• Non ci sono risultati.

View of On the estimation of ratio and product of two population means using supplementary information in presence

N/A
N/A
Protected

Academic year: 2021

Condividi "View of On the estimation of ratio and product of two population means using supplementary information in presence"

Copied!
21
0
0

Testo completo

(1)

ON THE ESTIMATION OF RATIO AND PRODUCT OF TWO POPULATION MEANS USING SUPPLEMENTARY INFORMATION IN PRESENCE OF MEASUREMENT ERRORS

H.P. Singh, N. Karpe

1. INTRODUCTION

It is well known fact that in sample surveys supplementary information is often used for increasing the efficiency of estimators. Ratio, product and regression me-thods of estimation are good examples in this context. In many practical situa-tions the estimation of the ratio (or product) of two population means may be of considerable interest, e.g. the crop production per hectare for different crops, ra-tio of male to female in working force, rara-tio of income to expenditure, the rara-tio of the liquid assets to total assets, profitability rate (Profit/Investment) etc. One may be interested in estimating the total value of sales from the prices and vol-ume of sales. The theory of estimation of the ratio (or product) of two population means has been considered by Rao (1957), Singh (1965,67), Rao and Pereira (1968), Tripathi (1980), Singh (1982), Ray and Singh (1985), Upadhyaya and Singh (1985), Upadhyaya et al. (1985), Singh (1986, 1988), Okafor and Arnab (1987), Khare (1991), Singh et al. (1994 a, b), Prasad et al. (1996), Okafor (1992), Artes and Gracia (2001), Gracia and Artes (2002), Khare and Sinha (2004) and Garcia (2008).

The standard theory of survey sampling usually assumes that we observe “true values” when a data are collected. In reality the data may be contaminated with measurement errors. Such errors can distort the data in several ways, for example, see Sud and Srivastava (2000), Cochran (1963), Shalabh (1997) and Sahoo and Sahoo (1999). Measurement errors can result in serious misleading inferences; see Biemer et al. (1991).

In this paper we have considered the problem of estimation of the ratio and product of two population means using supplementary information on an auxil-iary variable in the presence of measurement errors.

(2)

2. SUGGESTED ESTIMATORS FOR POPULATION RATIO AND PRODUCT OF TWO MEANS

For a simple random sample of size n , let ( y0i,y x ) be the values instead 1i, i of the true values (Y Y X on three characteristics0i, 1i, i) ( , , )Y Y X respectively 0 1

for the i (th i=1, 2,...,, )n unit in the sample. Let the observational or

measure-ment errors be

0i 0i 0i

u = yY , u1i = y1iY1i, vi =xiXi,

which are stochastic in nature and are uncorrelated with mean zero and variance

2 0 U σ , 2 1 U σ and 2 V

σ respectively. Further, let the population means of (Y Y X ) 0, ,1 be(µY0Y1X), population variances of (Y Y X ) be 0, ,1 2 0 Y σ , 2 1 Y σ , and 2 X σ

respectively and ρ01, ρ0X and ρ1X be the population correlation coefficient between (Y0 and Y ), (1 Y0 and X ) and (Y1, and X ) respectively. We also assume that the measurement errors are independent of the true value of vari-ables. It is desired to estimate population ratio 0

1 1 , 0 Y Y Y R µ µ µ ⎛ ⎞ = ≠ ⎜ ⎟ ⎝ ⎠ and product 0 1

(P=µ µY Y ) of two population means. The conventional estimators (when the measurement errors are present) of R and P are respectively given by

0 1 1 ˆ y , 0, R y y = ≠ (2.1) 0 1 ˆP y y= , (2.2) where 0 0 1 1 1 1 1 n 1 n i i i i y y and y y n = n = =

=

.

Assuming the population mean µX of the auxiliary variable X to be known for

the estimation of population ratio R and product P , motivated by Singh (1965) we define the estimators

1r ˆ X t R x µ ⎛ ⎞ = ⎜ ⎟ ⎝ ⎠ (2.3) 2r ˆ X x t R µ ⎛ ⎞ = ⎜ ⎟ ⎝ ⎠ (2.4)

(3)

1p ˆ X t P x µ ⎛ ⎞ = ⎜ (2.5) 2p ˆ X x t P µ ⎛ ⎞ = ⎜ ⎟ ⎝ ⎠ (2.6)

for product P, where

1 1 n i i x x n = =

.

To obtain biases and mean squared errors of ˆR, t t1r, 2r, ,P tˆ 1p, andt2p we in-troduce the following notations:

0 0 0 Y Y Y C =σ µ , CY1Y1 µY1, CXX µX , 1 2 0 0 1 n u i i W nu = =

, 1 2 1 1 1 n u i i W nu = =

, 1 2 1 n v i i W nv = =

, 0 1 2 0 0 1 ( ) n Y i Y i W nY µ = =

− , 1 2 1 1 1 1 ( ) n Y i Y i W nY µ = =

− , 1 2 1 ( ) n X i X i W nX µ = =

− , we have 0 0 0 0 0 1 1 [( ) ] n Y i Y i i y Y u n µ µ = − =

− + 1 2 0 0 ( Y u ) nW W = + ⇒ y0Y0(1+ε0) 1 1 1 1 1 1 1 [( ) ] n Y i Y i i y Y u n µ µ = − =

− + 1 2 1 1 ( Y u ) nW W = + ⇒ y1Y1(1+ε1) 1 1 n [( ) ] X i X i i x X v n µ µ = − =

− + 1 2( ) X v nW W = + ⇒ =x µX(1+εx) where 0 0 0 0 ( Y u ) Y W W n ε µ − = , 1 1 1 1 ( Y u ) Y W W n ε µ − = , ( X v) x X W W n ε µ − =

(4)

such that E( )ε0 =E( )ε1 =E( ) 0εx = and 2 2 2 2 2 2 2 0 0 2 1 1 2 0 2 1 2 2 0 1 2 2 2 1 0 1 01 0 0 1 1 ( ) 1 , ( ) 1 , ( ) 1 , ( ) , ( ) , ( ) Y U Y U X V x Y Y X Y X X x X x X C C C E E E n n n C C C E K E K E K n n n σ σ σ ε ε ε σ σ σ ε ε ε ε ε ε ⎫ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ = + = + = + ⎪ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎬ ⎪ = = = ⎪⎭ ’ (2.7) where 0 0 1 01 01 0 01 1 1 1 , , . Y Y Y X X X Y X X C C C K K K C C C ρ ρ ρ = = =

Expressing Rˆ, t t1r, 2r, ,P tˆ 1P,and t in terms of 2P ε's we have

1 0 0 0 1 1 1 (1 ) ˆ (1 )(1 ) (1 ) Y Y R µ ε R ε ε µ ε − + = = + + + (2.8) 1 1 1r (1 0)(1 1) (1 x) t =R +ε +ε − +ε − (2.9) 1 2r (1 0)(1 1) (1 x) t =R +ε +ε − +ε (2.10) 0 1 ˆ (1 )(1 ) P P= +ε +ε (2.11) 1 1P (1 0)(1 1)(1 x) t =P +ε +ε +ε − (2.12) and 2P (1 0)(1 1)(1 x) t =P +ε +ε +ε (2.13)

It is assumed that the sample size is so large as to make ε1 and εx small

1

( . .i e ε <1 and εx < justifying the first degree of approximation wherein we 1) ignore the terms involving ' (εi s i =0,1)and /or εx in a degree greater than two.

