• Non ci sono risultati.

Satellite-based irrigation advisory services: A common tool for different experiences from Europe to Australia

N/A
N/A
Protected

Academic year: 2021

Condividi "Satellite-based irrigation advisory services: A common tool for different experiences from Europe to Australia"

Copied!
14
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Agricultural

Water

Management

j o ur na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a te / a g w a t

Satellite-based

irrigation

advisory

services:

A

common

tool

for

different

experiences

from

Europe

to

Australia

Francesco

Vuolo

a

,

Guido

D’Urso

b,c,∗

,

Carlo

De

Michele

c

,

Biagio

Bianchi

d

,

Michael

Cutting

e

aUniversityofNaturalResourcesandLifeSciences(BOKU),P.JordanStr.82,Vienna,Austria bDepartmentofAgriculture,UniversityofNaplesFedericoII,ViaUniversità100Portici(NA),Italy cAriespaces.r.l.,Spin-offcompanyoftheUniversityofNaplesFedericoII,CentroDirez.Is.A/3,Naples,Italy dDept.AgricultureandEnvironm.Sci.,UniversityofBariAldoMoro,ViaOrabona4,Bari,Italy

eSouthAustralianMurray-DarlingBasinNaturalResourcesManagementBoard,Strathalbyn,SouthAustralia

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Availableonline28August2014 Keywords:

Remotesensing webGIS

Cropwaterrequirements Irrigationadvisoryservices

a

b

s

t

r

a

c

t

EarthObservationtechniquesarewidelyrecognisedinsupportingthemanagementoflandandwater resourcesandtheyarenowadaysbeingtransferredtooperativeapplications.Inthispaper,wepresentthe currentstatusofasatellite-basedirrigationadvisorysystembasedondedicatedwebGISorfarmersand districtmanagers,inthreedifferentagriculturalsystemsandenvironments:SouthernItaly,Austriaand SouthernAustralia.Mapsofcanopydevelopment(leafareaindex,albedoandsoilcover)arederivedfrom high-resolution(20m)multispectralsatelliteimages,deliveredinnearrealtime(24–36h)andprocessed byusingin-situagro-meteorologicaldata.Theoutputsofthisprocedureare:(i)apersonalisedirrigation advice,basedonthecalculationofcropevapotranspirationunderstandardconditions(accordingto FAO-56definitionandbyusingthedirectapproach)bytakingintoaccounttheactualcanopydevelopmentand cropvariabilityatsub-plotscale;(ii)timelydeliveryoftheinformation,consistinginmapsandsuggested irrigationvolumeapplications,timelypublishedonadedicatedwebGIS-sitewithaccessrestrictedto growersandbasinauthoritiesinordertobettercontroltheirrigationprocessandconsequentlyimprove itsoverallefficiency.Thekey-pointsofthisprocedureare:(a)personalisedirrigationadvice;(b)timely deliveryoftheinformation.Finalusershaveprovidedimportantfeedbackontheusageoftheinformation provided;i.e.farmersareabletorecognisewithoutdifficultiestheirparcelsontheimagesandthey scheduletheirrigationsbytakingintoaccounttheinformationprovided.Thecropheterogeneitycaptured bythehighresolutionimagesisconsideredasavaluableadd-oninformationtoidentifythevariabilityof soiltextureandfertility,plantnutrition,ordifferentperformanceofirrigationsystems.Allthefarmers haveevaluatedpositivelytheusefulnessoftheinformationprovided,andinmostcasesanincreaseof irrigationefficiencywasachieved,becauseofthereductionofwatervolumes.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

EarthObservation (EO) data and geo-spatial tools are more and morefrequentlyused tosupportvarious agricultural prac-tices. The first feasibility studies, description of methodologies and prototypes for precise crop management date back tothe early1980s. A review can befound in Moran et al. (1997). In thestudy,theauthorsanalysed differentaspectsofinformation requirementsandidentifiedvariousareasofapplication(e.g.soil

∗ Correspondingauthorat:DepartmentofAgriculture,UniversityofNaples Fed-ericoII,ViaUniversità100,Portici(NA),Italy.Tel.:+393472310830..

E-mailaddresses:durso@unina.it,guido.durso@unina.it(G.D’Urso).

mapping, yield estimation, crop evapotranspiration, phenology, etc.) towhich satellite-based remote sensing couldcontribute. Theyalsohighlightedthetechnicallimitationsofsensing instru-mentsandprovidedrecommendationsfortheintegrationofthese technologiesincropmanagementpractices.Inrecentyears, contin-uousadvancementsinspacetechnologiesbroughtnewobserving capabilitiesintermsofspectral,spatialandtemporalresolutions andmostof thecriticalissues describedin Moranetal.(1997) arenowovercome.Recentchangesinpricingpolicyalsoallowed acost-effectiveuseofhighspatialresolutionimagery(10–30-m pixelsize).Forinstance,free-of-chargeaccesstoLandsat8data (byU.S. Geological Survey– USGS – &NASA)is now available withinlessthan 24hofacquisition.Theavailability offree and openaccessdataforscientificandcommercialuseisexpectedto http://dx.doi.org/10.1016/j.agwat.2014.08.004

(2)

furtherimprovewiththelaunch(scheduledfor2014)ofSentinel 2missions,developedbyEuropeanSpaceAgency(ESA)withinthe Copernicusinitiative(formerGlobalMonitoringforEnvironment andSecurity–GMES–programme).Thisinitiativehasalso stimu-latedthedevelopmentofvariousoperationalservicesandtechnical capacitiesatEuropeanlevel(NEREUS,2012).

Thankstotheseprogresses,theuseofremotelysenseddatahas becomemorecommonandwillbefurtherintegratedin agricul-tureservicestosupportmanagement,monitoringandcontrolling activitiesat different spatial scales includingprecision farming (Lee et al.,2010).Forinstance, mapsofbiophysical parameters ofvegetationareusedinyieldpredictionmodelsat administra-tivelevel(Doraiswamyetal.,2005;Maetal.,2011;Remboldetal., 2013).Otherexamplesareimplementedatcountryorregionallevel toderivecropwaterneedsfromsatelliteestimatesof biophysi-calparametersassimilatedinagro-meteorologicalmodels(D’Urso etal.,2010),tomonitorthenitrogenstatusand toapply fertil-izerwithvariablerates(e.g.,FarmSat)ortoderiveagronomical variables(Casaetal.,2012;Jégoetal.,2012).Ontheotherhand, surfaceenergybalancemethodsbasedonsatelliteobservationsin thethermal region(Bastiaanssenetal.,1998;Allenetal.,2007; KustasandAnderson,2009)havebeendevelopedandappliedin manyareaswiththeaimofdeterminingactualevapotranspiration. Thesemethodshaveshowntheirpotentialityinassessingthewater balanceofirrigatedareasandthecorrespondingwateraccounting practices(Allenetal.,2005;Andersonetal.,2007;Karimietal., 2013)buttheiruseforirrigationadvisoryservicesisconstrained bythelimitedspatialandtemporalresolutionofE.O.-basedthermal observationsandbythecomplexityofalgorithmsfornearreal-time operationalprocedures(OsannJochumetal.,2005).Reviewsof dif-ferentprocedurestodeterminecropevapotranspirationandwater requirementsfromremotesensingcanbefoundinCouraultetal. (2005)andVerstraetenetal.(2008).

Diversely,atemporalresolutionofabout7–10daysbetween satelliteobservationsisusuallyconsideredadequatetomonitorthe variousphasesofthecropdevelopmentthroughoutthegrowing season.Thistemporalresolutioncannowadaysbeassuredbyusing differentplatformsorconstellationofplatformscarryingvisible (VIS)andnearinfrared(NIR)sensingcameras.

Theobjectiveofthisstudyistopresentanadvancedandfully operationalirrigationadvisoryservicebasedontheutilisationof VIS–NIRsatelliteobservationsforcropwatermanagementatfield andirrigationschemelevels;theservicehasbeenimplementedin threedifferentcountries,byusingasimilarwebGISplatformbut differentnames:

-IRRISAT (www.irrisat.it), a regional operational service sup-portedbyruraldevelopmentfundsinSouthernItaly.

-EO4Water(www.eo4water.com),acasestudyofknowledgeand technology transfer in Lower Austria funded by the Austrian SpaceApplicationProgramme.

-IRRIEYEinSouthern-Australia(www.irrieye.com),co-fundedby SouthAustralianMurray-DarlingBasinNaturalResources Man-agementBoard.

