• Non ci sono risultati.

Germanium nitride and oxynitride films for surface passivation of Ge radiation detectors

N/A
N/A
Protected

Academic year: 2021

Condividi "Germanium nitride and oxynitride films for surface passivation of Ge radiation detectors"

Copied!
8
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Applied

Surface

Science

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c

Full

Length

Article

Germanium

nitride

and

oxynitride

films

for

surface

passivation

of

Ge

radiation

detectors

G.

Maggioni

a,b,∗

,

S.

Carturan

a,b

,

L.

Fiorese

b,c

,

N.

Pinto

d,e

,

F.

Caproli

d,e

,

D.R.

Napoli

b

,

M.

Giarola

f

,

G.

Mariotto

f

aDipartimentodiFisicaeAstronomiaG.Galilei,UniversitàdiPadova,ViaMarzolo8,I-35131Padova,Italy

bLaboratoriNazionalidiLegnaro,IstitutoNazionalediFisicaNucleare,Vialedell’Universita’2,I-35020Legnaro,Padova,Italy cDipartimentodiIngegneriadeiMaterialiedelleTecnologieIndustriali,UniversitàdiTrento,ViaMesiano77,I-38050Povo,Trento,Italy dScuoladiScienzeeTecnologie,SezionediFisica,UniversitàdiCamerino,ViaMadonnadelleCarceri9,Camerino,Italy

eINFN,SezionediPerugia,Perugia,Italy

fDipartimentodiInformatica—UniversitàdiVerona,StradaleGrazie15,I-37134Verona,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received6June2016

Receivedinrevisedform9September2016 Accepted2October2016

Availableonline4October2016 Keywords:

Germaniumnitridelayer Germaniumoxynitridelayer Roomtemperaturedeposition Electricalresistivity Surfacepassivation

Hyperpuregermaniumdetector

a

b

s

t

r

a

c

t

Thisworkreportsadetailedinvestigationofthepropertiesofgermaniumnitrideandoxynitridefilms tobeappliedaspassivationlayerstoGeradiationdetectors.Allthesamplesweredepositedatroom temperaturebyreactiveRFmagnetronsputtering.Astrongcorrelationwasfoundbetweenthedeposition parameters,suchasdepositionrate,substratebiasandatmospherecomposition,andtheoxygenand nitrogencontentinthefilmmatrix.Wefoundthatallthefilmswereverypoorlycrystallized,consisting ofverysmallGenitrideandoxynitridenanocrystallites,andelectricallyinsulating,withtheresistivity changingfromthreetosixordersofmagnitudeasafunctionoftemperature.Apreliminarytestofthese filmsaspassivationlayerswassuccessfullyperformedbydepositingagermaniumnitridefilmonthe intrinsicsurfaceofahigh-puritygermanium(HPGe)diodeandmeasuringtheimprovedperformance,in termsofleakagecurrent,withrespecttoareferencepassivateddiode.Alltheseinterestingresultsallow ustoenvisagetheapplicationofthiscoatingtechnologytothesurfacepassivationofgermanium-based radiationdetectors.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Germanium (Ge) has recently aroused renewed interest in microelectronicsowingtoitshigherholeandelectronmobilities ascomparedtosilicon(Si)[1],whileitshighabsorptioncoefficient inopticalcommunicationbandsmakesitagoodcandidateforthe developmentofGeopticaldevices[2].

OneofthemostseriousissuesinthefabricationofGedevices concerns thepassivationof Gesurfaces.Differentlyfrom Si,Ge forms unstable oxides:GeO2 is water-solubleand decomposes

underthermal treatmentaround420◦C[3]sothatit cannotbe usedinwetprocessesandthermaltreatmentsinULSIfabrication processes[4].Forthisreason,alternativepassivationcoatingshave beenstudiedanddevelopedandseveralGe-baseddielectric com-pounds(suchasGenitridesandoxynitrides)arenowconsidered

∗ Correspondingauthorat:DipartimentodiFisicaeAstronomiaG.Galilei, Univer-sitàdiPadova,ViaMarzolo8,I-35131Padova,Italy.

E-mailaddress:[email protected](G.Maggioni).

potentially interestingfortechnologicalapplications.In particu-lar,germaniumnitride(Ge3N4)exhibitsahighdielectricconstant,

iswater-insolubleanditsthermaldecompositiontemperatureis higherthanGeO2[5,6]sothatitcouldbeappliednotonlyasabuffer

layerfor high-kdielectricsgrown onGesubstratesbutalsofor thepassivationofGesurfaces.Germaniumoxynitrides(GeOxNy)

are alsopromising materials,because nitrogenincorporationin GeO2hasproventoimproveitschemicalandthermalstability[7]:

thedecompositiontemperatureofaGeOxNylayerwasfoundto

increaseupto550◦C,whichwasmorethan100◦Chigherthanthat ofpureGeO2[8,9].

