• Non ci sono risultati.

Melatonin action in tumor skeletal muscle cells: an ultrastructural study

N/A
N/A
Protected

Academic year: 2021

Condividi "Melatonin action in tumor skeletal muscle cells: an ultrastructural study"

Copied!
8
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Acta

Histochemica

j ou rn a l h o m e p a g e :w w w . e l s e v i e r . d e / a c t h i s

Melatonin

action

in

tumor

skeletal

muscle

cells:

an

ultrastructural

study

S.

Burattini

a,∗

,

M.

Battistelli

a

,

S.

Codenotti

b

,

E.

Falcieri

a

,

A.

Fanzani

b,1

,

S.

Salucci

a,1

aDepartmentofBiomolecularSciences(DiSB),UrbinoUniversityCarloBo,ViaCa’LeSuore2,61029Urbino,Italy bDepartmentofMolecularandTranslationalMedicine,BresciaUniversity,VialeEuropa11,25123Brescia,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received14October2015

Receivedinrevisedform19February2016 Accepted19February2016 Keywords: Apoptosis Melatonin Rhabdomyosarcoma

a

b

s

t

r

a

c

t

Melatonin(Mel),orN-acetyl-5-methoxytryptamine,isacircadianhormonethatcandiffusethroughall thebiologicalmembranesthankstoitsamphiphilicstructure,alsoovercomingtheblood–brainbarrier andplacenta.AlthoughMelhasbeenreportedtoexhibitstrongantioxidantpropertiesinhealthytissues, studiescarriedoutontumorculturesgaveadifferentpictureofitsaction,oftendescribingMelaseffective totriggerthecelldeathoftumorcellsbyenhancingoxidativestress.

Basedonthispremise, hereMeleffectwasinvestigatedusingatumorcelllinerepresentativeof thehumanalveolarrhabdomyosarcoma(ARMS),themostfrequentsofttissuesarcomaaffecting child-hood.Forthispurpose,Melwasgiveneitherdissolvedinethanol(EtOH)ordimethylsulfoxide(DMSO) atdifferentconcentrationsandtimeexposures.Cellviabilityassaysandultrastructuralobservations demonstratedthatMelwasabletoinduceadose-andtime-dependentcelldeathindependentlyonthe dissolutionsolvent.Microscopyanalyseshighlightedthepresenceofvariousapoptoticandnecrotic pat-ternscorrelatingwiththeincreasingMeldoseandtimeofexposure.ThesefindingssuggestthatMel, triggeringapoptosisinARMScells,couldbeconsideredasapromisingdrugforfuturemultitargeted therapies.

©2016PublishedbyElsevierGmbH.

1. Introduction

Humanrhabdomyosarcoma(RMS)isthemostcommon

pedi-atricsofttissuesarcomathatarisesfrommesenchymalprecursors

withthepotentialtodifferentiateintoskeletalmusclecells,but

failingtocompletemyogenesisbecauseofthepresenceof

chromo-somalaberrations(Zanolaetal.,2012).RMSareaggressivetumors

whose current chemotherapy is often unsuccessful(Dantonello

etal.,2015),especiallyforthealveolarrhabdomyosarcoma(ARMS)

thatischaracterizedbyachromosomaltranslocationthat

generat-ingthePax3-Foxo1fusionproteinconfersamoreaggressivetumor

phenotypeandresistancetoradiationtherapy(Jothietal.,2013).

Currently,theemploymentofamultimodaltherapyhasincreased

thesurvivalrateforpatientswithlocalizeddiseaseto70%albeit

withsignificanttoxicity(Soundararajanetal.,2012).Despitethat,

∗ Correspondingauthor.Fax:+390722304244. E-mailaddresses:sabrina.burattini@uniurb.it

(S.Burattini),michela.battistelli@uniurb.it(M.Battistelli),silvia.codenotti@unibs.it (S.Codenotti),elisabetta.falcieri@uniurb.it(E.Falcieri),alessandro.fanzani@unibs.it (A.Fanzani),sara.salucci@uniurb.it(S.Salucci).

1 Theseauthorsequallycontributedtothiswork.

thetherapysuccessforhighriskpatientsisabout20–30%(Lietal.,

2013),suggestingtheneedofmoreeffectivedrugs.

Over thepast years, Mel,besideits strongand documented

antioxidanteffects (Saluccietal.,2014b;Ganieetal.,2015),has

been shown to act as an anticancer drug in different tumors

(Sánchez-Hidalgoetal.,2012;Batistaetal.,2014;Codenottietal.,

2015),forexampleviainductionofthemitochondrialapoptosis

(Bejaranoetal.,2009)orattenuationoftelomeraseactivitybothin

vivoandinvitro(Leon-Blancoetal.,2003).

Numerousstudieshavedescribeditsanticanceractioninsolid

tumorsand inleukemiathroughinductionoftheapoptoticcell

death,leadingtoreplacementofneoplasticcellswithhealthycells

(Sánchez-Hidalgo etal., 2012;Chuffa etal.,2015).Additionally,

Kubatkaetal.(2001)demonstratedtheanti-tumoractionofMelin

breastcancerinvivo,andthiseffectwasthenconfirmedinclinical

studiesshowingitsprotectiveeffectfrommammary

carcinogen-esis(Nowfaretal.,2002)andinotherneoplasticdiseases(Hong etal.,2014;Wuetal.,2015).