Thefirstconceptofsatellite-basedirrigationadvisoryservices was designed in the context of the DEMETER UE-RTD project in 2005 (D’Urso and Calera Belmonte, 2005). It was succes-sively improvedand automatised to meet the requirementsof individual farmers with personalised weekly irrigation advices at field scale and regional level by using SMS (Vuolo et al., 2005;DeMicheleetal.,2009).Thedevelopmentofadvisory ser-vices based on webGIS platforms has been initially developed within the PLEIADeS UE-project (www.pleiades.es)and further tested inSIRIUS (www.sirius-gmes.es).More recently,a similar application has been developed in California by NASA, within

theTOPS SatelliteIrrigationManagementSupportproject (eco-cast.arc.nasa.gov/simsi/).

Generally,theserviceconceptisbasedontwomain compo-nents:(a)theprocessingoftime-seriesofhighspatialresolution (10–30-mpixelsize)imagesfromsatellite,currentlyavailablefrom publicandcommercialdataproviders,totimelymonitorthecrop growth;(b)theestimationofthecropwaterrequirementbytaking intoaccounttheactualcanopydevelopmentthroughoutthe grow-ingseason;(c)theadaptationandintegrationinlocalmanagement practices&toolsofeasytousegeo-spatialtechnologiestomakethe informationavailabletousersandtosupportthedecision-making process.

Inthis paperwegivea detaileddescriptionof methodologi-calapproachesandprocessingchain,withresultsfromthethree applicationsinEuropeandAustralia.

2. Users’requirementsinsatellite-basedirrigationadvisory services

Irrigationadvisoryservicesareaddressedtothreedifferentuser segments:

-Farmers,smallandlargescaleagri-businesses.

-Watermanagersatirrigationschemeorcatchmentlevel. -Authorities in charge of water management (such as river

basinauthority,government),NationalIrrigationPlanMonitoring Office.

Mapsofcropwaterrequirements,irrigatedareas,cropvigour andotherproductsofthesatelliteimageprocessing,canbe aggre-gatedoverdifferenttemporalscales(weekly,monthly,etc.)and land management units (field, farm, district, etc.) to meet the requirementsofdifferentusers.

Thetechnologicalimplementationof satellite-basedirrigation advisoryservicesneedstofindacompromisebetweenthe follow-ingelements:

i.availabilityofancillaryinputdata,withnoorminimal contri-butionfromend-users;

ii.elaborationandprocessingtime,withminimumpossibletime lagbetweenE.O.acquisitiondateandinformationdeliveryto finalusers;

iii.accuracyofalgorithmsforderivingcropwaterrequirements, withminimumpossibleparameterisation.

For example, it is difficult to provide an irrigation advisory servicebasedonadailysoilwaterbalance,whichneedsasinput soilhydrauliccharacteristicsandactualirrigationscheduling.Ifsoil mapsmaybefoundatdifferentlevelofdetailandaccuracy,actual irrigationvolumeanddatesareveryseldomavailable,unless auto-maticmeteringdevicesareinstalledoracontinuousdirectinputis demandedtofarmersforeachindividualplot.

Thesecondrequirementfornear-realtimeprocessingofE.O. datagenerallyconflictswiththegenerationofcropmaps,whichcan beelaboratedwithsomeconfidenceonlyattheendoftheirrigation season.

Onthebasisoftheseconsiderations,theirrigationadvice pro-vided byIRRISAT/EO4WATER/IRRIEYE described in this workis meanttolimitexcesswaterapplication,inordertoachievea bet-terutilisationofwaterresourcesandcostsavings(irrigationfees, equipmentruntime, energy requiredfor pumpingand fertilizer consumption).Theirrigationadvisoryserviceisdeliveredweekly anditisonlyconcerningthesuggestedamountintheconsidered period,asdefinedlaterinSection3,andnotthescheduling,which islefttofarmer’sdecision.

(3)

Table1

EO-basedirrigationadvisoryservices:productsdeliveredtofinalusers.

Productcharacteristics Listofmapsortextinformation Howproductssupporttheuserneeds Static

(updatedoncepergrowingseason)

•BasicGISlayers(irrigationunitboundaries) (vectorlayer)

•Irrigatedareasandcropinventory(maps and/orvectorlayer,beforetheendofthe season)

1.Supporttovisualisation,analysisanddata interpretation

2.Controlonirrigatedareas

Dynamic

(Updatedwitheachnewsatelliteacquisition orweekly)

•Colourcomposites(maps) •Leafareaindex(LAI)(maps)

•Cropcoefficient(Kc)(mapsandgraphical)

•Cropwaterrequirements(mapsand graphical)

•Dailyagro-meteorologicaldata(textand graphical)

1.Basicagriculturalandwaterplanning. 2.Reductionofover-irrigation. 3.Monitoringofcropvigour

Cumulatedovertimeofdynamicdata(time intervalisflexible)

•Totalcropwaterconsumption(e.g.decadeor yearlyforirrigationscheme)

•Statisticsandtime-seriesdata,graphical informationperplotoraggregatedtodistrict levelbasedontheirrigationormanagement unitboundaries(textandgraphical)

1.Monitoringandcontrolofexploitationplans. 2.Calculateseasonalcropspecificcropwater use.

Inourexperience,alsobasedonagriculturalmechanics applica-tions,mostfarmersarenotonlyinterestedinknowingtheirrigation volumesbutalsothespatialandtemporaldistributionofsomecrop characteristics(i.e.cropvigour)overthegrowingseasonforeach oneoftheirfields;theinformationoncanopydevelopment,which istheresultofallagronomicpractices,canalsobeusedforabetter managementofallcropinputs.

Fromthewatermanagersperspective,thisinformationhastobe aggregatedattheirrigationschemelevelinordertoreduce opera-tionandmaintenance(O&M)costs,depreciationofinfrastructures and administration costs. At irrigation district and catchment scale, the knowledge of the spatial distribution of crop water requirementsenablesthewater manager tobetterallocatethe intra-schemewaterdistributionandtomonitorandcontrolthe waterexploitationplans.Asacontroltool,mapsoftheirrigated areas,derivedfromtheanalysisoftime-seriesofEOdata,can sup-portthedetectionofnon-authorisedwaterabstractions.InTable1 thestandardsetofproductsdeployedtosupporttheuserneedsare summarised.

However,thetechnologicaladoptionofspace-basedsolutions for crop/irrigation water management is a complex process. Favourable conditions depend on several technical, social and economicaspects(BaptistaandSousa,2005).Amongseveral fac-tors,theconnectionwiththeusers and theembeddingofnew technologies into standard practices remains the most critical issue.Especiallyintechnologytransferprojects,thelocalcurrent practicesandsystemshavetobeconsideredforadaptingthe imple-mentationoftheinnovationaccordingly.

3. Methodologicalbackgroundfortheestimationofcrop waterrequirementsinsatellite-basedirrigationadvisory services

The standard approach proposed by Food and Agricultural Organization(FAO)(Allenetal.,1998)forcalculatingcropwater requirements(CWR)canbeadaptedtoremotesensingdata.Crop waterrequirements(CWR)arecommonlycalculatedasfollows: CWR=



ETcrop−Pn



(1) whereETcrop(mm)isthecropevapotranspirationunderstandard conditionsi.e.cropsgrownin largefieldsunderexcellent agro-nomicandsoilwaterconditions,(Allenetal.,1998);Pn,iseffective precipitation depending on canopy development described by

meansoftheLeafAreaIndexLAI,andthefractionalvegetationcover fc,accordinglytoBraden(1985): Pn=P−aLAI



1− 1 a+ fcp ALAI



(2)

where Pis the precipitationabove thecanopy, ais an empiri-cal parameterrepresenting thecropsaturationper unit foliage area(≈2.8mmd−1 formostcrops).Thecalculationisdonewith referencetoagiventimeinterval,compatiblewiththetemporal resolutionofmeteorologicaldata.

In most operative scenarios, the reference evapotranspira-tionET0 (mm,onhourlyordailybasis)is determinedbyusing the FAO-56 and ASCE standard equations (Task Committee on StandardizationofReferenceEvapotranspiration,2005).Ifweather dataarenotavailable,ET0canbederivedfromgeostationary satel-litedataaccordingtoDeBruinetal.(2010).Anoperationalproduct isdistributedbySatelliteApplicationFacilityonLandSurface Anal-ysis(LANDSAF:landsaf.meteo.pt/).Successively,ETcropisderived bymultiplyingET0 withthecropcoefficientvalueKc,commonly attributedfromafieldevaluationofthecropdevelopmentand phe-nologicalstagebyusingthetablesproposedbytheoriginalauthors andalsoreportedintheFAO-56procedure.ThecropcoefficientKc isaproxyoftheparametersdescribingthecanopydevelopment, i.e.LAI,surfacealbedoandcropheight.Thesamecanopy param-etersenteringthedirectcalculationofETcroparealsoinfluencing toagreatextentthespectralresponseofacroppedsurface,i.e.the wayitappearsfromaremotesensor inthevisibleandinfrared wavelengths.