Akeyrole totailorthepassivatingpropertiesofthisclassof materialsisplayedbythedepositiontechnique.Germaniumnitride andoxynitridelayersareusuallygrownbytechniquessuchas ther-malandplasmanitridationofGesurfaces[4,3,10],chemicalvapor deposition[11]andthermalammonolysisofGeO2[12,13].Reactive

sputteringtechnique,usingN2,NH3 orN2H4asreactivegas,has

beenalsoexploitedforthedepositionofgermaniumnitridelayers [14–18].Thesetechniquesusuallyrequireheatingthesubstrateup tosomehundredsofCelsiusdegreesduringthefilmgrowthinorder http://dx.doi.org/10.1016/j.apsusc.2016.10.006

(2)

Table1

Depositionparametersofgermaniumnitrideandoxynitridefilms.GedepositionrateandfilmcompositionweredeterminedbyRBS.TheerrorsontheNandOvaluesare around5%. Sample Target-substrate distance (cm) RFpower (W) Sample DCBias (V) Gas com-position Gasflow (sccm) Ultimate pressure(Pa) Watervapor bombardmentrate (1013molecules cm−2s−1) Gedeposition rate(1013atoms cm−2s−1) Filmcomposition A 14 40 – N2 40 8.5×10−5 3.1 10.7 Ge2O1.0N2.1 B 5 60 – N2 40 4.1×10−5 1.5 104 Ge3N4.6 C 5 60 – N2:Ar 25:15 3.4×10−5 1.2 184 Ge3N4.0 D 14 40 – N2:Ar 20:20 8.6×10−5 3.1 15.8 Ge2O1.2N1.9 E 5 60 – N2:Ar 20:20 3.3×10−5 1.2 171 Ge3N4.1 F 5 60 – N2:Ar 15:25 3.4×10−5 1.2 197 Ge3N4.1 G 5 60 −20 N2 40 1.1×10−4 4.0 104 Ge3N4.6 H 5 60 −40 N2 40 3.8×10−4 13.7 103 Ge3N4.2 I 5 60 −60 N2 40 1.1×10−4 4.0 103 Ge3N4.1 J 5 60 −80 N2 40 1.4×10−4 5.1 93 Ge3N4.1 K 5 60 −100 N2 40 1.9×10−4 6.8 88 Ge3N3.7

topromotethereactionbetweengermaniumandnitrogen/oxygen species.Thisrequirementcanbeadrawbackforthoseapplications, wherethesubstratecanbedamagedbyanexcessivelyhigh temper-ature.Thisisthecasewhenthegermanium(oxy)nitridecoatinghas tobeappliedasapassivationlayertotheintrinsicsurfaceofa high-purityGe(HPGe)detector[19–21].Infact,anexcessiveheatingcan promotetheunwanteddiffusionofcontaminantspeciesandofLi atoms(usedforthen+contactofGedetectors)thenjeopardizing

thedetectorperformance.

Aimingatthisspecificapplication,inthisworkweoptimized theroomtemperature(R.T.)depositionofgermaniumnitrideand oxynitridefilmsbymeansofreactiveRFmagnetronsputteringasa techniqueforproducingpassivationcoatingsforGe-baseddevices. Severalfilmswerepreparedunderdifferentdeposition parame-ters,suchasatmospherecompositionanddepositionrate,andtheir mainphysicalpropertieswerecharacterized.Onesetoffilmswas obtainedbyRFbiasingthesubstrates,inordertostudytheeffects oftheionbombardmentonthefilmproperties.

Asafinalstepofourstudy,agermaniumnitridecoatingwas depositedontotheintrinsicsurfaceofaplanarHPGediodeand thereverseleakagecurrentofthebiaseddiode,withandwithout coating,wasmeasuredandcompared.

2. Experimentaldetails

Theexperimentalequipmentusedforthecoatingsdeposition consistedofastainlesssteelvacuumchamberevacuatedbya tur-bomolecularpumptoabasepressurelowerthan5×10−4Pa.The glowdischargesustainingdevicewasa2-in.cylindricalmagnetron sputteringsourceconnectedtoaradiofrequencypower genera-tor(600W,13.56MHz),throughamatchingbox.Allfilmswere depositedattwovaluesoftheRFpower:40Wand60W.PureGe (99.999%)wasusedasatarget.SeveralN2-Argasmixtureswere

usedforthedepositions(seeTable1)byregulatingthegasflow ofeachgas.Thedifferentsubstrates(silicon,carbonandsapphire) wereplacedonasampleholderatdistancesof5cmand14cm.

Asetoffilmswaspreparedbybiasingthesampleswitha sec-ondRFpowergenerator(600W,13.56MHz),whichresultedinan averagedcvoltageacquiredbythesamplesandpurposelyfixedat valuesrangingfrom0Vto−100V,instepof−20V.Inthisway,a controlledion-bombardment-assisteddepositionwasachievedat aconstantaverageionenergy.Thetimeforeachdepositionrunwas variedinordertoachieveafilmthicknessbetween100and300nm. ForRamanspectroscopymeasurements,thedepositiontimeswere extendedinordertoget600nmthicksamples.Amass spectrome-ter(PrismaPlusQMG220,PfeifferVacuum)revealedwatervapor asthemainresidualcomponentinthedepositionchamber.