Herewehaveevaluatedtheultrastructuralchangesoccurring

inthehumanalveolarRH30cellsuponadministrationofMel

dis-solvedeitherinEtOH(Saluccietal.,2014a)orDMSO(Jardim-Perassi

etal.,2014)atdifferentdosesandexposuretimes.

http://dx.doi.org/10.1016/j.acthis.2016.02.004 0065-1281/©2016PublishedbyElsevierGmbH.

(2)

S.Burattinietal./ActaHistochemica118(2016)278–285 279 2. Materialsandmethods

2.1. Cellculture

Human RH30 cell line, purchased from the European

Col-lection of Cell Cultures (ECACC; Salisbury, UK), was routinely

tested for the expression of the Pax3-Foxo1 chimeric protein

byboth genesequencingand westernblotanalysisusing

poly-clonalanti-Foxo1(H-128)antibody(Rabbit,sc-11350,SantaCruz

Biotecnology, Dallas, USA). Cells were also routinely tested for

mycoplasmacontaminationusingtheLookOutMycoplasmaPCR

DetectionKit (MP0035 Lookout,Sigma), according tothe

man-ufacturer’sinstructions.RH30cellswereculturedinRPMI1640,

supplementedwith10%heat-inactivatedfetalbovineserum,2mM

glutamine,1%antibiotics(PenicillinandStreptomycin)and

main-tained at37◦Cin humidified airwith5% CO2 (Codenotti etal.,

2015).

Mel(Sigma,St.Louis,MO,USA)wasdissolvedin1%DMSOor1%

EtOHattheconcentrationof100mM.After1or2mMMel

treat-ment,thecellbehaviorwasmonitoredbymeansoftheinverted

microscopy.TrypanBlueexclusionassaywasemployedto

quan-tifycellviability.Therelativenumberofdeadandlivingcellswas

obtainedcountingthenumber of stained(dead)and unstained

(live)cellsusingaNeubauerchamberatrevertedmicroscope.

Stu-dent’st-testwasappliedforstatisticalanalysestocompareresults

obtainedincontrolversustreatedsamples;P<0.05wasconsidered

assignificancethreshold.

2.2. Scanningelectronmicroscopy(SEM)

RH30cells werecultured oncoverslipsin Petridishes. After

washing with0.1Mphosphate buffer, adherent and suspended

cells were fixed with 2.5% glutaraldehyde in 0.1M phosphate

bufferfor1h.Thesuspendedcellpopulationwasdepositatedon

polylysine-coatedcoverslipsandthesampleswerepost-fixedwith

1%osmiumtetroxide(OsO4)in 0.1Mphosphatebuffersolution

(PBS)for1h.Afteralcoholdehydration,thesampleswere

criti-calpointdried,goldsputteredandobservedusingaPhilips515

scanningelectronmicroscope(Codenottietal.,2015).

2.3. Transmissionelectronmicroscopy(TEM)

RH30-treatedcellswerewashedandfixedwith2.5%

glutaralde-hydein0.1MPBSfor15min.Thecellswerescrapedandcentrifuged

at300xgfor10min.Thepelletswerefixedin2.5%

glutaralde-hydeforanadditional30min.Thesuspendedcellswerecollected

inEppendorf,centrifugedandfixedfor45mininglutaraldehyde.

Thesampleswerepost-fixedin1%OsO4for1h,alcoholdehydrated

andembeddedinaraldite.Thinsectionswerestainedwithuranyl

acetateandleadcitrateandanalyzedusingaPhilipsCM10

trans-missionelectronmicroscope(Saluccietal.,2014b).

2.4. Acridineorange(AO)andpropidiumiodide(PI)nuclei stainingconfocallaserscanningmicroscope(CLSM)

Cells werefixed with4% paraformaldehydein PBS (pH 7.4)

for30min,andsuspendedcellsweredepositedonpoly-lysinated

coverslips in Petri dishes. Adherent and suspendend samples

werewashedtwiceusingPBSandthen pre-treatedwithRNase

A10␮g/mL inPBSfor 30min.AfterPBSwashing sampleswere

exposedtoanequalmixtureofPI(1␮g/mL,LifeTechnologies)and

AO(1␮g/mL,LifeTechnologies)dilutedinPBSatroomtemperature

(protectedfromlight)for10minandthenobservedatCLSM(Leica

MicrosystemsCMSGmbH);FICTandPIexcitationwereat488and

500nm,respectively,andtheiremissionsignalsweredetectedat

617and525nm.CLSMimagesarepresentedasmaximumintensity

projectionorsingle-planeimages(Saluccietal.,2014b).

2.5. Westernblotting

Proteinhomogenateswereobtainedbyharvestingcellsinacold

lysisbuffer,composedby20mMTris–HCl(pH7.6),1%NonidetP40,

0.5%sodiumdeoxycholate,0.1%SDS,50mMNaClandacocktail

ofproteaseinhibitors(Roche)plusphosphataseinhibitors(1mM

Na3VO4and4mMNaF).