Thus expanding the right hand sides of (2.8)-(2.13), multiplying out and neglect-ing terms of havneglect-ing power greater than two, we have

2 0 1 0 1 1 ˆ (1 ) R R= +ε − −ε ε ε +ε (2.14) 2 2 1r (1 0 1 x 0 1 0 x 1 x 1 x) t =R +ε − −ε ε −ε ε −ε ε +ε ε +ε +ε (2.15) 2 2r (1 0 1 x 0 1 0 x 1 x 1) t =R +ε − +ε ε −ε ε +ε ε −ε ε +ε (2.16)

(5)

0 1 0 1 ˆ (1 ) P P= +ε + +ε ε ε (2.17) 2 1P (1 0 1 x 0 1 0 x 1 x x) t =P +ε + −ε ε +ε ε −ε ε −ε ε +ε (2.18) 2P (1 0 1 x 0 1 0 x 1 x) t =P +ε + +ε ε +ε ε +ε ε +ε ε (2.19) We further write (2.14)-(2.19) as 2 0 1 0 1 1 ˆ (R R− )=R(ε − −ε ε ε +ε ) (2.20) 2 2 1 0 1 0 1 0 1 1 (trR)=R(ε − −ε εx −ε ε −ε εx +ε εx +ε +εx) (2.21) 2 2 0 1 0 1 0 1 1 (t rR)=R(ε − +ε εx −ε ε +ε εx −ε εx +ε ) (2.22) 0 1 0 1 ˆ (P P− )=P(ε + +ε ε ε ) (2.23) 2 1 0 1 0 1 0 1 (t PP)=P(ε + −ε εx +ε ε −ε εx −ε εxx) (2.24) 2 0 1 0 1 0 1 (t PP)=P(ε + +ε εx +ε ε +ε εx +ε εx) (2.25) Taking expectations of both sides of (2.20)-(2.25) we get biases of Rˆ,

1r, 2r, ,ˆ 1P and 2P

t t P t t to the first degree of approximation, respectively as

2 2 1 1 2 01 1 ˆ ( ) 1 U Y Y R B R C K n σ σ ⎛ ⎞ ⎛ ⎞ =⎜ ⎟ + − ⎝ ⎠ (2.26) 2 2 1 ˆ 2 0 ( ) ( ) X 1 V r X RC B t B R d n σ σ ⎛ ⎞ ⎛ ⎞ = + + − ⎝ ⎠⎝ ⎠ (2.27) 2 ( r) B t 2 0 ˆ ( ) RCX B R d n ⎛ ⎞ = + ⎜ ⎝ ⎠ (2.28) 2 1 01 ˆ ( ) P Y B P C K n ⎛ ⎞ = ⎜ ⎟⎝ ⎠ (2.29) 1 ( P) B t 2 2 * 0 2 ˆ ( ) X 1 V X PC B P d n σ σ ⎛ ⎞ ⎛ ⎞ = + + − ⎝ ⎠⎝ ⎠ (2.30) 2 * 2 ˆ 0 ( ) ( ) X P PC B t B P d n ⎛ ⎞ = + ⎜ ⎝ ⎠ (2.31) where * 0 ( 0X 1X), 0 ( 0X 1X). d = KK d = K +K

(6)

Squaring both sides of (2.20)-(2.25) and neglecting terms of ε's having power greater than two we have

2 2 2 2 0 1 0 1 ˆ (R R− ) =R (ε +ε −2ε ε ) (2.32) 2 2 2 2 2 1 0 1 0 1 0 1 (trR) =R (ε +ε +εx −2ε ε −2ε εx +2ε εx) (2.33) 2 2 2 2 2 2 0 1 0 1 0 1 (t rR) =R (ε +ε +εx −2ε ε +2ε εx −2ε εx) (2.34) 2 2 2 2 0 1 0 1 ˆ (P P− ) =P (ε +ε +2ε ε ) (2.35) 2 2 2 2 2 1 0 1 0 1 0 1 (tPP) =P (ε +ε −εx +2ε ε −2ε εx −2ε εx) (2.36) 2 2 2 2 2 2 0 1 0 1 0 1 (t PP) =P (ε +ε +εx +2ε ε +2ε εx +2ε εx) (2.37) Taking expectations of both sides of (2.32)-(2.37) and using the results cited in

(2.7) we get the mean squared errors of Rˆ, t t1r, 2r, ,P tˆ 1P and t to the first de-2P gree of approximation as 2 2 2 2 0 2 1 0 2 1 01 2 0 1 ˆ ( ) 1 U 1 2 U Y Y Y Y R MSE R C C K n σ σ σ σ ⎡ ⎛ ⎞ ⎛ ⎞⎤ ⎛ ⎞ = + + − + ⎢ ⎥ ⎝ ⎠⎣ ⎝ ⎠ ⎝ ⎠⎦ (2.38) 2 2 2 1 ˆ 0 2 ( ) ( ) X 1 2 V r X R C MSE t MSE R d n σ σ ⎛ ⎞ ⎛ ⎞ = + − + ⎝ ⎠⎝ ⎠ (2.39) 2 ( r) MSE t 2 2 2 0 2 ˆ ( ) X 1 2 V X R C MSE R d n σ σ ⎛ ⎞ ⎛ ⎞ = + + + ⎝ ⎠⎝ ⎠ (2.40) 2 2 2 2 0 2 1 0 2 1 2 01 0 1 ˆ ( ) 1 U 1 U 2 Y Y Y Y P MSE P C C K n σ σ σ σ ⎡ ⎛ ⎞ ⎛ ⎞⎤ ⎛ ⎞ =⎜ ⎟⎢ ⎜ + ⎟+ ⎜ + + ⎟⎥ ⎢ ⎥ ⎝ ⎠⎣ ⎝ ⎠ ⎝ ⎠⎦ (2.41) 2 2 2 * 1 ˆ 0 2 ( ) ( ) X 1 2 V P X P C MSE t MSE P d n σ σ ⎛ ⎞ ⎛ ⎞ = + − + ⎝ ⎠⎝ ⎠ (2.42) 2 2 2 * 2 ˆ 0 2 ( ) ( ) X 1 2 V p X P C MSE t MSE P d n σ σ ⎛ ⎞ ⎛ ⎞ = + + + ⎝ ⎠⎝ ⎠ (2.43)

(7)

3. EFFICIENCY COMPARISON

From (2.26), (2.27), (2.28), (2.29), (2.30), (2.30) and (2.31) it is observed that (i) the biases of Rˆ and t2r are only affected by the measurement errors in

study variable Y1.