RutherfordBackscatteringSpectrometry(RBS)wasperformed using2.0MeV4He+ beamattheVandeGraafacceleratoratthe

LaboratoriNazionalidiLegnaro,atthescatteringangleof160◦,in ordertodeterminefilmdepositionrateandcomposition.Samples werecharacterizedbymeansofglancingx-raydiffraction(XRD) usingaPhilipsdiffractometerequippedwithglancing-incidence X-rayoptics.Theanalyseswereperformedat0.5◦incidenceusing CuK␣Nifilteredradiationat40kVand40mA.

Thevibrationaldynamicsof germaniumnitridesampleswas probed by either FT-IR or Raman spectroscopy measurements. Thetransmittance spectraofthe sampleswererecordedin the 4000–400cm−1range,usingaspectrometerJasco(modelFTIR660 Plus)witharesolutionof4cm−1.Micro-Ramanspectrawere car-riedoutinbackscatteringgeometry,atroomtemperature,under excitationat514.5nmor,alternatively,at647.1nmbymeansof atriple-axismonochromator(Horiba-JobinYvon,modelT64000), setindouble-subtractive/singleconfiguration,andequippedwith holographic gratingshaving1800lines/mm. Thescattered radi-ation was detected by a charge coupled device detector, with 1024×256 pixels, cooled by liquid nitrogen, and the spectral resolutionwasbetterthan0.6cm−1/pixel.Allthespectrawere cali-bratedinfrequencyusingtheemissionlinesofanArspectrallamp. Thesurfacemorphologyofthesampleswasinvestigatedeither byaSEM(TescanVega3XM)equippedwiththeenergydispersive spectrometry(EDS)optionorbyano-contact-modeAFMmodel C-21 (Danish Micro Engineering), mounting a DualScope Probe Scanner95-50.

Electricalresistivity,(T),offilmsdepositedonsapphire sub-strateswasmeasuredinaco-planarconfigurationasafunctionof thetemperaturefromabout300K–600K,byusingasmallfurnace operatinginvacuum(P<10−3Pa)andatdark.FourAuelectrodes, about5mmapart,weresputteredonthefilmsurface,nearits bor-ders.Duetotheextremelyhighresistanceexhibitedbyallthefilms, themeasurementswerecarriedoutinatwocontactsgeometry,by usingelectrometers(Keithleyeithermod.617or6517B) operat-ingintheV/Imode.Duringthisworktheexperimentalsetupwas updatedinordertomeasurehighervaluesofthesampleresistance. Dependingontheroomtemperatureresistance,theappliedbias rangedfrom10Vto100V,withatypicalvalueof50V.Thermal energyinthefilmwaschangedveryslowly,witharateofabout 0.5–1K/minand(T)collectedafterTstabilizationtobetterthan 1K(typically0.5K).Each(T)valuewasobtainedaveraging25–30 datapoints,collectedatafixedTvalue.Filmresistivitywas mea-suredcontinuously,fromroomtemperature(R.T.)upto600Kand thenbacktoR.T.

A planar,cylindricalHPGediode of 19mm (height)×39mm (diameter)waspreparedinourlaboratorytocheckthe passiva-tionpropertiesofgermaniumnitridecoatings.Thep+contactwas

(3)

obtainedbyBoronimplantationoveroneoftheplanarfacesofthe cylinderandthen+ contactbyLidiffusionontheoppositeside.

Furtherdetailsaboutdiodepreparationcanbefoundin[22].For themeasurementof theleakage current,thediodewithoutthe Ge3Nxcoatingwaspassivatedbythestandardmethanol

passiva-tion,consistinginanetchingina3:1HF40%:HNO365%solution

(reagentgrade,CarloErba)for3min,followedbydirectquenching inmethanol(Erbatron,CarloErba).Immediatelyafterthis treat-ment, thediodewasplaced in a commercialstandard cryostat, pumpeddowntoapressurelowerthan10−3Paandcooledtoabout 85K.Afterwards,theleakagecurrentwastestedbyaKeithley237 source-measurementunit(currentsensitivity≈10−14A)

reverse-biasingthe diodeat increasingvoltage,withstepsof 5V every 60sandameasurementevery5s,untiladriftofthecurrentwas observed.Inordertominimizetheeffectsofparasiticcurrentsand capacitiesonthemeasuredcurrent,triaxialcables wereusedto connecttheunittothediode.Ithastobepointedoutthatthe for-wardbiasregionwasnotinvestigated,sincethebulkcontribution tothecurrentobscuresthesurfacecurrentinthisregion.Forthe testofthecoateddiode,athinGe3Nxlayerwasdepositedwiththe

sameparametersofsampleC(seeTable1)onthelateralsurface ofthesamediode,byusingarotatingsampleholderaftercareful maskingofthetwocircularfaces.Immediatelyafterthedeposition, thediodewasplacedinsidethecryostat,pumpeddownandcooled forthemeasurement.Forbothconfigurationsnohysteresiseffect wasfound.