Reflectance-basedKc values, incorporatingthe effects ofsoil type, crop, plant growth and crop management (Wiegand and Richardson,1984),canbedeterminedonapixel-by-pixelbasisby usingsatelliteobservationsinthevisibleandnear-infraredspectral domainstocomputevegetationindexesvalues(Nealeetal.,1989; Glennetal.,2011).Thisapproachhasbeenappliedalsotocanopies notcoveringuniformlythesoilsurface,suchasvineyards,to deter-minethevalueofthebasalcropcoefficient(Camposetal.,2010). However,withtheexceptionoflimitedexperimentscarriedoutby usingmicrometeorologicaltechniquesorlysimetermeasurements, theattributionofcropcoefficients(andconsequentlythe correla-tionwithobservedreflectancevalues)islargelybasedonsubjective fieldobservations,withlimitedpossibilitiesofvalidationbasedon measurementsofcanopyparameters.

An alternative approach was developed by D’Urso and Menenti (1995), for the direct calculation of ETcrop, based on

(4)

Penman–Monteith(P–M)equationasimplementedintheFAO-56 procedure(one-stepapproach),hereinindicatedwith“P-MFAO”: ETcrop=86, 400 



 (Rn−G) +cp(es−ea)Ca +



1+Ca/Cs





(3) where ETcrop is expressed in mmd−1 and: is the latent heat ofvaporisation of water (Jkg−1) istheslope of thesaturated vapourpressure–temperaturecurvees (T)(kPaK−1)Rnisthenet radiationfluxdensity(Wm−2)Gistheheatfluxdensityintothe soil (Wm−2) is the air density (kgm−3)cp is the air specific heat(Jkg−1K−1)(es−ea)isthevapourpressuredeficit(kPa)atthe givenairtemperatureTaCaistheaerodynamicconductanceforheat transport(ms−1)isthethermodynamicpsychrometricconstant (kPaK−1),andCsisthesurfaceconductance(ms−1),dependingon canopytranspirationandsoilevaporation.

Theminimumsetofclimaticdataneededforthecalculationof Eq.(3)aretheairtemperatureTa(◦C),therelativehumidityRH(%), thewindspeedUz(ms−1),andthefluxdensityofincomingshort waveradiationK↓(Wm−2).Theremainingvariablescanbeeither directlymeasuredorestimatedfromTa,RH,UandK↓(Jensenetal.,

1990).Thismodelconsidersthecanopyasa“bigleaf”,withasurface areaexpressedbytheLAI,acropheighthc andahemispherical spectrallyintegratedalbedor,whichisneededtocalculateRn.By usingthecanopyvaluesforahypotheticalgrassreferencecropi.e. hc=0.12m;r=0.23andLAI=2.88,Eq.(3)givesthereferencecrop evapotranspirationET0.

Thetwo conductance terms Ca and Cs are calculated asthe inverseoftheresistancesdefinedbyAllenetal.(1998):

Ca= k 2U ln



zU−d zom

ln



zT−d zoh

(4) Cs=0.005LAI

LAI≤4 Cs=0.02

LAI>4 (5)

InEq.(4),kisthevonKarman’sconstant(0.41),zUandzTare respectivelythemeasurementheightsforwind-speedand tem-perature,disthezero-planedisplacementheightandthevariables z0m,z0hrepresenttheroughnesslengthsformomentumandheat respectively being estimatedfrom canopy height hc (Brutsaert,

1982).Consequently,Cabecomes essentiallyafunction ofwind speedandcanopyheight.

ThesurfaceconductanceCsdependsonincomingsolar radia-tion,vapourpressuredeficitandsoilwaterdeficit.Underpotential or“standard”conditions,i.e.whensoilwateravailabilityfor tran-spirationisnotlimited,CscanbeapproximatedbyEq.(5);similar expressionscanbefoundinrecentstudiesbyCleughetal.(2007) andYanetal.(2012),whichcanbeconsideredvalidforawiderange ofirrigatedcrops.

Theproposedapproacheliminatestheneedfordeterminingthe valueofa cropcoefficient;nevertheless, due toits wideusein irrigationpractice,itisalsopossibletoderivean“analytical”crop coefficientKcderivedbyEq.(3)appliedtwice,foragivencropand thereferencecrop;hence,theresultingfunctiondependsoncrop parametersandmeteorologicaldata(D’UrsoandMenenti,1995; D’UrsoandCaleraBelmonte,2005):

Kc= ETcrop ET0 =f



r,hc,LAI;Ta,RH,U,K↓



(6) The P–M FAO calculations based on Eqs. (3)–(5) allow for mappingETcropwithinputdataconsistingofground-based mete-orologicaldataandmapsofthecropparametersr,hc,LAI.These mapscanbeobtainedfromtheprocessingofsatelliteimages.A reviewofprocedurestoderivecropparametersfrommultispectral

EOdatacanbefoundinD’Ursoetal.(2010);themethodologies implementedinthecurrentapplicationaredescribedinthenext section.LAI is themostrelevant parameterforestimating crop waterrequirements:itsvalueisnotonlyneededforcalculating ETcrop,butalsofordeterminingthefractionalvegetationcoverfc andtheeffectiveprecipitationPninEq.(2).Inasimilarway,crop heighthccanbederivedasafunctionofLAI,providedthatcroptype mapsareavailable.Inadditiontothis,EObasedLAIandKcmaps alsoprovidefarmerswithspatialdataonthecanopydevelopment anduniformity,asaresultofdifferentagronomicpracticesinthe field.ArecentreviewofmethodsforLAIestimationfromoptical satellitedatacanbefoundinVuoloetal.(2013).Semi-empirical methodscanbeusedtoderiveLAIfromsurfacereflectanceinthe visibleandnear-infraredrangeswithsatisfactoryaccuracyforthe presentaimwithouta-prioriknowledgeofcroptypes.

Whenthecanopydoesnotcovercompletelythesoilsurface,a correctionneedstobeappliedtoconsidersoilevaporation.More complex EO approaches based on two-source schemes can be applied(Yanetal.,2012;ShuttleworthandWallace,1985)atthe costofaheavierparameterisation.Wehavecomparedtheresults ofShuttleworthandWallace(S–W)modelwiththeresultsofthe P-MFAOmodel,byusingfiveyearsofdailymeteorologicalvalues acquiredfromastandardweatherstationinSouthernItalyduring summermonths(irrigationseason).

AsshownintheplotsofFig.1,forLAI=0.5andasurface resis-tanceof thesubstrate(rs

s)in theS–Wmodelof 1000sm−1 the resultingvaluesareincloseagreement;however,ifthesoil sur-faceiswet,thesurfaceresistancers

s canbeaslowas500sm−1 henceP–MFAOisabout20–25%lowerthanS–W.Onthebasisof theseconsiderations,inourelaborationsoftheCWR,wehave con-sideredaminimumthresholdvalueofETcrop=0.4ET0forLAI≤0.5 tocorrectforsoilevaporation.

ThevalidationofETcrophasbeencarriedoutbyusing microme-teorologicaltechniquesinwell-wateredplots(D’Ursoetal.,2010), aswellascross-comparisonofdifferentmethodsinirrigatedcrops (Rubioetal.,2005).InFig.2theresultsofthisvalidationfora case-studyinSardiniaarepresentedforacornirrigatedfield(starting fromtheemergencestage)andforanalfalfacrop.Theseplots con-firmthecloseagreementbetweenaveragehourlyvaluesofETcrop estimatedbyusingthedescribedmethodologyandthe correspond-ingfluxmeasurementsmadebyeddy-covariance.

TheIRRISAT/EO4WATER/IRRIEYEadvisoryserviceisbasedon theapproach described above,which issuitable for afast gen-erationofEOproductsinanoperativeprocessingchaininorder todistributethe“personalised”informationtousersin“near real-time”,i.e.between24and48hafterthesatelliteacquisition,thus fulfillingtheimplementationrequirementsoutlinedinSection2.

4. Descriptionoftheprocessingchainanddataused

The processing chain in IRRISAT/EO4Water/IRRIEYE advisory serviceismainlycomposedofthreestages:

-Beforetheirrigationseason:selectionofEOdataproviderand pro-grammingrequest.

-Within48hfromeachimageacquisition: -Pre-processingofEOimages.

-EO-basedcropdevelopmentproducts.

-CalculationofCWRandsuggestedirrigationdepth(pixel-scale andplotscale).

-Deliveryofinformationtofinalusers.

TheselectionoftheEOdataisdrivenbythespatial,spectral andtemporalresolutionoftheconsideredsystem.Theminimum requirementsare:30mspatialresolution,availabilityofgreen,red

(5)

Fig.1. ComparisonofevapotranspirationETpcalculatedbymeansofEq.(3)andthetwo-sourcesmodelofShuttleworthandWallace(1985)forLAI=0.5andtwodifferent

valuesforsubstrateresistancers

s(LEFT:highwetnessconditions:500sm−1;RIGHT:mediumwetnessconditions:1000sm−1).Meteorologicalinputreferstofiveyearsof

dailydataacquiredfromJunetoSeptember,SelePlain,Campania,Italy.

andnear-infraredbands,7–9daysrepeatcyclewithviewingangle lessthan20◦fromnadir.Inaddition,datadeliveryhastobedone byFTPwithin24–48hfromoverpass(“rush”service).

