• Non ci sono risultati.

Investigation of the p–Σ0 interaction via femtoscopy in pp collisions

N/A
N/A
Protected

Academic year: 2021

Condividi "Investigation of the p–Σ0 interaction via femtoscopy in pp collisions"

Copied!
13
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Investigation

of

the

p–



0

interaction

via

femtoscopy

in

pp

collisions

.

ALICE

Collaboration



a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received16November2019

Receivedinrevisedform27March2020 Accepted6April2020

Availableonline9April2020 Editor: B.Betram

ThisLetterpresentsthefirstdirectinvestigationofthep–0interaction,usingthefemtoscopytechnique inhigh-multiplicityppcollisionsat√s=13 TeVmeasuredbytheALICEdetector.The0isreconstructed viathedecaychannelto

γ

,andthe subsequentdecayoftop

π

−.Thephotonisdetectedviathe conversioninmaterialtoe+e−pairsexploitingthecapabilityoftheALICEdetectortomeasureelectrons atlowtransversemomenta.Themeasuredp–0correlationindicatesashallowstronginteraction.The comparison of the data to several theoretical predictions obtained employingthe Correlation Analysis Tool using the Schrödinger Equation (CATS) andtheLednický–Lyuboshitsapproachshowsthatthecurrent experimental precisiondoes not yetallow todiscriminate betweendifferentmodels,as it isthe case forthe availablescattering andhypernucleidata.Nevertheless, thep–0correlation functionisfound tobe sensitivetothe stronginteraction,and drivenby theinterplayofthedifferentspinand isospin channels.Thispioneeringstudydemonstratesthefeasibilityofafemtoscopicmeasurementinthep–0 channelandwiththeexpectedlargerdatasamplesinLHCRun3andRun4,thep–0interactionwill beconstrainedwithhighprecision.

©2020EuropeanOrganizationforNuclearResearch.PublishedbyElsevierB.V.Thisisanopenaccess articleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Aquantitative understanding of thehyperon–nucleon interac-tioninthestrangeness S

= −

1 sectorisfundamentaltopindown the role of strangeness within low energy quantum chromody-namics and to study the properties of baryonic matter at finite densities.Thepossiblepresenceoftheisoscalar



andthe isovec-tor

(

+

,



0

,



)

hyperonstatesintheinnercoreofneutronstars (NS) is currently under debate due to the limited knowledge of theinteraction of such hyperons with nuclear matter. The inclu-sion ofhyperons in the description ofthe nuclear matter inside NS typically contains only



states, and the on-average attrac-tive nucleon–



(N–



) interaction leads to rather soft Equations ofState(EoS)forNS.Thesearethenunabletoprovidestabilityfor starsofabouttwosolarmasses [1,2].The



hyperonsarerarely in-cludedintheEoSforNS becauseofthe limitedknowledge about theN–



stronginteraction.

Indeed,whiletheattractiveN–



interactionisreasonablywell constrained from the available scattering and light hypernuclei data [3–5], the nature of the N–



interaction lacks conclusive experimental measurements. One of the major complications for experimentalstudies isthefactthat thedecayofall



states in-volves neutral decay products [6], thus requiring high-resolution calorimeters.

 E-mailaddress:alice-publications@cern.ch.

The mainsource ofexperimental constraintsonthe N–



sys-tem comes from scattering measurements [7–9], analysis of



atoms [10–12],andhypernucleiproductiondata [13–16],although the latter are mainly dominated by large statistical uncertain-tiesandlarge kaondecaybackground.Latest hypernuclearresults obtained from different nuclear targets point towards an attrac-tive interaction in the isospin I

=

1

/

2 channel of the N–



sys-tem [13,14],andrepulsioninthe I

=

3

/

2 channel [15,16]. Hyper-nuclearmeasurements,however,areperformedatnuclear satura-tiondensityandhenceinthepresenceofmorethanonenucleon, resultingin asubstantial modeldependenceintheinterpretation oftheexperimentaldata [17].

Additionally, the hyperon–nucleon dynamics are strongly af-fected by the conversion process N–



N–



,occurring in the

I

=

1

/

2 channel due to the close kinematic threshold between the two systems (about 80 MeV) [18–22]. This coupling is ex-pectedtoprovideanadditionalattractivecontributioninthe two-body N–



interaction in vacuum [21,22]. Indeed, depending on thestrength oftheN–



N–



couplingatthetwo-bodylevel, the correspondingin-medium hyperonpropertiesare very differ-ent.Forastrongcoupling,thisleads toarepulsivesingle-particle potential U at large densities [21,22]. For the



hyperon, the

in-mediumpropertiesaremostlydeterminedbytheoverall repul-sioninthe I

=

3

/

2 component [21,22]. Arepulsivecomponentin thehyperon–nucleoninteractionscouldshifttheonsetforhyperon productiontolargerdensities,above2–3timesthenormal

satura-https://doi.org/10.1016/j.physletb.2020.135419

0370-2693/©2020EuropeanOrganizationforNuclearResearch.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

(2)

tiondensity,thusleadingtostifferEoSwhichareabletodescribe theexperimentalconstraintofNS.

Tothisend,differenttheoreticalapproachesincludingchiral ef-fectivefieldtheories(χEFT) [20] andmeson-exchangemodelswith hadronic [23] and quark [24] degrees offreedom providea simi-lardescriptionoftheavailabledatabyassumingastrongrepulsion inthe spinsinglet S

=

0, I

=

1

/

2 andspin triplet S

=

1, I

=

3

/

2 andanoverallattractionintheremainingchannels.Recentab ini-tio lattice calculations at quark physical masses show a similar dependenceon spin-isospin configurations for the central poten-tialterm [25]. The strength ofthe coupled-channel N–



N–



is strongly model dependent as well. Calculations based on chi-ral models [20,21] and meson-exchange models [18,26] predict a rather strong or much weaker coupling, respectively. A self-consistentdescriptionofthiscoupled-channeldemandsadetailed knowledgeofthestronginteractionintheN–



system.

Recently, the study of two-particle correlations in momen-tum space measured in ultra-relativistic proton–proton (pp) and proton–nucleus collisions has proven to provide direct access to the interaction between particle pairs in vacuum [27–29]. The small size of the colliding systems of about 1 fm results in a pronouncedcorrelation signal fromstrong finalstate interactions, whichpermits thelatter to beprecisely constrained. These mea-surementsprovidedadditionaldatainthehyperonsectorwithan unprecedentedprecisioninthelowmomentumregime.Inthis Let-ter,thesestudiesareextendedtothe



sector.Theelectromagnetic decayofthe



0isexploitedforthefirstdirectmeasurementofthe p–



0 interactioninppcollisions.Thisstudypavesthewayfor ex-tendingtheseinvestigationstothe charged



states,inparticular inlightofthelargerdatasamplesexpectedfromtheLHCRuns3 and4.

2. Data analysis

ThisLetterpresentsresultsobtainedfromadatasampleofpp collisionsat

s

=

13 TeVrecordedwiththeALICEdetector [30,31] duringtheLHCRun2(2015–2018).Thesamplewascollected em-ploying a high-multiplicity trigger with the V0 detectors, which consistoftwosmall-angleplasticscintillatorarrayslocatedon ei-therside ofthecollision vertexatpseudorapidities2

.

8

<

η

<

5

.

1 and

3

.

7

<

η

<

1

.

7 [32].Thehigh-multiplicitytriggerisdefined bycoincidenthitsinbothV0detectorssynchronouswiththeLHC bunchcrossingandbyadditionallyrequiringthesumofthe mea-sured signal amplitudes in the V0 to exceed a multiple of the averagevalueinminimumbiascollisions.Thiscorresponds,atthe analysis level, to the highest multiplicity interval containing the top0.17% ofallinelasticcollisions withatleastonecharged par-ticlein

|

η

|

<

1 (referred to asINEL

>

0). This data set presents asuitable environmenttostudycorrelationsduetotheenhanced production of strange particles in such collisions [33]. Addition-ally, the larger charged-particle multiplicity density withrespect tothe minimumbias sample significantly increasesthe probabil-ityto detect particle pairs. The V0 is alsoemployed to suppress backgroundevents,suchastheinteractionofbeamparticleswith mechanicalstructures ofthebeamline,orbeam-gas interactions. In-bunch pile-upevents withmore than one collision per bunch crossingarerejectedbyevaluatingthepresenceofadditionalevent vertices [31].Theremaining contaminationfrompile-upeventsis onthepercentlevelanddoesnotinfluencethefinalresults.