(ii) the measurement errors in study variable Y1 as well as in auxiliary variable

X have influence over the bias of the estimator t1r.

(iii) the biases of ˆP and t2P are not affected by the measurement errors in study

variable Y1 as well as auxiliary variable X .

(iv) the bias of t1P is affected only by the measurement errors in auxiliary

vari-able X .

Examining the mean squared errors expressions (2.38)-(2.43) we observe that sampling variability in each case inflates when measurement errors are present. It is interesting to mention that the increase in variability attributable to measure-ment errors are small in case of Rˆ and ˆP when compared with that of

1r, 2r, 1P, and 2P

t t t t .

From (2.38)-(2.43) we note that (i) MSE t( )1r <MSE R( )ˆ if

2 0 1 2 1 ( ) 1 2 V X X X K K σ σ ⎛ ⎞ − > + ⎝ ⎠ (3.1)

(ii) MSE t( )2r <MSE R( )ˆ if

2 0 1 2 1 ( ) 1 2 V X X X K K σ σ ⎛ ⎞ − < − + ⎝ ⎠ (3.2)

(iii) MSE t( )1P <MSE P( )ˆ if

2 0 1 2 1 ( ) 1 2 V X X X K K σ σ ⎛ ⎞ + > + ⎝ ⎠ (3.3)

(iv) MSE t(2P)<MSE P( )ˆ if

2 0 1 2 1 ( ) 1 2 V X X X K K σ σ ⎛ ⎞ + < − + ⎝ ⎠ (3.4)

(8)

In particular case where CY0,CY1 and C are identical in magnitude, these X

conditions respectively reduce to the following

2 0 1 2 1 ( ) 1 2 V X X X σ ρ ρ σ ⎛ ⎞ − > + ⎝ ⎠ (3.5) 2 0 1 2 1 ( ) 1 2 V X X X σ ρ ρ σ ⎛ ⎞ − < − + ⎝ ⎠ (3.6) 2 0 1 2 1 ( ) 1 2 V X X X σ ρ ρ σ ⎛ ⎞ + > + ⎝ ⎠ (3.7) 2 0 1 2 1 ( ) 1 2 V X X X σ ρ ρ σ ⎛ ⎞ + < − + ⎝ ⎠ (3.8)

The above conditions (3.5)-(3.8) will not be satisfied if σV2 exceeds σX2 . In

other words, if the auxiliary variate is poorly measured that error variance σV2 is

greater than σX2 , then also ( , ,t t i =ir ip 1, 2) are dominated by conventional

estima-tors ˆR and ˆP respectively besides the inequalities (3.5), (3.6), (3.7) and (3.8) sat-isfied with opposite signs.

We further note that the measurement errors in auxiliary variate X may change the preference ordering of ( ˆR , ˆP ) and ( , ,t t i =ir ip 1, 2) obtained under the suppo-sition of absence of measurement errors. However, it is interesting to mention that the measurement errors in study variates (Y Y ) have no role to play in this 0, 1

kind of preference ordering (see, Shalabh (1997), p. 154).

4. COMBINED ESTIMATORS

Combining the estimators (t1r with Rˆ), (t2r with ˆR), (t1P with ˆP), (t2P with

ˆP) we define the following combined estimators:

1r (1 )ˆ

tθ =θt + −θ R (4.1)

2r (1 )ˆ

tγ =γt + −γ R (4.2)

(9)

1P (1 )ˆ

tη =ηt + −η P (4.3)

2P (1 )ˆ

tδ =δt + −δ P (4.4)

for product ,P where , , andθ γ η δ are suitably chosen characterizing scalars. Following the method of derivation in section 2, we have expressions for bias and MSE of the estimators , , , andt t tθ γ η tδ to the first degree of approximation, respectively as 2 2 0 2 ˆ ( ) ( ) X 1 V X RC B t B R d n θ σ θ σ ⎡ ⎛ ⎞ ⎛ ⎞⎤ = + − + ⎢ ⎝ ⎠ ⎝ ⎠⎥ ⎣ ⎦ (4.5) 2 0 ˆ ( ) ( ) RCX B t B R d n γ γ ⎡ ⎛ ⎞ ⎤ = + ⎢ ⎝ ⎠ ⎥ ⎣ ⎦ (4.6) 2 2 * 0 2 ˆ ( ) ( ) X (1 V ) X PC B t B P d n η σ η σ ⎡ ⎛ ⎞ ⎤ = + + − ⎢ ⎝ ⎠ ⎥ ⎣ ⎦ (4.7) ( ) B tδ 2 * 0 ˆ ( ) PCX B P d n δ ⎡ ⎛ ⎞ ⎤ = + ⎢ ⎝ ⎠ ⎥ ⎣ ⎦ (4.8) 2 2 2 0 2 ˆ ( ) ( ) X 1 V 2 X R C MSE t MSE R d n θ σ θ θ σ ⎡ ⎧ ⎫ ⎤ ⎛ ⎞ = + + ⎢ ⎥ ⎝ ⎠ ⎩⎣ ⎭ ⎦ (4.9) 2 2 2 0 2 ˆ ( ) ( ) X 1 V 2 X R C MSE t MSE R d n γ σ γ γ σ ⎡ ⎧ ⎫ ⎤ ⎛ ⎞ = + + + ⎢ ⎥ ⎝ ⎠ ⎩⎣ ⎭ ⎦ (4.10) 2 2 2 * 0 2 ˆ ( ) ( ) X 1 V 2 X P C MSE t MSE P d n η σ η η σ ⎡ ⎧ ⎫ ⎤ ⎛ ⎞ = + + ⎢ ⎥ ⎝ ⎠ ⎩⎣ ⎭ ⎦ (4.11) 2 2 2 * 0 2 ˆ ( ) ( ) X 1 V 2 X P C MSE t MSE P d n δ σ δ δ σ ⎡ ⎧ ⎫ ⎤ ⎛ ⎞ = + + + ⎢ ⎥ ⎝ ⎠ ⎩⎣ ⎭ ⎦ (4.12) 4.1 Bias Comparisons

(10)