Bradford reagent assay has been used to calculate protein

concentration. Equal amount of protein samples were

sepa-ratedbySDS-PAGEunderreducingconditionsandtransferredto

polyvinylidinefluoridemembranes.Samplewereincubatedwith

specific primaryantibodies, Rabbitanti-Bax, polyclonal (Rabbit,

sc-526,SantaCruzBiotecnology,Dallas,USA)orRabbit

anti-Bcl-2, polyclonal (Rabbit, sc-492, Santa Cruz Biotecnology, Dallas,

USA) followed by peroxidase-conjugated secondary antibodies

(anti-mouseIgGfromSantaCruzBiotechnology,Dallas,USA;

anti-rabbitIgGfromThermoScientific,Erembodegem,Belgium).The

immunocomplexeswerevisualizedusingtheenhanced

chemilu-minescencereagent(GeneSpin,Milan,Italy)andimmune-reactive

bandswerequantifiedusingdensitometryanalyses(SoftwareGel

ProAnalyzer,version4)(Codenottietal.,2015).

2.6. Insilicoanalysis

The primary mouse tumor cultures fromRMS-bearing mice

werepreviouslyobtainedbyKellerandcolleagues(Rubinetal.,

2011)andutilizedforgeneexpressionanalysisbyemployingthe

microarrayapproach(IlluminaMouseRef-8BeadChip,v1.1).Data

setsweredepositedintheNCBIGeneExpressionOmnibusdatabase

with the accession number GSE22520. To analyze Mel

recep-torexpression,datawereprocessedusingthePartek® Genomics

Suite software version 6.6 (Partek, St. Louis, USA). Briefly, the

microarrayrawdatasetwerereprocessedbythebackground

cor-rection, normalization and summarization of probe intensities,

using the robust multiarray average analysis to determine the

specifichybridizingsignalfor each probe set.Afterbackground

correction,thedataweretransformedinbase-2logarithm.

Qual-itycontrolwasalsoperformedtoidentifythepresenceofarrays

withpoorqualityandevaluatewhetherbatcheffectsignificantly

affectedthedata.

A one-way analysis of variance (ANOVA) was performed to

determinedifferentiallyexpressedgenesinmousealveolarRMS

incomparisontonormalmusclesamples.Foldchange>2and

p-values<0.05wereusedascriteriatoevaluatesignificantdifference

ingeneexpression.

3. Results

ToanalyzewhetherMelmight affectcellsurvival in human

alveolarRH30cells,TrypanBlueexclusionassaywasperformed,

revealingthatMeldissolvedeitherinEtOHorDMSOsignificantly

reducedtheviabilityofRH30cellsinatimeanddosedependent

manner(Fig.1A).

Insupportofthisevidence,SEM(Fig.1)andTEM(Figs.2and3)

analysesconfirmedthatMelinducedcelldeathofRH30cellsina

dose-andtime-dependentmannerandregardlessofthe

dissolu-tionsolvent.Inparticular,whilecontroladherentcellsappearedto

befusiformorstar-shaped(1B),1mMMel-treatedcellsshoweda

roundshapemorphologyalreadyafter24hoftreatment(1C,1H).

Thiseffectwasevenincreasedafter48h(1D,1I)or72h(1E,1L)of

Meltreatmentandaccompaniedbythemembraneblebbing

(3)

Fig.1.Trypanblueexclusionassay.Histogramshowingthepercentagesofliving(darkgreycolumn)anddead(lightgreycolumn)cells,underthedifferenttreatment conditions(A).Dataarefromthreeindependentexperimentsandareshownasmeanofvaluepercentage±standarddeviation.AllMeltreatmentsarestatisticallysignificant versuscontrolcondition(T-test,p<0.05).

SEManalysisofcontroluntreatedcells(B)versusMel-treatedcells(C-O);indetail,representativepicturesshowingcellstreatedwith1mMMel(inEtOH)for24-48–72h(C, D,Erespectively)and2mMMel(inEtOH)for24–48(F,Grespectively)or,alternatively,with1mMMel(inDMSO)for24-48–72h(H,I,L,respectively)and2mMMel(in DMSO)for24(M)-48h(N,O).Bars:10␮mB-O.

(4)

S.Burattinietal./ActaHistochemica118(2016)278–285 281

Fig.2. TEManalysisofcontroluntreatedcells(A)versusMel-treatedRH30cells(inEtOH)(B–G);indetail,representativepicturesshowingcellstreatedwith1mMMelfor 24h(B,C),48h(D,insetD),72h(E)and2mMMelfor24–48h(F,Grespectively)Bars:A,B,G,F,insetD,0.5␮m;C,insetG,0.25␮m;D,E,insetF,1␮m.

thediffusecelldamageoccurringafter24h(1F,1M)and48h(1G,

1N,1O)wascharacterizedbyroundingandblebbedcells.