3. Resultsanddiscussion

3.1. Filmcompositionandstructure

Theexperimentalparameters usedforthedepositionof ger-maniumnitrideand oxynitridesamplesarereportedinTable1, together with the film deposition rates and compositions, as derivedbyRBS.SamplesfromAtoFweredepositedwithout bias-ingthesampleholder,whileforsamplesfromGtoKtheaverage dc bias was increasedfrom −20V to−100V. Data reportedin Table1 evidencehowthedepositionrateaffects thefilm com-position,independentlyof theatmospherecomposition. Infact, whenthedepositionrateislow(samplesAandD),theO/Geatomic ratiorangesfrom0.5to0.6andtheO/Nratiorangesfrom0.45to 0.60,whiletheN/Geratioisbetween0.97and1.05.Ontheother hand,whenthedepositionrateishigh(samplesB,CandfromE toK),theoxygencontentdrasticallydecreasesbelowthedetection thresholdandthenitrogencontentincreases(N/Gerangesfrom 1.21to1.53).Sincetheoxygenincorporatedintothefilmscomes mainlyfromtheresidualgasesdesorbedfromthedeposition cham-berwalls,thedifferenceintheoxygencontentcanbeascribedto thelargedifferenceintheratiobetweenthedepositionrateof Geatoms,rGe,andthatofoxygen-containingspeciesonthe

sub-stratesurface.Takingintoaccountthatthemaincomponentofthe residualatmosphereiswatervapor,asrevealedbymass spectrom-etrymeasurements(seeExperimentalsection),thebombardment rateofoxygen-containingspeciesontothesubstratesurfacecanbe approximatedtothatofwatervapor,rH2O(Table1).rH2Owas

calcu-latedfromtheresidualpressureofwatervaporimmediatelybefore thefilmdeposition[23].ForsamplesAandD,theratiobetweenthe depositionrateofGeatomsandthebombardmentrateofwater vapormolecules,rGe/rH2O,islessthanfiveGeatomsforeverywater

vapormolecule,whileforsamplesB,C,EandFrGe/rH2Oincreases

uptomorethansixtyanditiseasilyenvisagedthatitcanbefurther enhancedbybothincreasingtheGedepositionrateanddecreasing theultimatepressure.

Filmcompositionisalsostronglyaffectedbytheatmosphere composition,asexpected.WhenpureN2isused(sampleB),thefilm

isover-stoichiometricinnitrogen(N/Ge=1.53insteadof1.33).In contrast,withN2dilutioninAr(samplesC,EandF),astoichiometric

ratio(withintheexperimentalerror)willresult,inagreementwith dataofLewinetal.[18].

ThecompositionofsamplesfromGtoKevidencestheeffectsof ionbombardmentduringthefilmgrowth.Firstly,theoxygen con-tentisbelowtheRBSdetectionthresholdforallthebiasesranging from−20Vto−100V.Thisfindingshowstheprevailingeffectof theionbombardmentontheincorporationofcontaminantspecies inthefilmwithrespecttotheresidualpressureofwatervapor immediatelybeforethedeposition:infact,eveniftheratiorGe/rH2O

inthebiasedsamplesisintermediatebetweenthetwoprevious setsofunbiasedsamples(rangingfrom7.6to26,seeTable1),the oxygencontentisstillbelowthedetectionthreshold.Ion bombard-mentofthegrowinglayerpromotesthereleaseofweaklybonded, physisorbedwatermoleculesfromthefilmsurface,thusholding downtheoxygenincorporation.Asecondimportanteffectisthe trendofGe depositionrateatincreasingbias:it keepsconstant untilabiasof−60Vanddecreasesdowntoabout85%at−100V. ThistrendshowsthattheGere-sputteringfromthegrowingfilmis negligibleuntil−60Vandbecomesimportantstartingfrom−80V. ThelastimportantfindingconcernstheN/Geatomicratio,which decreases at increasing bias: thefilm is over-stoichiometric in nitrogen,atbiaseslower(lessnegative) than−60V,approaches thestoichiometry(within theexperimentalerror) at−60Vand −80Vandthendropstoasubstoichiometricvalueat−100V. Tak-ingintoaccountthetrendof rGe,thisbehavior indicatesthatN

resputteringbecomesimportantatlowerbiasvaluesthanforGe resputteringandkeepsmorepronouncedevenatthehigherbias (preferredNresputtering).Allthesefindingsevidencethe straight-forwardwaytofinelycontrolthefilmcompositionallowedbythe specificdepositiontechniqueusedinourstudy.

Concerningthestructureof depositedfilms,XRDshowsthat all thefilmsare very poorly crystallized(Fig.1)independently ofthedepositionparameters,withonlyabroadbandappearing between2␪=20◦and2␪=45◦.Inthisregionarelocatedsomeof themostintensepeaksofc-Ge3N4(␣-phase,JCPDS1169,and

␤-phase,JCPDS381374)andc-Ge2ON2[24]:theseareat2␪=29.26◦

(201),33.41◦(210)and36.81◦(211)for␣-phaseGe3N4,2␪=34.08◦

(210)for␤–phaseGe3N4and2␪=25.88◦(201),28.74◦(300),31.06◦

(020),33.77◦ (301)and36.69(220)forc-Ge2ON2.Inthespectra

ofGeOxNysamples(AandD)aweaksignalisalsofoundcloseto

2␪=10◦,whichcouldbeascribedtoac-Ge2ON2peak(2␪=9.49◦

(100))[24].Nootherfeaturecanbeidentified.Inthecaseofbiased samples,wecanobservea clearevolution inthebandshape at increasingbias(Fig.1):therelativeheightofthepeakplacedaround 2␪=37◦ decreaseswithrespecttotheleftpartoftheband.This trenddoesnotseemtobeduetoaphasetransformationbutrather toa rearrangementof thenanocrystallitespresent inthefilms, whosegrowthorientationbecomesmorerandom,thenresulting inanoverallmoredisorderedstructureatincreasingbias.