Within theadvisory service, theSpanish DEIMOS-1 EO sys-tem(www.deimos-imaging.com)hasbeenchosensinceitmeets theserequirements. The weekly temporal resolution is possible thankstotheavailability ofa constellation(DMC-II),composed offourplatformsofsimilarcharacteristics:largeswath(600km); IFOVatground22m;threespectralbands(0.52–0.60;0.63–0.69; 0.77–0.90␮m)with8bitradiometricresolution.Imagesarealready distributedinUTM WGS84geographical referencesystem,with nearest–neighbor pixel re-sampling, and delivered via FTP in near-realtime(24–36h).Theelaborationsperformedafterimage deliveryaresketchedinFig.3.

Thequalitycheckinstep(a)ofFig.3consistsinassessingthe integrityoftheimagedataandthepresenceofscatteredclouds (normallyimageswithcloudscoveringmorethan20%oftheimage arerejected). The geometrical correctionalready performed by thedataprovidermaybeeventuallyverifiedintermsofaccuracy byoverlaying andcomparinga referencemap. Theatmospheric correction,neededtoeliminateorcompensatediffusionand scat-teringbyatmosphere,isperformedbyusingtheradiativetransfer model inversion implemented in themodule ATCOR of ERDAS Imaginecommercialsoftwarewithstandardatmosphericprofiles (GeosystemGmbh,2014).Invarianttargetwithintheimageare usedtofindthemostappropriateatmosphericparameterstobe usedintheelaboration.

ThenumberedsequenceofelaborationsforderivingEO-based cropdevelopmentmaps is shown in thebox (b) of Fig.3.The albedo (r)neededfor derivingthenetradiant fluxin Eq.(3) is anapproximationofthehemisphericalandspectrallyintegrated surfacealbedo;consideringthelimitedspectralresolutionofEO datanormallyavailable,thealbedoiscalculatedasaweightedsum ofsurfacespectral reflectance derivedfromtheatmospheric correction,withbroadbandcoefficientswrepresentingthe cor-respondingfractionof thesolarirradiancein each sensor band (D’UrsoandCaleraBelmonte,2005):

r=

n

=1w (7)

The LAI is derived from surface reflectance by applyingthe modelCLAIR(Clevers,1989):

LAI=−1 ˛ ln



1− WDVI WDVI∞

(8) where˛isanempiricalshape parameter,mainlydependingon canopy architecture, which is determined from field measure-ments(asshownlater,0.34–0.35forItalyandAustriaand0.22for Australia,withprevailingtreecrops);WDVIistheWeighted Dif-ferenceVegetationIndex,andWDVIistheasymptoticvaluedfor LAI→∞.TheWDVIisgivenby

WDVI=NIR−reds,NIR s,red

(9)

Fig.2.FieldvalidationofevapotranspirationunderstandardconditionsETp,Eq.(3),incornandalfalfairrigatedcropsbymeansofEddyCovariancemeasurements;Sardinia

(6)

Fig.3.Flow-chartoftheprocessingchainafterimagedelivery;symbolsarereportedinthetext. Hence,theanalyticalprocedureforproducingLAImapsfrom

satellite-basedimagesofspectralsurfacereflectancecanbe summ-arisedinthefollowingsteps:

-identificationofthesoil-lineslopeinEq.(9)(ratioofaveragebare soilreflectanceinNIRandredbandss,NIR,s,redusuallybetween 0.9and1.3);

-calculationoftheWeightedDifferenceVegetationIndexWDVI bymeansofEq.(9);

-identificationofWDVIincorrespondenceofpixelswith maxi-mumvegetationcover(usuallybetween0.55and0.75); -calculationofLAIbymeansofEq.(8).

Itshouldbenoticedthattheselectionandutilisationof image-basedparameterssuchasthesoil-lineslope(inEq.(9))andWDVI∞ mayallowfora detection andpartialcompensationof existing errorsintheatmosphericcorrectionprocedure,inthecasethat theyareresultingoutsidetheintervalsgivenabove.

ThefractionalvegetationcoverfcisderivedfromLAIbyusing apolynomialempiricalexpression,whichcoefficientsare deter-minedfromfieldmeasurementsandarevalidforawiderangeof crops:

fc=−0.0038LAI4+0.054LAI3−0.30LAI2+0.82LAI

LAI≤5 (10) Cropheighthccanbederivedinasimilarway,butacropspecific relationshiphastobedeterminedempirically.Whenthis infor-mationorthecropmapsisnotavailable,hcisfixedto0.4m.The

assumptionmadeisthattheinfluenceofcropheighthconthevalue ofETcropissmallfordifferentLAIvalues;intheplotsofFig.4,we havecomparedthecalculationofETcropforhc=0.4and1.0mand differentLAIvalues,withthesamemeteorologicaldatasetofFig.1. Theassumptionofafixedvalueforhcisacceptablefordaily inter-vals undertheconsideredmeteorologicalconditions, whichare characterisedbyalargerradiationtermofP-MFAO(firstaddendum inEq.(3))–comparedtotheaerodynamicterm.This approxima-tioneliminatestheneedforcroptypemapswhicharenottimely available,i.e.classificationofEOdataforthispurposecanbedone onlyattheendoftheirrigationseason.

Thecanopyparametersr,hc,LAIcanbeconsideredasconstant foratimeperiodofapprox.Sevendaysfromthedateofthesatellite overpass.Finally,itispossibletocalculateETcropbyusingtheP-M FAOEq.(3),byusingthedailymeteorologicaldataobservedduring theprevious7daysorsincetheprevioussatelliteacquisition;ina similarway,thenetprecipitationPnisderivedfromEq.(2)andthe cropwaterrequirementsCWRfromEq.(1).Thepixel-basedCWR mapistransformedintoavectormapbymeansofdigitisedplot boundaries.Theresultingirrigationadviceforthegenericplotiis thencalculatedfromasimplewaterbalancewhichonagivenday jwritesasfollows:

di,j=di,j−1+ IRRi,j−1

i −

CWRi,j−1 (11)

withIRRi,j−1representingtheirrigationdepthinplotionthe pre-viousday,di,jthesoilwaterdepletion(startingfromagiveninitial valueofday0)anditheon-farmirrigationefficiency(where infor-mationontheirrigationmethodsisavailable).Inthesimplestform,

(7)

Fig.4.ComparisonofevapotranspirationETp,calculatedforfiveyearsofsummerdailymeteodatabyusingEq.(3),Seleplain,Campania,Italy,forhc=0.4and1mandtwo

differentLAIvalues.

i.e.whennoadditionalinformation onsoilproperties andlocal hydrologicalconditionsisknown,themaximumirrigationdepth isgivenby:

IRRi,j=−di,j di,j<0 (12)

IRRi,j=0 di,j≥0

VolumesarethencalculatedbymultiplyingIRRi,j fortheplot extensionai,commonlyderivedfromthewebGIS.

Thelaststepisthedeliveryoftheirrigationadvicetofinalusers. TheauthorsofthisworkhavedevelopedacommonwebGIStool whichhasbeenimplementedinthree differentareas: Southern Italy,LowerAustriaandSouthernAustralia.Thedistributionofthe informationtofarmersandirrigationagenciesisdonethrougha dedicatedwebmappingtool,developedinanopen-sourcesoftware environment.ThestructureofthewebGIShasbeenslightlyadapted toeachareaforconsideringthelocalusersrequirements, accord-inglytothecriteriaoutlinedinTable1.Theserviceimplementedin

Italyiscalled“IRRISAT”(www.irrisat.it),inSouthernAustralia “Irri-Eye”(www.irrieye.com),inAustria,Marchfeldregion,“EO4Water” (www.eo4water.com).

ThededicatedwebGIS-siteisthemainrepositoryforthemaps and irrigationsuggested volumeapplications, which aretimely published,withaccessrestrictedtofarmersandwaterauthorities, inordertobettercontroltheirrigationprocessandconsequently improveitsoverallefficiency.Oncetheuserisloggedin,the inter-facewindowisorganisedintwoframes:MAPandDATA.Inthe MAPframe(left,Fig.5)theuserwillfind:

• Toolsforbrowsingandqueryingmaps. • Boundariesoftheirrigatedplots.

IntheDATAframe(rightpanel,Fig.5),instead: • Theplotdetails(crop,irrigationmethod)

• The temporal series of ETcrop, effectiverainfall and irrigation applications.