(i) B t( )θ < B R if( )ˆ 2 2 2 1 2 1 1 2 01 1 2 01 1 1 2 2 2 2 0 0 2 2 2 1 2 1 min 0, max 0, 1 1 U U Y Y Y Y V V X x X X C K C K C d C d σ σ σ σ θ σ σ σ σ ⎧ ⎛ ⎞⎫ ⎧ ⎛ ⎞⎫ + − + − ⎪ ⎜ ⎟⎪ ⎪ ⎜ ⎟⎪ ⎪ ⎝ ⎠⎪< < ⎝ ⎠⎪ ⎨ ⎬ ⎨ ⎬ ⎛ ⎞ ⎛ ⎞ ⎪ + ⎪ ⎪ + ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎭ ⎩ ⎭ (4.13) (ii) B t( )γ < B R if( )ˆ 2 2 2 2 1 1 1 1 01 01 2 2 2 2 0 1 0 1 2 2 min 0, Y 1 U max 0, Y 1 U X Y X Y C K C K C d C d σ γ σ σ σ ⎧ ⎛ ⎞⎫ ⎧ ⎛ ⎞⎫ ⎪ + < < + ⎪ ⎨ ⎜ ⎟⎬ ⎨ ⎜ ⎟⎬ ⎪ ⎝ ⎠⎪ ⎪ ⎝ ⎠⎪ ⎩ ⎭ ⎩ ⎭ (4.14) (iii) B t( )η < B P if( )ˆ 2 2 1 01 1 01 2 * 2 * 0 0 2 2 min 0, max 0, (1 ) (1 ) Y Y X X C K C K C d η C d ⎧ ⎫ ⎧ ⎫ − < < − ⎨ ⎬ ⎨ ⎬ − − ⎩ ⎭ ⎩ ⎭ (4.15) (iv) B t( )δ < B P if( )ˆ 2 2 1 01 1 01 2 2 * 2 2 min 0, max 0, * Y Y X X C K C K C K δ C K ⎧ ⎫ ⎧ ⎫ − < < − ⎨ ⎬ ⎨ ⎬ ⎩ ⎭ ⎩ ⎭ (4.16) (v) B t( )θ < B t( )1r if 2 2 2 1 2 1 1 2 01 1 2 01 1 1 2 2 2 2 0 0 2 2 2 1 2 1 min 1, 1 max 1, 1 1 1 U U Y Y Y Y V V X X X X C K C K C d C d σ σ σ σ θ σ σ σ σ ⎧ ⎛ ⎞⎫ ⎧ ⎛ ⎞⎫ + − + − ⎪ ⎜ ⎟⎪ ⎪ ⎜ ⎟⎪ ⎪ − − ⎝ ⎠⎪< <− − ⎝ ⎠⎪ ⎨ ⎬ ⎨ ⎬ ⎪ + ⎪ ⎪ + ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎭ ⎩ ⎭ (4.17) (vi) B t( )γ < B t( 2r) if 2 2 2 1 2 1 1 2 01 1 2 01 1 1 2 2 2 2 0 0 2 2 2 1 2 1 min 1, 1 max 1, 1 1 1 U U Y Y Y Y V V X X X X C K C K C d C d σ σ σ σ γ σ σ σ σ ⎧ ⎛ ⎞⎫ ⎧ ⎛ ⎞⎫ + − + − ⎪ ⎜ ⎟⎪ ⎪ ⎜ ⎟⎪ ⎪ − − ⎝ ⎠⎪< <− − ⎝ ⎠⎪ ⎨ ⎬ ⎨ ⎬ ⎪ + ⎪ ⎪ + ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎭ ⎩ ⎭ (4.18)

(11)

(vii) B t( )η < B t( 1P) if 2 2 01 1 01 1 2 2 2 * 2 * 0 0 2 2 2 2 min 1, 1 min 1, 1 1 1 Y Y V V X X X X K C K C C d C d η σ σ σ σ ⎧ ⎫ ⎧ ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ − −< <− − ⎪ ⎨ ⎬ ⎨ ⎬ ⎛ ⎞ ⎛ ⎞ ⎪ + ⎪ ⎪ + ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎭ ⎩ ⎭ (4.19) (viii) B t( )δ < B t( 2P) if 2 2 01 1 01 1 * 2 * 2 0 0 2 2 min 1, 1 Y max 1, 1 Y X X K C K C d C δ d C ⎧ ⎫ ⎧ ⎫ − − < < − − ⎨ ⎬ ⎨ ⎬ ⎩ ⎭ ⎩ ⎭ (4.20) 4.2 Efficiency Comparisons From (2.39), (2.40), (2.41), (2.42), (2.43), (2.44), (4.9), (4.10), (4.11) and (4.12) (i) MSE t( )θ <MSE R if( )ˆ

2 0 2 2 2 0 2 2 0 2 2 0 X X V X X V either d or d σ θ σ σ σ θ σ σ ⎫ ⎛ ⎞ < < ⎜ + ⎟⎪ ⎝ ⎠⎪ ⎬ ⎛ ⎞ < < ⎜ + ⎝ ⎠ ⎭ or equivalently 2 2 0 2 2 0 2 2 min. 0, 2 X max. 0, 2 X X V X V d σ θ d σ σ σ σ σ ⎧ ⎛ ⎞⎫ ⎧ ⎛ ⎞⎫ ⎪ ⎪< < ⎪ ⎪ ⎨ ⎜ + ⎟⎬ ⎨ ⎜ + ⎟⎬ ⎪ ⎝ ⎠⎪ ⎪ ⎝ ⎠⎪ ⎩ ⎭ ⎩ ⎭ (4.21)

(ii) MSE t( )θ <MSE t( )1r if

2 0 2 2 2 0 2 2 2 1 1 2 1 1 X X V X X V d either d or σ θ σ σ σ θ σ σ ⎫ ⎛ ⎞ < < − ⎪ + ⎝ ⎠⎪ ⎬ ⎛ ⎞ − < < ⎜ + ⎝ ⎠ ⎭ or equivalently

(12)

2 2 0 0 2 2 2 2 2 2 min 1, X 1 max 1, X 1 X V X V d σ d σ θ σ σ σ σ ⎧ ⎛ ⎞⎫ ⎧ ⎛ ⎞⎫ ⎪ < < ⎪ ⎨ ⎜ + ⎟⎬ ⎨ ⎜ + ⎟⎬ ⎪ ⎝ ⎠⎪ ⎪ ⎝ ⎠⎪ ⎩ ⎭ ⎩ ⎭ (4.22)

(iii) MSE t( )γ <MSE R if( )ˆ

2 0 2 2 2 0 2 2 2 0 2 0 X X V X X V d either d or σ γ σ σ σ γ σ σ ⎫ ⎛ − ⎞ < <⎜ + ⎟⎪ ⎝ ⎠⎪ ⎬ ⎛ − ⎞< < ⎪ ⎜ + ⎝ ⎠ ⎭ or equivalently 2 2 0 0 2 2 2 2 2 2 min 0, X max 0, X X V X V d σ γ d σ σ σ σ σ ⎧ ⎛ − ⎞⎫ ⎧ ⎛ − ⎞⎫ ⎪ ⎪< < ⎪ ⎪ ⎨ ⎜ + ⎟⎬ ⎨ ⎜ + ⎟⎬ ⎪ ⎝ ⎠⎪ ⎪ ⎝ ⎠⎪ ⎩ ⎭ ⎩ ⎭ (4.23)