TEMobservations(Fig.2)showedcontrolcellshavingan

elon-gatedshape andintactsubcellularstructures(2A).Instead,after

1mM Mel administration for 24h, cells showed altered

mito-chondria(2B)and autophagic vacuoles (2C).Occasionally, early

apoptoticnuclearfeatureswereobserved(datanotshown).After

48and72h,mostofthetreatedcellsappearedtobeinlate

apo-ptosis(2D,2E),whereassomeofthemshowedahighnumberof

autophagic-likestructures(inset2D).

Increasing Mel concentration up to 2mM for 24 and 48h

triggereddifferentcellular alterations, includinga diffuse

cyto-plasmicvacuolization(2F),chromatincondensation(insetF)and

autophagic features (inset G). In particular, cells in secondary

necrosiswereobservedafter2mMexposurefor48h(2G).

Con-sistentwiththeseresults,theeffectsproducedonRH30cellsby

MeldissolvedinDMSOweresimilar(Fig.3).Earlyandlate

apop-toticpatternscouldbeobservedafter1mMMelat24h(3A),48h

(3B)and72h(3C).Secondarynecrosisaswellasautophagic

fea-turesappearedafter2mMMeltreatmentat24h(3D,insetD,3E)

and48h(3F).

CLSM evaluation of RH30 cells exposed to Mel dissolvedin

DMSOwascarriedoutbymeansofAO/PIdoublestaining(Fig.4).

InFig4A,theuniformgreenlabelingindicativeofcellularhealthy

structureswasvisibleincontrolcondition.AfterAOandPInuclear

staining,treatedcells(1mMMelfor24h,Fig.4B)showedagreen

stainsimilartocontrols,althoughdisplayingamorerounded

mor-phologycomparedtountreatedcells.After48and72h,thenumber

ofapoptoticcellsincreased(Fig.4C,insetCandD)andsomecells

withorangeareasduetoPIpermeabilitywereobserved(Fig.4C).

Cellstreated with2mMMelfor 24 h(Fig.4E, insetE)showed

orangenucleiduetolateapoptoticeventsandnecrosis.

Inaccordancewiththeobservedapoptoticresponseafter1mM

(5)

Fig.3.TEManalysisofMel–treatedRH30cells(inDMSO)(A–F);indetail,representativepicturesshowingcellstreatedwith1mMMelfor24–48–72h(A,B,Crespectively) and2mMMelfor24(D,E)and48h(F)Bars:A,C,E,1␮m;B,F,0.5␮m;insetB,D,0.25␮m;insetD,2␮m.

Fig.4.CLSManalysisofcontroluntreated(A)versusMel-treatedRH30cells(inDMSO)afterAO/PIdoublestaining(B–E).Indetail,representativepicturesshowingcells treatedwith1mMMelfor24–48–72h(B,C,Drespectively)and2mMMelfor24h(E).Bars:A–E,10␮m.(Forinterpretationofthereferencestocolorinthetext,thereader isreferredtothewebversionofthisarticle.)

WesternBlotanalysisshowingexpressionlevelsofBaxandBcl-2invehicle-treatedversus1mMMel-treatedRH30cellsattheindicatedtime-points(F).Tubulinwasused asproteinloadingcontrol.

bothanincreaseinthepro-apoptoticBaxexpressionandadecrease

inthelevelsofanti-apoptoticBcl-2incomparisontountreatedcells

(Fig.4F),thereforeconfirmingthatMelinducedapoptosisinRH30

cells.

Finally,aninsilicoanalysisofmicroarraysdatageneratedfrom

primarymouseRMStumorcultures(Kelleretal.,2004;Kellerand

Capecchi,2005)revealedthatARMStumorscouldbesensitiveto

(6)

S.Burattinietal./ActaHistochemica118(2016)278–285 283

Fig.5.DotplotgraphsandrelativemeanhistogramsrepresentingthetranscriptionallevelsofMT1(ILMN1256388probenumber)andMT2(ILMN2770987probenumber), asdetectedinsilicobyperformingacomparisonbetweentwentyARMSsamplesandfourskeletalmusclesamples.pvaluewasnotsignificant.

receptorsMT1and MT2weredetectableinARMS subsets with

expressionlevelscomparabletothoseobservedinskeletalmuscle

(Fig.5).

4. Discussion

Epidemiologicalstudiescarriedout overthepastyears have

indicated that patients affected by some types of cancer have

reducedbloodylevelsofMelcomparedwithhealthypeople(Mills

etal.,2005;Lee,2006).Sincethen,thispinealneurohormoneMel

hasbeenrepeatedlydescribedasapotentialanti-cancer

molecu-lartoolgivenitsdemonstratedpro-apoptoticeffectandoncostatic

action towards differentcancercell lines (Bizzarriet al., 2013;

Perdomoetal.,2013;Rodriguezetal.,2013;Hongetal.,2014),

thereforecontributingtocancerprotection(Hrusheskyetal.,2009;

Maoetal.,2010;Bukowska,2011;Santoroetal.,2012).

