• Non ci sono risultati.

Domino reaction for the controlled functionalization of sp2 carbon allotropes

N/A
N/A
Protected

Academic year: 2021

Condividi "Domino reaction for the controlled functionalization of sp2 carbon allotropes"

Copied!
33
0
0

Testo completo

(1)

Domino Reaction for the Controlled Functionalization

of sp

2

Carbon Allotropes

Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering “G. Natta”

Innovative Sustainable Chemistry and Materials and Proteomics Group

Vincenzina Barbera

Alberto Milani, Luigi Brambilla, Chiara Castiglioni, Maurizio Galimberti

vincenzina.barbera@polimi.it

(2)
(3)

Yield: at least 96%

Atom efficiency: 85%

Easy procedure

No solvent

By product: H

2

O

Chemistry from biobased C-3 platform

(4)

INTERACTION WITH

GRAPHITIC CARBONS

INTERACTION

WITH POLAR

SURROUNDING

(5)

graphene

stacked graphene layers

CNT

stacked

randomly

arranged

wrapped

with different

shape anisotropy

carbon black

graphite,

nano-graphite,

graphene

(6)

CNT

CB

FEW LAYERS

GRAPHENE

(7)

CNT

CB

FEW LAYERS

GRAPHENE

TGA, Elemental Analysis:

carbon purity

BET:

surface area, activity

Infrared, XPS:

functional groups

Raman, X-ray:

bulk structure

TEM, HRTEM:

morphology

(8)

Oxygenated functional groups

on carbon allotrope surface

Bulk structure

substantially unaltered

Carbon

allotrope

Mixing, energy, air

Facile functionalization of carbon materials

(9)

Oxygenated functional groups

on carbon allotrope surface

Bulk structure

substantially unaltered

Carbon

allotrope

Mixing, energy, air

Facile functionalization of carbon materials

(10)

86 %

97 %

98 %

Yield:

77 m

2

/g

275 m

2

/g

300 m

2

/g

BET

Surface area:

(11)

86 %

97 %

98 %

Yield:

77 m

2

/g

275 m

2

/g

300 m

2

/g

BET

Surface area:

High yield functionalization!

High surface area graphite

HSAG

HSAG water suspensions from 1 to 0.01 mg/mL

(12)

N CH3

H3C

H3C

Model compound

Mechanistic investigation

(13)

Model compound

Thermal energy

+

HSAG

Thermal energy

In air

In air

N CH3 H3C H3C N CH3 H3C H3C N CH3 H3C H3C

Mechanistic investigation

(14)

25°C A b so rb a n ce ( a .u .) 800 1000 1200 1400 1600 1800 2000 Wavenumbers (cm-1)

1,2,5-Trimethylpyrrole (TMP)

out of plane

C-H bending

(15)

25°C 150°C 130°C 80°C A b so rb a n ce ( a .u .) 800 1000 1200 1400 1600 1800 2000 Wavenumbers (cm-1)

out of plane

C-H bending

C=C stretching cyclic alkene

In

c

re

a

s

in

g

te

m

p

e

ra

tu

re

Δ

Air

TMP from 25 to 150

°

C

(16)

800 1000 1200 1400 1600 1800 2000 TMP+HSAG 1% 80°C TMP A b so rb a n ce ( a .u .) Wavenumbers (cm-1)

Δ

, Air

HSAG as cat.

TMP + HSAG cat. - from 25 to 150

°

C

out of plane

C-H bending

C=C stretching cyclic alkene

In

c

re

a

s

in

g

te

m

p

e

ra

tu

re

(17)

Wavenumbers (cm-1)

TMP + HSAG cat. - from 25 to 150

°

C

800 1000 1200 1400 1600 1800 2000 TMP+HSAG 1% 100°C TMP+HSAG 1% 80°C TMP+HSAG 1% 130°C TMP

Oxidation

A b so rb a n ce ( a .u .)

out of plane

C-H bending

C=C stretching cyclic alkene

Δ

, Air

HSAG as cat.

In

c

re

a

s

in

g

te

m

p

e

ra

tu

re

(18)

800 1000 1200 1400 1600 1800 2000 TMP+HSAG 1% 100°C TMP+HSAG 1% 80°C TMP+HSAG 1% 130°C TMP TMP+HSAG 1% 150°C A b so rb a n ce ( a .u .) Wavenumbers (cm-1)

TMP + HSAG cat. - from 25 to 150

°

C

800 1000 1200 1400 1600 1800 2000 TMP+HSAG 1% 100°C TMP+HSAG 1% 80°C TMP+HSAG 1% 130°C TMP

Oxidation

A b so rb a n ce ( a .u .)

out of plane

C-H bending

C=C stretching cyclic alkene

Δ

, Air

HSAG as cat.