(8)

Fig.6.Satelliteimageoverlayinfalsecolours.

ThestandardbackgroundisaGoogleorBingsatelliteimagery, buttheusercanoverlaythesatelliteimageacquiredonagiven datebyselecting“Satellite”fromthetoolbarinthemapframe.The DEIMOSsatelliteforagivendatecanbeoverlaidinfalsecolours, withtheintensityofredproportionaltothecropvigour(Fig.6). Inaddition,theusercanvisualisetherationETcrop/ET0, represent-ingthe“analytical”cropcoefficientofEq.(6);inthecorresponding mapshowninFig.7,wherehighestvaluesarepresentedwithblue tonalities,theusercanvisualisethegrowthuniformitywithinthe selectedplot.

Averagevalues of themain variables, i.e.,ETcrop,Pn,IRR, for eachplotarecalculatedbythesystemandtheycanbedisplayedin graphicalformfromtheDATApaneloftheuserinterface(Fig.8).

Theusercanselecttheintegrationtimeintervalforthesevariables accordinglytohisschedulingpractice.

TheinformationintheDATApanelisalsosentviaSMStothe farmer; asummary reportis sentby However,moreand more farmershaveappreciatedthededicatedwebGISinterface,dueto itsintuitiveuseandrichnessofinformation.

AsimilarinterfacehasbeendevelopedfortheIrrigation Con-sortiaandWaterUserassociations.Thetoolallowsforevaluating cropwaterrequirementsaggregatedatdistrictlevel,foramore effi-cientmanagementoftheconveyanceanddistributionnetwork.The webGIStoolsaregoingtobefurtherexpandedtolinkthefinancial managementoftheirrigationfeesatfarmleveltothecropwater requirements.

Fig.7. ETp/ET0oranalyticalcropcoefficientmapoverlay(redtones:lowvalues).(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferred

(9)

Fig.8.GraphsofthetemporalevolutionofaveragevaluesofETp,effectiveprecipitationandcropwaterrequirementsforaselectedplot.

5. ExperiencesofIMPLEMENTATIONSinEuropeandin Australia

5.1. Italy,CampaniaRegion:IRRISAT

IRRISATis theIrrigationAdvisoryService basedonnear-real timedistributionofEOproducts,alreadyoperativeintheCampania regionsince2007.Theserviceisimplementedintheframework oftheRuralDevelopmentPlanoftheCampaniaRegion,Measure 124HealthCheck(www.irrisat.it),asafurtherstepforthe imple-mentationofE.U.Directiven.60/2000intheagriculturalsector.In 2013,theservicehascoveredfourdifferentWaterUser Associa-tion(irrigationconsortia),withmorethan660farmersandatotal extensionof5500ha(Table2).

InIRRISAT,asetof12 DEIMOS-1imageshavebeenacquired frommid-JunetoearlySeptember2012and2013,withanaverage temporalresolutionofabout7days.LAImapshavebeenderived byusingEq.(8)with˛=0.35,whichvaluehasbeendeterminedin previousfieldcampaignswithinthesamearea(D’UrsoandCalera Belmonte,2005)bymeansofaportableLAIdigitalmeter(Licor LAI-2000).TheaccuracyofcanopyparametersestimationinIRRISAT ischeckedfromperiodicfieldmeasurementsperformedin coin-cidenceofthesatelliteacquisitions.During2012,geo-referenced measurementsofLAIwiththesameinstrumentwerecollectedin 10plotswithmaizeandalfalfafieldsonaweeklybasisandthen Table2

SummaryofIRRISATserviceinCampaniaregion,Italy,irrigationseason2012.

Irrigationdistrict Farmers Plots Extensionha

DestraSele 353 704 1935.60

Paestum 209 416 1166.48

Sannio-Alifano 29 208 782.57

Volturno 78 465 1618.92

Total 669 1793 5503.57

comparedwiththeestimatesfromsatellite;anexampleof this comparisoninamaizefieldisgiveninFig.9.Wenoticeherethe under-estimationforLAI>3.5fromE.O.data,duetotheknown sat-urationeffectofvegetationindexes.However,theresultingeffect onETcropisnegligeable,duetotheasymptoticbehaviourofEq.(3) forhighLAIvalues.ThevalidationcampaignonLAIhasshownthat theempiricalcalibrationparameter˛inEq.(8)canbeconsidered astemporally“stable”,thuseliminatingtheneedforLAIcalibration everyyear.

A comparison between the irrigationvolumes suggested by IRRISATandactualonesatfarmanddistrictlevelsisoftendifficult duetothescarceavailabilityoffielddata.Thisevaluationhasbeen

Fig.9. TemporalevolutionofLAIestimatedfromsatelliteimageanalysisandfrom fieldmeasurementscarriedoutbyusingaLAILicor2000portableanalyser,inacorn irrigatedfield,Campania,Italy.

(10)

Fig.10.CumulativeirrigationdepthsuggestedbyIRRISATandappliedbyafarmer inacornfieldof7.7haduring2012.

possibleinselectedfarmsandirrigationdistrictswithintheIRRISAT areaswhereautomaticregistrationsofwaterwithdrawalsfromthe distributionnetworkwereavailable.Anexampleofthe compari-sonatfarmscaleisshowninFig.10,whilsttheplotinFig.11is referredtoadistrictintheSeleriverplain.Onaverage,farmers apply15%moreirrigationthantheIRRISATvolume,whichcanbe consideredasasubstantialagreement.Overirrigationisobserved atthebeginningoftheseasonandincoincidenceofprecipitation events(asinmid-September);thislatterfindingispartiallydueto thelagbetweenadvicetimeandirrigationapplication.

Allthefarmersevaluatedpositivelytheusefulnessofthe infor-mationprovided,especiallywhen itwasmadereadilyavailable bymeansofSMSorweeklyreports.Itwasproventhatthe adop-tionofIRRISATserviceproducedanincreaseofirrigationefficiency, becauseof the reduction of water volumescompared to tradi-tionalpractice.Accordinglytotheestimationmadebylocalwater managersand authorities,thetraditional appliedirrigation vol-umeswerevaryingbetween4500and6000m3/haformaizeand between6500and12,000m3/haforalfalfa;duringlastyears,since theintroductionofmeteringdevicesattheoutletsoftheirrigation network,theirrigationvolumeshavebeenprogressivelyreduced, buttheyarestillhigherthancropwaterrequirementsgivenby IRRISAT,whicharebetween3500and4500m3/haformaizeand

Fig.11.Comparisonfortheirrigationdistrict“Boscariello”,DestraSeleConsortium, 1200ha,betweenmeasuredandIRRISATsuggestedvolumes,for10daysperiods duringtheirrigationseason2012.

between5000and10,000m3/haforalfalfa.Thismeansthatthe adoption of IRRISAT can introduce important savings in water resources,withpossibleincrementsofproductionandquality.To this respect,we havenoticedthatin smallextensionfarmsthe irrigationefficiencyislowerandfarmersarealsomorereluctant thanotherstofullyadoptIRRISATintheirrigationscheduling.One possiblereasonresidesintherestrictionofeconomicresourcesfor labourforceandirrigationequipment;sincewaterpricingisnotyet subjectedtometeringcontrols,itissimplyeasiertokeepirrigation goingforanexcessiveamountoftime;inadditiontothis, ineffi-cientanddatedequipmentareoftenused.Diversely,whenthefarm extensionisaboveten-twelvehectares,we foundfarmersmore motivatedtodealwithinnovativetechnologiesandreadyto under-standtheimportanceoftestingareductionofirrigationvolumes. AssuchthepossibleimpactofIRRISATtechnologyinthecontextof waterpricingevolutioninsouthernItalymaybeofsomerelevance. AsmentionedinSection2,cropheterogeneitycapturedbythe satelliteimageshasbeenconsideredbyfarmersasavaluable infor-mationtoidentifytheexistingvariability,insomecasesalready knownfrompersonal fieldexperience;otherfeatureswerealso evidenced,i.e.variabilityofsoiltextureandfertility,plantnutrition, differentperformanceofirrigationsystems.

5.2. Austria,Marchfeldregion:EO4Water

EO4Water(Earthobservationtechnologiesforruralwater man-agement) is a research project funded by the Austrian Space Applications Programme (under Die Österreichische Forschungs-förderungsgesellschaft – FFG) to test and demonstrate the transferabilityofsatellitetechnologiesformappingwaterneeds in Marchfeldregion,one ofthemajorcropproduction areasof LowerAustria.Inthisarea,withmorethan60,000haofcropland (∼21,000regularlyirrigated)thereisastrongneedandapotential demandforapplicationsthatsupportefficientwatermanagement process.Theclimateissemi-aridwithannualprecipitationsofless than550mm(about250–300mmfromMaytoSeptember).Crops suchasvegetablesandsugarbeet(whichisoneofthemostwater demandingcropsinthisarea)requirebetween200and600mm ofwaterforkgdrymatter.Forsummercropswithhighbiomass potential this canreach a total water demandfor the growing periodof around800mm,whichclearly cannotbeprovidedby precipitationundercurrentclimaticconditions.