(iv) MSE t( )γ <MSE t( 2r) if

2 0 2 2 2 0 2 2 2 1 1 2 1 0 X X V X X V d either d or σ γ σ σ σ γ σ σ ⎫ ⎛ − ⎞ < < − ⎪ + ⎝ ⎠⎪ ⎬ ⎛ − − < <⎞ ⎪ ⎜ + ⎝ ⎠ ⎭ or equivalently 2 2 0 0 2 2 2 2 2 2 min 1, X 1 max 1, X 1 X V X V d σ d σ γ σ σ σ σ ⎧ ⎛ − ⎞⎫ ⎧ ⎛ − ⎞⎫ ⎪ < < ⎪ ⎨ ⎜ ⎟⎬ ⎨ ⎜ ⎟⎬ + + ⎪ ⎝ ⎠⎪ ⎪ ⎝ ⎠⎪ ⎩ ⎭ ⎩ ⎭ (4.24) (v) MSE t( )η <MSE P if( )ˆ * 2 0 2 2 * 2 0 2 2 2 0 2 0 X X V X X V d either d or σ η σ σ σ η σ σ ⎫ ⎛ − ⎞ < < + ⎝ ⎠⎪ ⎬ ⎛ − ⎞< < ⎪ ⎜ + ⎝ ⎠ ⎭ or equivalently * 2 * 2 0 0 2 2 2 2 2 2 min 0, X max 0, X X V X V d σ d σ η σ σ σ σ ⎧ ⎛ − ⎞⎫ ⎧ ⎛ − ⎞⎫ ⎪ ⎪< < ⎪ ⎪ ⎨ ⎜ + ⎟⎬ ⎨ ⎜ + ⎟⎬ ⎪ ⎝ ⎠⎪ ⎪ ⎝ ⎠⎪ ⎩ ⎭ ⎩ ⎭ (4.25)

(13)

(vi) MSE t( )η <MSE t( 1P) if * 2 0 2 2 * 2 0 2 2 2 1 1 2 1 1 X X V X X V d either d or σ η σ σ σ η σ σ ⎫ ⎛ − ⎞ < < − ⎪ + ⎝ ⎠⎪ ⎬ ⎛ − − < <⎞ ⎪ ⎜ + ⎝ ⎠ ⎭ or equivalently * 2 * 2 0 0 2 2 2 2 2 2 min 1, X 1 max 1, X 1 X V X V d σ d σ η σ σ σ σ ⎧ ⎛ − ⎞⎫ ⎧ ⎛ − ⎞⎫ ⎪ < < ⎪ ⎨ ⎜ ⎟⎬ ⎨ ⎜ ⎟⎬ + + ⎪ ⎝ ⎠⎪ ⎪ ⎝ ⎠⎪ ⎩ ⎭ ⎩ ⎭ (4.26)

(vii) MSE t( )δ <MSE P if( )ˆ

* 2 0 2 2 * 2 0 2 2 2 0 2 0 X X V X X V d either d or σ δ σ σ σ δ σ σ ⎫ ⎛ − ⎞ < <⎜ + ⎟⎪ ⎝ ⎠⎪ ⎬ ⎛ − ⎞< < ⎪ ⎜ + ⎝ ⎠ ⎭ or equivalently * 2 * 2 0 0 2 2 2 2 2 2 min 0, X max 0, X X V X V d σ d σ δ σ σ σ σ ⎧ ⎛ − ⎞⎫ ⎧ ⎛ − ⎞⎫ ⎪ ⎪< < ⎪ ⎪ ⎨ ⎜ + ⎟⎬ ⎨ ⎜ + ⎟⎬ ⎪ ⎝ ⎠⎪ ⎪ ⎝ ⎠⎪ ⎩ ⎭ ⎩ ⎭ (4.27)

(viii) MSE t( )δ <MSE t( 2P) if

* 2 0 2 2 * 2 0 2 2 2 1 1 2 1 0 X X V X X V d either d or σ δ σ σ σ δ σ σ ⎫ ⎛ − ⎞ < < − ⎪ + ⎝ ⎠⎪ ⎬ ⎛ − − < <⎞ ⎪ ⎜ + ⎝ ⎠ ⎭ or equivalently * 2 * 2 0 0 2 2 2 2 2 2 min 1, X 1 max 1, X 1 X V X V d σ d σ δ σ σ σ σ ⎧ ⎛ − ⎞⎫ ⎧ ⎛ − ⎞⎫ ⎪ < < ⎪ ⎨ ⎜ + ⎟⎬ ⎨ ⎜ + ⎟⎬ ⎪ ⎝ ⎠⎪ ⎪ ⎝ ⎠⎪ ⎩ ⎭ ⎩ ⎭ (4.28)

(14)

4.3 Asymptotically Optimum Estimators (AOE’s)

Minimizing the mean squared error expressions of , ,t t t and tθ γ η δ given by (4.9), (4.10), (4.11) and (4.12) respectively, we get the optimum values of con-stants θ γ η, , andδ as 2 0 0 2 2 ( ) ( ) X X V d say σ θ θ σ σ = = + (4.29) 2 0 0 2 2 ( ) ( ) X X V d say σ γ γ σ σ = − = + (4.30) * 2 0 0 2 2 ( ) ( ) X X V d say σ η η σ σ = = + (4.31) * 2 0 0 2 2 ( ) ( ) X X V d say σ δ δ σ σ = − = + (4.32)

Thus the resulting asymptotically optimum estimators (AOE’s) in the classes , ,

t t t and tθ γ η δ are respectively given by

0 0 1 0 ˆ (1 ) r tθ =θ t + −θ R (4.33) 0 0 2r (1 0)ˆ tγ =γ t + −γ R (4.34) 0 0 1 0 ˆ (1 ) r tηt + −η P (4.35) 0 0 2r (1 0)ˆ tδ =δ t + −δ P (4.36)

Putting θ γ η0, ,0 0 and δ0 respectively from (4.29), (4.30), (4.31) and (4.32) in (4.9),

(4.10), (4.11) and (4.12) we get the resulting minimum mean squared errors of , ,

t t t and tθ γ η δ (or the mean squared error of AOE’s tθ0,t t and tγ0, η0 δ0) respec-tively as 2 2 2 2 0 2 2 ˆ min ( ) ( ) ( ) X X X V d R C MSE t MSE R n θ σ σσ ⎛ ⎞ = − ⎜ + ⎝ ⎠

(15)

