• Non ci sono risultati.

Determination of the top-quark pole mass and strong coupling constant from the tt̄ production cross section in pp collisions at √s = 7 TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Determination of the top-quark pole mass and strong coupling constant from the tt̄ production cross section in pp collisions at √s = 7 TeV"

Copied!
22
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Determination of the top-quark pole mass and strong coupling

constant from the t¯

t production cross section in pp collisions

at

s

=

7 TeV

.CMS Collaboration CERN, Switzerland a r t i c l e i n f o a b s t r a c t Article history: Received 7 July 2013

Received in revised form 20 November 2013 Accepted 2 December 2013

Available online 6 December 2013 Editor: M. Doser Keywords: CMS Physics Top Quark Pair Cross section Mass QCD Strong Coupling Constant

The inclusive cross section for top-quark pair production measured by the CMS experiment in proton– proton collisions at a center-of-mass energy of 7 TeV is compared to the QCD prediction at next-to-next-to-leading order with various parton distribution functions to determine the top-quark pole mass, mpolet ,

or the strong coupling constant,αS. With the parton distribution function set NNPDF2.3, a pole mass of

176.7+33..84 GeV is obtained when constrainingαS at the scale of the Z boson mass, mZ, to the current

world average. Alternatively, by constraining mpolet to the latest average from direct mass measurements, a value of αS(mZ)=0.1151+00..00330032is extracted. This is the first determination ofαS using events from

top-quark production.

©2013 The Authors. Published by Elsevier B.V.

1. Introduction

The Large Hadron Collider (LHC) has provided a wealth of proton–proton collisions, which has enabled the Compact Muon Solenoid (CMS) experiment [1]to measure cross sections for the production of top-quark pairs (t¯t) with high precision employing a variety of approaches[2–10]. Comparing the presently available results, obtained at a center-of-mass energy,√s, of 7 TeV, to the-oretical predictions allows for stringent tests of the underlying models and for constraints on fundamental parameters. Top-quark pair production can be described in the framework of quantum chromodynamics (QCD) and calculations for the inclusive t¯t cross section, σt¯t, have recently become available to complete next-to-next-to-leading order (NNLO) in perturbation theory[11]. Crucial inputs to these calculations are: the top-quark mass, mt; the strong coupling constant, αS; and the gluon distribution in the proton,

 E-mail address:cms-publication-committee-chair@cern.ch.

since t¯t production at LHC energies is expected to occur predomi-nantly via gluon–gluon fusion.

The top-quark mass is one of the fundamental parameters of the standard model (SM) of particle physics. Its value significantly affects predictions for many observables either directly or via ra-diative corrections. As a consequence, the measured mt is one of the key inputs to electroweak precision fits, which enable com-parisons between experimental results and predictions within and beyond the SM. Furthermore, together with the Higgs-boson mass and αS, mt has direct implications on the stability of the elec-troweak vacuum[12,13]. The most precise result for mt, obtained by combining direct measurements performed at the Tevatron, is 173.18±0.94 GeV[14]. Similar measurements performed by the CMS Collaboration [2,15–17]are in agreement with the Tevatron result and of comparable precision. However, except for a few cases [17], these direct measurements rely on the relation between mt and the respective experimental observable, e.g., a reconstructed invariant mass, as expected from simulated events. In QCD be-yond leading order, mt depends on the renormalization scheme [18,19]. The available Monte Carlo generators contain matrix el-ements at leading order or next-to-leading order (NLO), while 0370-2693©2013 The Authors. Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.physletb.2013.12.009

Open access under CC BY license.

(2)

higher orders are simulated by applying parton showering. Studies suggest that mt as implemented in Monte Carlo generators cor-responds approximately to the pole (“on-shell”) mass, mpolet , but that the value of the true pole mass could be of the order of 1 GeV higher compared to mtin the current event generators[20]. In addition to direct mt measurements, the mass dependence of the QCD prediction for σt¯t can be used to determine mt by com-paring the measured to the predicted cross section[13,19,21–24]. Although the sensitivity ofσt¯t to mt might not be strong enough to make this approach competitive in precision, it yields results af-fected by different sources of systematic uncertainties compared to the direct mt measurements and allows for extractions of mt in theoretically well-defined mass schemes. It has been advocated to directly extract the MS mass of the top quark using the σt¯t prediction in that scheme [21]. The relation between pole and MS mass is known to three-loop level in QCD but might receive large electroweak corrections[25]. In principle, the difference be-tween the results obtained when extracting mt in the pole and converting it to the MS scheme or extracting the MS mass di-rectly should be small in view of the precision that the extrac-tion of mt from the inclusive σt¯t at a hadron collider provides. Therefore, only the pole mass scheme is employed in this Let-ter.

With the exception of the quark masses,αS is the only free pa-rameter of the QCD Lagrangian. While the renormalization group equation predicts the energy dependence of the strong coupling, i.e., gives a functional form for αS(Q), where Q is the energy scale of the process, actual values of αS can only be obtained based on experimental data. By convention and to facilitate com-parisons, αS values measured at different energy scales are typ-ically evolved to Q =mZ, the mass of the Z boson. The current world average forαS(mZ)is 0.1184±0.0007[26]. In spite of this relatively precise result, the uncertainty onαS still contributes sig-nificantly to many QCD predictions, including expected cross sec-tions for top-quark pairs or Higgs bosons. Furthermore, thus far very few measurements allowαS to be tested at high Q and the precision on the average forαS(mZ)is driven by low- Q measure-ments. Energies up to 209 GeV were probed with hadronic final states in electron–positron collisions at LEP using NNLO predic-tions[27–30]. Jet measurements at the Tevatron and the LHC have recently extended the range up to 400 GeV [31], 600 GeV [32], and 1.4 TeV[33]. However, most predictions for jet production in hadron collisions are only available up to NLO QCD. Even when these predictions are available at approximate NNLO, as used in [34], they suffer from significant uncertainties related to the choice and variation of the renormalization and factorization scales, μR andμF, as well as from uncertainties related to non-perturbative corrections.

In cross section calculations, αs appears not only in the ex-pression for the parton–parton interaction but also in the QCD evolution of the parton distribution functions (PDFs). Varying the value of αS(mZ) in the σt¯t calculation therefore requires a con-sistent modification of the PDFs. Moreover, a strong correlation betweenαS and the gluon PDF at large partonic momentum frac-tions is expected to significantly enhance the sensitivity ofσt¯t to αS [35].

In this Letter, the predictedσt¯tis compared to the most precise single measurement to date[6], and values of mpolet andαS(mZ) are determined. This extraction is performed under the assump-tion that the measuredσt¯t is not affected by non-SM physics. The interplay of the values of mpolet ,αsand the proton PDFs in the pre-diction ofσt¯t is studied. Five different PDF sets, available at NNLO, are employed and for each a series of different choices ofαS(mZ) are considered. A simultaneous extraction of top-quark mass and

strong coupling constant from the total t¯t cross section alone is not possible since both parameters alter the predictedσt¯t in such a way that any variation of one parameter can be compensated by a variation of the other. Values of mpolet andαS(mZ)are therefore determined at fixed values ofαS(mZ) and mpolet , respectively. For the mpolet extraction,αS(mZ)is constrained to the latest world av-erage value with its corresponding uncertainty (0.1184±0.0007) [26]. Furthermore, it is assumed that the mt parameter of the Monte Carlo generator that is employed in the σt¯t measurement is equal to mpolet within ±1.00 GeV [20]. For the αS extraction, mpolet is set to the Tevatron average of 173.18±0.94 GeV [14]. To account for the possible difference between the pole mass and the Monte Carlo generator mass [20], an additional uncertainty, assumed to be 1.00 GeV, is added in quadrature to the experimen-tal uncertainty, resulting in a toexperimen-tal uncertainty on the top-quark mass constraint,δmpolet , of 1.4 GeV. Although the potentialαS de-pendence of the direct mt measurements has not been explicitly evaluated, it is assumed to be covered by the quoted mass uncer-tainty.