Ontheonehand,farmersinMarchfeldareveryinterestedin improvingtheefficiencyofirrigation.Indeed,this mayresultin reducedoperationcosts,andinyieldstabilityasrequiredto accom-plishproductioncontracts.Ontheotherhand,thereisanincreased ecologicalawarenessamongconsumersaboutlocal,high-quality andfreshfood,howitisproducedandwhetherthewaterfootprint inthevariousproductionstepsissustainable.

Theoverallduration oftheprojectis 2years,witha techni-cal campaignin thefirst year (2012)and a second operational campaignduringthesecondyear(2013)oftheproject.Thetotal coverage is more than 1700ha, which corresponds to approx. 8–10%ofthetotalsummercroppedarea(∼21,000ha–estimates basedon2010satellitedata).Inyear1wealsoconducted experi-mentalandvalidationactivities.BasedonDEIMOS-1acquisitions, thefollowingstepshavebeenperformed:(1)calibrationand vali-dationofasemi-empiricalmodeltoestimateLAI;(2)estimation ofcropwaterneedsandpreliminarycomparisonwithirrigation volumesatdistrictand atfield scale.In this workwefocus on activity2.

Fieldcampaignswerecarriedoutcontemporaneouslytoeach satelliteacquisitionin2012tocalibrateasite-specificLAI-WDVI model.Intotal51indirectgroundmeasurementsofLAIwere car-riedtocoverarangeofcroptypesandphenologicalconditions.The

(11)

Fig.12.Scatterplotofsatellite-basedvs.fieldestimatesofLAIforthetwoyears;Marchfeld,Austria.

measurementsprotocolsandthetuningproceduresweredescribed inVuoloetal.(2013).Groundmeasurementswererepeatedinthe year2013(n=71)duringdifferentcampaignsthroughoutthe grow-ingseasonandcomparedtoLandsat-8andDEIMOS-1LAIestimates. Fig.12showsthescatterplotofsatellite-basedvs.fieldestimatesof LAIforthetwoyears.LAIestimateswereobtainedusingan image-specifictuningofthesoil-lineslopeandWDVIandaconstant˛ coefficientvalueof0.34asdescribedinVuoloetal.(2013).

Thesatelliteestimationswereinlinewiththeground measure-mentswithaveryhighcoefficientofdetermination(R2=0.85)and aRootMeanSquareError(RMSE)of0.42.Theimprovements com-paredtotheyear2012(RMSE=0.86)arepartiallyexplainedbythe factthatintheyear2013measurementswerecarriedoutinthe samelocations(eightfields)andthereforetheycaughtalowercrop variabilitycomparedtotheyear2012.

An estimation of maximum crop water needs at irrigation schemelevel (Marchfeld area) during the growing seasonwas achievedfortheyear2010(usingarchivedLandsat-5data)and 2012(usingDEIMOS-1data).Resultswerecomparedwiththe over-allirrigationvolumesdistributedin theareaovertheirrigation season(June–August)duringpastyears.Foracomparisonatthe fieldscale,twosugarbeetparcelshavebeenselectedduringthe irrigationperiod(endofMaytotheendofAugust–year2012);in Fig.13thesatellite-basedKccurvesarecomparedwiththestandard FAOtables;andwecomparedthesevolumeswithsatellite-based estimationsofcropwaterneeds.Inthiscase,satellitedatadidnot covertheentiregrowingperiodandthefirstimagewasacquired onlyonJune17th.Therefore,Kccurvesfortheinitialand develop-mentgrowthstageswereconstructedknowingtheplantingdate (March15th)andthedurationofeachgrowthstage.Itispossibleto noticethatcropdevelopmentvariabilitydeterminesalowerETcrop thantheoneresultingfromstandardKcvalues.

CumulativeCWRshavebeencalculatedbyusingEq.(1)a;the correspondentsuppliedvolumesfortheparcelsarecomparedin Fig.14aandb.Wenoticeanoverallgoodagreementbetweenthe estimatedandtheprovidedirrigationvolumes.Forparcel“a”,the cumulatedirrigationvolumeresultedslightlylowerthanthe max-imumwaterneedthroughoutthegrowingseason.Forparcel“b”, irrigationvolumesalsofollowedthetrendoftheestimatedcrop waterneed.However,inthis lattercase, thetrendfollowedthe higherenvelopofthemaximumwaterneedcurveandexceeded themaximumvolumesneartheendofthegrowingseason.

Wemiss detailed information onthecropmanagement and soilconditions thatwould allowustointerpret thedifferences ingrowthandwaterusebetweenthetwoparcels(samecultivar

andclimaticconditions);thereforewecanonlyspeculateon possi-bilites.Althoughparcel“b”receivedslightlymorewaterthanparcel “a”(Fig.14),thecropdevelopmentdepictedinFig.13showsthat parcel“a”reachedamaximumKcvalueof1.1,whileparcel“b”only reachedavalueof0.9.ThedifferencesinthemaximumKcmight beexplainedbyvaryingsoilconditionsbetweenthetwoparcelsor duetoaninitialcropwaterstress,oracombinationofbothfactors. Sugarbeetismostsensitivetowatershortageduringinitialand earlyplantdevelopmentstages.Parcel“a”receivedafirstirrigation (notconsideredinthegraphbecauseveryearlyintheseason)soon afterplanting(March26th,20mm)andasecondirrigationalready attheendofMay.Incontrast,parcel“b”receviedthefirstirrigation onlyonJune12th.Thetimingofirrigationatthebeginningofthe seasonmightexplainthedifferencesinthemaximumcropgrowth. Despite theseinitialdifferences, irrigation schedulingwas kept verysimilarforthetwoparcels,withanadditionalirrigationnear theendofAugustforparcel“b”.Acommonmanagemetpractice istoinducesoilwaterstresslateintheseasontoincreasesucrose concentrationinthebeetroot(withsmallreductioninrootyield). AccordingtotheFAO-56,“whenthistypeofwaterstressis prac-tised,thevalueforKcendisreducedfrom1.0to0.6”.Aswelook closertoFig.13(a),wecanobserveareductionoftheKcvalue.In contrast,thisreductioncannotbeobservedinFig.13(b).Thisdata suggestthatanincreaseinwatervolumeslaterintheseasonwould nothelptheplanttorecoverfromtheinitialwaterstress.Instead ofusingthestandardwatervolumes,irrigationforparcel“b”could havebeenmodifiedtothesatellite-basedestimatedvolumesto maximisewatereconomyandtoachievealate-season(beforethe harvest)waterstress(whichdoesnotseemtohappeninthiscase). Inbothcases,wenoticethattheuseofstandardFAO-56Kcvalues wouldresultinanover-irrigation.

5.3. SouthernAustralia,MurrayDarling:IrriEye

TheSouthAustralianMurray-DarlingBasinNaturalResources ManagementBoardhaschosenthedistrictofBookpurnongfora case-studystartedin2011andcontinuedthroughouttheirrigation season2012–2013overanareaofabout1100ha(ofwhich470ha citrus,480havines–winegrapes).Anear-realtimetrialbasedon theacquisitionofmultispectralhighresolutionimagesfromthe SpanishsatelliteDEIMOS-1hasbeenplannedbetweenSeptember and March.The requiredmeteorologicaldata havebeen down-loadedfromthespecificsectionoftheS.A.Murray-DarlingBasin website(www.aws-samdbnrm.sa.gov.au).Anintensivecampaign offieldmeasurementofLAIinthethreemaintreecropspresent

(12)

Fig.13.Satellite-basedKc(dots)andstandardKc(greenline)valuesfortwosugarbeetparcels(200daygrowingperiod).SugarbeetwasplantedonMarch15th.First

irrigationoccurredonMay28th(day73)andJune12th(day87),irrigationseason2012,forparcel“a”and“b”respectively.(Forinterpretationofthereferencestocolourin thisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

Fig.14.Satellite-basedestimationsofcropwaterneedsvs.suppliedirrigationvolumesforparcel“a”(left)and“b”(right).Theblueareaindicatestherangeofvaluesofcrop waterrequirementsfortotalandeffectiveprecipitation.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthis article.)

intheareahasallowedforasitespecificcalibrationoftheCLAIR model(Fig.15);theresultingvalueofthe˛ofEq.(8)hasresulted equalto0.22;thelowervaluecomparedtothecorrespondingin ItalyandAustria,whereherbaceouscropsaredominant,isdueto thecanopystructureoftreecrops.