Charged-particletrackingwithintheALICEcentralbarrelis con-ducted with the Inner Tracking System (ITS) [30] and the Time Projection Chamber (TPC) [34]. The detectors are immersed in a homogeneous 0.5 Tsolenoidal magneticfield along thebeam di-rection.TheITSconsistsofsixcylindricallayers ofhigh position-resolutionsilicondetectorsplacedradiallybetween3

.

9 and43 cm aroundthebeampipe.Thetwoinnermostlayers areSiliconPixel

Detectors (SPD)andcoverthepseudorapidityrange

|

η

|

<

2

.

0 and

|

η

|

<

1

.

4,respectively. Thetwo intermediatelayers are composed ofSiliconDriftDetectors,andthetwooutermostlayers aremade ofdouble-sidedSiliconmicro-StripDetectors(SSD),covering

|

η

|

<

0

.

9 and

|

η

|

<

1

.

0, respectively. The TPC consists of a 5 m long, cylindrical gaseous detector with full azimuthal coverage in the pseudorapidityrange

|

η

|

<

0

.

9.Particleidentification(PID)is con-ductedviathemeasurementofthespecificionizationenergyloss (dE

/

dx)withup to159reconstructedspacepoints alongthe par-ticle trajectory. The Time-Of-Flight (TOF) [35] detector system is locatedataradialdistanceof3.7 mfromthenominalinteraction point andconsists ofMultigapResistive Plate Chambers covering thefullazimuthalanglein

|

η

|

<

0

.

9.PIDisaccomplishedby mea-suringtheparticle’svelocity

β

viathetimeofflightoftheparticles inconjunctionwiththeirtrajectory.Theeventcollisiontimeis pro-videdasa combinationofthe measurementsin theTOF andthe T0 detector,two Cherenkovcounter arrays placed atforward ra-pidity [36].

The primary eventvertex(PV)is reconstructedwiththe com-binedtrackinformationoftheITSandtheTPC,andindependently withSPDtracklets.Whenbothvertexreconstructionmethods are available, thedifference ofthecorresponding z coordinates is re-quired to be smallerthan 5 mm. Auniform detectorcoverage is assured byrestrictingthemaximaldeviationbetweenthe z

coor-dinateof thereconstructedPV andthe nominalinteractionpoint to

±

10 cm.Atotalof1

.

0

×

109 high-multiplicityeventsareused fortheanalysisaftereventselection.

The protoncandidates arereconstructedfollowingtheanalysis methods usedforminimumbiasppcollisions at

s

=

7 TeV [27] and 13 TeV [28,29], and are selected from the charged-particle tracks reconstructed with the TPC in the kinematic range 0

.

5

<

pT

<

4

.

05 GeV/c and

|

η

|

<

0

.

8. The TPCandTOF PIDcapabilities are employedtoselectprotoncandidatesby thedeviation

be-tween the signal hypothesis for a proton and the experimental measurement, normalized by the detector resolution

σ

.For can-didateswith p

<

0

.

75 GeV/c,PIDisperformedwiththeTPConly, requiring

|

|

<

3.Forlargermomenta,thePIDinformationofTPC andTOF are combined.Secondary particles stemming fromweak decays or the interaction of primary particles with the detector materialcontaminatethesignal.Thecorrespondingfractionof pri-maryandsecondaryprotonsareextractedusingMonteCarlo(MC) templatefitstothemeasureddistributionoftheDistanceof Clos-est Approach (DCA) of the track to theprimary vertex [27]. The MC templates are generated using PYTHIA 8.2 [37] and filtered throughtheALICEdetector [38] andreconstructionalgorithm [30]. Theresultingpurityofprotonsisfoundtobe99%,withaprimary fractionof82%.

The



0 isreconstructedviathedecaychannel



0

→ 

γ

with a branching ratioof almost 100% [6]. The decay is characterized by a short life time rendering the decay products indistinguish-able fromprimary particles produced in theinitial collision. Due tothe smallmassdifference betweenthe



andthe



0 ofabout 77 MeV/c2, the

γ

has typically energies of only few hundreds of MeV. Therefore, it is reconstructed relying on conversions to e+e− pairs inthe detectormaterial ofthe centralbarrel exploit-ing the unique capability of the ALICE detector to identify elec-trons downto transverse momentaof 0.05 GeV/c. Fortransverse radii R

<

180 cmand

|

η

|

<

0

.

9 thematerial budget corresponds to

(

11

.

4

±

0

.

5

)

% of a radiation length X0, and accordingly to a conversion probability of

(

8

.

6

±

0

.

4

)

% [39]. Details ofthe photon conversionanalysisandthecorrespondingselectioncriteriaare de-scribed in [39,40]. The reconstruction relieson the identification of secondary vertices by forming so-called V0 decay candidates from two oppositely-charged tracks using a procedure described in detail in [41]. The products of the potential

γ

conversion are reconstructed with the TPC and the ITS in the kinematic range

(3)

Fig. 1. Invariantmassdistributionofthe



γ and



γ candidates,intwopTintervalsof1.5−2.0 GeV/c and6.5−7.0 GeV/c.ThesignalisdescribedbyasingleGaussian, andthebackgroundbyapolynomialofthirdorder.Thenumberof



0candidatesisevaluatedwithinM

0(pT) ±3 MeV/c2.Onlystatisticaluncertaintiesareshown. pT

>

0

.

05 GeV/c and

|

η

|

<

0

.

9. Thecandidates forthe e+e− pair

are identified by a broad PID selection in the TPC

6

<

<

7. The resulting

γ

candidate isobtained asthe combinationof the daughtertracks.OnlycandidateswithpT

>

0

.

02 GeV/c andwithin

|

η

|

<

0

.

9 are accepted. Combinatorial background from primary e+e− pairs,orDalitzdecaysofthe

π

0 and

η

mesonsis removed byrequiringthat theradialdistanceoftheconversionpoint,with respecttothedetectorcentre,rangesfrom5 cmto180 cm. Resid-ual contaminations from K0S and



are removed by a selection in the Armenteros-Podolandski space [40,42]. Random combina-tionsofelectrons andpositrons are furthersuppressedbya two-dimensionalselectiononthe anglebetweentheplane definedby thee+e−pair,andthemagneticfield [43] incombinationwiththe reduced

χ

2 ofa refitof thereconstructed V0 assuming that the particleoriginatesfromtheprimaryvertexandhasMV0

=

0 [40].

The Cosine of the Pointing Angle (CPA) between the

γ

momen-tumand the vector pointingfrom the PVto the decay vertexis requiredtobeCPA

>

0.999.InadditiontothetightCPAselection, thecontributionofparticlesstemming fromout-of-bunchpile-up issuppressedbyrestrictingtheDCAofthephotontobealongthe beamdirection(DCAz

<

0

.

5 cm).Afterapplicationoftheselection

criteria,about946

×

106

γ

candidateswithapurityofabout95.4% areavailableforfurtherprocessing.

The



particlecandidatesarereconstructedviathesubsequent decay



pπ−withabranchingratioof63.9% [6],followingthe procedures described in [27,28]. For the



the charge conjugate decayisexploited,andthesameselectioncriteriaareapplied.The decayproductsarereconstructedwiththeTPCandtheITSwithin

|

η

|

<

0

.

9.ThedaughtercandidatesareidentifiedbyabroadPID se-lectionintheTPC

|

|

<

5.Theresulting



candidateisobtained asthecombinationofthedaughtertracks.Thecontributionoffake candidatesis reduced by requesting a minimum pT

>

0

.