2. Predicted cross section

The expectedσt¯thas been calculated to NNLO for all production channels, namely the all-fermionic scattering modes (qq, qq, qq, qq→t¯t+X )[36,37], the reaction qg→t¯t+X [38], and the dom-inant process gg→t¯t+X [11]. In the present analysis, these cal-culations are used as implemented in the program Top++ 2.0[39]. Soft-gluon resummation is performed at next-to-next-leading-log (NNLL) accuracy [40,41]. The scales μR and μF are set to mpolet . In order to evaluate the theoretical uncertainty of the fixed-order calculation, the missing contributions from higher orders are es-timated by varying μR and μF up and down by a factor of 2 independently, while using the restriction 0.5μF/μR2. These choices for the central scale and the variation procedure were sug-gested by the authors of the NNLO calculations and used for earlier

σt¯t predictions as well[42].

Five different NNLO PDF sets are employed: ABM11 [43], CT10 [44], HERAPDF1.5 [45], MSTW2008 [46,47], and NNPDF2.3 [48]. The corresponding uncertainties are calculated at the 68% confidence level for all PDF sets. This is done by recalculating the σt¯t at NNLO+NNLL for each of the provided eigenvectors or replicas of the respective PDF set and then performing er-ror propagation according to the prescription of that PDF group. In the specific case of the CT10 PDF set, the uncertainties are provided for the 90% confidence level only. For this Letter, follow-ing the recommendation of the CTEQ group, these uncertainties are adjusted using the general relation between confidence inter-vals based on Gaussian distributions [26], i.e., scaled down by a factor of√2 erf−1(0.90)=1.64, where erf denotes the error func-tion.

The dependence of the predictedσt¯t on the choice of mpolet is studied by varying mpolet in the range from 130 to 220 GeV in steps of 1 GeV and found to be well described by a third-order polyno-mial in mpolet divided by (mpolet )4. The αS dependence of σt¯t is studied by varying the value ofαS(mZ)over the entire valid range for a particular PDF set, as listed inTable 1. The relative change of

σt¯t as a function ofαS(mZ) can be parametrized using a second-order polynomial in αS(mZ), where the three coefficients of that polynomial depend linearly on mpolet .

The resulting σt¯t predictions are compared in Fig. 1, both as a function of mpolet and of αS(mZ). For a given value of αS(mZ), the predictions based on NNPDF2.3 and CT10 are very similar. The cross sections obtained with MSTW2008 and HERAPDF1.5 are

(3)

Table 1

DefaultαS(mZ)values and αS(mZ)variation ranges of the NNLO PDF sets used

in this analysis. Because the NNPDF2.3 PDF set does not have a default value of

αS(mZ), preferring to provide the full uncertainties and systematic variations for

variousαS(mZ)points, theαS(mZ)value obtained by the NNPDF Collaboration with

NNPDF2.1[49]is used. The step size for theαS(mZ)scans is 0.0010 in all cases. The

uncertainties on the default values are shown for illustration purposes only. Default

αS(mZ)

Uncertainty ProvidedαS(mZ)scan

Range # of points ABM11 0.1134 ±0.0011 0.1040–0.1200 17 CT10 0.1180 ±0.0020 0.1100–0.1300 21 HERAPDF1.5 0.1176 ±0.0020 0.1140–0.1220 9 MSTW2008 0.1171 ±0.0014 0.1070–0.1270 21 NNPDF2.3 0.1174 ±0.0007 0.1140–0.1240 11

Fig. 1. Predicted t¯t cross section at NNLO+NNLL, as a function of the top-quark pole mass (top) and of the strong coupling constant (bottom), using five different NNLO PDF sets, compared to the cross section measured by CMS assuming mt=mpolet .

The uncertainties on the measuredσt¯tas well as the renormalization and

factor-ization scale and PDF uncertainties on the prediction with NNPDF2.3 are illustrated with filled bands. The uncertainties on theσt¯tpredictions using the other PDF sets

are indicated only in the bottom panel at the corresponding defaultαS(mZ)values.

The mpolet andαS(mZ)regions favored by the direct measurements at the Tevatron

and by the latest world average, respectively, are shown as hatched areas. In the top panel, the inner (solid) area of the vertical band corresponds to the original uncer-tainty of the direct mtaverage, while the outer (hatched) area additionally accounts

for the possible difference between this mass and mpolet .

slightly higher while the predictions obtained with ABM11 are sig-nificantly lower due to a smaller gluon density in the relevant kinematic range [43]. In addition to the absolute normalization, differences in the slope ofσt¯tas a function ofαS(mZ)are observed between some of the PDF sets.

3. Measured cross section

In this Letter, the most precise single measurement for σt¯t [6] is used. It was derived at √s=7 TeV by the CMS Collaboration from data collected in 2011 in the dileptonic decay channel and corresponding to an integrated luminosity of 2.3 fb−1. Assuming mt=172.5 GeV andαS(mZ)=0.1180, the observed cross section is 161.9±6.7 pb. Systematic effects on this measurement from the choice and uncertainties of the PDFs were studied and found to be negligible.

The measuredσt¯t shows a dependence on the value of mt that is used in the Monte Carlo simulations since the change in the event kinematics affects the expected selection efficiency and thus the acceptance corrections that are employed to infer σt¯t from the observed event yield. A parametrization for this dependence, which is illustrated in Fig. 1, was already given in Section 8 of Ref. [6]. At mt=173.2 GeV, for example, the observed cross sec-tion is 161.0 pb. The relative uncertainty of 4.1% on the measured

σt¯tis independent of mtto very good approximation.

Changes of the assumed value ofαS(mZ)in the simulation used to derive the acceptance corrections can alter the measuredσt¯t as well, which is discussed in this Letter for the first time. QCD radia-tion effects increase at higherαS(mZ), both at the matrix-element level and at the hadronization level. The αS(mZ)-dependence of the acceptance corrections is studied using the NLO CTEQ6AB PDF sets [50], and the Powheg Box 1.4 [51,52] NLO generator for t¯t production interfaced with pythia 6.4.24[53]for the parton show-ering. Additionally, the impact of αS(mZ) variations on the ac-ceptance is studied with standalone pythia as a plain leading-order generator with parton showering and cross-checked with mcfm 6.2 [54] as an NLO prediction without parton showering. In all cases, a relative change of the acceptance by less than 1% is observed when varyingαS(mZ)by ±0.0100 with respect to the CTEQ reference value of 0.1180. This is accounted for by applying an αS(mZ)-dependent uncertainty to the measuredσt¯t. This addi-tional uncertainty is also included in the uncertainty band shown in Fig. 1. Over the relevant αS(mZ) range, there is almost no in-crease in the total uncertainty of 4.1% on the measuredσt¯t.

In the mt andαS(mZ) regions favored by the direct measure-ments at the Tevatron and by the latest world average, respec-tively, the measured and the predicted cross section are compat-ible within their uncertainties for all considered PDF sets. When using ABM11 with its default αS(mZ), the discrepancy between measured and predicted cross section is larger than one standard deviation.

4. Probabilistic approach

In the following, the theory prediction for σt¯t is employed to construct a Bayesian prior to the cross section measurement, from which a joint posterior in σt¯t, m

pole

t and αS(mZ) is derived. Fi-nally, this posterior is marginalized by integration over σt¯t and a Bayesian confidence interval for mpolet or αS(mZ) is computed based on the external constraint forαS(mZ)or mpolet , respectively.

The probability function for the predicted cross section, ftht¯t), is obtained through an analytic convolution of two probability dis-tributions, one accounting for the PDF uncertainty and the other for scale uncertainties. A Gaussian distribution of width δPDF is used to describe the PDF uncertainty. Given that no particular probability distribution is known that should be adequate for the confidence interval obtained from the variation of μR and μF

[42], the corresponding uncertainty on the σt¯t prediction is ap-proximated using a flat prior, i.e., a rectangular function that pro-vides equal probability over the whole range covered by the scale

(4)

Fig. 2. Probability distributions for the predicted t¯t cross section at NNLO+NNLL with mpolet =173.2 GeV,αS(mZ)=0.1184 and the NNLO parton distributions from

NNPDF2.3. The resulting probability, ftht¯t), represented by a solid line, is obtained

by convolving a Gaussian distribution (filled area) that accounts for the PDF un-certainty with a rectangular function (dashed line) that covers the scale variation uncertainty.

variation and vanishes elsewhere. The resulting probability func-tion is given by:

ftht¯t)= 1 2t(¯th)σt(¯tl))  erf σ(h) t¯t −σt¯t √ 2δPDF  −erf σ(l) t¯t −σt¯t √ 2δPDF  .