2 * 2 2 2 0 2 2 ˆ min ( ) ( ) ( ) X X X V d P C MSE t MSE P n η σ σ σ ⎛ ⎞ = − ⎜ + ⎝ ⎠

=minMSE t( )δ =MSE t( η0)=MSE t( δ0) (4.38) From (2.38), (2.39), (2.40), (2.41), (2.42), (2.43) and (4.37), (4.37) it can be

shown that the proposed classes of estimators , ,t t t and tθ γ η δ (or AOE’s

0, 0, 0 0

tθ t t and tγ η δ ) are better than R P t tˆ ˆ, , ,1r 1p ,t and t2p 2r at their optimum

con-ditions. Remark 4.1

It is to be mentioned that the asymptotically optimum estimators (AOE’s)

0, 0, 0 0

tθ t t and tγ η δ depend on the optimum values ( , , , )θ γ η δ0 0 0 0 respectively

of constants ( , , , )θ γ η δ , which are function of unknown parameters

0 ( 0X 1X) d = KK , * 0 ( 0X 1X) d = K +K , reliability ratio 2 ( 2 2) X X V r =σ σ +σ , 0X, 1X,CY0,CY1

ρ ρ and C . The AOE’s X tθ0,t t and tγ0, η0 δ0 can be used in

prac-tice only when the values of K0X,K and r are known in advance. But specify-1X

ing precisely the values of K0X,K and r are difficult in practice. However, in 1X

repeated surveys or studies based on multiphase sampling, when information re-garding the same variates is collected on several occasions, it is possible to guess (or estimate) quite precisely the values of certain parameters ρiX,CY i(i=0,1)

and C for instance, see Murthy (1967, pp. 96-99), Reddy (1978), Srivenkatara-X

mana and Tracy (1980) and Singh and Ruiz Espejo (2003). In many scientific in-vestigations, the value of the reliability ratio r is correctly known. Such knowledge may arise from some theoretical considerations or from empirical experience. Or a reasonably accurate estimate of r may be available from some other independ-ent studies, see Srivastava and Shalabh (1996). Moreover, the reliability ratio is not difficult to find in many applications and there are various methods to do it; see e.g. Ashley and Vaughan (1986), Lord and Novik (1968) and Marquis et al. (1986). Thus the value of K0X,K and 1X rX2 (σX2 +σV2)can be guessed (or

estimated) precisely, and thus the estimators tθ0,t t and tγ0, η0 δ0can be used in practice.

5. CONCLUDING REMARKS

(i) If we set θ γ η δ= = = = and 0 Y ≡ (i.e. study variate 1 1 Y takes value unity 1

(16)

0 0

t = y (5.1)

of the population mean µY0, while for θ γ η δ= = = = and 1 Y ≡ , the estima-1 1 tors t and tθ η reduce to conventional ratio estimator for population mean µY0 as

0 X R t y x µ ⎛ ⎞ = ⎝ ⎠ (5.2)

and the estimators tγ andtδ reduce to the usual product estimator

0 P X x t y µ ⎛ ⎞ = ⎝ ⎠ (5.3)

of the population mean µY0.

Thus we infer that the results obtained by Shalabh (1997) are the special case of the present study for θ γ η δ= = = =0,1 and Y ≡ when the observations 1 1

are subject to measurement errors.

(ii) For Y ≡ (i.e. the study variate 1 1 Y takes value unity only) and 1

*

θ γ η δ θ= = = = (say) the estimators , ,t t tθ γ η and tδ reduce to the estimator.

* * R (1 *) 0

tθt + −θ y (5.4)

of the population mean * 0 and

Y

µ θ is the characterizing scalar to be chosen suitably. It is to be mentioned that the estimator tθ* is due to Manisha and Singh

(2001). Thus the work of Manisha and Singh (2001) are special case of the pre-sent investigation when the observations are subject to measurement errors. (iii) In practice, the usual expression for the mean squared error of ˆ ˆR P is ,( )

2 2 2 2 2 2

0 1 01 0 1 01

(R n C)[ Y +CY (1 2− K )] ((P n C)[ Y +CY (1 2+ K )]). From (2.38) ((2.41)) it is observed that the use of

2 2 2 2 2 2

0 1 01 0 1 01

(R n C)[ Y +CY (1 2− K )] ((P n C)[ Y +CY (1 2+ K )])

will lead to an under-reporting of true standard error. Similar is the case when we verify the formulae (2.39)((2.42)) and (2.40)((2.43)) for the mean squared errors of

1r( 1p) and 2r( 2p)

t t t t to our order of approximation. It is interesting to mention that the under-reporting in case of ˆ ˆR P is an amount ( )

(17)

2 2 2 0 1 2 2 0 1 U U Y Y R n σ σ µ µ ⎡ ⎤ + ⎢ ⎥ ⎣ ⎦ 2 2 2 0 1 2 2 0 1 U U Y Y P n σ σ µ µ ⎛ ⎡ ⎤⎞ + ⎜ ⎢ ⎥⎟ ⎜ ⎟ ⎝ ⎠

which is smaller than the corresponding quantity

2 2 2 2 0 1 2 2 2 0 1 U U V Y Y X R n σ σ σ µ µ µ ⎡ ⎤ + + ⎢ ⎥ ⎣ ⎦ 2 2 2 2 0 1 2 2 2 0 1 U U V Y Y X P n σ σ σ µ µ µ ⎛ ⎡ ⎤⎞ + + ⎜ ⎢ ⎥⎟ ⎜ ⎟ ⎝ ⎠ for ( )t tir ip (i=1,2).

As reported by Shalabh (1997) the consequence of under-reporting of variabil-ity can be clearly appreciated. For example, it may mislead the practitioner about the precision of the estimate. It may give shorter but incorrect confidence inter-vals for the population ratio(product) R(P).