FT-IRanalysispointsoutasignificantdifferenceinthespectraof filmsdepositedatdifferentdepositionrate(Fig.2):asinglebroad peakisfoundintherange680to720cm−1forthehigh-deposition ratesamples(B,CandfromEtoK),whileforthelow-rateones (AandD)thepeakappearsaround770cm−1.Althoughpeaksof ␤-phaseofc-Ge3N4arefoundat780and910cm−1and␣-phaseof

c-Ge3N4hasonepeakat730cm−1[25],a-Ge3Nxsamplesusually

exhibitapeakcenteredatabout700cm−1,whichisassignedto Ge-Nin-planeasymmetricstretchingvibration[26].Thisisthecase forthehigh-rategermaniumnitridesamples.Ontheotherhand, IRfeaturesoflow-ratesamplesareclearlyaffectedbythepresence ofoxygen:theabsorptionpeakaround770cm−1isassignedtothe stretchingmodeoftheO-Ge-Ngroup.Althoughtheexactposition ofthispeakincrystallinestoichiometricGe2ON2samplesisfound

(4)

Fig.1.XRDspectraofbiasedGe3Nxsamples(BandfromGtoK).ForcomparisonthespectrumofoneofthetwoGeOxNyfilms(D)hasbeenplottedaswell.TheotherGeOxNy

layer(A)showsasimilarspectrum.

Fig.2.FT-IRspectraofsampleI(−60V)andD(N2:Ar20:20,lowdepositionrate).

arisefromtheverypoorlycrystallinenatureofthesefilms,similarly tothegermaniumnitridesamples.

The almost amorphous structure of germanium nitride and oxynitridefilmsisconfirmedbyRamanscatteringmeasurements. AsanexampleFig.3reportsatypicalRamanspectrumcarriedout underexcitationat647.1nmfromthehighlynon-stoichiometric sample B. Ramanspectra of all the samples show in the low-wavenumberregion a paramount, broad and asymmetric band (seeinFig.3thecharacteristicprofilepeakedatabout100cm−1), whichistypicalofsystemswithoutalong-rangeorder,especially ofglasses[27],andisrelatedtoadensityofacousticvibrational statesofthesystem,usuallyreferredalsoasthe“bosonpeak”(BP)

[28].Inaddition,thesamefiguredisplaysanotherbroadspectral feature,centeredatabout290cm−1,appearingintheformofavery weakshoulderoftheBP,andthereforehardlyobservable,whichis relatedtothetranslationaldisorderofthesample.

TheArrheniusplotsoftheelectricalresistivity(T)ofthe dif-ferent filmsdeposited onsapphiresubstratescarriedoutin the temperaturerangebetween300Kand600KarereportedinFig.4. ThecurvesoffilmsC,GandHdonotexhibitvaluesatTlower than≈490K,≈450Kand≈420K,respectively,sincetheir resistiv-itywasmeasuredbeforetheupdateoftheexperimentalsetup(see theExperimentalsection).Itisworthwhilementioningthatallthe curvesshowninFig.4arethecoolingbranchesoftheresistivity

(5)

Fig.3.UnpolarizedRamanspectrumcarriedoutunderexcitationat647.1nmfromsampleB.Thesharppeakobservedat520cm−1isduetoc-Sisubstrate.

1.6

2.0

2.4

2.8

3.2

10

4

10

5

10

6

10

7

10

8

10

9

10

10

10

11

Dep B

Dep C

Dep D

Dep E

Dep G

Dep H

Dep I

Dep J

Dep K



cm

)

1000/ T

( K

-1

)

600

500

400

T

(K)

300

Fig.4.Arrheniusplotsoftheresistivitymeasured,duringthecoolingrun,fortheGe3NxandGeOxNyfilms(seeTable1).Alltheexperimentaldatapointsareplotted

at≤1011cm,thisvaluebeingthesensitivitylimitofthemeasuringsetup.FilmsC,GandHhavebeencharacterizedbeforetheupdateofthemeasuringsetup(see

Experimental).

measurements,becausewefoundthat,duringthefirstcycle,the resistivitymeasuredduringthe heatingassumed values always lowerthanthosemeasuredinthecoolingrun.Thisbehaviorhas beenexplainedasareductionofinsulatingpropertiesoffilmsasa consequenceoftheirexposuretotheambientair[26,29].Thiseffect disappearedrepeatingthemeasurementunderthesamecondition, keepingthesampleinvacuumbetweentwomeasurementruns.