Here,σt(¯tl)andσt(¯th)denote the lowest and the highest cross section values, respectively, that are obtained when varyingμR andμF as described in Section 2. An example for the resulting probability distributions is shown inFig. 2.

The probability distribution ftht¯t) is multiplied by another Gaussian probability, fexpt¯t), which represents the measured cross section and its uncertainty, to obtain the most probable mpolet orαS(mZ)value for a givenαS(mZ)or mpolet , respectively, from the maximum of the marginalized posterior:

P(x)=



fexpt¯t|x)ftht¯t|x)dσt¯t, x=mpolet ,αS(mZ). Examples of P(mpolet ) and P(αS) are shown inFig. 3. Confidence intervals are determined from the 68% area around the maximum of the posterior and requiring equal function values at the left and right edges.

The approximate contributions of the uncertainties on the measured and the predicted cross sections to the width of this Bayesian confidence interval can be estimated by repeatedly rescal-ing the size of the correspondrescal-ing uncertainty component. The widths of the obtained confidence intervals are then used to ex-trapolate to the case in which a given component vanishes.

To assess the impact of the uncertainties on theαS(mZ) and

mpolet values that are used as constraints in the present analysis, P(mpolet ) is re-evaluated at αS(mZ)=0.1177 and 0.1191, reflect-ing the ±0.0007 uncertainty on the αS(mZ) world average, and

P(αS) is re-evaluated at mpolet =171.8 and 174.6 GeV, reflect-ing theδmpolet =1.4 GeV as explained in Section 1. The resulting shifts in the most likely values of mpolet andαS(mZ)are added in quadrature to those obtained from the 68% areas of the posteriors calculated with the central values of the constraints.

Fig. 3. Marginal posteriors P(mpolet )(top) and P(αS)(bottom) based on the cross

section prediction at NNLO+NNLL with the NNLO parton distributions from NNPDF2.3. The posteriors are constructed as described in the text. Here, P(mpolet )

is shown forαS(mZ)=0.1184 and P(αS)for mpolet =173.2 GeV.

5. Results and conclusions

Values of the top-quark pole mass determined using the t¯t cross section measured by CMS together with the cross section predic-tion from NNLO+NNLL QCD and five different NNLO PDF sets are listed in Table 2. These values are extracted under the assump-tion that the mt parameter in the Monte Carlo generator that was employed to obtain the mass-dependent acceptance correction of the measured cross section, shown inFig. 1, is equal to the pole mass. A difference of 1.0 GeV between the two mass definitions [20] would result in changes of 0.3–0.6 GeV in the extracted pole masses, which is included as a systematic uncertainty. As illus-trated inFig. 4, the results based on NNPDF2.3, CT10, MSTW2008, and HERAPDF1.5 are higher than the latest average of direct mt measurements but generally compatible within the uncertainties. They are also consistent with the indirect determination of the top-quark pole mass obtained in the electroweak fits[55,56]when employing the mass of the new boson discovered at the LHC [57, 58] under the assumption that this is the SM Higgs boson. The central mpolet value obtained with the ABM11 PDF set, which has a significantly smaller gluon density than the other PDF sets, is also compatible with the average from direct mt measurements. Note, however, that all these results in Table 2 are obtained employing theαS(mZ)world average of 0.1184±0.0007, while ABM11 with its defaultαS(mZ)of 0.1134±0.0011 would yield an mpolet value of 166.3+33..31GeV.

(5)

Table 2

Results obtained for mpolet by comparing the measured t¯t cross section to the NNLO+NNLL prediction with different NNLO PDF sets. The total uncertainties account for the

full uncertainty on the measured cross section (σmeas

t¯t ), the PDF and scale (μR,F) uncertainties on the predicted cross section, the uncertainties of theαS(mZ)world average

and of the LHC beam energy (ELHC), and the ambiguity in translating the dependence of the measured cross section on the top-quark mass value used in the Monte Carlo

generator (mMC

t ) into the pole-mass scheme. mpolet

(GeV)

Uncertainty on mpolet (GeV)

Total σmeas t¯t PDF μR,F αS ELHC m MC t ABM11 172.7 +33..95 + 2.8 −2.5 + 2.2 −2.0 + 0.7 −0.7 + 1.0 −1.0 + 0.8 −0.8 + 0.4 −0.3 CT10 177.0 +43..38 + 3.2 −2.8 + 2.4 −2.0 + 0.9 −0.9 + 0.8 −0.8 + 0.9 −0.9 + 0.5 −0.4 HERAPDF1.5 179.5 +43..38 + 3.5 −3.0 + 1.7 −1.5 + 0.9 −0.8 + 1.2 −1.1 + 1.0 −1.0 + 0.6 −0.5 MSTW2008 177.9 +43..16 + 3.4 −2.9 + 1.6 −1.4 + 0.9 −0.9 + 0.9 −0.9 + 0.9 −0.9 + 0.5 −0.5 NNPDF2.3 176.7 +33..84 + 3.1 −2.8 + 1.5 −1.3 + 0.9 −0.9 + 0.7 −0.7 + 0.9 −0.9 + 0.5 −0.4 Table 3

Results obtained forαS(mZ)by comparing the measured t¯t cross section to the NNLO+NNLL prediction with different NNLO PDF sets. The total uncertainties account for

the full uncertainty on the measured cross section (σmeas

t¯t ), the PDF and scale (μR,F) uncertainties on the predicted cross section, the uncertainty assigned to the knowledge

of mpolet , and the uncertainty of the LHC beam energy (ELHC).

αS(mZ) Uncertainty onαS(mZ) Total σmeas t¯t PDF μR,F m pole t ELHC ABM11 0.1187 +00..00270027 + 0.0018 −0.0019 + 0.0015 −0.0014 + 0.0006 −0.0005 + 0.0010 −0.0010 + 0.0006 −0.0006 CT10 0.1151 +00..00340034 + 0.0024 −0.0025 + 0.0018 −0.0016 + 0.0008 −0.0007 + 0.0012 −0.0013 + 0.0007 −0.0007 HERAPDF1.5 0.1143 +00..00240024 + 0.0018 −0.0019 + 0.0010 −0.0009 + 0.0005 −0.0004 + 0.0010 −0.0010 + 0.0006 −0.0006 MSTW2008 0.1144 +00..00310032 + 0.0024 −0.0025 + 0.0012 −0.0011 + 0.0008 −0.0007 + 0.0012 −0.0013 + 0.0007 −0.0008 NNPDF2.3 0.1151 +00..00330032 + 0.0025 −0.0025 + 0.0013 −0.0011 + 0.0009 −0.0008 + 0.0013 −0.0013 + 0.0008 −0.0008

Fig. 4. Results obtained for mpolet from the measured t¯t cross section together with

the prediction at NNLO+NNLL using different NNLO PDF sets. The filled symbols represent the results obtained when using theαS(mZ)world average, while the

open symbols indicate the results obtained with the defaultαS(mZ)value of the

respective PDF set. The inner error bars include the uncertainties on the measured cross section and on the LHC beam energy as well as the PDF and scale uncertain-ties on the predicted cross section. The outer error bars additionally account for the uncertainty on theαS(mZ)value used for a specific prediction. For comparison, the

latest average of direct mtmeasurements is shown as vertical band, where the inner

(solid) area corresponds to the original uncertainty of the direct mtaverage, while

the outer (hatched) area additionally accounts for the possible difference between this mass and mpolet .

The αS(mZ) values obtained when fixing the value of mpolet to 173.2±1.4 GeV, i.e., inverting the logic of the extraction, are listed inTable 3. As illustrated inFig. 5, the results obtained us-ing NNPDF2.3, CT10, MSTW2008, and HERAPDF1.5 are lower than theαS(mZ)world average but in most cases still compatible with it within the uncertainties. While theαS(mZ)value obtained with ABM11 is compatible with the world average, it is significantly dif-ferent from the defaultαS(mZ)of this PDF set.