ThegraphonFig.16indicatesthevariationofcropcoefficient determinedfromsatelliteimagesforthecitrusfieldsanalysedand thecomparisonwiththestandardvaluescurrentlyadoptedinthe irrigationpracticeinthearea,basedonFAOtables(calculatedfrom fractionalvegetationcover;Eq.(98)inAllenetal.,1998).Wenotice thatforcitrustheaveragesatellitevaluesareconsistentwithFAO, butwealsonoticealargevariabilityinthesatellite-basedvalues.

Fig.15.Comparisonofsatellite-basedestimatesofLAIvs.fieldmeasurementsfor theprevailingtreecropsintheBookpournongarea,SouthernAustralia,IRRIEYE campaign2013.

Thiscanbeexplainedbydifferencesinthetreemanagement,as wellasinthepresenceofunderstory.However,whenweconsider thecumulativeirrigationvolumesatfarmscale,wenoticea sub-stantialconcordancebetweensatellite-basedirrigationvolumes andactualapplications(2.8vs.3.1measuredMl/haforcitrus;2.8 vs.2.7measuredforvineyards;BillRuedigerFarm,Bookpournong). Itshouldbeoutlinedthatthiscomparisondoesnotincludewater availability derivedfromprecipitationswhichhavebeenhigher thanaverageduringtheobservationperiod.Thesefindings con-firmtheapplicabilityoftheprocedurefortheestimationofCWR describedinSection2fortreecrops;however,furthervalidationis neededforacompleteaccuracyassessmentinthiscase.

ThecurrentirrigationschedulinginBookpurnongisbasedon robustmeteorologicalinformation,butitconsidersstandard val-uesofcropcoefficientsfromFAOtablesandalthoughthisapproach mightbesatisfactoryatbasinlevel,itdoesnotconsiderthelarge variabilityofcropdevelopmentatthefarmlevel,duetodifferent soilconditionsandagronomicpractices.Thesatellite-basedcrop coefficients,whichtakeintoaccounttheseeffectsinanimplicit way,allowforasite-specificevaluationofirrigationvolumesand offersignificantpotentialtoachievesubstantialimprovementsin waterandenergyefficiencyatbasinandfarmlevelsandonthefinal qualityofproduction.Theintuitiveweb-interfacegivesthe grow-erstheabilitytomonitorthecanopydevelopmentatplotlevelin near-realtimeandadditionally,theevaluationofnetprecipitation, thankstoabettercalculationofcanopyinterceptionbasedfrom satelliteLAIvaluesmayreducetheirrigationapplication.

(13)

Fig.16.Comparisonofcitruscropcoefficients(averageand±st.dev.)estimatedfromIRRIEYEandfromFAOtable,currentlyusedintheBookpournongarea,SouthAustralia.

FromtheexperiencescarriedinEuropeandinAustralia,weare abletoevaluatetheoverallcostofsatellite-basedirrigationservices likeIRRISAT/EO4Water/IrriEye.Thecosttothefinalusersisstrongly dependentontheextensionofirrigatedareawithineachsatellite imageandthenumberofacquisitions,i.e.above3000hathefinal costisestimatedaround8–10D/hawith10–11acquisitions dur-ingtheentireirrigationseason.Thefurtherexpectedreductionsof marketpricesofhighresolutionsatelliteimageswillcertainlymake theIRRISAT/EO4Water/IrriEyeservicesevenmorecost-effectivein thenearfuture.

6. Concludingremarks

Thethreeapplicationsofthesatellite-basedwebGISirrigation advisoryservice,in spiteoftheenvironmentalandclimatic dif-ferences,evidence strong similarities in theresponse fromthe user’sside.Thesatellite-basedcropwaterrequirementprocedure adoptedintheirrigationadvisoryservicesIRRISAT/EO4Waterand IRRIEYimplicitlytakesintoaccountthepresenceofvariabilityof cropdevelopmentatplotlevel,duetodifferentsoilconditionsand agronomicpractices.Consequently,satellite-basedirrigation vol-umesgiveasite-specificevaluationofirrigationvolumes,which canbesubstantiallydifferentfromestimationsbasedonstandard Kc tables. These differences are of course smoothed out when consideringaggregated spatial ortemporal scales;however, an irrigationschedulingbasedontheeffectivecropdevelopmentmay bringsubstantialadvantageseitherontherationaleuseofwater andenergyatbasinandfarmlevelsoronthefinalqualityof produc-tion.Comparedtocrop-coefficientapproach,thismethodallowsfor anaccuracyassessmentbasedonobjectivemeasurementsofLAI.

TheinformationonETcrop,evaluatedonthebasisoftheeffective cropdevelopment,providesanupperlimittotheamountofwater tobeappliedbyfarmers;inmanycontexts,byconvincingfarmers inlimitingtheirapplicationswithinETcropitispossibletoachieve consistentsavingsofwaterresources.

Theintuitiveweb-interfacegivesthegrowersthepossibilityto monitorthecanopydevelopmentatplotlevelinnear-realtime; inaddition,anevaluationofnetprecipitation,thankstoabetter calculationof canopy interception basedfrom satelliteLAI val-ues,mayreducetheirrigationapplication.Theknowledgeofcrop developmentvariabilitycanbeeasilyintegratedintomoderncrop management practices, i.e. high-level accuracy GPS-compatible controllersused onautomaticagriculturalmachineries, sprayer auto-shut-offsystems,spreaderordrillauto-sectioncontrols.

However,feedbackfromfinalusers(bothfarmersandirrigation watermanagers)isessentialtoimprovetheeffectivenessofthe

serviceintermsofwateruseoptimisation,especiallyduringthe earlystageofserviceimplementation.

Acknowledgements

ThisworkhasbeensupportedbytheE.U.-RuralDevelopment PlanofCampaniaRegion2007–2013,Measure124“HealthCheck”, undergrantD.R.D.n.44del14/06/2010“IRRISAT”;theauthorsalso acknowledgethesupportfromtheAustrianSpaceApplications Pro-gramme(DieÖsterreichischeForschungsförderungsgesellschaft– FFG)forEO4WaterandfromtheSouthAustralianMurray-Darling BasinNaturalResourcesManagementBoardforIrriEye.

References

Allen,R.G.,Pereira,L.S.,Raes,D.,SmithM.,1998.Cropevapotranspiration– guide-linesforcomputingcropwaterrequirements.FAOIrrigationandDrainagePaper 56.

Allen,R.G.,Tasumi,M.,Morse,A.,Trezza,R.,2005.ALandsat-basedenergy bal-anceandevapotranspirationmodelinWesternUSwaterrightsregulationand planning.Irrig.Drain.Syst.19,251–268.

Allen,R.G.,Tasumi,M.,Trezza,R.,2007.Satellite-basedenergybalanceformapping evapotranspirationwithinternalizedcalibration(METRIC)-model.J.Irrig.Drain. Eng.133,380–394.

Anderson,M.,Norman,J.M.,Mecikalski,J.R.,Otkin,J.A.,Kustas,W.P.,2007.A clima-tologicalstudyofevapotranspirationandmoisturestressacrossthecontinental UnitedStatesbasedonthermalremotesensing:1.Modelformulation.J. Geo-phys.Res.112,D10117.

Baptista,A.,Sousa,V.,2005.TransferabilityofDEMETER.Acasestudyoftheirrigation schemeofVeigaDeChaves.AIPConferenceProceedingsonEarthObservation forVegetationMonitoringandWaterManagement,852,84–92.

Bastiaanssen,W.G.M.,Menenti,M.,Feddes,R.A.,Holtslag,A.A.M.,1998.Aremote sensingsurfaceenergybalancealgorithmforland(SEBAL).1.Formulation.J. Hydrol.212–213,198–212.

Braden, H., 1985. Ein energiehaushalts-und verdunstungsmodell for wasser undstoffhaushaltsuntersuchungenlandwirtschaftlichgenutzereinzugsgebiete. Mitt.Dtsch.Bodenkd.Ges.42,294–299.

Campos,I.,Neale, C.M.U.,Calera,A.,Balbontín,C.,González-Piqueras,J.,2010.

Assessing satellite-basedbasal crop coefficients for irrigatedgrapes (Vitis viniferaL.).Agric.WaterManag.98(1),45–54.

Brutsaert,W.H.,1982.Evaporationintotheatmosphere.D.ReidelPublishingCo.

Casa,R.,Varella,H.,Buis,S.,Guérif,M.,DeSolan,B.,Baret,F.,2012.Forcingawheat cropmodelwithLAIdatatoaccessagronomicvariables:evaluationoftheimpact ofmodelandLAIuncertaintiesandcomparisonwithanempiricalapproach.Eur. J.Agron.37(1),1–10.

Cleugh,H.A.,Leuning,R.,Mu,Q.,Running,S.W.,2007.Regionalevaporationestimates fromfluxtowerandMODISsatellitedata(2007).RemoteSens.Environ.106, 285–304.