Basedonthispremise,herewefocusedontheultrastructural

effectsinducedbyMelonahumanARMScelllinecarryingaunique

molecularsignaturefoundamongsarcomas,thePax3-Foxo1fusion

proteinarisingfroma specificchromosomal translocation(Jothi

etal.,2013).RMSneoplasmisthemostcommonsofttissuesarcoma

ofchildhood.AlthoughaggressivetreatmentofRMScouldprovide

long-termbenefit,resistancetoprolongedtherapiesisarecurrent

problem(Fayeetal.,2015).Thelastdecadehasseenan

extraordi-naryincreaseofstudiesonRMSforunderstandinghowapoptotic

mechanismsmaycontributeoncancereradication.Inthisregard,

theintegrityofapoptosispathwaysinRMSconstitutesacritical

determinantofthesensitivitytomostcurrenttreatmentstrategies

(Fulda,2013).

Inthisworkwehavefirstconfirmedpreviousfindingsshowing

the ability of Mel administered at pharmacological

concentra-tions(Rodriguezetal.,2013)intriggeringcelldeathofRMScells

(Codenottietal.,2015);moreover,sincethedissolution solvent

representsanimportantvariablepotentiallyinfluencingtheMel

action,typicallytheabsoluteEtOH(Saluccietal.,2014a;Salucci

(7)

etal.,2014),herewe haveestablishedthatboth thesesolvents

didnotinfluencetheefficacyofneurohormoneactivityasdeath

inducerinRH30cellline.

IncreasingbothMeldosesandexposuretimeleadtolate

apo-ptosisandsecondarynecrosisaconsistentnumberofRH30cells.

In this regard, ourultrastructural analysesrevealed that 1mM

Meldoseforupto48and72hrepresentedtheidealconditions

fortriggeringclassicalapoptosis-related morphologicaland

bio-chemicalchanges,suchassurfaceblebbing,chromatinmargination

andcondensation,mitochondriaalteration,cytoplasmic

vacuoliza-tion, autophagic vacuoles accompanied by Bax activation and

Bcl-2downregulation;inthiscase,RH30cellsmaintaineda

mor-phological plasma membrane integrity and necrotic cells were

detectedonlyoccasionally.Ontheotherside,secondarynecrosis

andnecroticcelldeathappearedtobethemajordeathresponseat

veryhighMeldose(2mM).Fromatherapeuticpointofview,killing

cancercellsviaapoptosisratherthannecrosiscouldbeconsidered

amorepreferableway,giventhattheappearanceofnecrosisinvivo

mightbeaccompaniedbyaninflammatoryresponsetypically

asso-ciatedtoamoreunfavorableoutcome.Hence,theoptimizationof

dosagesforinvivotrialsshouldtakeintoaccountthesepreliminary

invitroobservations.

ThemechanismsbywhichMelinfluencesapoptosishavenot

beenyetfullyclarified(Sainzetal.,2003;Wölfleretal.,2001;Gong

etal.,2003),althoughseveralreportshaveputforwardtheability

ofMeltoelicitapoptoticeffectsthroughchangesintheoxidative

status.Inthisregard,acorrelationbetweentheincreaseinROS

productionand theinductionofMel-drivenapoptosishasbeen

describedindifferentcelllines(Büyükavcietal.,2006).

Melaction isclassicallymediatedbytheinteractionwithits

membrane receptors(Radognaet al., 2009), i.e., MT1and MT2,

whichseemedtobeexpressedalsoinanumberofmouseARMS

tumors,asinferredthroughaninsilicoanalysisthatstillawaits

furtherinvitroandinvivoconfirmation.Hence,thepro-apoptotic

MeleffectonRH30cellscouldbereceptordependent,althoughit

isalsopossiblethathighdosesofMelmayfavoritssimple

diffu-sionacrossthecellmembraneinareceptor-independentmanner.

Onthewhole, understandingwhetherMelactionin ARMScells

maybe mediated or not (orat least partially)by its receptors

willbeimportantforidentifyingthepathwaysunderlyingits

pro-apoptoticaction;inaddition,thesynthesisandselectionofmimetic

compoundswithincreasedactivitycouldprovideafurther

phar-macologicaltoolforovercomingthegrowthofthissolidtumor.

5. Conclusions

ThedatareportedinthisworkindicatethatMel,when

adminis-teredatpharmacologicaldoses,canprofoundlyaffectcellsurvival

inRMS,themostfrequentmyogenicsofttissuesarcomaaffecting

childrenandadolescents(Ognjanovicetal.,2009;MeyerandSpunt,

2004).Inparticular,Melwasabletotriggeranapoptoticprogram,

independentlyonthedissolutionsolvent,thereforerepresentinga

promisingdrugforcounteractingRMStumorprogression.

References

Batista,A.P.,daSilva,T.G.,Teixeira,A.A.,deMedeiros,P.L.,Teixeira,V.W.,Alves, L.C.,DosSantos,F.A.,Silva,E.C.,2014.Ultrastructuralaspectsofmelatonin cytotoxicityonCaco-2cellsinvitro.Micron59,17–23.

Bejarano,I.,Redondo,P.C.,Espino,J.,Rosado,J.A.,Paredes,S.D.,Barriga,C.,Reiter, R.J.,Pariente,J.A.,Rodríguez,A.B.,2009.Melatonininduces

mitochondrial-mediatedapoptosisinhumanmyeloidHL-60cells.J.PinealRes. 46,392–400.