Fig. 5. Results obtained forαS(mZ)from the measured t¯t cross section together

with the prediction at NNLO+NNLL using different NNLO PDF sets. The inner error bars include the uncertainties on the measured cross section and on the LHC beam energy as well as the PDF and scale uncertainties on the predicted cross section. The outer error bars additionally account for the uncertainty on mpolet . For comparison,

the latestαS(mZ)world average with its uncertainty is shown as a hatched band.

For each PDF set, the defaultαS(mZ)value and its uncertainty are indicated using

a dotted line and a shaded band.

Modeling the uncertainty related to the choice and variation of the renormalization and factorization scales with a Gaussian in-stead of the flat prior results in only minor changes of the mpolet and αS(mZ) values and uncertainties. With the precise NNLO+ NNLL calculation, these scale uncertainties are found to be of the size of 0.7–0.9 GeV on mpolet and 0.0004–0.0009 onαS(mZ), i.e., of the order of 0.3–0.8%.

The energy of the LHC beams is known to an accuracy of 0.65% [59] and thus the center-of-mass energy of 7 TeV with an uncertainty of ±46 GeV. Based on the expected dependence of

σt¯t on √

s, this can be translated into an additional uncertainty of ±1.8% on the comparison of the measured to the predicted t¯t cross

(6)

section, which yields an additional uncertainty of±(0.5–0.7)% on the obtained mpolet andαS(mZ)values.

For the main results of this Letter, the mpolet andαS(mZ)values determined with the parton densities of NNPDF2.3 are used. The primary motivation is that parton distributions derived using the NNPDF methodology can be explicitly shown to be parametrization independent, in the sense that results are unchanged even when the number of input parameters is substantially increased[60].

In summary, a top-quark pole mass of 176.7+33..84 GeV is ob-tained by comparing the measured cross section for inclusive t¯t production in proton–proton collisions at√s=7 TeV to QCD cal-culations at NNLO+NNLL. Due to the small uncertainty on the measured cross section and the state-of-the-art NNLO calculations, the precision of this result is higher compared to earlier determi-nations of mpolet following the same approach. This extraction pro-vides an important test of the mass scheme applied in Monte Carlo simulations and gives complementary information, with different sensitivity to theoretical and experimental uncertainties, than di-rect measurements of mt. Alternatively, αS(mZ)=0.1151+00..00330032 is obtained from the t¯t cross section when constraining mpolet to 173.2±1.4 GeV. This is the first determination of the strong cou-pling constant from top-quark production and the first αS(mZ) result at full NNLO QCD obtained at a hadron collider.

Acknowledgements

We thank Alexander Mitov for his help with the NNLO calcu-lations. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construc-tion and operaconstruc-tion of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

References

[1] CMS Collaboration, The CMS experiment at the CERN LHC, J. Instrum. 3 (2008) S08004,http://dx.doi.org/10.1088/1748-0221/3/08/S08004.

[2]CMS Collaboration, Measurement of the t¯t production cross section and the top quark mass in the dilepton channel in pp collisions at√s=7 TeV, J. High Energy Phys. 1107 (2011) 049, arXiv:1105.5661.

[3] CMS Collaboration, Measurement of the t¯t production cross section in pp collisions at√s=7 TeV using the kinematic properties of events with lep-tons and jets, Eur. Phys. J. C 71 (2011) 1721,http://dx.doi.org/10.1140/epjc/ s10052-011-1721-3, arXiv:1106.0902.

[4] CMS Collaboration, Measurement of the t¯t production cross section in pp

collisions at 7 TeV in lepton+ jets events using b-quark jet identification, Phys. Rev. D 84 (2011) 092004,http://dx.doi.org/10.1103/PhysRevD.84.092004, arXiv:1108.3773.

[5] CMS Collaboration, Measurement of the tt production cross section in pp col-¯

lisions at√s=7 TeV in dilepton final states containing aτ, Phys. Rev. D 85 (2012) 112007,http://dx.doi.org/10.1103/PhysRevD.85.112007, arXiv:1203.6810. [6] CMS Collaboration, Measurement of the t¯t production cross section in the dilepton channel in pp collisions at √s=7 TeV, J. High Energy Phys. 1211 (2012) 067,http://dx.doi.org/10.1007/JHEP11(2012)067, arXiv:1208.2671. [7] CMS Collaboration, Measurement of the t¯t production cross section in pp

col-lisions at√s=7 TeV with lepton+jets final states, Phys. Lett. B 720 (2013) 83,http://dx.doi.org/10.1016/j.physletb.2013.02.021, arXiv:1212.6682. [8] CMS Collaboration, Measurement of the t¯t production cross section in theτ+

jets channel in pp collisions at√s=7 TeV, Eur. Phys. J. C 73 (2013) 2386,

http://dx.doi.org/10.1140/epjc/s10052-013-2386-x, arXiv:1301.5755.

[9] CMS Collaboration, Measurement of the t¯t production cross section in the all-jet final state in pp collisions at√s=7 TeV, J. High Energy Phys. 1305 (2013) 065,http://dx.doi.org/10.1007/JHEP05(2013)065, arXiv:1302.0508.

[10] CMS Collaboration, Measurement of differential top-quark pair production cross sections in pp collisions at√s=7 TeV, Eur. Phys. J. C 73 (2013) 2339,

http://dx.doi.org/10.1140/epjc/s10052-013-2339-4, arXiv:1211.2220.

[11] M. Czakon, P. Fiedler, A. Mitov, The total top quark pair production cross-section at hadron colliders throughO(α4

S), Phys. Rev. Lett. 110 (2013) 252004, http://dx.doi.org/10.1103/PhysRevLett.110.252004, arXiv:1303.6254.

[12] G. Degrassi, S. Di Vita, J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Strumia, Higgs mass and vacuum stability in the Standard Model at NNLO, J. High Energy Phys. 1208 (2012) 098, http://dx.doi.org/10.1007/ JHEP08(2012)098, arXiv:1205.6497.

[13] S. Alekhin, A. Djouadi, S. Moch, The top quark and Higgs boson masses and the stability of the electroweak vacuum, Phys. Lett. B 716 (2012) 214,

http://dx.doi.org/10.1016/j.physletb.2012.08.024, arXiv:1207.0980.

[14] CDF Collaboration, D0 Collaboration, Combination of the top-quark mass measurements from the Tevatron collider, Phys. Rev. D 86 (2012) 092003,

http://dx.doi.org/10.1103/PhysRevD.86.092003, arXiv:1207.1069, an update can be found in arXiv:1305.3929.

[15] CMS Collaboration, Measurement of the top-quark mass in t¯t events with lepton+jets final states in pp collisions at√s=7 TeV, J. High Energy Phys. 1212 (2012) 105,http://dx.doi.org/10.1007/JHEP12(2012)105, arXiv:1209.2319. [16] CMS Collaboration, Measurement of the top-quark mass in t¯t events with dilepton final states in pp collisions at√s=7 TeV, Eur. Phys. J. C 72 (2012) 2202,http://dx.doi.org/10.1140/epjc/s10052-012-2202-z, arXiv:1209.2393. [17] CMS Collaboration, Measurement of masses in the t¯t system by kinematic

endpoints in pp collisions at √s=7 TeV, Eur. Phys. J. C 73 (2013) 2494,

http://dx.doi.org/10.1140/epjc/s10052-013-2494-7, arXiv:1304.5783.

[18] A.H. Hoang, I.W. Stewart, Top mass measurements from jets and the Tevatron top-quark mass, Nucl. Phys. B, Proc. Suppl. 185 (2008) 220,http://dx.doi.org/ 10.1016/j.nuclphysbps.2008.10.028, arXiv:0808.0222.

[19] V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak, L.L. Yang, Precision predictions for the t¯t production cross section at hadron colliders, Phys. Lett. B 703 (2011)

135,http://dx.doi.org/10.1016/j.physletb.2011.07.058, arXiv:1105.5824. [20] A. Buckley, J. Butterworth, S. Gieseke, D. Grellscheid, S. Höche, H. Hoeth,

F. Krauss, L. Lönnblad, E. Nurse, P. Richardson, S. Schumann, M.H. Sey-mour, T. Sjöstrand, P. Skands, B. Webber, General-purpose event genera-tors for LHC physics, Phys. Rep. 504 (2011) 145, http://dx.doi.org/10.1016/ j.physrep.2011.03.005, arXiv:1101.2599.