3 GeV/c. ThecoarsePIDselectionofthedaughtertracksintroducesa resid-ualK0Scontaminationinthesampleofthe



candidates.This con-taminationisremovedbya 1

.

5σ rejectiononthe invariantmass assumingadecayinto

π

+

π

−,where

σ

correspondsto thewidth ofaGaussianfittedtotheK0S signal.Topologicalselectionsfurther enhancethepurityofthe



sample.Theradialdistanceofthe de-cayvertexwithrespecttothedetectorcentrerangesfrom0.2 cm to100 cmandCPA

>

0.999.InadditiontothetightCPAselection, particles stemming from out-of-bunch pile-up are rejectedusing thetiming informationoftheSPDandSSD,andtheTOFdetector. One ofthe two daughter tracks isrequired to have a hit in one ofthesedetectors.Afterapplicationoftheselectioncriteria,about

188

×

106 (178

×

106)



(



) candidates with a purity of 94.6% (95.3%)areavailableforfurtherprocessing.

The



0 (



0) candidatesare obtainedby combiningall



(



) and

γ

candidatesfromthesameevent,wherethenominalparticle masses [6] are assumedforthe daughters. Inparticular the tim-ingselectiononthedaughtertracksofthe



assuresthatthe



0

candidatesstemfromtherightbunchcrossing.Incaseadaughter trackisusedtoconstructtwo

γ

,



,and



candidates,ora combi-nationthereof,theone withthesmallerCPAisremovedfromthe sample.Inordertofurtheroptimizetheyieldandthepurityofthe sample,only



0candidateswithpT

>

1 GeV/c areused.

The resulting invariant mass spectrum is shown in Fig. 1 for two pT intervals. In order to obtain the raw yield, the signal is fitted with a single Gaussian, and the background with a third-orderpolynomial. Dueto thedeterioratingmomentum resolution for low pT tracks, the meanvalue ofthe Gaussian M0 exhibits

a slight pT dependence, which is well reproduced in MC simu-lations. The



0 (



0) candidates for femtoscopy are selected as

M0

(

pT

)

±

3 MeV/c2.Thewidthoftheintervalischosenasa com-promisebetweenthe candidatecountsandpurity.In total,about 115

×

103 (110

×

103)



0 (



0) candidates arefound at a purity of about 34.6%. Due to the enhanced combinatorial background at low pT, the purity increases from about20% at the lower pT thresholdtoitssaturationvalueofabout60%above5 GeV/c.Only one candidateper eventisused,andisrandomly selectedinthe very rare casein which more than one is available. In lessthan one permille ofthecaseswhenthe trackofa primary protonis alsoemployed asthe daughtertrackofthe

γ

orthe



,the cor-responding



0 candidateisrejected.Sinceonly stronglydecaying resonancesfeedtothe



0 [6],allcandidatesareconsideredtobe primaryparticles.

3. Analysis of the correlation function

The experimental definition of the two-particle correlation function,forbothp–p andp–



0pairs,isgivenby [44],

C

(

k

)

=

N

×

Nsame

(

k

)

Nmixed

(

k

)

k∗→∞

−−−−→

1

,

(1)

withthesame(Nsame)andmixed(Nmixed)eventdistributionsofk∗ anda normalizationconstant

N

.The relative momentumof the pairk∗ isdefinedask

=

12

× |

p1

p2

|

,wherep1 and

p

2 are the momenta ofthe twoparticles in thepair restframe, denotedby the∗.Thenormalizationisevaluatedink

∈ [

240

,

340

]

MeV/c for

(4)

p–p andink

∈ [

250

,

400

]

MeV/c forp–



0 pairs,whereeffectsof finalstate interactionsare absentandhencethecorrelation func-tionapproachesunity.

The trajectories of the p–p and p–p pairs at low k∗ are al-mostcollinear,andmightthereforebeaffectedbydetectoreffects liketracksplittingandmerging [45].Accordingly, the reconstruc-tionefficiencyforpairsinthesameandmixedeventmightdiffer. To this end, a close-pair rejection criterion is employed remov-ingp–p andp–p pairsfulfilling



η

2

+

ϕ

∗2

<

0

.

01,wherethe azimuthalcoordinate

ϕ

∗considersthetrackcurvatureinthe mag-neticfield.

A total number of 1

.

7

×

106 (1

.

3

×

106) p–p (p–p ) and 587 (539)p–



0 (p–



0) pairs contribute to the respective correlation functionin theregionk

<

200 MeV/c.Toenhancethe statistical significance of the results, the correlation functions of baryon– baryon andantibaryon–antibaryonpairs are combined.Therefore, inthefollowingp–



0denotesthecombinationp–



0

p–



0,and correspondinglyforp–p.

The systematic uncertainties of the experimental correlation functionareevaluatedbysimultaneouslyvaryingallproton,



,

γ

, and



0 single-particleselection criteriaby up to20% aroundthe nominalvalues.Onlyvariations thatmodifythepairyieldby less than10%(20%)forp–



0 (p–p)withrespectto thedefaultchoice areconsidered, andthe



0 purityby lessthan 5%.Theimpact of statisticalfluctuationsisreducedbyevaluatingthesystematic un-certainties in intervalsof 100 MeV/c (20 MeV/c)in k∗ forp–



0

(p–p). Theresulting systematicuncertainties are parametrizedby anexponentialfunctionandinterpolatedtoobtainthefinal point-by-pointuncertainties.Attherespectivelylowestk∗,thetotal sys-tematic uncertainties are of the order of 2.5% for both p–p and p–



0.

Using thefemtoscopy formalism [44], thecorrelation function can be relatedto the source function S

(

r

)

andthe two-particle wavefunction

(

r

,

k

)

incorporatingtheinteraction,

C

(

k

)

=



d3rS

(

r

)

| (

r

,

k

)

|

2

,

(2)

where r∗ refers to the relative distance between the two parti-cles. As demonstrated in [27–29,46] the correlation function be-comes particularly sensitive to the strong interaction for small emissionsourcesformedinppandp–Pb collisions.Forthisstudy, asphericallysymmetricemittingsourceisassumed, witha Gaus-sianshapedcoredensityprofileparametrizedbyaradiusr0,which isobtainedfromafittothep–p correlationfunction,similarlyas in [28,29].Followingthepremiseofacommonemissionsourcethe suchextractedradiusisthenusedasaninputtofitthep–



0 cor-relationfunction. Possiblemodifications ofthe sourceprofile due totheinfluenceofstronglydecayingresonances [47–49] are con-sideredintheevaluationofthesystematicuncertaintiesassociated withthefittingprocedure.

The genuine p–p correlation function is modeled using the

CorrelationAnalysisToolusingtheSchrödingerequation (CATS) [46], which allows one to useeither a localpotential V

(

r

)

or directly thetwo-particlewavefunction,andadditionallyanysource distri-bution asinput tocompute the correlation function.For thep–p correlation function thestrong Argonne v18 potential [50] inthe

S,P ,andD wavesisusedasaninputtoCATS.

The theoretical correlation function for p–



0 is modeled em-ploying two different approaches. On the one hand, in CATSthe correlation function iscomputedfrom theisospin-averaged wave functions obtained within a coupled-channel formalism. On the other hand, the Lednický–Lyuboshits approach [51] relies on the effective-range expansion usingscatteringparameters asinput to evaluate the correlation function. The coupling ofthe n-



+ sys-temto p–



0 considering thedifferentthresholds isexplicitly in-cludedby meansofa coupled-channelapproach,whilethe effect

Table 1

Weightparametersfortheindividualcomponentsofthemeasuredcorrelation func-tion.Contributions fromfeed-downcontainthe motherparticle listedas a sub-index.Non-flatcontributionsarelistedindividually.

p–p p–0 Pair λparameter (%) Pair λparameter (%) p–p 67.0 p–0 22.0 p–p 20.3 p–(γ) 73.1

Feed-down (flat) 11.6 Feed-down (flat) 4.7 Misidentification (flat) 1.1 Misidentification (flat) 0.2

ofthep–



channelisincorporatedbycomplexscattering parame-ters [52].Detailsoftheemployedmodelsaredescribedinthenext Section.