Theelectricalresistivitymeasurementsrevealthatallthe inves-tigatedfilmsarehighlyinsulatingaroundR.T.(Fig.4).Indetail,apart fromsampleK,whichistheleastresistiveoneamongthose mea-sured,alltheothersshowasaturationintheresistancevalueina TrangeextendingfromR.T.uptoabout350K÷450K,depending

onthefilm.TheresistancevaluedetectedinthisTrangeresults comparabletotheinsulationresistanceofthemeasuring appara-tus(≈5×1015at100Vofappliedbias)thussuggestingthatthe

realresistanceofthefilmscouldbeevenhigher.Thisimpliesthat theresistivityoftheselayersisunknownaroundR.T.

Thetemperaturedependenceoftheresistivityofallthesamples isthetypicaloneofinsulatingmaterialsanditchangesfromabout threetosixordersofmagnitude(Fig.4).Moreover,theArrhenius plotsoflayersresistivityexhibitsomeinterestingfeatures,like:i) the(T)curvesofthebiasedGe3Nxsamples(BandfromGtoK)

showadownwardshiftatbiasvalueslowerthan−20V.Thisis essentiallyrelatedtotwoconcomitanteffects:thecorresponding

(6)

Fig.5.AFMimageofthesurfaceofsampleB.

loweringofN/Geatomicratiointhefilm,asalreadyfoundbyother authorsinthecaseof understoichiometricGe3Nx films(x≤1.6)

[26][26andrefs.therein]andtheincreaseofdisorderinducedby theionbombardment,asshownbyXRDandFT-IRresults,which givesrisetoamoredefectivestructurewithahighernumberof localizedstatesinthebandgapandthentoareducedresistivity; ii)the(T)curvesofGe3NxfilmsdepositedwiththeAr+N2gas

mix-tures(i.e.filmsCandE)areverysimilarandpartiallyoverlapeach other.Thisresultdemonstratesahighreproducibilityofthefilm properties(atleastfromtheelectricalpointofview)andthetight relationbetweenresistivityandfilmcomposition.Itisworthwhile notingthatresistivityofthesefilmsisevenhigherthanthatofthe overstoichiometricones(BandG).iii)The(T)forthegermanium oxynitridesample(filmD)isthehighestamongthosemeasured inourexperiments.Acomparisonofourresultswiththoseinthe literatureforGe3Nxlayers[26,30]showsthattheresistivityofour

coatingsisseveralordersofmagnitudehigher,essentiallydueto thedifferentNcontent.Thisalsoinvolvesachangeofthe conduc-tionmechanism:inthecaseofstronglyunder-stoichiometricfilms, theconductionisdominatedbyavariablerangehopping mecha-nism[26,30],whileover-andstoichiometricfilmsshowathermally activatedconductionasdetailedinRef.[31].

Analysisofthe(T)curvesrevealstheexistenceofseveral acti-vationenergies,Ea,foreachlayer.TheEavaluesrangefrom≈0.6eV

around350Kto≈1.4eVaround600K,dependingonthefilm[31]. Consideredthattheband-gapinthisclassofmaterialsisexpected torangefrom4.5to5.5eV,wededucethatthemeasuredEavalues

mustberelatedtochargecarrierstransitionsinvolvinglocalized statesinsidetheenergy-gap,whoseoriginisduetothepresenceof defects.Duetothelackingofliteraturedataaboutthenatureand propertiesofelectronicstatesinGe3NxandGeOxNy,wehavetaken

intoaccountdefectstatespresentintheSi3Nxsystem[32],which

isverysimilartotheinvestigatedGe3Nxsystem.Theoretical

cal-culationsandexperimentsdemonstratethatintheSi3Nxsystema

paramagneticcentreforminga␲*stateislocated0.5eVabovethe valenceband(VB)edge[33].ChargecarriertransitionfromtheVB edgetothis␲*statecanaccountforthelowestEavaluesmeasured

around350K.AthigherT(≈600K)chargecarriertransitionsmay involvelocalizedstatesfartherfromtheVBedge,resultinginthe observationofhigherEavalues.

Adetailedanalysisoftheelectricalpropertiesrevealedthatall theinvestigatedGe3NxandGeOxNyfilmsfollowtheMeyer-Neldel

rule[34,31].

Finally,SEMandAFMimagesoftheasdepositedfilms(Fig.5) showaveryhomogeneousandsmoothsurfacewithatypical aver-ageroughness,Ra,below10nm.

3.2. Ge3Nx-coatedHPGediode

Atest tochecktheeffectivenessofGe3Nx filmsasasurface

passivationlayerhasbeencarriedout,fabricatingaplanarHPGe diodeandmeasuringitsreverseleakagecurrent,both withand without(seetheExperimental)aGe3Nxfilmdepositedontoits

lat-eralintrinsicsurface.TheGe3Nxlayerwasdepositedwiththesame

parametersofsampleC(seeTable1).Inordertoevidenceonlythe effectsofthesurfacepassivation,thesamediodewasusedforboth measurements.Inthiswaytheresultswerenotaffectedbypossible differencesinthebulkpropertiesarisingfromthehistoryof differ-entdiodes.Thecurrent-voltage(I–V)characteristics,measuredin boththeaboveconfigurations(i.e.:withandwithouttheGe3Nx