(iv) From (4.9)-(4.12) we have,

2 0 1 2 ˆ ( ) ( ) ( ) 1 , 0 2 V X X X MSE tθ MSE R if K K σ θ θ σ ⎛ ⎞ < − > + > ⎝ ⎠ (5.5) 2 0 1 2 ˆ ( ) ( ) ( ) 1 , 0 2 V X X X MSE tγ MSE R if K K γ σσ γ ⎛ ⎞ < − < − + > ⎝ ⎠ (5.6) 2 0 1 2 ˆ ( ) ( ) ( ) 1 , 0 2 V X X X MSE tη MSE P if K K η σ η σ ⎛ ⎞ < + > + > ⎝ ⎠ (5.7) and 2 0 1 2 ˆ ( ) ( ) ( ) 1 , 0 2 V X X X MSE tδ MSE P if K K δ σ δ σ ⎛ ⎞ < + < − + > ⎝ ⎠ (5.8)

For 0< < , (a 1 a=θ γ η δ, , , ) comparing (3.1) {(3.2), (3.3), (3.4)} and (5.5) {(5.6), (5.7), (5.8)} it is the observed that the efficiency condition (5.1) for { , , }t t t tθ γ η δ to be more efficient than the usual estimator ˆ ˆ ˆ ˆR R P P is wider than the effi-{ , , } ciency condition (3.1) {(3.2), (3.3), (3.4)} for the estimator t t1r{ ,2r t1p,t2p} to be

more efficient than the conventional estimators ˆ ˆ ˆ ˆR R P P . Thus in the extended { , , } range of the efficiency condition (5.5) {(5.6), (5.7), (5.8)} over that of the effi-ciency condition (3.1) {(3.2), (3.3), (3.4)}, the estimator { , , }t t t tθ γ η δ is better than both the estimators (t and R t and R t and P t and P . 1r ˆ){( 2r ˆ),( 1p ˆ),( 2p ˆ)}

(18)

prior knowledge about K0X,K and the reliability ratio 1X rX2 (σX2 +σV2)in

advance. In practice it may be hard to obtain the exact values of K0X,K and r 1X

as these contain unknown parameters ρ0X,ρ1X,CY0,CY1 , C , X σX2 andσV2 . In

practical samples surveys, prior guessed (or estimates) of ρ0X,ρ1X,CY0,CY1 ,

X

C , σX2 andσV2 and hence K0X,K and r can be obtained with reasonable 1X

accuracy either from a pilot survey, or past data, or experience, or even from ex-pert guesses by specialist in the field concerned, see Singh and Ruiz Espejo (2003). However in some practical situations it may not be possible at all to have good estimates (or guessed) values of the parameters ρ0X1X,CY0,CY1,C , X and 2

X

σ , and in such situations it is worth advisable to replace these parameters by their estimates based on the sample data at hand. We note that usually practi-tioner has the prior information quite accurately about the error variance 2

V

σ as-sociated with auxiliary variable X, see Schneeweiss (1976) and Srivastava and Shalabh (1997). Thus we assume that the variance 2

V

σ associated with auxiliary variable X is known. These lead authors to define estimators based on ‘estimated optimum’ as 0 0 1 0 ˆ ˆ ˆ ˆ r (1 ) tθ =θ t + −θ R (5.9) 0 ˆ0 2 ˆ0 ˆ ˆ r (1 ) tγ =γ t + −γ R (5.10) 0 ˆ0 1 ˆ0 ˆ ˆ r (1 ) tηt + −η P (5.11) and 0 0 2 0 ˆ ˆ ˆ ˆ r (1 ) tδ =δ t + −δ P, (5.12) where 2 0 0 2 2 ˆ ˆ ( ) x x V d s s θ σ = + 2 0 0 2 2 ˆ ˆ ( ) x x V d s s γ σ = − + * 2 0 0 2 2 ˆ ˆ ( ) x x V d s s η σ = + * 2 0 0 2 2 ˆ ˆ ( ) x x V d s s δ σ = − + where * 0 1 0 0 1 0 0 1 0 2 1 2 0 1 ˆ (ˆ ˆ ),ˆ ( ˆ ˆ ), ˆ xy , ˆ xy X X X X X X x x s X s X d K K d K K K K y y s s ⎛ ⎞ ⎛ ⎞ = − = + = = ⎝ ⎠ ⎝ ⎠

(19)

0 0 0 1 1 1 1 1 1 1 ( )( ), ( )( ) 1 1 n n xy i i xy i i i i s x x y y s x x y y n = n = = − − = − −

, and the error

variance σV2 associated with auxiliary variable X and the population mean X of

the auxiliary variable X are known.

To the first degree of approximation it can be shown that

0 0 2 2 2 2 0 2 2 ˆ ˆ ( ) ( ) min ( ) ( ) X X X V d R C MSE t MSE R n MSE t MSE t θ θ θ σ σ σ ⎡ ⎛ ⎞⎛ ⎞⎤ =⎢ −⎜ ⎟⎜ + ⎟⎥ ⎢ ⎝ ⎠⎝ ⎠⎥ ⎣ ⎦ = = 0 0 2 2 2 2 0 2 2 ˆ ˆ ( ) ( ) min ( ) ( ) X X X V d R C MSE t MSE R n MSE t MSE t γ γ γ σ σ σ ⎡ ⎛ ⎞⎛ ⎞⎤ =⎢ −⎜ ⎟⎜ + ⎟⎥ ⎢ ⎝ ⎠⎝ ⎠⎥ ⎣ ⎦ = = 0 0 *2 2 2 2 0 2 2 ˆ ˆ ( ) ( ) min ( ) ( ) X X X V d P C MSE t MSE P n MSE t MSE t η η η σ σ σ ⎡ ⎛ ⎞⎛ ⎞⎤ =⎢ −⎜ ⎟⎜ + ⎟⎥ ⎢ ⎝ ⎠⎝ ⎠⎥ ⎣ ⎦ = = 0 0 *2 2 2 2 0 2 2 ˆ ˆ ( ) ( ) min ( ) ( ) X X X V d P C MSE t MSE P n MSE t MSE t δ δ δ σ σ σ ⎡ ⎛ ⎞⎛ ⎞⎤ =⎢ −⎜ ⎟⎜ + ⎟⎥ ⎢ ⎝ ⎠⎝ ⎠⎥ ⎣ ⎦ = =

Thus in practice if the prior information regarding the optimum values

0 0 0 0

( , , , )θ γ η δ of the constants ( , , , )θ γ η δ are not available to the practitioner that mars the AOE’s tθ0,t t and tγ00 δ0 utilities. In such a situation the estimators

0 0 0 0

ˆ ,ˆ ˆ, ˆ

tθ t t and tγ η δ based on ‘estimated optimum’ are recommended for their use in practice.

ACKNOWLEDGEMENT

Authors are thankful to the learned referee for his valuable suggestions regarding sub-stantial improvement of the paper.

School of Studies in Statistics, HOUSILA P. SINGH

(20)

REFERENCES

E. ARTES, A. GARCIA (2001), Estimation of current population ratio in successive sampling, “Journal of Indian Society Agricultural Statistics”, 54, 3, pp. 342-354.

R. ASHLEY, D. VAUGHAN (1986), Measuring measurement error in economic time series, “Journal of Business Economics & Statistics”, 4, pp. 95-103.

P. P. BIERMER, R.M. GROVES, L.E. LYBERG, N.A. MATHIOWETZ, S. SUDMAN (1991), Measurement Errors

in Surveys, Wiley, New York, NY.

W.G. COCHRAN (1963), Sampling techniques, 2nd Ed., John Wiley and Sons, Inc., New York. A. GARCIA (2008), Estimation of current population product in successive sampling, “Pakistan Journal

of Statistics”, 24, 2, pp. 87-98.