The experimental data are compared with the modeled cor-relation function considering the finite experimental momentum resolution [27].Inaddition tothe genuinecorrelation functionof interest, the measured correlation function also contains residual correlations due to protons coming from weak decays of other particles, such as



and



+ (feed-down), andmisidentifications. Theseeffectsare includedbymodelingthetotalcorrelation func-tionasadecomposition,

Cmodel

(

k

)

=

1

+



i

λ

i

× (

Ci

(

k

)

1

),

(3)

wherethesumrunsoverallcontributions.Theirrelative contribu-tionisgivenbythe

λ

parameterscomputedinadata-drivenway from single-particleproperties such asthepurity andfeed-down fractions [27],andaresummarizedinTable1.

Apart fromthegenuine p–p correlation function, a significant contribution comes fromthe decayof



particles feeding to the protonpair.Theresidual p–



correlationfunctionismodeled us-ing either the Usmani potential [53], chiral effective field the-ory calculations at Leading (LO) [54], or Next-To-Leading order (NLO) [20]. The resultingcorrelation function istransformed into themomentumbasisofthep–p pairby applyingthe correspond-ingdecaymatrices [55].Allothercontributionsareassumedtobe

C

(

k

)

1.Duetothechallengingreconstructionofthe



0,the ex-perimentalpurityofthe



0 sampleisratherlow,andadditionally exhibitsastrongdependenceonthetransversemomentum pT as demonstratedinFig.1.Theaverage pT ofthe



0 candidatesused to constructthecorrelation functionatk

<

200 MeV/c,however, is lowerthan the

pT

ofall inclusive



0 candidates.Considering this effect, the



0 purity employed to compute the

λ

parame-ters is found to be 27.4%. Accordingly, the main contribution to thep–



0 correlationfunctionstemsfromthecombinatorial back-groundappearing in theinvariant massspectrum around the



0

peak, whichinthefollowingisreferred toas

(

γ

)

.Theshapeof the p–

(

γ

)

correlation function is extractedfrom the sidebands oftheinvariant massselection,andisfoundtobeindependentof the choice of mass window. The non-flat behavior ismainly de-termined by residual p–



correlationswhich are smeared by an uncorrelated

γ

, anddefines the baseline of the measurement of the p–



0 correlation function. The shape is parametrizedwith a Gaussian distribution and weighted by its

λ

parameter. Allother contributions stemming frommisidentifiedprotons orfrom feed-downareassumedtobeC

(

k

)

1.

The total correlation function includingall correctionsis then multipliedbyapolynomialbaselineCnon-femto

(

k

)

,

C

(

k

)

=

Cnon-femto

(

k

)

×

Cmodel

(

k

),

(4) toaccountforthenormalizationandnon-femtoscopicbackground effects stemming e.g. from momentum and energy conserva-tion [27]. The p–p correlation function is fitted in the range

(5)

Fig. 2. Measuredcorrelationfunctionofp–p⊕p–p .Statistical(bars)andsystematic uncertainties(boxes)areshownseparately.Thewidthofthebandcorrespondsto onestandarddeviationofthesystematicuncertaintyofthefit.

k

∈ [

0

,

375

]

MeV/c to determine simultaneously thefemtoscopic radius r0 and the parameters of the baseline. To assess the sys-tematic uncertainties on r0 related to the fitting procedure the upperlimitofthefitregionisvariedwithink

∈ [

350

,

400

]

MeV/c. Thebaseline ismodeledasapolynomial ofzeroth,first,and sec-ond order. Additionally, as discussed above, all three models for the p–



residual correlation function are employed, andthe in-putto the

λ

parameters is modified by

±

20%while maintaining aconstant sum ofthe primary andsecondary fractions. The p–p correlation function is shown in Fig. 2, where the width of the bandscorrespondsto onestandard deviationofthetotal system-atic uncertainty of the fit. The inset shows a zoom of the p–p correlation function at intermediate k∗, where the effect of re-pulsionbecomes apparent. The femtoscopicfit yields a radius of

r0

=

1

.

249

±

0

.

008

(

stat

)

+00..024021

(

syst

)

fm.

Analysesof

π

–πandK–Kcorrelationfunctionsat ultrarelativis-ticenergies inelementary [56] andheavy-ioncollisions [57] indi-cateasource distributionsignificantly deviatingfroma Gaussian. Indeed,stronglydecaying resonancesareknownto introduce sig-nificantexponential tailsto thesource distribution,especially for

π–π

pairs [47–49].Thisbecomesevidentwhenstudyingthe cor-responding resonance contributions obtained from the statistical hadronizationmodelwithinthecanonicalapproach [58].Themain resonancesfeedingtopions,

ρ

and

ω

,aresignificantlylonger-lived thanthosefeedingto protons(

) and



0 (



(1405)).Hence,itis notsurprisingthatthesourcedistributionfor

π

–π deviates from aGaussian.Theseconclusionsareunderlinedwhenfittingthep–p correlationfunctionwithaLévy-stablesourcedistribution [59,60]. Leavingboththefemtoscopicradiusandthestabilityparameter

α

forthe fittodetermine,the Gaussiansource shape(α

=

2) is re-covered.EmployingaCauchy-typesourcedistribution(α

=

1),the datacannotbesatisfactorilydescribed.Therefore,thepremiseofa Gaussiansourceholdsforbaryon–baryonpairs.

Accordingly, a Gaussian source with femtoscopic radius r0 is usedto fit the p–



0 correlation function. The parameters ofthe linearbaseline are obtainedfromafit tothe p–

(

γ

)

correlation functionink

∈ [

250

,

600

]

MeV/c,whereitisconsistentand kine-matically comparable with p–



0, howeverfeaturing significantly smalleruncertainties. Theexperimentalp–



0 correlationfunction isthenfittedintherangek

<

550 MeV/c, andvaried duringthe fitting procedure within k

∈ [

500

,

600

]

MeV/c to determine the systematic uncertainty. Additionally, the input to the

λ

parame-ters is modified by

±

20% while maintaining a constant sum of theprimaryandsecondaryfractions.Theparameters ofthe

base-Fig. 3. Measuredcorrelationfunctionofp–0p–0.Statistical(bars)and system-aticuncertainties(boxes)areshownseparately.Thegraybanddenotesthep–(γ)

baseline.Thedataarecomparedwithdifferenttheoreticalmodels.The correspond-ingcorrelationfunctionsarecomputedusingCATS [46] forχEFT [20],NSC97f [26] andESC16 [23],andusingtheLednický–Lyuboshitsapproach [51,52] forfss2 [24]. Thewidthofthebandscorrespondstoonestandard deviationofthesystematic uncertaintyofthefit.Theabsolutecorrelateduncertaintyduetothemodelingof thep–(γ)baselineisshownseparatelyasthehatchedareaatthebottomofthe figure.

lineare varied within 1σ oftheir uncertainties considering their correlation, includingthe caseofa constant baseline. Finally,the femtoscopicradiusisvariedaccordingtoitsuncertainties.Possible variations ofthe p–



0 sourceduetocontributions ofmT scaling

andstrongdecaysare incorporatedbydecreasingr0 by 15%, sim-ilarly asin [28,29]. The correspondingresonance yieldsare taken fromthestatisticalhadronization modelwithinthe canonical ap-proach [58].

All correlation functions resulting from the above mentioned variationsoftheselectioncriteriaarefittedduring theprocedure, additionallyconsideringvariations ofthemasswindowtoextract thep–

(

γ

)

baseline.ThewidthofthebandsinFig.3corresponds toonestandarddeviationofthetotalsystematicuncertaintyofthe fit.Theabsolutecorrelateduncertaintyduetothemodelingofthe p–

(

γ

)

baseline correlation function is shown separately atthe bottomofthefigure.