[21] U. Langenfeld, S. Moch, P. Uwer, Measuring the running top-quark mass, Phys. Rev. D 80 (2009) 054009,http://dx.doi.org/10.1103/PhysRevD.80.054009, arXiv:0906.5273.

[22] V.M. Abazov, et al., D0 Collaboration, Determination of the pole and MS masses of the top quark from the t¯t cross section, Phys. Lett. B 703 (2011) 422, http://dx.doi.org/10.1016/j.physletb.2011.08.015, arXiv:1104.2887.

[23] M. Beneke, P. Falgari, S. Klein, C. Schwinn, Hadronic top-quark pair pro-duction with NNLL threshold resummation, Nucl. Phys. B 855 (2012) 695,

http://dx.doi.org/10.1016/j.nuclphysb.2011.10.021, arXiv:1109.1536.

[24] M. Beneke, P. Falgari, S. Klein, J. Piclum, C. Schwinn, M. Ubiali, F. Yan, Inclusive top-pair production phenomenology with TOPIXS, J. High Energy Phys. 1207 (2012) 194,http://dx.doi.org/10.1007/JHEP07(2012)194, arXiv:1206.2454. [25] F. Jegerlehner, M.Y. Kalmykov, B.A. Kniehl, On the difference between the pole

and the MS masses of the top quark at the electroweak scale, Phys. Lett. B 722 (2013) 123,http://dx.doi.org/10.1016/j.physletb.2013.04.012, arXiv:1212.4319. [26] Particle Data Group, J. Berringer, et al., Review of particle physics, Phys. Rev. D

86 (2012) 010001,http://dx.doi.org/10.1103/PhysRevD.86.010001.

[27] G. Dissertori, A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, G. Hein-rich, G. Luisoni, H. Stenzel, Determination of the strong coupling con-stant using matched NNLO+NLLA predictions for hadronic event shapes in e+e− annihilations, J. High Energy Phys. 0908 (2009) 036,http://dx.doi.org/ 10.1088/1126-6708/2009/08/036, arXiv:0906.3436.

[28] G. Abbiendi, et al., OPAL Collaboration, Determination of αS using OPAL

hadronic event shapes at √s=91–209 GeV and resummed NNLO cal-culations, Eur. Phys. J. C 71 (2011) 1733, http://dx.doi.org/10.1140/epjc/ s10052-011-1733-z, arXiv:1101.1470.

(7)

[29] G. Dissertori, A. Gehrmann-DeRidder, T. Gehrmann, E.W.N. Glover, G. Heinrich, H. Stenzel, Precise determination of the strong coupling constant at NNLO in QCD from the three-jet rate in electron–positron annihilation at LEP, Phys. Rev. Lett. 104 (2010) 072002, http://dx.doi.org/10.1103/PhysRevLett.104.072002, arXiv:0910.4283.

[30] R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu, I.W. Stewart, Thrust at N3LL with

power corrections and a precision global fit forαS(mZ), Phys. Rev. D 83 (2011)

074021,http://dx.doi.org/10.1103/PhysRevD.83.074021, arXiv:1006.3080. [31] V.M. Abazov, et al., D0 Collaboration, Measurement of angular correlations

of jets at √s=1.96 TeV and determination of the strong coupling at high momentum transfers, Phys. Lett. B 718 (2012) 56, http://dx.doi.org/10.1016/ j.physletb.2012.10.003, arXiv:1207.4957.

[32] B. Malaescu, P. Starovoitov, Evaluation of the strong coupling constantαs

us-ing the ATLAS inclusive jet cross-section data, Eur. Phys. J. C 72 (2012) 2041,

http://dx.doi.org/10.1140/epjc/s10052-012-2041-y, arXiv:1203.5416.

[33] CMS Collaboration, Measurement of the ratio of the inclusive 3-jet cross sec-tion to the inclusive 2-jet cross secsec-tion in pp collisions at√s=7 TeV and first determination of the strong coupling constant in the TeV range, Eur. Phys. J. C (2013),http://dx.doi.org/10.1140/epjc/s10052-013-2604-6, arXiv:1304.7498. [34] V.M. Abazov, et al., D0 Collaboration, Determination of the strong coupling

con-stant from the inclusive jet cross section in pp collisions at¯ √s=1.96 TeV, Phys. Rev. D 80 (2009) 111107,http://dx.doi.org/10.1103/PhysRevD.80.111107, arXiv:0911.2710.

[35]M. Czakon, M.L. Mangano, A. Mitov, J. Rojo, Constraints on the gluon PDF from top quark pair production at hadron colliders, arXiv:1303.7215, 2013.

[36] P. Bärnreuther, M. Czakon, A. Mitov, Percent-level-precision physics at the teva-tron: next-to-next-to-leading order QCD corrections to qq¯→t¯t+X , Phys.

Rev. Lett. 109 (2012) 132001,http://dx.doi.org/10.1103/PhysRevLett.109.132001, arXiv:1204.5201.

[37] M. Czakon, A. Mitov, NNLO corrections to top-pair production at hadron col-liders: the all-fermionic scattering channels, J. High Energy Phys. 1212 (2012) 054,http://dx.doi.org/10.1007/JHEP12(2012)054, arXiv:1207.0236.

[38] M. Czakon, A. Mitov, NNLO corrections to top pair production at hadron colliders: the quark–gluon reaction, J. High Energy Phys. 1301 (2013) 080,

http://dx.doi.org/10.1007/JHEP01(2013)080, arXiv:1210.6832.

[39]M. Czakon, A. Mitov, Top++: a program for the calculation of the top-pair cross-section at hadron colliders, arXiv:1112.5675, 2011.

[40] M. Beneke, P. Falgari, C. Schwinn, Soft radiation in heavy-particle pair production: All-order colour structure and two-loop anomalous dimension, Nucl. Phys. B 828 (2010) 69,http://dx.doi.org/10.1016/j.nuclphysb.2009.11.004, arXiv:0907.1443.

[41] M. Czakon, A. Mitov, G.F. Sterman, Threshold resummation for top-pair hadroproduction to next-to-next-to-leading log, Phys. Rev. D 80 (2009) 074017,

http://dx.doi.org/10.1103/PhysRevD.80.074017, arXiv:0907.1790.

[42] M. Cacciari, S. Frixione, M.L. Mangano, P. Nason, G. Ridolfi, Updated predic-tions for the total production cross secpredic-tions of top and of heavier quark pairs at the Tevatron and at the LHC, J. High Energy Phys. 0809 (2008) 127,

http://dx.doi.org/10.1088/1126-6708/2008/09/127, arXiv:0804.2800.

[43] S. Alekhin, J. Blümlein, S. Moch, Parton distribution functions and benchmark cross sections at next-to-next-to-leading order, Phys. Rev. D 86 (2012) 054009,

http://dx.doi.org/10.1103/PhysRevD.86.054009, arXiv:1202.2281.

[44]J. Gao, M. Guzzi, J. Huston, H.-L. Lai, Z. Li, P. Nadolsk, J. Pumplin, D. Stump, C.-P. Yuan, The CT10 NNLO Global Analysis of QCD, arXiv:1302.6246, 2013.

[45] H1 Collaboration, ZEUS Collaboration, HERA combined results – proton struc-ture: HERAPDF1.5 NNLO,https://www.desy.de/h1zeus/combined_results/index. php?do=proton_structure, h1prelim-11-042, ZEUS-prel-11-002.

[46] A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189, http://dx.doi.org/10.1140/epjc/ s10052-009-1072-5, arXiv:0901.0002.

[47] A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Uncertainties onαS in global

PDF analyses and implications for predicted hadronic cross sections, Eur. Phys. J. C 64 (2009) 653, http://dx.doi.org/10.1140/epjc/s10052-009-1164-2, arXiv:0905.3531.