In

c

re

a

s

in

g

te

m

p

e

ra

tu

re

(19)

800 1000 1200 1400 1600 1800 Wavenumbers (cm-1) A b so rb a n ce ( a .u .) TMP

Δ

Air +HSAG

TMP + HSAG 1/1 - from 25 to 150

°

C

out of plane

C-H bending

C=C stretching cyclic alkene

In

c

re

a

s

in

g

te

m

p

e

ra

tu

re

(20)

800 1000 1200 1400 1600 1800 Wavenumbers (cm-1) A b so rb a n ce ( a .u .) TMP+HSAG 1/1 100°C TMP+HSAG 1/1 80°C TMP TMP+HSAG 1/1 130°C

Oxidation

TMP + HSAG 1/1 - from 25 to 150

°

C

out of plane

C-H bending

C=C stretching cyclic alkene

Δ

Air +HSAG

In

c

re

a

s

in

g

te

m

p

e

ra

tu

re

(21)

800 1000 1200 1400 1600 1800 Wavenumbers (cm-1) A b so rb a n ce ( a .u .) TMP+HSAG 1/1 100°C TMP+HSAG 1/1 80°C TMP TMP+HSAG 1/1 150°C TMP+HSAG 1/1 130°C

Oxidation

TMP + HSAG 1/1 - from 25 to 150

°

C

out of plane

C-H bending

C=C stretching cyclic alkene

Δ

Air +HSAG

In

c

re

a

s

in

g

te

m

p

e

ra

tu

re

(22)

Paal-Knorr reaction

1

Paal – Knorr Reaction

HSAG

(23)

Carbocatalyzed benzyl oxidation

1

2

Paal – Knorr Reaction

Carbocatalyzed Oxidation

Mechanistic path

(24)

Mechanistic path

In

c

re

a

s

in

g

te

m

p

e

ra

tu

re

(25)

Mechanistic path

In

c

re

a

s

in

g

te

m

p

e

ra

tu

re

(26)

Mechanistic path

In

c

re

a

s

in

g

te

m

p

e

ra

tu

re

(27)

Model reaction and DFT calculation

OHC

DFT (B3LYP/6-311++G(d,p))

* Structure confirmed by means of FT-IR and NMR spectroscopy

(28)

TMP + Anthracene 150°C * A b s TMP + HSAG 130°C * A b s A b s A b s 1250 1300 1350 1400 1450 1500 1550 1600 Wavenumbers (cm-1)

Model reaction and DFT calculation

OHC

(29)

TMP + Anthracene 150°C * A b s TMP + HSAG 130°C * A b s A b s A b s 1250 1300 1350 1400 1450 1500 1550 1600 Wavenumbers (cm-1)

Model reaction and DFT calculation

OHC

(30)

3

1

2

Paal – Knorr Reaction

Carbocatalyzed Oxidation

Diels-Alder reaction

Carbon

allotrope

Facile functionalization of carbon materials

(31)

Functional group:

from few % to 20%

Functionalization yield:

from 85% to quantitative

Covalent bond

between functional group

and graphene layer

Bulk structure of graphitic materials:

substantially unaltered

Facile functionalization of carbon materials

V. Barbera, A. Citterio, M. Galimberti, G. Leonardi, R. Sebastiano, S.U. Shisodia, A.M. Valerio. WO/2015/189411 A1 (2015)

M. Galimberti, V. Barbera, R. Sebastiano, A. Citterio, G. Leonardi, A.M. Valerio. WO/2016/050887 A1 (2016)

M. Galimberti, V. Barbera, R. Sebastiano, A. Truscello, A.M. Valerio. WO/2016/023915 A1 (2016)

M. Galimberti, V. Barbera, Italian Patent 102016000113012 (2016)

(32)

Monolithic

aerogel

Carbon papers

Rubber

nanocomposites

Latex

dispersions

Polyol

dispersions

Polyurethane

Conductive ink

Conductive

coating

Versatile Technology

Nano-carbon Up

(33)

Acknowledgments

Riferimenti

Documenti correlati

Polynuclear boron derivatives have been considered potential candidates for BNCT applications and several readily functionalized carboranes have been used to design boron

Samples synthesized from sodium –cesium mixed synthesis batches systematically present cell parameter slightly higher than the corresponding cesium pure samples (see Figs. 2 and 3

We used the Fisher exact test to compare the proportions of infection in larvae and nymphs, by tick species, in tissues from infested and not infested rodents, and in ticks

Borrelia lusitaniae in Immature Ixodes ricinus (Acari: Ixodidae) Feeding on Common Wall Lizards in Tuscany, Central ItalyJ. GIUSEPPINA AMORE, LAURA TOMASSONE, ELENA GREGO,

In order to compare the fit results of a given model to the Dalitz plot distribution in data, a large simulated sample is generated according to the model, including background

The amplitude fit is repeated using subsets of the total data sample, employing only one of the trigger categories or data from one of the data-taking periods, yielding

Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan;

Ad esempio nelle Marche, lo Statuto dedica un titolo alla «partecipazione popolare e referendum su leggi e provvedimenti amministrativi», ma difetta di una disposizione