4. Results

Theexperimental p–



0

p–



0 correlation functionisshown inFig.3.Thek∗ valueofthedatapointsischosenaccordingtothe

k

ofthe sameevent distribution Nsame

(

k

)

in the correspond-ing interval. Therefore, due to the low number of counts in the first bin,thedata pointis shiftedwithrespect tothe bincentre. Sincetheuncertaintiesofthedataaresizable,adirect determina-tion ofscatteringparametersvia afemtoscopicfit isnot feasible. Instead,thedataaredirectlycomparedwiththevariousmodelsof the interaction.These include, onthe one hand,meson-exchange models,such asfss2 [24] andtwoversionsofsoft-core Nijmegen models(ESC16 [23],NSC97f [61]),andontheotherhandresultsof

χEFT

atNext-to-LeadingOrder(NLO) [20].Thecorrelationfunction ismodeledusingtheLednický–Lyuboshitsapproach [51] consider-ingthecouplingsofthep–



0 systemtop–



andn-



+[52] with scatteringparametersextractedfromthefss2 model.Forthecase ofESC16,NSC97fand

χ

EFT,thewavefunctionofthep–



0system, includingthecouplings,isusedasaninputtoCATStocomputethe correlationfunction.Thedegreeofconsistencyofthedatawiththe discussed models isexpressed by thenumber ofstandard devia-tionsnσ ,computedintherangek

<

150 MeV/c fromthep-value

(6)

Table 2

Degreeofconsistencyofthedifferentmodels withthe experimentalcorrelation function.

Model p–(γ)

baseline

fss2 χEFT NSC97f ESC16 (k<150 MeV/c) 0.2−0.8 0.2−0.9 0.3−1.0 0.2−0.6 0.1−0.5

of the theoretical curves. The range of nσ shown in Table 2 is computedasonestandarddeviationofthecorresponding distribu-tion.Thedataare within (0.2

0.8)σ consistentwiththep–

(

γ

)

baseline,indicating thepresence ofan overallshallowstrong po-tentialinthep–



0channel.Themainsourceofuncertaintyofthe modelingofthecorrelationfunctionistheparametrizationofthe p–

(

γ

)

baseline due the sizeable statistical uncertainties of the latter.

All employed models for the N–



interaction potential suc-ceedinreproducing thescatteringdatainthe S

= −

1 sector [7]. Duetotheavailableexperimental constraints,theoverall descrip-tionofthep–



interactionyields aconsistentdescription.Onthe other hand, the corresponding p–



0 correlation functions differ significantlyamongeachother.Thisdemonstratesthatfemtoscopic measurements candiscriminate andconstrain models,and there-forerepresenta uniqueprobeto studythe N–



interaction.Both fss2 and

χ

EFT exhibit an overall repulsionin N–



at intermedi-atek∗,whichmainlyoccursinthespinsinglet S

=

0,I

=

1

/

2 and spintriplet S

=

1,I

=

3

/

2 components [20,24].Inthelow momen-tumregion,belowroughly50 MeV/c,bothmodelsyieldattraction, which is reflected in the profile of the correlation function. The Nijmegenmodels,ontheotherhand,arecharacterizedbyarather constantattractionoverthewholerangeofk∗.Inparticularatlow relativemomenta,however,thebehaviorofthetwomodels devi-atessignificantly.Theshapeofthecorrelationfunctionofthemost recentNijmegenmodel,ESC16,differssignificantlyfromthatofthe other calculations. This ismainly due tothe fact that the occur-rence ofboundstates inthestrangenesssector (S

= −

1

,

2

,

3) is not allowed in the model [23]. This leads to a repulsive core inall theN–



channels, whichcan wellbe observedin Fig.3as thenon-monotonicbehavioratsmallrelativemomenta.Incontrast toallotherdiscussedmodels,NSC97fyieldsattractioninthespin triplet S

=

1,I

=

3

/

2 channel [61].Accordingly,thecorresponding correlation function demonstrates the strongest attractionat low momenta.The ratherlarge differencesamong themodeled p–



0

correlation functions demonstrate that the shape ofthe latteris verysensitivetodetailsofthestronginteraction,anddrivenbythe interplayofthedifferentspinandisospinchannels.Thisshowsthe strength of femtoscopic measurements, in particular in the N–



channel.

The underlying two-body N–



interaction obtained within these models, however,translates into significantly different val-uesforthein-mediumsingle-particlepotentialUwhenincluded

inmany-bodycalculations. Boththefss2quark-model,along with

χEFT,

deliver similar results at nuclear saturation density, lead-ing to an overall repulsive U of around 10–17 MeV [20,21,24].

This is in agreement with evidence from relativistic mean field calculations fittingexperimental data of



− atoms [12] and the experimental absence of bound states in



hypernuclei [16]. On the contrary, both Nijmegen models yield a slightly attractive



single-particle potential, ranging from

≈ −

16 MeV for NSC97fto

≈ −

3 MeV forESC16. As alreadymentioned, however,the inter-pretation of hypernuclear measurements introduces a significant model dependence.This concerns not only the extraction of the experimental results, relying for instance on the framework of the distorted-wave impulse approximation [17], but also the ex-trapolationoftheoreticalcalculationstofinitedensityvia e.g. the G-matrixapproach [62,63].

5. Summary

ThisLetterpresentsthefirstdirectinvestigationofthep–



0 in-teraction inhigh-multiplicitypp collisions at

s

=

13 TeV, hence proving the feasibility of femtoscopic studies in the N–



sector. Thep–



0correlationfunctionisconsistentwiththep–

(

γ

)

base-line, andthereforethemeasurementindicates thepresence ofan overallshallowstrongpotential.Thedataarecomparedwith state-of-the-artdescriptionsoftheinteraction,includingchiraleffective field theory and meson-exchange models. Due to the scarce ex-perimentalconstraintsintheN–



sector,themodeled correlation functions differsignificantly among each other.The shape of the modeled correlationfunctionsappears tobevery sensitiveto de-tailsofthestronginteraction,andisdrivenbytheinterplayofthe different spin andisospin channels. This proves that femtoscopic measurements inhigh-energyppcollisions provideadirectstudy of the genuine two-body N–



strong interaction. The presented femtoscopic data cannot discriminate between different models, which is also the case forthe available scattering and hypernu-cleidata.

Further femtoscopic studies enabled by the abouttwo orders ofmagnitudelargerpp datasamplesof6 pb−1 inminimumbias collisions at

s

=

5

.

5 TeV and of 200 pb−1 in high-multiplicity at

s

=

14 TeV,foreseen to be collected inthe LHC Runs 3and 4 [64], will therefore shed light on the N–



sector and provide constraintsonthemodelsdescribingtheinteraction.

Declaration of competing interest

Theauthorsdeclarethattheyhavenoknowncompeting finan-cialinterestsorpersonalrelationshipsthatcouldhaveappearedto influencetheworkreportedinthispaper.

Acknowledgements

TheALICECollaborationisgratefultoJ. HaidenbauerandT. Ri-jkenforvaluablediscussions andforprovidingthe theoretical re-sultsforthep–



0interaction.

