcewithrespecttootherGPtechniquesas thoseemployedbyLeComberetal.9andVerityetal.11

Conclusion

Theweightedgeoprofilingcanbeausefulmethodtoidentify acenteroforiginofanoutbreakofadisease,incaseswhen morecasesofinfectioncanbefoundinthesamepointofthe map(normallycorrespondingtoaresidence),largelyreducing theprioritypointsandhenceshowingthehighestprecisionin delimitingthesourcesearcharea.

Theuseofweightsformorecasesofinfectionsatthesame address,canbeagoodchoiceonlyincaseswheresecondary person-to-personinfectionscanbeconsiderednotprobable (asitislikelythecaseofcholera),otherwise,asstatedbyLe Comberetal.9itisnecessarytouseasinputdataeachaddress

(pointonthemap)aspointswiththesameweight=1.

Funding

FinancialsupportbytheItalianMinistryofResearch(MUR), FondidiAteneo.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Appendix

A.

Supplementary

data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/ j.bjid.2016.09.010.

r

e

f

e

r

e

n

c

e

s

1.RossmoDK.Geographicprofiling.BocaRaton,FL:CRCPress; 2000.

2.StevensonMD,RossmoDK,KnellRJ,LeComberSC. Geographicprofilingasanovelspatialtoolfortargetingthe controlofinvasivespecies.Ecography.2012;35:1–12.

3.PapiniA,MostiS,SantosuossoU.Trackingtheoriginofthe invadingCaulerpa(Caulerpales,Chlorophyta)withgeographic profiling,acriminologicaltechniqueforakilleralga.Biol Invasions.2013;15:1613–21.

(4)

brazj infect dis.2017;21(1):112–115

115

4. CiniA,AnforaG,Escudero-ColomarLA,etal.Trackingthe invasionofthealienfruitpestDrosophilasuzukiiinEurope.J PestSci.2014;87:559–66.

5. SantosuossoU,PapiniA.MethodsforGeographicProfilingof biologicalinvasionswithmultipleoriginsites.IntJEnviron SciTechnol.2016;13:2037–44.

6. RaineNE,RossmoDK,LeComberSC.Geographicprofiling appliedtotestingmodelsofbumble-beeforaging.JRSoc Interface.2009;6:307–19.

7. Suzuki-OhnoY,InoueMN,OhnoK.Applyinggeographic profilingusedinthefieldofcriminologyforpredictingthe nestlocationsofbumblebees.JTheorBiol.2010;265:211–7.

8. LeComberSC,RossmoDK,HassanAN,FullerDO,BeierJC. Geographicprofilingasanovelspatialtoolfortargeting infectiousdiseasecontrol.IntJHealthGeogr.2011;10:35.

9. SmithCM,DownsSH,MitchellA,HaywardAC,FryH,Le ComberSC.Spatialtargetingforbovinetuberculosiscontrol:

canthelocationsofinfectedcattlebeusedtofindinfected badgers?PLOSONE.2015;10:e0142710.

10.LeComberSC,StevensonMD.FromJacktheRipperto epidemiologyandecology.TrendsEcolEvol.2012;27:307–8.

11.VerityR,StevensonMD,RossmoKD,NicholsRA,LeComber SC.Spatialtargetingofinfectiousdiseasecontrol:identifying multiple,unknownsources.MethodsEcolEvol.2014;5:647–55.

12.SnowJ.Snowoncholera.AreprintoftwopapersbyJohn Snoe,MD,togetherwithabiographicalmemoirbyBW Richardson,MD,andanintroductionbyWadeHampton Frost.NewYork:TheCommonwealthFund;1936.

13.ShiodeN,ShiodeS,Rod-ThatcherE,RanaS,Vinten-Johansen P.Themortalityratesandthespace-timepatternsofJohn Snow’scholeraepidemicmap.IntJHealthGeogr.2015;14:21.

14.SackDA,SackRB,NairGB,SiddiqueAK.Cholera.Lancet. 2004;363:223–33.

Riferimenti

Documenti correlati

Results: By using a novel high-throughput method, named chemical inference of RNA structures, CIRS-seq, that uses dimethyl sulfate, and N-cyclohexyl-

Rodents, previously subjected to 2-week OX treatment, showed passive avoidance and social learning impairment and apoptotic processes in the hippocampus.. Apoptosis rate

Thus, the use of mobile-bearing knee implants did not result in increased knee flexion or function compared with fixed-bearing knee implants in a similar group of patients

They thus play a crucial role in the aftermath of crisis events (dispute settlement and technical and organizational support to companies) as well as in the medium to

system of adiponectin (ADN), an insulin-sensitizing and anti- inflammatory adipokine, in tissues known to be the target of chronic diseases associated to obesity

a) coal seams edges location; b) refracted P-wave velocity in coal seam (solid red line – measured value, dashed blue line - reference value) and ZRMS parameter from

Minaccia 9: Intrinsic factors. Le popolazioni note di I. malinverniana manifestano alcuni dei problemi legati alle piccole popolazioni, quali: i) bassa capaci- tà

Facial muscle EMG activity and SC responses were obtained during the encoding phase, in which participants performed a categorization task, which required them to categorize words