[48] R.D. Ball, V. Bertone, S. Carrazza, C.S. Deans, L.D. Debbio, S. Forte, A. Guffanti, N.P. Hartland, J.I. Latorre, J. Rojo, M. Ubiali, Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244, http://dx.doi.org/10.1016/ j.nuclphysb.2012.10.003, arXiv:1207.1303.

[49] R.D. Ball, V. Bertone, L. Del Debbio, S. Forte, A. Guffanti, J.I. Latorre, S. Li-onetti, J. Rojo, M. Ubiali, Precision NNLO determination ofαs(MZ)using an

unbiased global parton set, Phys. Lett. B 707 (2012) 66, http://dx.doi.org/ 10.1016/j.physletb.2011.11.053, arXiv:1110.2483.

[50] J. Pumplin, A. Belyaev, J. Huston, D. Stump, W.-K. Tung, Parton distributions and the strong coupling: CTEQ6AB PDFs, J. High Energy Phys. 0602 (2006) 032,

http://dx.doi.org/10.1088/1126-6708/2006/02/032, arXiv:hep-ph/0512167. [51] S. Alioli, P. Nason, C. Oleari, E. Re, A general framework for implementing NLO

calculations in shower Monte Carlo programs: the POWHEG BOX, J. High En-ergy Phys. 1006 (2010) 043,http://dx.doi.org/10.1007/JHEP06(2010)043, arXiv: 1002.2581.

[52] S. Frixione, P. Nason, G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction, J. High Energy Phys. 0709 (2007) 126,

http://dx.doi.org/10.1088/1126-6708/2007/09/126, arXiv:0707.3088.

[53] T. Sjöstrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual, J. High En-ergy Phys. 0605 (2006) 026,http://dx.doi.org/10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175.

[54]J.M. Campbell, R.K. Ellis, Top-quark processes at NLO in production and decay, arXiv:1204.1513, 2012.

[55] O. Eberhardt, G. Herbert, H. Lacker, A. Lenz, A. Menzel, U. Nierste, M. Wiebusch, Impact of a Higgs boson at a mass of 126 GeV on the standard model with three and four fermion generations, Phys. Rev. Lett. 109 (2012) 241802,

http://dx.doi.org/10.1103/PhysRevLett.109.241802, arXiv:1209.1101.

[56] M. Baak, M. Goebel, J. Haller, A. Hoecker, D. Kennedy, R. Kogler, K. Mönig, M. Schott, J. Stelzer, The electroweak fit of the standard model after the discovery of a new boson at the LHC, Eur. Phys. J. C 72 (2012) 2205,http://dx.doi.org/ 10.1140/epjc/s10052-012-2205-9, arXiv:1209.2716.

[57] ATLAS Collaboration, Observation of a new particle in the search for the Stan-dard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1,http://dx.doi.org/10.1016/j.physletb.2012.08.020, arXiv:1207.7214. [58] CMS Collaboration, Observation of a new boson at a mass of 125 GeV with

the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30,http://dx.doi.org/ 10.1016/j.physletb.2012.08.021, arXiv:1207.7235.

[59] J. Wenninger, Energy calibration of the LHC beams at 4 TeV, Accelera-tors & Technology Sector Reports, CERN-ATS-2013-040, CERN, 2013,http:// cdsweb.cern.ch/record/1546734.

[60] R.D. Ball, L.D. Debbio, S. Forte, A. Guffanti, J.I. Latorre, A. Piccione, J. Rojo, M. Ubialia, A determination of parton distributions with faithful un-certainty estimation, Nucl. Phys. B 809 (2009) 1, http://dx.doi.org/10.1016/ j.nuclphysb.2008.09.037, arXiv:0808.1231.

CMS Collaboration

S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan Yerevan Physics Institute, Yerevan, Armenia

W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan1, M. Friedl, R. Frühwirth1, V.M. Ghete,

N. Hörmann, J. Hrubec, M. Jeitler1, W. Kiesenhofer, V. Knünz, M. Krammer1, I. Krätschmer, D. Liko,

I. Mikulec, D. Rabady2, B. Rahbaran, C. Rohringer, H. Rohringer, R. Schöfbeck, J. Strauss, A. Taurok,

W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz1

Institut für Hochenergiephysik der OeAW, Wien, Austria

V. Mossolov, N. Shumeiko, J. Suarez Gonzalez National Centre for Particle and High Energy Physics, Minsk, Belarus

(8)

S. Alderweireldt, M. Bansal, S. Bansal, T. Cornelis, E.A. De Wolf, X. Janssen, A. Knutsson, S. Luyckx, L. Mucibello, S. Ochesanu, B. Roland, R. Rougny, Z. Staykova, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck

Universiteit Antwerpen, Antwerpen, Belgium

F. Blekman, S. Blyweert, J. D’Hondt, A. Kalogeropoulos, J. Keaveney, M. Maes, A. Olbrechts, S. Tavernier, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella

Vrije Universiteit Brussel, Brussel, Belgium

B. Clerbaux, G. De Lentdecker, L. Favart, A.P.R. Gay, T. Hreus, A. Léonard, P.E. Marage, A. Mohammadi, L. Perniè, T. Reis, T. Seva, L. Thomas, C. Vander Velde, P. Vanlaer, J. Wang

Université Libre de Bruxelles, Bruxelles, Belgium

V. Adler, K. Beernaert, L. Benucci, A. Cimmino, S. Costantini, S. Dildick, G. Garcia, B. Klein, J. Lellouch, A. Marinov, J. Mccartin, A.A. Ocampo Rios, D. Ryckbosch, M. Sigamani, N. Strobbe, F. Thyssen, M. Tytgat, S. Walsh, E. Yazgan, N. Zaganidis

Ghent University, Ghent, Belgium

S. Basegmez, C. Beluffi3, G. Bruno, R. Castello, A. Caudron, L. Ceard, C. Delaere, T. du Pree, D. Favart,

L. Forthomme, A. Giammanco4, J. Hollar, P. Jez, V. Lemaitre, J. Liao, O. Militaru, C. Nuttens, D. Pagano,

A. Pin, K. Piotrzkowski, A. Popov5, M. Selvaggi, J.M. Vizan Garcia

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

N. Beliy, T. Caebergs, E. Daubie, G.H. Hammad Université de Mons, Mons, Belgium

G.A. Alves, M. Correa Martins Junior, T. Martins, M.E. Pol, M.H.G. Souza Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

W.L. Aldá Júnior, W. Carvalho, J. Chinellato6, A. Custódio, E.M. Da Costa, D. De Jesus Damiao,

C. De Oliveira Martins, S. Fonseca De Souza, H. Malbouisson, M. Malek, D. Matos Figueiredo, L. Mundim,

H. Nogima, W.L. Prado Da Silva, A. Santoro, A. Sznajder, E.J. Tonelli Manganote6, A. Vilela Pereira

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

C.A. Bernardesb, F.A. Diasa,7, T.R. Fernandez Perez Tomeia, E.M. Gregoresb, C. Laganaa,

P.G. Mercadanteb, S.F. Novaesa, Sandra S. Padulaa

aUniversidade Estadual Paulista, São Paulo, Brazil bUniversidade Federal do ABC, São Paulo, Brazil

V. Genchev2, P. Iaydjiev2, S. Piperov, M. Rodozov, G. Sultanov, M. Vutova

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

A. Dimitrov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov University of Sofia, Sofia, Bulgaria

J.G. Bian, G.M. Chen, H.S. Chen, C.H. Jiang, D. Liang, S. Liang, X. Meng, J. Tao, J. Wang, X. Wang, Z. Wang, H. Xiao, M. Xu

Institute of High Energy Physics, Beijing, China

C. Asawatangtrakuldee, Y. Ban, Y. Guo, Q. Li, W. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, L. Zhang, W. Zou State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China

(9)

C. Avila, C.A. Carrillo Montoya, L.F. Chaparro Sierra, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria Universidad de Los Andes, Bogota, Colombia

N. Godinovic, D. Lelas, R. Plestina8, D. Polic, I. Puljak

Technical University of Split, Split, Croatia Z. Antunovic, M. Kovac University of Split, Split, Croatia