film)bybiasingthediodeuptoamaximumof80V,arereported inFig.6.Thereverseleakagecurrentkeepsverylow(below10pA) upto35V,forbothconfigurations,witha comparabletrend.At highervoltages,thetwocurvespartfromeachotherandthe leak-agecurrentoftheuncoateddevicestartstoexponentiallyincrease andgoesover1nAalreadyat60V.Thisbehaviourhighlightsthe defectivenatureofthis diode; infact,ifonetakesintoaccount thecharacteristicsofthisdevice,thedriftoftheleakagecurrent shouldstartatmuchhighervoltages[22].Thisoutcomeindicates that,inadditiontothesurfaceleakagecurrent,wehavetotake intoaccountastrongcontributionfrombulkcurrents,arisingfrom defectivecontacts.Thisfactpreventsusfromtestingthecoating propertiesatvoltageshigherthan80V.However,apositiveand necessarypremiseforfutureapplicationsisgivenbythebehaviour

(7)

Fig.6.I–VcharacteristicofaplanarHPGediodecoatedwithGe3Nxfilm(depositedunderthesamenominalconditionsofsampleC,seeTable1)comparedtothatofthe

samediodepassivatedwithmethanolsolution(seetheExperimental).

oftheGe3Nxcoateddiodeattheselowvoltages.Infact,Fig.6shows

thattheleakagecurrentstartstodriftatahighervoltagethanthe uncoatedone.At60Vthecurrentisaround100pAandisstillbelow 1nAat75V.ThisresultallowsusconcludingthattheGe3Nxcoating

doesnotincreasethesurfaceleakagecurrent,atleastatvoltages lowerthan80V.Takingintoaccountthatoneofthecontributions tothesurfaceleakagecurrentcomesfromtheconductioninthe passivatingfilm,evenbetterresultscouldbemaybereachedby usingGeOxNycoatings,sincetheresistivityoftheselastfilmsis

muchhigher(seee.g.curveDinFig.4).Itisclearthatthisresultis onlypreliminaryandthatmorecompletetestsonwell-performing diodesanddetectorsarestillrequiredinordertoquantitatively evaluatetheimprovedperformanceofthis classofmaterialsas passivatingcoatings.

4. Conclusions

In view of the application to the surface passivation of germanium-basedradiationdetectors,weproducedand investi-gatedindetailthephysicalpropertiesofgermaniumnitrideand oxynitride films, depositedat roomtemperaturebyreactiveRF magnetronsputtering.We foundthatthefilmcompositionwas strongly affected bythe depositionrate, ultimatepressure and depositionatmospherecomposition.Atlowdepositionrates ger-maniumoxynitridefilmswereobtained.Atincreasingdeposition rateanddecreasingultimatepressure,theoxygenincorporation inthefilmdrasticallydecreasedandgermaniumnitridecoatings weredeposited.Inthis case,thefilmswereover-stoichiometric in N when pure N2 was used as deposition gas, but became

stoichiometricwhenAr/N2gasmixtureswereused.Thefilm

sto-ichiometrywasstronglyaffectedbyanapplieddcsubstratebias, goingfromover-stoichiometryinnitrogenatlowbiasesdownto under-stoichiometryatincreasingbias.Inbiasedfilms,theoxygen contentwasalwaysbelowtheRBSdetectionthreshold.Allthefilms wereverypoorlycrystallizedandresultedtobehighlyinsulating atroomtemperature,theirresistivitybeingstrictlyrelatedtothe filmcompositionanddepositionparameters.

TheimprovedperformanceofaGe3Nx-coatedHPGediodewas

assessedbycomparingtheleakagecurrentofthecoateddiodewith

thatofadiodewithastandardsurfacepassivation.Thepromising resultsofthisfirsttestareanimportantpremiseforthe applica-tionofthesetreatmentsaspassivationroutesofHPGedetectors, whereinanextremelylowleakagecurrentisoffundamental impor-tancetoassureagoodenergyresolutioninthedetectionofgamma radiation.Furtherandexhaustivetestsaregoingtobecarriedout toidentifythebestperformingcoatingsandthenattaintheir com-pleteandquantitativevalidation.

Acknowledgements

The researchleading to theseresultsreceived fundingfrom the Third Scientific Commission of the Istituto Nazionale di Fisica Nucleare and from the European Union Seventh Frame-work Programme FP7/2007-2013 under Grant Agreement no. 262010—ENSAR.TheECisnotliableforanyusethatcanbemade ontheinformationcontainedherein.

References

[1]K.Saraswat,C.O.Chui,T.Krishnamohan,D.Kim,A.Nayfeh,A.Pethe,Mater. Sci.Eng.B135(2006)242.

[2]J.Liu,D.D.Cannon,K.Wada,Y.Ishikawa,S.Jongthammanurak,D.T.Danielson, J.Michel,L.C.Kimerling,Appl.Phys.Lett.87(2005)011110.

[3]T.Maeda,T.Yasuda,M.Nishizawa,N.Miyata,Y.Morita,J.Appl.Phys.100 (2006)014101.

[4]K.Kato,H.Kondo,M.Sakashita,S.Zaima,ThinSolidFilms518(2010)S226.

[5]T.Maeda,T.Yasuda,M.Nishizawa,N.Miyata,Y.Morita,Appl.Phys.Lett.85 (2004)3181.