A. GARCIA, AND E. ARTES (2002), Improvement on estimating current population ratio in successive

sam-pling, “Brazilian Journal of Probability Statistics”, 16, pp. 107-122.

B.B. KHARE (1991), On generalized class of estimators for ratio of two population means using

multi-auxiliary characters, “Aligarh of Journal Statistics”, 11, pp. 81-90.

B.B. KHARE , R.R. SINHA (2004), Estimation of finite population ratio using two-phase sampling scheme

in the presence of non-response, “Aligarh Journal of Statistics”, 24, pp. 43-56.

F.M. LORD AND M.R. NOVIK (1968), Statistical Theories of Mental Test scores, Addison-Wesley, Reading, M.A.

MANISHA, R.K. SINGH (2001), An estimation of population mean in the presence of measurement error, “Journal of Indian Society Agricultural Statistics” 54, 1, pp. 13-18.

K.H. MARQUIS, M.S. MARQUIS AND J.M. POLICH (1986), Response bias and reliability in sensitive topic

surveys, “Journal of American Statistical Association”, 81, pp. 381-389.

M. N. MURTHY (1967), Sampling theory and methods, Statistical Publishing society, Calcutta. F.C. OKAFOR (1992), The theory and application of sampling of over two occasions for the estimation of

current population ratio, “Statistica”, 42, 1, pp. 137-147.

F.C. OKAFOR, R. ARNAB (1987), Some strategies of two-stage sampling for estimating population ratios

over two occasions, “Australian Journal of Statistics”, 29,2, pp. 128-142.

B. PRASAD, R.S. SINGH, H.P. SINGH (1996), Some chain ratio-type estimators for ratio of two population

means using two auxiliary characters in two-phase sampling, “Metron”, LIV, 1-2, pp. 95-113.

S.K. RAY, AND R.K. SINGH (1985), Some estimators for the ratio and product of population parameters, “Journal of American Statistical Association”, 37,1, pp. 1-10.

J.N.K. RAO (1957), Double ratio estimate in forest surveys, “Journal Indian Society Agricultural Statistics” 9, pp. 191-204.

J.N.K. RAO, N.P. PEREIRA (1968), On double ratio estimators, “Sankhya”, 30, A, pp. 83-90. V. N. REDDY (1978), A study on the use of prior knowledge on certain population parameters in

estima-tion, “Sankhya” C, 40, pp. 29-37.

L.N. SAHOO, R.K. SAHOO (1999), A note on the accuracy of some estimation techniques in the presence of

measurement errors, “ARAB of Journal Mathematical Science”, 5,11, pp. 51-55.

H. SCHNEEWEISS (1976), Consistent estimation of a regression with errors in the variables, “Metrika” 23, pp. 101-105.

SHALABH (1997), Ratio method of estimation in the presence of measurement errors, “Journal of In-dian Society Agricultural Statistics”, 50,2, pp. 150-155.

H.P. SINGH (1986), On the estimation of ratio, product and mean using auxiliary information in sample

surveys, “Aligarh Journal of Statistics”, 6, pp. 32-44.

H.P. SINGH (1988), On the estimation of ratio and product of two finite population means, Proceedings of National Academy of Sciences, 58, A, III, pp. 399-402.

H.P SINGH, M. R. ESPEJO (2003), On linear regression and ratio-product estimation of a finite population

(21)

M.P. SINGH (1965), On estimation of ratio and product estimator of a population parameter, “Sank-hya”, 27, B, pp. 321-328.

M.P. SINGH (1967), Ratio cum product method of estimation, “Metrika”, 12, 1, 34-43.

R.K. SINGH (1982),On estimating ratio and product of population parameters, “Calcutta Statistical Association Bulletin”, 31, pp. 69-76.

H.P. SINGH (1986), On the estimation of ratio, product and mean using auxiliary information in sample

surveys, “Aligarh Journal of Statistics”, 6, pp. 32-44.

V.K. SINGH, HARI P., SINGH H.P. SINGH, D. SHUKLA (1994), A general class of chain estimators for ratio

and product of two means of a finite population, “Communication in Statistics Theory &

Me-thods”, 23, 5, pp. 1341-1355.

A. K. SRIVASTAVA, SHALABH (1996), Properties of a consistent estimation procedure in ultra structural

model when reliability ratio is known, “Microelectron Reliability”, 36,9, pp. 1249-1252.

A. K. SRIVASTAVA, SHALABH (1997), Asymptotic efficiency properties of least square estimators in ultra

structural model, “Test”, 6, 2, pp. 419-431.

T. SRIVENKATARAMANA, D. S. TRACY (1980), An alternative to ratio method in sample surveys, “An-nals Institute of Statistics. Math”, 32, pp. 111-120.

C. SUD, S. K. SRIVASTAVA (2000), Estimation of population mean in repeat surveys in the presence of

measurement errors, “Journal of Indian Society of Agricultural Statistics”, 53,2, pp.

125-33.

T.P. TRIPATHI (1980), A general class of estimators for population ratio, “Sankhya”, C 42, pp. 63-75.

L.N. UPADHYAYA, H.P. SINGH (1985), A class of estimators using auxiliary information for estimating

ratio of population means, “Gujarat Statistical Review”, 12,2, pp. 7-16.

L.N. UPADHYAYA, H.P. SINGH , J.W.E. VOS (1985), On the estimation of population means and rations

using supplementary information, “Statistica Neerlandica”, 39, 3, pp. 309-318.

SUMMARY

On the estimation of ratio and product of two population means using supplementary information in pres-ence of measurement errors

This paper proposes some estimators for estimating the ratio and product of two population means using auxiliary information in presence of measurement errors and ana-lyzes their properties.

Riferimenti

Documenti correlati

Il lavoro è così organizzato: nel paragrafo 1 viene presentata una breve rassegna teorica sull’evoluzione dei distretti industriali; nel § 2, si procede all’analisi comparata

Collana di quaderni di critica operativa che raccolgono gli studi dell’omonimo gruppo di ricerca che ha operato presso il Dipartimento di Progettazione dell’Architettura alla

In this work we proposed a new estimator for a finite population distribution func- tion based on a very general superpopulation model that allows for nonlinear re- gression

Like the Chambers and Dunstan estimator, the new estimator is based on estimates for the model-cdf of the study variable that are obtained by estimating the model-mean

Questo momento bilancia il momento della forza peso della massa incognita moltiplicato per un braccio di leva noto e fisso.. Bilance g-sensibile:

Disponendo sia di un misuratore di spostamento, sia di un accelerometro, quale trasduttore si ritiene più adatto per la misura in

vediamo ora come il coefficiente di drag dipende dalla scabrezza relativa e dal numero di Reynolds nel caso di corpi tozzi.. Il caso più estremo di corpo tozzo è rappresentato da