V. Brigljevic, S. Duric, K. Kadija, J. Luetic, D. Mekterovic, S. Morovic, L. Tikvica Institute Rudjer Boskovic, Zagreb, Croatia

A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis University of Cyprus, Nicosia, Cyprus

M. Finger, M. Finger Jr. Charles University, Prague, Czech Republic

A.A. Abdelalim9, Y. Assran10, S. Elgammal9, A. Ellithi Kamel11, M.A. Mahmoud12, A. Radi13,14

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt M. Kadastik, M. Müntel, M. Murumaa, M. Raidal, L. Rebane, A. Tiko National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

P. Eerola, G. Fedi, M. Voutilainen Department of Physics, University of Helsinki, Helsinki, Finland

J. Härkönen, V. Karimäki, R. Kinnunen, M.J. Kortelainen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, L. Wendland

Helsinki Institute of Physics, Helsinki, Finland T. Tuuva

Lappeenranta University of Technology, Lappeenranta, Finland

M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, L. Millischer, A. Nayak, J. Rander,

A. Rosowsky, M. Titov DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

S. Baffioni, F. Beaudette, L. Benhabib, M. Bluj15, P. Busson, C. Charlot, N. Daci, T. Dahms, M. Dalchenko,

L. Dobrzynski, A. Florent, R. Granier de Cassagnac, M. Haguenauer, P. Miné, C. Mironov, I.N. Naranjo, M. Nguyen, C. Ochando, P. Paganini, D. Sabes, R. Salerno, Y. Sirois, C. Veelken, A. Zabi

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

J.-L. Agram16, J. Andrea, D. Bloch, J.-M. Brom, E.C. Chabert, C. Collard, E. Conte16, F. Drouhin16,

J.-C. Fontaine16, D. Gelé, U. Goerlach, C. Goetzmann, P. Juillot, A.-C. Le Bihan, P. Van Hove

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France S. Gadrat

(10)

S. Beauceron, N. Beaupere, G. Boudoul, S. Brochet, J. Chasserat, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, T. Kurca, M. Lethuillier, L. Mirabito, S. Perries, L. Sgandurra, V. Sordini, Y. Tschudi, M. Vander Donckt, P. Verdier, S. Viret

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

Z. Tsamalaidze17

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia

C. Autermann, S. Beranek, B. Calpas, M. Edelhoff, L. Feld, N. Heracleous, O. Hindrichs, K. Klein, A. Ostapchuk, A. Perieanu, F. Raupach, J. Sammet, S. Schael, D. Sprenger, H. Weber, B. Wittmer,

V. Zhukov5

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

M. Ata, J. Caudron, E. Dietz-Laursonn, D. Duchardt, M. Erdmann, R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, D. Klingebiel, P. Kreuzer, M. Merschmeyer, A. Meyer, M. Olschewski, K. Padeken, P. Papacz, H. Pieta, H. Reithler, S.A. Schmitz, L. Sonnenschein, J. Steggemann, D. Teyssier, S. Thüer, M. Weber

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, W. Haj Ahmad, F. Hoehle, B. Kargoll,

T. Kress, Y. Kuessel, J. Lingemann2, A. Nowack, I.M. Nugent, L. Perchalla, O. Pooth, A. Stahl

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

M. Aldaya Martin, I. Asin, N. Bartosik, J. Behr, W. Behrenhoff, U. Behrens, M. Bergholz18, A. Bethani,

K. Borras, A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell, S. Choudhury, F. Costanza, C. Diez Pardos, S. Dooling, T. Dorland, G. Eckerlin, D. Eckstein, G. Flucke, A. Geiser, I. Glushkov, P. Gunnellini, S. Habib, J. Hauk, G. Hellwig, D. Horton, H. Jung, M. Kasemann, P. Katsas, C. Kleinwort, H. Kluge, M. Krämer,

D. Krücker, E. Kuznetsova, W. Lange, J. Leonard, K. Lipka, W. Lohmann18, B. Lutz, R. Mankel, I. Marfin,

I.-A. Melzer-Pellmann, A.B. Meyer, J. Mnich, A. Mussgiller, S. Naumann-Emme, O. Novgorodova, F. Nowak, J. Olzem, H. Perrey, A. Petrukhin, D. Pitzl, R. Placakyte, A. Raspereza, P.M. Ribeiro Cipriano,

C. Riedl, E. Ron, M.Ö. Sahin, J. Salfeld-Nebgen, R. Schmidt18, T. Schoerner-Sadenius, N. Sen, M. Stein,

R. Walsh, C. Wissing

Deutsches Elektronen-Synchrotron, Hamburg, Germany

V. Blobel, H. Enderle, J. Erfle, E. Garutti, U. Gebbert, M. Görner, M. Gosselink, J. Haller, K. Heine, R.S. Höing, G. Kaussen, H. Kirschenmann, R. Klanner, R. Kogler, J. Lange, I. Marchesini, T. Peiffer, N. Pietsch, D. Rathjens, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, A. Schmidt, M. Schröder,

T. Schum, M. Seidel, J. Sibille19, V. Sola, H. Stadie, G. Steinbrück, J. Thomsen, D. Troendle, E. Usai,

L. Vanelderen

University of Hamburg, Hamburg, Germany

C. Barth, C. Baus, J. Berger, C. Böser, E. Butz, T. Chwalek, W. De Boer, A. Descroix, A. Dierlamm,

M. Feindt, M. Guthoff2, F. Hartmann2, T. Hauth2, H. Held, K.H. Hoffmann, U. Husemann, I. Katkov5,

J.R. Komaragiri, A. Kornmayer2, P. Lobelle Pardo, D. Martschei, Th. Müller, M. Niegel, A. Nürnberg,

O. Oberst, J. Ott, G. Quast, K. Rabbertz, F. Ratnikov, S. Röcker, F.-P. Schilling, G. Schott, H.J. Simonis, F.M. Stober, R. Ulrich, J. Wagner-Kuhr, S. Wayand, T. Weiler, M. Zeise

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

G. Anagnostou, G. Daskalakis, T. Geralis, S. Kesisoglou, A. Kyriakis, D. Loukas, A. Markou, C. Markou, E. Ntomari

(11)

L. Gouskos, A. Panagiotou, N. Saoulidou, E. Stiliaris University of Athens, Athens, Greece

X. Aslanoglou, I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, E. Paradas University of Ioánnina, Ioánnina, Greece

G. Bencze, C. Hajdu, P. Hidas, D. Horvath20, F. Sikler, V. Veszpremi, G. Vesztergombi21, A.J. Zsigmond

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary

N. Beni, S. Czellar, J. Molnar, J. Palinkas, Z. Szillasi Institute of Nuclear Research ATOMKI, Debrecen, Hungary

J. Karancsi, P. Raics, Z.L. Trocsanyi, B. Ujvari University of Debrecen, Debrecen, Hungary

S.K. Swain22

National Institute of Science Education and Research, Bhubaneswar, India

S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, M. Kaur, M.Z. Mehta, M. Mittal, N. Nishu, L.K. Saini, A. Sharma, J.B. Singh

Panjab University, Chandigarh, India

Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, S. Malhotra, M. Naimuddin, K. Ranjan, P. Saxena, V. Sharma, R.K. Shivpuri

University of Delhi, Delhi, India

S. Banerjee, S. Bhattacharya, K. Chatterjee, S. Dutta, B. Gomber, Sa. Jain, Sh. Jain, R. Khurana, A. Modak, S. Mukherjee, D. Roy, S. Sarkar, M. Sharan

Saha Institute of Nuclear Physics, Kolkata, India

A. Abdulsalam, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty2, L.M. Pant, P. Shukla, A. Topkar

Bhabha Atomic Research Centre, Mumbai, India

T. Aziz, R.M. Chatterjee, S. Ganguly, S. Ghosh, M. Guchait23, A. Gurtu24, G. Kole, S. Kumar, M. Maity25,

G. Majumder, K. Mazumdar, G.B. Mohanty, B. Parida, K. Sudhakar, N. Wickramage26

Tata Institute of Fundamental Research – EHEP, Mumbai, India S. Banerjee, S. Dugad