[6]K.Prabhakaran,T.Ogino,Surf.Sci.Lett.387(1997)L1068.

[7]C.O.Chui,F.Ito,K.C.Saraswat,IEEEElectron.Dev.Lett.25(2004)613.

[8]K.Kutsuki,I.Hideshima,G.Okamoto,T.Hosoi,T.Shimura,H.Watanabe,Jpn.J. Appl.Phys.50(2011)010106.

[9]D.Kuzum,Interface-EngineeredGeMOSFETsforFutureHighPerformance CMOSApplications,StanfordUniversity,2009,PhDThesis.

[10]D.J.Hymes,J.J.Rosenberg,J.Electrochem.Soc.135(1988)961–965.

[11]D.M.Hoffman,S.P.Rangarajan,S.D.Athavale,D.J.Economou,J.Liu,Z.Zheng, W.Chu,J.Vac.Sci.Technol.A13(1995)820.

[12]C.Tindall,J.C.Hemminger,Surf.Sci.330(1995)67.

[13]K.Maeda,N.Saito,Y.Inoue,K.Domen,Chem.Mater.19(2007)4092.

[14]I.Chambouleyron,Appl.Phys.Lett.47(1985)117.

[15]F.Boscherini,A.Filipponi,S.Pascarelli,F.Evangelisti,S.Mobilio,F.C.Marques, I.Chambouleyron,Phys.Rev.B39(1989)8364.

[16]H.Yokomichi,T.Okina,M.Kondo,Y.Toyoshima,J.Non-Cryst.Solids198–200 (1996)379.

(8)

[17]S.Kikkawa,H.Morisaka,SolidStateCommun.112(1999)513.

[18]E.Lewin,M.Parlinska-Wojtan,J.Patscheider,J.Mater.Chem.22(2012)16761.

[19]E.L.Hull,R.H.Pehl,J.R.Lathrop,B.E.Suttle,Nucl.Instrum.MethodsPhys.Res. A626–627(2011)39.

[20]R.D.Baertsch,R.N.Hall,IEEETrans.Nucl.Sci.17(1970)235.

[21]R.H.Pehl,R.C.Cordi,F.S.Goulding,IEEETrans.Nucl.Sci.19(1972)265.

[22]G.Maggioni,D.R.Napoli,J.Eberth,M.Gelain,S.Carturan,M.G.Grimaldi,S. Tatì,Eur.Phys.J.A51(2015)141.

[23]B.N.Chapman,GlowDischargeProcesses:SputteringandPlasmaEtching, Wiley,1980.

[24]J.D.Jorgensen,S.R.Srinivasa,J.C.Labbe,G.Roult,ActaCrystallogr.B35(1979) 141–142.

[25]L.Chunrong,X.Jingzhou,X.Zheng,Vacuum42(1991)1061.

[26]I.Chambouleyron,A.Zanatta,J.Appl.Phys.84(1998)1.

[27]G.Carini,M.Cutroni,A.Fontana,G.Mariotto,F.Rocca,Phys.Rev.B29(1984) 3567.

[28]S.Ciliberti,T.S.Grigera,V.Martín-Mayor,G.Parisi,P.Verrocchio,Nature422 (2003)289.

[29]W.Paul,S.J.Jones,W.A.Turner,Philos.Mag.B63(1991)247.

[30]I.Honma,H.Kawai,H.Komiyama,K.Tanaka,J.Appl.Phys.65(1989)1074.

[31]N.Pinto,F.Caproli,G.Maggioni,S.Carturan,D.R.Napoli,J.Non-Crystalline Solids452(2016)280.

[32]S.S.Makler,G.MartinsdaRocha,E.V.Anda,Phys.Rev.B41(1989)5857.

[33]J.Robertson,Philos.Mag.B69(1994)307.

Riferimenti

Documenti correlati

Since the phase difference between Raman master and slave lasers is imprinted directly on the atoms, phase noise performance of both the frequency reference and the optical phase

Contiene secreto di lumaca di Helix Aspersa Muller con acido glicolico e allantoina e i fenoli presenti nelle foglie di ulivo micronizzate ( Micronized Olive Leaveas MOL).. Il nome è

Il secondo motivo per tenere uno storico dei dati è dato dalla necessità di analisi (che comunque richiede di avere il sentiment delle aziende giorno per giorno), in particolare

Alcuni, erroneamente, considerano l’Integrated Report come una modalità più semplice per aggregare informazioni finanziarie e performance sostenibili in un unico report,

Na verdade, essa é, seguramente, uma das características mais bem conseguidas deste volume: a forma como os estudos de caso, por vezes a uma escala que nos pode

MelanoQ is organized in 4 main sections (A-D) and includes a total number of 64 items related to: general and demographic information (section A); phenotypic, UV exposure risk

Manuali per il monitoraggio di specie e habitat di interesse comunitario (Direttiva 92/43/CEE) in Italia: specie vegetali.. Manuali per il monitoraggio di specie e

Aβ concentration, in cell lysates collected at each time point, was measured by mouse anti-A β IgG 6E10 IgG, followed by GAM-HRP, and color development at 492 nm.. Open bar Samples