The ALICECollaboration would like to thank all its engineers andtechniciansfortheirinvaluablecontributionstothe construc-tion of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collab-oration gratefully acknowledges the resources and support pro-videdbyallGridcentresandtheWorldwideLHCComputingGrid (WLCG) collaboration. The ALICE Collaboration acknowledges the following fundingagenciesfortheir supportin buildingand run-ningtheALICEdetector:A.I.AlikhanyanNationalScience Labora-tory(YerevanPhysicsInstitute)Foundation (ANSL),State Commit-teeofScienceandWorldFederationofScientists(WFS),Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF): [M 2467-N36] and Nationalstiftung für Forschung, Technologie und Entwicklung,Austria;MinistryofCommunicationsandHigh Tech-nologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq), Fi-nanciadora de Estudose Projetos (Finep),Fundação de Amparo à Pesquisa do Estado de São Paulo(FAPESP) andUniversidade Fed-eraldoRioGrandedoSul(UFRGS),Brazil;MinistryofEducationof China (MOEC), MinistryofScience &Technology ofChina (MSTC) and NationalNatural Science Foundation of China (NSFC), China; Ministry of Science and Education and Croatian Science Founda-tion,Croatia;CentrodeAplicacionesTecnológicasyDesarrollo Nu-clear (CEADEN), Cubaenergía, Cuba;Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research | Natural Sciences, the Villum Fonden and Danish National Research Foundation (DNRF), Den-mark; HelsinkiInstitute ofPhysics(HIP), Finland;Commissariatà

(7)

l’ÉnergieAtomique (CEA), Institut Nationalde Physique Nucléaire etde Physique des Particules (IN2P3) andCentre National de la Recherche Scientifique (CNRS) and Région des Pays de la Loire, France; Bundesministerium für Bildung und Forschung (BMBF) andGSIHelmholtzzentrumfürSchwerionenforschungGmbH, Ger-many;GeneralSecretariatforResearchandTechnology,Ministryof Education,Research andReligions,Greece; NationalResearch De-velopmentandInnovationOffice,Hungary;DepartmentofAtomic Energy, Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Com-mission,GovernmentofIndia(UGC) andCouncil ofScientificand IndustrialResearch (CSIR), India;IndonesianInstitute of Sciences, Indonesia;CentroFermi- MuseoStoricodellaFisicaeCentroStudi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucle-are Sezione di Padova (INFN), Italy; Institute for Innovative Sci-enceandTechnology,NagasakiInstitute ofApplied Science(IIST), JapaneseMinistryofEducation,Culture, Sports,Science and Tech-nology (MEXT) and Japan Society for the Promotion of Science (JSPS)KAKENHI, Japan;ConsejoNacionalde Ciencia(CONACYT) y Tecnología, throughFondo de Cooperación Internacional en Cien-cia y Tecnología (FONCICYT) and Dirección General de Asuntos delPersonalAcademico(DGAPA),Mexico;NederlandseOrganisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Re-search Council of Norway, Norway; Commission on Science and TechnologyforSustainableDevelopmentintheSouth(COMSATS), Pakistan;PontificiaUniversidadCatólicadelPerú,Peru;Ministryof ScienceandHigherEducationandNationalScienceCentre,Poland; KoreaInstituteofScienceandTechnologyInformationandNational ResearchFoundation of Korea (NRF), Republic of Korea;Ministry of Education and Scientific Research, Institute of Atomic Physics andMinistry ofResearch andInnovation andInstitute of Atomic Physics,Romania; JointInstituteforNuclearResearch(JINR), Min-istryofEducationandScienceoftheRussianFederation,National Research Centre Kurchatov Institute, Russian Science Foundation andRussianFoundationforBasicResearch,Russia;Ministryof Ed-ucation,Science, Research and Sportof the Slovak Republic, Slo-vakia;NationalResearchFoundationofSouthAfrica,SouthAfrica; SwedishResearchCouncil(VR)andKnut&AliceWallenberg Foun-dation (KAW), Sweden; European Organization for Nuclear Re-search,Switzerland;SuranareeUniversityofTechnology(SUT), Na-tionalScience andTechnology Development Agency(NSDTA) and OfficeoftheHigher Education CommissionunderNRU projectof Thailand,Thailand;TurkishAtomicEnergyAgency(TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and TechnologyFacilitiesCouncil(STFC),UnitedKingdom;National Sci-enceFoundationoftheUnitedStatesofAmerica(NSF)andUnited StatesDepartmentofEnergy, Office ofNuclear Physics(DOE NP), UnitedStatesofAmerica.

References

[1]P.Demorest,T.Pennucci,S.Ransom,M.Roberts,J.Hessels,Shapirodelay mea-surementofatwosolarmassneutronstar,Nature467(2010)1081–1083. [2]J.Antoniadis,etal.,Amassivepulsarinacompactrelativisticbinary,Science

340(2013)6131.

[3]G.Alexander,etal.,Studyofthen systeminlow-energyp elastic scattering,Phys.Rev.173(1968)1452–1460.

[4]B.Sechi-Zorn,B.Kehoe,J.Twitty,R.A.Burnstein,Low-energy-protonelastic scattering,Phys.Rev.175(1968)1735–1740.

[5]O.Hashimoto,H.Tamura,Spectroscopyofhypernuclei,Prog.Part.Nucl.Phys. 57(2006)564–653.

[6]Particle Data Group Collaboration, M. Tanabashi, et al., Review of particle physics,Phys.Rev.D98(2018)030001.

[7]F.Eisele,H.Filthuth,W.Foehlisch,V.Hepp,G.Zech,Elastic+−p scattering atlowenergies,Phys.Lett.B37(1971)204–206.

[8]R.Engelmann,H.Filthuth,V.Hepp,E.Kluge,Inelasticp-interactionsatlow momenta,Phys.Lett.21(1966)587–589.

[9]V.Hepp,H.Schleich,Anewdeterminationofthecaptureratior(c)= p

0n/ ((p→ 0n)+ (p→ n)),the0-lifetimeand0mass

differ-ence,Z.Phys.214(1968)71.

[10]C.Batty,E.Friedman,A.Gal,Densitydependenceofthenucleusoptical po-tentialderivedfrom−atomdata,Phys.Lett.B335(1994)273–278. [11]C.J.Batty,E.Friedman,A.Gal,Densitydependencein−atomsand

implica-tionsforhypernuclei,Prog.Theor.Phys.Suppl.117(1994)227–240. [12]J.Mares,E.Friedman,A.Gal,B.K.Jennings,Constraintsonnucleusdynamics

fromDiracphenomenologyof−atoms,Nucl.Phys.A594(1995)311–324. [13]R.S.Hayano,etal.,Observationofaboundstateof4

Hehypernucleus,Phys.

Lett.B231(1989)355–358. [14]T.Nagae,etal.,Observationofa4

Heboundstateinthe4He(K)reaction

at600 MeV/c,Phys.Rev.Lett.80(1998)1605–1609.

[15]L.Tang,etal.,Observationsofhyperon–nucleussystemsproducedon12Cand 7Litargetsusingthe(K,π+)reactionat715MeV/c,Phys.Rev.C38(1988)

846–853.

[16]P.K.Saha,etal.,Studyofthe-nucleuspotentialbythe(π,K+)reactionon medium-to-heavynucleartargets,Phys.Rev.C70(2004)044613.

[17]A.Gal,E.V.Hungerford,D.J.Millener,Strangenessinnuclearphysics,Rev.Mod. Phys.88(2016)035004.

[18]J.Haidenbauer,U.-G.Meißner,Jülichhyperon–nucleonmodelrevisited,Phys. Rev.C72(2005)044005.

[19]T.A.Rijken,M.M.Nagels,Y.Yamamoto,Baryon–baryoninteractions:Nijmegen extended-soft-coremodels,Prog.Theor.Phys.Suppl.185(2010)14–71. [20]J. Haidenbauer, S.Petschauer, N. Kaiser,U.G. Meißner,A.Nogga, W.Weise,

Hyperon–nucleoninteractionatnext-to-leadingorderinchiraleffectivefield theory,Nucl.Phys.A915(2013)24–58.

[21]J. Haidenbauer,U.G.Meißner, A.Nogga,Hyperon–nucleoninteractionwithin chiraleffectivefieldtheoryrevisited,arXiv:1906.11681 [nucl-th].

[22]J.Haidenbauer,U.G.Meißner,N.Kaiser,W.Weise,Lambda-nuclearinteractions andhyperonpuzzleinneutronstars,Eur.Phys.J.A53(2017)121.

[23]M.M. Nagels, T.A. Rijken, Y. Yamamoto, Extended-soft-core baryon–baryon modelESC16.II.Hyperon–nucleoninteractions,Phys.Rev.C99(2019)044003. [24]Y.Fujiwara,Y.Suzuki,C.Nakamoto,Baryon–baryoninteractionsintheSU(6) quarkmodelandtheirapplicationstolightnuclearsystems,Prog.Part.Nucl. Phys.58(2007)439–520.