Clevers,J.G.P.W.,1989.Theapplicationofaweightedinfrared-redvegetationindex forestimatingleafareaindexbycorrectingforsoilmoisture.RemoteSens. Environ.29,25–37.

Courault,D.,Seguin,B.,Olioso,A.,2005.Reviewonestimationofevapotranspiration fromremotesensingdata:fromempiricaltonumericalmodelingapproaches. Irrig.Drain.Syst.19(3–4),223–249.

D’Urso,G.,Menenti,M.,1995.Mappingcropcoefficientsinirrigatedareasfrom Land-satTMimages.ProceedingsoftheEuropeanSymposiumonSatelliteRemote

(14)

SensingII,Europto,Paris,sett.’95;SPIE,InternationalSocietyofOptical Engi-neering,2585,41–47.

D’Urso,G.,CaleraBelmonte,A.,2005.Operativeapproachestodeterminecropwater requirementsfromEarthObservationdata:methodologiesandapplications.AIP ConferenceProceedingsonEarthObservationforVegetationMonitoringand WaterManagement,852,14–25.

D’Urso,G.,Richter,K.,Calera,A.,Osann,M.A.,Escadafal,R.,Garatuza-Pajan,J.,Vuolo, F.,2010.Earthobservationproductsforoperationalirrigationmanagementin thecontextofthePLEIADeSproject.Agric.WaterManag.98(2),271–282.

DeBruin,H.A.R.,Trigo,I.F.,Jitan,M.A.,TemesgenEnku,N.,vanderTol,C.,Gieske, A.S.M.,2010.Referencecropevapotranspirationderivedfromgeo-stationary satelliteimagery:acasestudyfortheFogerafloodplain,NW-Ethiopiaandthe JordanValley,Jordan.Hydrol.EarthSyst.Sci.14(11),2219–2228.

DeMichele,C.,Vuolo,F.,D’Urso,G.,Marotta,L.,Richter,K.,2009.TheIrrigation AdvisoryProgramofCampaniaRegion:fromresearchtooperationalsupport fortheWaterDirectiveinAgriculture.In:Proceedingsofthe33rdInternational SymposiumonRemoteSensingofEnvironment,Stresa,Italy.

Doraiswamy, P.C., Sinclair, T.R., Hollinger, S., Akhmedov, B., Stern, A., Prueger, J., 2005. Application of MODIS derived parameters for regional crop yield assessment. Remote Sens. Environ. 97 (2), 192–202,

http://dx.doi.org/10.1016/j.rse.2005.03.015.

Geosystem Gmbh, 2014. ATCOR for Imagine 2014, User Manual. Avail-ablefrom: http://www.geosystems.de/atcor/downloads/ATCOR-for-IMAGINE-2014Manual.pdf .

Glenn,E.P.,Neale,C.M.U.,Hunsaker,D.J.,Nagler,P.L.,2011.Vegetationindex-based cropcoefficientstoestimateevapotranspirationbyremotesensingin agricul-turalandnaturalecosystems.Hydrol.Process.25,4050–4062.

Jégo,G.,Pattey,E.,Liu,J.,2012.UsingLeafAreaIndex,retrievedfromopticalimagery, intheSTICScropmodelforpredictingyieldandbiomassoffieldcrops.Field CropsRes.131,63–74.

Jensen,M.E.,Burman,R.D.,Allen,R.G.,1990.Evapotranspirationandirrigationwater requirements.ASCEManual(no.701).

Karimi,P.,Bastiaanssen,W.G.M.,Molden,D.,Cheema,M.J.M.,2013.Basin-wide wateraccountingusingremotesensingdata:thecaseoftransboundaryIndus Basin.Hydrol.EarthSyst.Sci.17,2473–2486.

Kustas,W.P.,Anderson,M.,2009.Advancesinthermalinfraredremotesensingfor landsurfacemodelling.Agric.ForestMeteorol.149,2071–2081.

Lee,W.S.,Alchanatis,V.,Yang,C.,Hirafuji,M.,Moshou,D.,Li,C.,2010.Sensing tech-nologiesforprecisionspecialtycropproduction.Comput.Electron.Agric.74(1), 2–33.

Ma,G.,Huang,J.,Wu,W.,Fan,J.,Zou,J.,Wu,S.,2011.AssimilationofMODIS-LAIinto theWOFOSTmodelforforecastingregionalwinterwheatyield.Math.Comput. Model.58,634–643.

Moran,M.S.,Inoue,Y.,Barnes,E.M.,1997.Opportunitiesandlimitationsfor image-basedremotesensinginprecisioncropmanagement.RemoteSens.Environ.61, 319–346.

Neale, C.M.U., Bausch, W.C., Heermann, D.F., 1989. Development of reflectance-based crop coefficients for corn. Trans. ASAE 32 (6), 1891–1899.

NEREUS,2012.TheGrowingUseofGMESAcrossEurope’sregions.Retrievedfrom http://esamultimedia.esa.int/multimedia/publications/NEREUS/ .

OsannJochum,M.A.,Calera,A.,2005.Operationalspace-assistedirrigationadvisory services:overviewofandlessonslearnedfromtheprojectDEMETER.AIP Con-ferenceProceedingsonEarthObservationforVegetationMonitoringandWater Management,DEMETERpartners,852,3–13.

Rembold,F.,Atzberger,C.,Rojas,O.,Savin,I.,2013.Usinglowresolutionsatellite imageryforyieldpredictionandyieldanomalydetection.RemoteSens.5(4), 1704–1733.

Rubio,E.,Colin,J.,D’Urso,G.,Trezza,R.,Allen,R.,Calera,A.,González,J.,Jochum, A.,Menenti,M.,Tasumi,M.,Kelly,C.,Vuolo,F.,2005.Goldendaycomparison ofmethodstoretrieveET(Kc-NDVI,Kc-analytical,MSSEBS.METRIC).AIP Con-ferenceProceedingsonEarthObservationforVegetationMonitoringandWater Management852,193–200.

Shuttleworth,W.J.,Wallace,J.S.,1985.Evaporationfromsparsecrops—anenergy combinationtheory.Q.J.R.Meteorol.Soc.111,839–855.

TaskCommitteeonStandardizationofReferenceEvapotranspiration,2005.ASCE StandardizedReferenceEvapotranspirationEquation.ASCE-EWRITask Commit-teeReport.

Verstraeten,W.W.,Veroustraete,F.,Feyen,J.,2008.Assessmentof evapotranspira-tionandsoilmoisturecontentacrossdifferentscalesofobservation.Sensors8 (1),70–117.

Vuolo,F.,DeMichele,C.,Lazzaro,U.,2005.Successstories:analysisandevaluation oftheItaliancase-studyofDEMETERintheDestraSelePlain.AIPConference ProceedingsonEarthObservationforVegetationMonitoringandWater Man-agement852,33–42.

Vuolo,F.,Neugebauer,N.,FalangaBolognesi,S.,Atzberger,C.,D‘Urso,G.,2013. Esti-mationofleafareaindexusingDEIMOS-1data:applicationandtransferability ofasemi-empiricalrelationshipbetweentwoagriculturalareas.RemoteSens. 5(3),1274–1291.

Wiegand,C.L.,Richardson,A.J.,1984.Leafarea,lightinterception,andyieldestimates fromspectralcomponentsanalysis.Agron.J.76,543–548.

Yan,H.,Wang,S.Q.,Billesbach,D.,Oechel,W.,Zhang,J.H.,Meyers,T.,Martin,T.A., Matamala,R.,Baldocchi,D.,Bohrer,G.,Dragoni,D.,Scott,R.,2012.Global esti-mationofevapotranspirationusingaleafareaindex-basedsurfaceenergyand waterbalancemodel.RemoteSens.Environ.124,581–595.

Riferimenti

Documenti correlati

In particular, the following information was extracted from the studies reviewed: research questions; parameters recorded and tools/sensors used for data

But for the older Kayo, after all the negative experiences she has had, her desire for life is not linked to the desire for love like in Izutsu, where the passion towards the

the state of the art on several fronts: Hornet provides bet- ter memory utilization than AIM [4] and cuSTINGER [2], faster initialization (from 3.5x to 26x than cuSTINGER), and

panneaux publicitaires affichés, aux nombreux chantiers ouverts, on constate que depuis la première moitié des années 2000 « l’urbanisme de projet » et les grands projets urbains

As result of the scientific developments in infrastructures and data-mining strategies, systematic patterns in seismicity preceding large earthquakes has started to emerge [ 16 – 25

For the rare type match case this reduces to consider the event of seeing twice a never ob- served type, along with a database, now coded in form of a partition, losing reference to

The analysis described in this thesis is the search of the Higgs boson, decaying into b¯ b pair, in the associated production with a vector boson, in the extreme Higgs boson

Machine Learning Gravitational Waves from Binary Black