Bizzarri,M.,Proietti,S.,Cucina,A.,Reiter,R.J.,2013.Molecularmechanismsofthe pro-apoptoticactionsofmelatoninincancer:areview.ExpertOpin.Ther. Targets17,1483–1496.

Bukowska,A.,2011.Anticarcinogenicroleofmelatonin—potentialmechanisms. Med.Pr.62,425–434.

Büyükavci,M.,Ozdemir,O.,Buck,S.,Stout,M.,Ravindranath,Y.,Savas¸an,S.,2006. Melatonincytotoxicityinhumanleukemiacells:relationwithitspro-oxidant effect.Fundam.Clin.Pharmacol.20,73–79.

Codenotti,S.,Battistelli,M.,Burattini,S.,Salucci,S.,Falcieri,E.,Rezzani,R.,Faggi,F., Colombi,M.,Monti,E.,Fanzani,A.,2015.Melatonindecreasescell

proliferation:impairsmyogenicdifferentiationandtriggersapoptoticcell deathinrhabdomyosarcomacelllines.Oncol.Rep.34,279–287.

Chuffa,L.G.,Alves,M.D.,Martinez,M.,Camargo,I.,Pinheiro,P.,Domeniconi,R.,Lupi Júnior,L.A.,Martinez,F.,2015.Apoptosisistriggeredbymelatonininaninvivo modelofovariancarcinoma.Endocr.Relat.Cancer,pii:ERC-15-0463. Dantonello,T.M.,Stark,M.,Timmermann,B.,Fuchs,J.,Selle,B.,Linderkamp,C.,

Handgretinger,R.,Hagen,R.,Feuchtgruber,S.,Kube,S.,Kosztyla,D., Kazanowska,B.,Ladenstein,R.,Niggli,F.,Ljungman,G.,Bielack,S.S.,Klingebiel, T.,Koscielniak,E.,2015.Tumourvolumereductionafterneoadjuvant chemotherapyimpactsoutcomeinlocalisedembryonalrhabdomyosarcoma. Pediatr.BloodCancer62,16–23.

Faye,M.D.,Beug,S.T.,Graber,T.E.,Earl,N.,Xiang,X.,Wild,B.,Langlois,S.,Michaud, J.,Cowan,K.N.,Korneluk,R.G.,Holcik,M.,2015.IGF2BP1controlscelldeath anddrugresistanceinrhabdomyosarcomasbyregulatingtranslationofcIAP1. Oncogene34,1532–1541.

Fulda,S.,2013.Moleculartargetedtherapiesforrhabdomyosarcoma:focuson hedgehogandapoptosissignaling.Klin.Padiatr.225,115–119.

Ganie,S.A.,Dar,T.,Bhat,A.,Dar,K.,Anees,S.,Masood,A.,Zargar,M.A.,2015. Melatonin:apotentialantioxidanttherapeuticagentformitochondrial dysfunctionsandrelateddisorders.RejuvenationRes.18(June).

Gong,L.H.,Ren,D.H.,Xiong,M.,Lu,Z.Q.,Wang,X.M.,2003.Melatoninininvitro apoptosisofH22hepatocarcinomacells.ZhonghuaZhongLiuZaZhi25, 550–554.

Hong,Y.,Won,J.,Lee,Y.,Lee,S.,Park,K.,Chang,K.T.,Hong,Y.,2014.Melatonin treatmentinducesinterplayofapoptosis,autophagy,andsenescencein humancolorectalcancercells.J.PinealRes.56,264–274.

Hrushesky,W.J.,Grutsch,J.,Wood,P.,Yang,X.,Oh,E.Y.,Ansell,C.,Kidder,S., Ferrans,C.,Quiton,D.F.,Reynolds,J.,Du-Quiton,J.,Levin,R.,Lis,C.,Braun,D., 2009.Circadianclockmanipulationforcancerpreventionandcontrolandthe reliefofcancersymptoms.Integr.CancerTher.8,387–397.

Jardim-Perassi,B.V.,Arbab,A.S.,Ferreira,L.C.,Borin,T.F.,Varma,N.,Iskander,A.S., Shankar,A.,AlideCampos,M.M.,Zuccari,D.A.,2014.Effectofmelatoninon tumorgrowthandangiogenesisinxenograftmodelofbreastcancer.PLoSOne 9,e85311.

Jothi,M.,Mal,M.,Keller,C.,Mal,A.K.,2013.Smallmoleculeinhibitionof PAX3-FOXO1throughAKTactivationsuppressesmalignantphenotypesof alveolarrhabdomyosarcoma.Mol.CancerTher.12,2663–2674.

Keller,C.,Arenkiel,B.R.,Coffin,C.M.,El-Bardeesy,N.,DePinho,R.A.,Capecchi,M.R., 2004.AlveolarrhabdomyosarcomasinconditionalPax3:Fkhrmice: cooperativityofInk4a/ARFandTrp53lossoffunction.GenesDev.18, 2614–2626.