[25]H.Nemura,etal.,BaryoninteractionsfromlatticeQCDwithphysicalmasses— strangenessS= −1 sector,EPJWebConf.175(2018)05030.

[26]T.A.Rijken,V.G.J.Stoks,Y.Yamamoto, Softcorehyperon-nucleon potentials, Phys.Rev.C59(1999)21–40.

[27]ALICECollaboration,S.Acharya,etal.,p-p,p–andcorrelationsstudied viafemtoscopyinppreactionsat√s=7 TeV,Phys.Rev.C99(2019)024001. [28]ALICECollaboration,S.Acharya,etal.,Studyoftheinteractionwith

fem-toscopycorrelationsinppandp–PbcollisionsattheLHC,Phys.Lett.B797 (2019)134822.

[29]ALICECollaboration,S.Acharya,etal.,Firstobservationofanattractive interac-tionbetweenaprotonandamulti-strangebaryon,Phys.Rev.Lett.123(2019) 112002.

[30]ALICECollaboration,K.Aamodt,etal.,TheALICEexperimentattheCERNLHC, J.Instrum.3(2008)S08002.

[31]ALICECollaboration,B.Abelev,etal.,PerformanceoftheALICEexperimentat theCERNLHC,Int.J.Mod.Phys.A29(2014)1430044.

[32]ALICECollaboration,E.Abbas,etal.,PerformanceoftheALICEVZEROsystem, J.Instrum.8(2013)P10016.

[33]ALICE Collaboration, J. Adam, et al., Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions, Nat. Phys. 13 (2017) 535–539.

[34]J.Alme,etal.,TheALICETPC,alarge3-dimensionaltrackingdevicewithfast readoutforultra-highmultiplicityevents,Nucl.Instrum.MethodsA622(2010) 316–367.

[35]A.Akindinov,etal., PerformanceoftheALICE time-of-flightdetectorat the LHC,Eur.Phys.J.Plus128(2013)44.

[36]ALICECollaboration,J.Adam,etal.,Determinationoftheeventcollisiontime withtheALICEdetectorattheLHC,Eur.Phys.J.Plus132(2017)99. [37]T.Sjöstrand,etal.,AnintroductiontoPYTHIA8.2,Comput.Phys.Commun.191

(2015)159–177.

[38]R. Brun,F.Bruyant,M.Maire,A.C.McPherson,P.Zanarini,GEANT3:User’s GuideGeant3.10,Geant3.11;rev.version,CERN,Geneva,1987.

[39]ALICECollaboration,B.Abelev,etal.,Neutralpionandηmesonproductionin proton–protoncollisionsat√s=0.9 TeVand√s=7 TeV,Phys.Lett.B717 (2012)162–172.

[40]ALICECollaboration,S.Acharya,etal.,Neutralpionandηmesonproductionin p-Pbcollisionsat√sNN=5.02 TeV,Eur.Phys.J.C78(2018)624.

[41]ALICECollaboration,B.Alessandro,etal.,ALICE:physicsperformancereport, volumeII,J.Phys.G32(2006)1295.

[42]J.Podolanski,R.Armenteros,III.AnalysisofV-events,Philos.Mag.45(1954) 13–30.

[43]PHENIXCollaboration,A.Adare,etal.,Detailedmeasurementofthee+e−pair continuuminp+p andAu+Aucollisionsat√sN N=200 GeVand implica-tionsfordirectphotonproduction,Phys.Rev.C81(2010)034911.

[44]M.A.Lisa,S.Pratt,R.Soltz,U.Wiedemann,Femtoscopyinrelativisticheavyion collisions,Annu.Rev.Nucl.Part.Sci.55(2005)357–402.

(8)

[45]ALICECollaboration,J.Adam,et al.,One-dimensionalpion,kaon,andproton femtoscopyinPb-Pbcollisionsat √sNN=2.76 TeV,Phys. Rev.C92(2015)

054908.

[46]D.L.Mihaylov,V.MantovaniSarti,O.W.Arnold,L.Fabbietti,B.Hohlweger,A.M. Mathis,AfemtoscopiccorrelationanalysistoolusingtheSchrödingerequation (CATS),Eur.Phys.J.C78(2018)394.

[47]U.A. Wiedemann,U.Heinz,NewclassofHanbury-Brown–Twissparameters, Phys.Rev.C56(1997)R610–R613.

[48]U.A.Wiedemann,U.W.Heinz,ResonancecontributionstoHBTcorrelationradii, Phys.Rev.C56(1997)3265–3286.

[49]A.Kisiel,W.Florkowski,W.Broniowski,Femtoscopyinhydro-inspiredmodels withresonances,Phys.Rev.C73(2006)064902.

[50]R.B.Wiringa,V.G.J.Stoks,R.Schiavilla,Anaccuratenucleon-nucleonpotential withchargeindependencebreaking,Phys.Rev.C51(1995)38–51.

[51]R.Lednický,V.L.Lyuboshits,Finalstateinteractioneffectonpairingcorrelations betweenparticleswithsmallrelativemomenta,Sov.J.Nucl.Phys.35(1982) 770.

[52]A.Stavinskiy,K.Mikhailov,B.Erazmus,R.Lednický,Residualcorrelations be-tweendecayproductsofπ0π0andp0systems,arXiv:0704.3290 [nucl-th].

[53]A.R. Bodmer, Q.N. Usmani, J. Carlson, Binding energies ofhypernuclei and three-bodyNN forces,Phys.Rev.C29(1984)684–687.

[54]H.Polinder,J.Haidenbauer,U.-G.Meißner,Hyperon–nucleoninteractions–a chiraleffectivefieldtheoryapproach,Nucl.Phys.A779(2006)244–266.

[55]A.Kisiel, H.Zbroszczyk,M.Szyma ´nski,Extractingbaryon-antibaryon strong-interactionpotentialsfrompfemtoscopiccorrelationfunctions,Phys.Rev.C 89(2014)054916.

[56]CMSCollaboration,A.M.Sirunyan,etal.,Bose-Einsteincorrelationsinpp,pPb, andPbPbcollisionsat√sN N=0.9−7 TeV,Phys.Rev.C97(2018)064912. [57]PHENIXCollaboration,A.Adare,etal.,Lévy-stabletwo-pionBose-Einstein

cor-relationsin√sNN=200 GeVAu+Au collisions,Phys.Rev.C97(2018)064911. [58]F.Becattini,P.Castorina,A.Milov,H.Satz,Predictionsofhadronabundancesin

ppcollisionsattheLHC,J.Phys.G38(2011)025002.

[59]T.Csörg ˝o,S.Hegyi,W.A.Zajc,Bose-EinsteincorrelationsforLévystablesource distributions,Eur.Phys.J.C36(2004)67.

[60]R.Metzler,E.Barkai,J. Klafter,Anomalous diffusionand relaxationcloseto thermalequilibrium:afractionalFokker-Planckequationapproach,Phys.Rev. Lett.82(1999)3563.

[61]T.A.Rijken,V.G.J.Stoks,Y. Yamamoto,Soft-corehyperon–nucleonpotentials, Phys.Rev.C59(1999)21–40.

[62]Y.Yamamoto,T.Motoba,H.Himeno,K.Ikeda,S.Nagata,Hyperonnucleonand hyperon-hyperoninteractionsinnuclei,Prog.Theor.Phys.Suppl.117(1994) 361–389.

[63]Y.Yamamoto,T.Motoba,T.A.Rijken,G-matrixapproachtohyperon–nucleus systems,Prog.Theor.Phys.Suppl.185(2010)72–105.

[64] ALICE Collaboration, S. Acharya, et al., ALICE upgrade physics performance studies for 2018 report on HL/HE-LHC physics, https://cds.cern.ch/record/ 2661798.