Keller,C.,Capecchi,M.R.,2005.Newgenetictacticstomodelalveolar rhabdomyosarcomainthemouse.CancerRes.65,7530–7532. Kubatka,P.,Bojková,B.,ciková-KalickáK,M.,Mníchová-Chamilová,M.,

Adámeková,E.,Ahlers,I.,Ahlersová,E.,Cermáková,M.,2001.Effectsof tamoxifenandmelatoninonmammaryglandcancerinducedby N-methyl-N-nitrosoureaandby7,12-dimethylbenz(a)anthracene respectively,infemaleSprague–Dawleyrats.FoliaBiol.(Praha)47,5–10. Lee,C.O.,2006.Complementaryandalternativemedicinespatientsaretalking

about:melatonin.Clin.J.Oncol.Nurs.10,105–107.

Leon-Blanco,M.M.,Guerrero,J.M.,Reiter,R.J.,Calvo,J.R.,Pozo,D.,2003.Melatonin inhibitstelomeraseactivityintheMCF-7tumorcelllinebothinvivoandin vitro.J.PinealRes.35,204–211.

Li,S.Q.,Cheuk,A.T.,Shern,J.F.,Song,Y.K.,Hurd,L.,Liao,H.,Wei,J.S.,Khan,J.,2013. Targetingwild-typeandmutationallyactivatedFGFR4inrhabdomyosarcoma withtheinhibitorponatinib(AP24534).PLoSOne8,e76551.

Mao,L.,Yuan,L.,Slakey,L.M.,Jones,F.E.,Burow,M.E.,Hill,S.M.,2010.Inhibitionof breastcancercellinvasionbymelatoninismediatedthroughregulationofthe p38mitogen-activatedproteinkinasesignalingpathway.BreastCancerRes. 12,R107.

Martín-Renedo,J.,Mauriz,J.L.,Jorquera,F.,Ruiz-Andrés,O.,González,P., González-Gallego,J.,2008.Melatonininducescellcyclearrestandapoptosisin hepatocarcinomaHepG2cellline.J.PinealRes.45,532–540.

Meyer,W.H.,Spunt,S.L.,2004.Softtissuesarcomasofchildhood.CancerTreat.Rev. 30,269–280.

Mills,E.,Wu,P.,Seely,D.,Guyatt,G.,2005.Melatonininthetreatmentofcancer:a systematicreviewofrandomizedcontrolledtrialsandmeta-analysis.J.Pineal Res.39,360–366.

Nowfar,S.,Teplitzky,S.R.,Melancon,K.,Kiefer,T.L.,Cheng,Q.,Dwived,P.D., Bischoff,E.D.,Moro,K.,Anderson,M.B.,Dai,J.,Lai,L.,Yuan,L.,Hill,S.M.,2002. Tumorpreventionby9-cis-retinoicacidintheN-nitroso-N-methylureamodel ofmammarycarcinogenesisispotentiatedbythepinealhormonemelatonin. BreastCancerResTreat72,33–43.

Ognjanovic,S.,Linabery,A.M.,Charbonneau,B.,Ross,J.A.,2009.Trendsin childhoodrhabdomyosarcomaincidenceandsurvivalintheUnitedStates, 1975–2005.Cancer115,4218–4226.

Perdomo,J.,Cabrera,J.,Estévez,F.,Loro,J.,Reiter,R.J.,Quintana,J.,2013.Melatonin inducesapoptosisthroughacaspase-dependentbutreactiveoxygen species-independentmechanisminhumanleukemiaMolt-3cells.J.PinealRes. 55,195–206.

(8)

S.Burattinietal./ActaHistochemica118(2016)278–285 285 Radogna,F.,Nuccitelli,S.,Mengoni,F.,Ghibelli,L.,2009.Neuroprotectionby

melatoninonastrocytomacelldeath.Ann.N.Y.Acad.Sci.1171,509–513. Rodriguez,C.,Martín,V.,Herrera,F.,García-Santos,G.,Rodriguez-Blanco,J.,

Casado-Zapico,S.,Sánchez-Sánchez,A.M.,Suárez,S.,Puente-Moncada,N., Anítua,M.J.,Antolín,I.,2013.Mechanismsinvolvedinthepro-apoptoticeffect ofmelatoninincancercells.Int.J.Mol.Sci.14,6597–6613.

Rubin,B.P.,Nishijo,K.,Chen,H.I.,Yi,X.,Schuetze,D.P.,Pal,R.,Prajapati,S.I., Abraham,J.,Arenkiel,B.R.,Chen,Q.R.,Davis,S.,McCleish,A.T.,Capecchi,M.R., Michalek,J.E.,Zarzabal,L.A.,Khan,J.,Yu,Z.,Parham,D.M.,Barr,F.G.,Meltzer, P.S.,Chen,Y.,Keller,C.,2011.Evidenceforanunanticipatedrelationship betweenundifferentiatedpleomorphicsarcomaandembryonal rhabdomyosarcoma.CancerCell19,177–191.