ALICE Collaboration

S. Acharya

141

,

D. Adamová

94

,

A. Adler

74

,

J. Adolfsson

80

,

M.M. Aggarwal

99

,

G. Aglieri Rinella

33

,

M. Agnello

30

,

N. Agrawal

10

,

53

,

Z. Ahammed

141

,

S. Ahmad

16

,

S.U. Ahn

76

,

A. Akindinov

91

,

M. Al-Turany

106

,

S.N. Alam

141

,

D.S.D. Albuquerque

122

,

D. Aleksandrov

87

,

B. Alessandro

58

,

H.M. Alfanda

6

,

R. Alfaro Molina

71

,

B. Ali

16

,

Y. Ali

14

,

A. Alici

10

,

26

,

53

,

A. Alkin

2

,

J. Alme

21

,

T. Alt

68

,

L. Altenkamper

21

,

I. Altsybeev

112

,

M.N. Anaam

6

,

C. Andrei

47

,

D. Andreou

33

,

H.A. Andrews

110

,

A. Andronic

144

,

M. Angeletti

33

,

V. Anguelov

103

,

C. Anson

15

,

T. Antiˇci ´c

107

,

F. Antinori

56

,

P. Antonioli

53

,

R. Anwar

125

,

N. Apadula

79

,

L. Aphecetche

114

,

H. Appelshäuser

68

,

S. Arcelli

26

,

R. Arnaldi

58

,

M. Arratia

79

,

I.C. Arsene

20

,

M. Arslandok

103

,

A. Augustinus

33

,

R. Averbeck

106

,

S. Aziz

61

,

M.D. Azmi

16

,

A. Badalà

55

,

Y.W. Baek

40

,

S. Bagnasco

58

,

X. Bai

106

,

R. Bailhache

68

,

R. Bala

100

,

A. Baldisseri

137

,

M. Ball

42

,

S. Balouza

104

,

R. Barbera

27

,

L. Barioglio

25

,

G.G. Barnaföldi

145

,

L.S. Barnby

93

,

V. Barret

134

,

P. Bartalini

6

,

K. Barth

33

,

E. Bartsch

68

,

F. Baruffaldi

28

,

N. Bastid

134

,

S. Basu

143

,

G. Batigne

114

,

B. Batyunya

75

,

D. Bauri

48

,

J.L. Bazo Alba

111

,

I.G. Bearden

88

,

C. Bedda

63

,

N.K. Behera

60

,

I. Belikov

136

,

A.D.C. Bell Hechavarria

144

,

F. Bellini

33

,

R. Bellwied

125

,

V. Belyaev

92

,

G. Bencedi

145

,

S. Beole

25

,

A. Bercuci

47

,

Y. Berdnikov

97

,

D. Berenyi

145

,

R.A. Bertens

130

,

D. Berzano

58

,

M.G. Besoiu

67

,

L. Betev

33

,

A. Bhasin

100

,

I.R. Bhat

100

,

M.A. Bhat

3

,

H. Bhatt

48

,

B. Bhattacharjee

41

,

A. Bianchi

25

,

L. Bianchi

25

,

N. Bianchi

51

,

J. Bielˇcík

36

,

J. Bielˇcíková

94

,

A. Bilandzic

104

,

117

,

G. Biro

145

,

R. Biswas

3

,

S. Biswas

3

,

J.T. Blair

119

,

D. Blau

87

,

C. Blume

68

,

G. Boca

139

,

F. Bock

33

,

95

,

A. Bogdanov

92

,

S. Boi

23

,

L. Boldizsár

145

,

A. Bolozdynya

92

,

M. Bombara

37

,

G. Bonomi

140

,

H. Borel

137

,

A. Borissov

92

,

144

,

H. Bossi

146

,

E. Botta

25

,

L. Bratrud

68

,

P. Braun-Munzinger

106

,

M. Bregant

121

,

M. Broz

36

,

E.J. Brucken

43

,

E. Bruna

58

,

G.E. Bruno

105

,

M.D. Buckland

127

,

D. Budnikov

108

,

H. Buesching

68

,

S. Bufalino

30

,

O. Bugnon

114

,

P. Buhler

113

,

P. Buncic

33

,

Z. Buthelezi

72

,

131

,

J.B. Butt

14

,

J.T. Buxton

96

,

S.A. Bysiak

118

,

D. Caffarri

89

,

A. Caliva

106

,

E. Calvo Villar

111

,

R.S. Camacho

44

,

P. Camerini

24

,

A.A. Capon

113

,

F. Carnesecchi

10

,

26

,

R. Caron

137

,

J. Castillo Castellanos

137

,

A.J. Castro

130

,

E.A.R. Casula

54

,

F. Catalano

30

,

C. Ceballos Sanchez

52

,

P. Chakraborty

48

,

S. Chandra

141

,

W. Chang

6

,

S. Chapeland

33

,

M. Chartier

127

,

S. Chattopadhyay

141

,

S. Chattopadhyay

109

,

A. Chauvin

23

,

C. Cheshkov

135

,

B. Cheynis

135

,

V. Chibante Barroso

33

,

D.D. Chinellato

122

,

S. Cho

60

,

P. Chochula

33

,

T. Chowdhury

134

,

P. Christakoglou

89

,

C.H. Christensen

88

,

P. Christiansen

80

,

T. Chujo

133

,

C. Cicalo

54

,

L. Cifarelli

10

,

26

,

F. Cindolo

53

,

J. Cleymans

124

,

F. Colamaria

52

,

D. Colella

52

,

A. Collu

79

,

M. Colocci

26

,

M. Concas

58

,

ii

,

G. Conesa Balbastre

78

,

Z. Conesa del Valle

61

,

G. Contin

24

,

127

,

J.G. Contreras

36

,

T.M. Cormier

95

,

Y. Corrales Morales

25

,

P. Cortese

31

,

M.R. Cosentino

123

,

F. Costa

33

,

S. Costanza

139

,

P. Crochet

134

,

E. Cuautle

69

,

P. Cui

6

,

L. Cunqueiro

95

,

D. Dabrowski

142

,

T. Dahms

104

,

117

,

A. Dainese

56

,

F.P.A. Damas

114

,

137

,

M.C. Danisch

103

,

A. Danu

67

,

D. Das

109

,

I. Das

109

,

P. Das

85

,

P. Das

3

,

S. Das

3

,

A. Dash

85

,

S. Dash

48

,

S. De

85

,

A. De Caro

29

,

G. de Cataldo

52

,

J. de Cuveland

38

,

A. De Falco

23

,

D. De Gruttola

10

,

N. De Marco

58

,

S. De Pasquale

29

,

S. Deb

49

,

B. Debjani

3

,

H.F. Degenhardt

121

,

Figura

Fig. 1. Invariant mass distribution of the   γ and   γ candidates, in two p T intervals of 1
Fig. 2. Measured correlation function of p–p ⊕ p–p . Statistical (bars) and systematic uncertainties (boxes) are shown separately

Riferimenti

Documenti correlati

In this experimental study, we wish to go beyond previous studies that used pre-manipulated adipose tissue for nerve reconstruction (with the goal of extracting the stromal

The key difference between the two decision maker groups is the shape of their utility/utility function: the Econs accomplishing the von Neumann-Morgenstern

In this thesis, an ontological approach is proposed to support the devel- opment of safety-critical systems, also implementing a tool that enables its enactment in the framework

[16] Deshpande, P., and Sutar, K. Deletion-restriction in toric arrangements, 2014. Affine and toric hyperplane arrangements. Topologie alg´ebrique et th´eorie des

L'abominevole uomo delle nevi non sarebbe altro che un orso: a dimostrarlo sono le analisi del Dna condotte su nove 'reperti' ritrovati tra Tibet e Nepal e attribuiti dal

RT-PCR was also performed with primers spanning GJB1 exon 2, and the results un- derwent a semiquantitative densitometric analysis of corresponding electrophoretic bands

National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Energie Atomique (CEA) and Institut National de Physique Nucléaire et

[r]