Sainz,R.M.,Mayo,J.C.,Rodriguez,C.,Tan,D.X.,Lopez-Burillo,S.,Reiter,R.J.,2003. Melatoninandcelldeath:differentialactionsonapoptosisinnormaland cancercells.CellMol.LifeSci.60,1407–1426.

Salucci,S.,Burattini,S.,Curzi,D.,Buontempo,F.,Martelli,A.M.,Zappia,G.,Falcieri, E.,Battistelli,M.,2014a.AntioxidantsinthepreventionofUVB-induced keratynocyteapoptosis.J.Photochem.Photobiol.B141,1–9.

Salucci,S.,Burattini,S.,Battistelli,M.,Baldassarri,V.,Curzi,D.,Valmori,A.,Falcieri, E.,2014b.Melatoninpreventschemical-inducedhaemopoieticcelldeath.Int.J. Mol.Sci.15,6625–6640.

Sánchez-Hidalgo,M.,Guerrero,J.M.,Villegas,I.,Packham,G.,delaLastra,C.A., 2012.Melatonin:anaturalprogrammedcelldeathinducerincancer.Curr. Med.Chem.19,3805–3821.

Santoro,R.,Marani,M.,Blandino,G.,Muti,P.,Strano,S.,2012.Melatonintriggers p53SerphosphorylationandpreventsDNAdamageaccumulation.Oncogene 31,2931–2942.

Soundararajan,A.,Abraham,J.,Nelon,L.D.,Prajapati,S.I.,Zarzabal,L.A.,Michalek, J.E.,McHardy,S.F.,Hawkins,D.S.,Malempati,S.,Keller,C.,2012.18F-FDG microPETimagingdetectsearlytransientresponsetoanIGF1Rinhibitorin geneticallyengineeredrhabdomyosarcomamodels.Pediatr.BloodCancer59, 485–492.

Wölfler,A.,Caluba,H.C.,Abuja,P.M.,Dohr,G.,Schauenstein,K.,Liebmann,P.M., 2001.Prooxidantactivityofmelatoninpromotesfas-inducedcelldeathin humanleukemicJurkatcells.FEBSLett.502,127–131.

Wu,S.M.,Lin,W.Y.,Shen,C.C.,Pan,H.C.,Keh-Bin,W.,Chen,Y.C.,Jan,Y.J.,Lai,D.W., Tang,S.C.,Tien,H.R.,Chiu,C.S.,Tsai,T.C.,Lai,Y.L.,Sheu,M.L.,2015.Melatonin setouttoERstresssignalingthwartsepithelialmesenchymaltransitionand peritonealdisseminationviaCalpain-mediatedC/EBP␤andNF␬Bcleavage.J. PinealRes.,http://dx.doi.org/10.1111/jpi.12295.

Zanola,A.,Rossi,S.,Faggi,F.,Monti,E.,Fanzani,A.,2012.Rhabdomyosarcomas:an overviewontheexperimentalanimalmodels.J.CellMol.Med.16,1377–1391.

Figura

Fig. 1. Trypan blue exclusion assay. Histogram showing the percentages of living (dark grey column) and dead (light grey column) cells, under the different treatment conditions (A)
Fig. 2. TEM analysis of control untreated cells (A) versus Mel-treated RH30 cells (in EtOH) (B–G); in detail, representative pictures showing cells treated with 1 mM Mel for 24 h (B, C), 48 h (D, inset D), 72 h (E) and 2 mM Mel for 24–48 h (F, G respective
Fig. 3. TEM analysis of Mel–treated RH30 cells (in DMSO) (A–F); in detail, representative pictures showing cells treated with 1 mM Mel for 24–48–72 h (A, B, C respectively) and 2 mM Mel for 24 (D,E) and 48 h (F) Bars: A, C, E, 1 ␮m; B, F, 0.5 ␮m; inset B,
Fig. 5. Dot plot graphs and relative mean histograms representing the transcriptional levels of MT1 (ILMN 1256388 probe number) and MT2 (ILMN 2770987 probe number), as detected in silico by performing a comparison between twenty ARMS samples and four skele

Riferimenti

Documenti correlati

In many cases, the number of matrices available, which describe the binding affinities of the factors involved in the experimental protocol upstream data analysis, is much larger

Here, we use the resource control lambda calculus λr, proposed in [2], as a starting point for obtaining computational interpretations of implicative fragments of some

Giancarlo Carriero - Unione Industriali Napoli - Sezione Turismo Francesco Spinosa - Scoop Travel Srl. Nunzia Scatola - CWT SatoTravel (US Navy Napoli) Giovanni Pizzo - Hotel

interesting aspect of Wroth’s sonnet sequence for the first scholars to analyse it was of course the fact that the gender of the poetic voice, indeed of the mask assumed by the

Background: Despite the growing interest in Anderson Fabry disease, uncertainties in terms of disease management remain, particularly practical details on use of approved

A549 analysis     

The median glucose uptake of Hoechst(+) cancer cells in spike-in samples was, with respect to cancer cells alone, about 1.5- and 2-fold decreased in MDA-MB-231 and H460 cell

Data distribution in a connected element interferometer is governed by two considerations; all the inputs for the same frequency channels for each time step must be presented to