Tata Institute of Fundamental Research – HECR, Mumbai, India

H. Arfaei, H. Bakhshiansohi, S.M. Etesami27, A. Fahim28, A. Jafari, M. Khakzad,

M. Mohammadi Najafabadi, S. Paktinat Mehdiabadi, B. Safarzadeh29, M. Zeinali

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran M. Grunewald

University College Dublin, Dublin, Ireland

M. Abbresciaa,b, L. Barbonea,b, C. Calabriaa,b, S.S. Chhibraa,b, A. Colaleoa, D. Creanzaa,c,

N. De Filippisa,c, M. De Palmaa,b, L. Fiorea, G. Iasellia,c, G. Maggia,c, M. Maggia, B. Marangellia,b,

(12)

R. Vendittia,b, P. Verwilligena, G. Zitoa aINFN Sezione di Bari, Bari, Italy

bUniversità di Bari, Bari, Italy cPolitecnico di Bari, Bari, Italy

G. Abbiendia, A.C. Benvenutia, D. Bonacorsia,b, S. Braibant-Giacomellia,b, L. Brigliadoria,b, R. Campaninia,b, P. Capiluppia,b, A. Castroa,b, F.R. Cavalloa, G. Codispotia,b, M. Cuffiania,b,

G.M. Dallavallea, F. Fabbria, A. Fanfania,b, D. Fasanellaa,b, P. Giacomellia, C. Grandia, L. Guiduccia,b, S. Marcellinia, G. Masettia, M. Meneghellia,b, A. Montanaria, F.L. Navarriaa,b, F. Odoricia, A. Perrottaa, F. Primaveraa,b, A.M. Rossia,b, T. Rovellia,b, G.P. Sirolia,b, N. Tosia,b, R. Travaglinia,b

aINFN Sezione di Bologna, Bologna, Italy bUniversità di Bologna, Bologna, Italy

S. Albergoa,b, M. Chiorbolia,b, S. Costaa,b, F. Giordanoa,2, R. Potenzaa,b, A. Tricomia,b, C. Tuvea,b aINFN Sezione di Catania, Catania, Italy

bUniversità di Catania, Catania, Italy

G. Barbaglia, V. Ciullia,b, C. Civininia, R. D’Alessandroa,b, E. Focardia,b, S. Frosalia,b, E. Galloa, S. Gonzia,b, V. Goria,b, P. Lenzia,b, M. Meschinia, S. Paolettia, G. Sguazzonia, A. Tropianoa,b aINFN Sezione di Firenze, Firenze, Italy

bUniversità di Firenze, Firenze, Italy

L. Benussi, S. Bianco, F. Fabbri, D. Piccolo INFN Laboratori Nazionali di Frascati, Frascati, Italy

P. Fabbricatorea, R. Musenicha, S. Tosia,b aINFN Sezione di Genova, Genova, Italy

bUniversità di Genova, Genova, Italy

A. Benagliaa, F. De Guioa,b, M.E. Dinardo, S. Fiorendia,b, S. Gennaia, A. Ghezzia,b, P. Govoni,

M.T. Lucchini2, S. Malvezzia, R.A. Manzonia,b,2, A. Martellia,b,2, D. Menascea, L. Moronia, M. Paganonia,b, D. Pedrinia, S. Ragazzia,b, N. Redaellia, T. Tabarelli de Fatisa,b

aINFN Sezione di Milano-Bicocca, Milano, Italy bUniversità di Milano-Bicocca, Milano, Italy

S. Buontempoa, N. Cavalloa,c, A. De Cosaa,b, F. Fabozzia,c, A.O.M. Iorioa,b, L. Listaa, S. Meolaa,d,2,

M. Merolaa, P. Paoluccia,2

aINFN Sezione di Napoli, Napoli, Italy bUniversità di Napoli ’Federico II’, Napoli, Italy cUniversità della Basilicata (Potenza), Napoli, Italy dUniversità G. Marconi (Roma), Napoli, Italy

P. Azzia, N. Bacchettaa, M. Bellatoa, M. Biasottoa,30, D. Biselloa,b, A. Brancaa,b, R. Carlina,b, P. Checchiaa, T. Dorigoa, F. Fanzagoa, M. Galantia,b,2, F. Gasparinia,b, U. Gasparinia,b, P. Giubilatoa,b, A. Gozzelinoa, K. Kanishcheva,c, S. Lacapraraa, I. Lazzizzeraa,c, M. Margonia,b, A.T. Meneguzzoa,b, J. Pazzinia,b, N. Pozzobona,b, P. Ronchesea,b, F. Simonettoa,b, E. Torassaa, M. Tosia,b, A. Triossia, S. Venturaa, P. Zottoa,b, A. Zucchettaa,b, G. Zumerlea,b

aINFN Sezione di Padova, Padova, Italy bUniversità di Padova, Padova, Italy cUniversità di Trento (Trento), Padova, Italy

M. Gabusia,b, S.P. Rattia,b, C. Riccardia,b, P. Vituloa,b aINFN Sezione di Pavia, Pavia, Italy

(13)

M. Biasinia,b, G.M. Bileia, L. Fanòa,b, P. Laricciaa,b, G. Mantovania,b, M. Menichellia, A. Nappia,b,†, F. Romeoa,b, A. Sahaa, A. Santocchiaa,b, A. Spieziaa,b

aINFN Sezione di Perugia, Perugia, Italy bUniversità di Perugia, Perugia, Italy

K. Androsova,31, P. Azzurria, G. Bagliesia, J. Bernardinia, T. Boccalia, G. Broccoloa,c, R. Castaldia,

M.A. Cioccia, R.T. D’Agnoloa,c,2, R. Dell’Orsoa, F. Fioria,c, L. Foàa,c, A. Giassia, M.T. Grippoa,31, A. Kraana, F. Ligabuea,c, T. Lomtadzea, L. Martinia,31, A. Messineoa,b, F. Pallaa, A. Rizzia,b, A. Savoy-Navarroa,32, A.T. Serbana, P. Spagnoloa, P. Squillaciotia, R. Tenchinia, G. Tonellia,b, A. Venturia, P.G. Verdinia, C. Vernieria,c

aINFN Sezione di Pisa, Pisa, Italy bUniversità di Pisa, Pisa, Italy

cScuola Normale Superiore di Pisa, Pisa, Italy

L. Baronea,b, F. Cavallaria, D. Del Rea,b, M. Diemoza, M. Grassia,b, E. Longoa,b, F. Margarolia,b,

P. Meridiania, F. Michelia,b, S. Nourbakhsha,b, G. Organtinia,b, R. Paramattia, S. Rahatloua,b, C. Rovellia, L. Soffia,b

aINFN Sezione di Roma, Roma, Italy bUniversità di Roma, Roma, Italy

N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, C. Biinoa, N. Cartigliaa, S. Casassoa,b, M. Costaa,b, N. Demariaa, C. Mariottia, S. Masellia, E. Migliorea,b, V. Monacoa,b, M. Musicha,

M.M. Obertinoa,c, G. Ortonaa,b, N. Pastronea, M. Pelliccionia,2, A. Potenzaa,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, A. Solanoa,b, A. Staianoa, U. Tamponia

aINFN Sezione di Torino, Torino, Italy bUniversità di Torino, Torino, Italy

cUniversità del Piemonte Orientale (Novara), Torino, Italy

S. Belfortea, V. Candelisea,b, M. Casarsaa, F. Cossuttia,2, G. Della Riccaa,b, B. Gobboa, C. La Licataa,b, M. Maronea,b, D. Montaninoa,b, A. Penzoa, A. Schizzia,b, A. Zanettia

aINFN Sezione di Trieste, Trieste, Italy bUniversità di Trieste, Trieste, Italy

S. Chang, T.Y. Kim, S.K. Nam Kangwon National University, Chunchon, Republic of Korea

D.H. Kim, G.N. Kim, J.E. Kim, D.J. Kong, Y.D. Oh, H. Park, D.C. Son Kyungpook National University, Daegu, Republic of Korea

J.Y. Kim, Zero J. Kim, S. Song

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Republic of Korea

S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, T.J. Kim, K.S. Lee, S.K. Park, Y. Roh Korea University, Seoul, Republic of Korea

M. Choi, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu University of Seoul, Seoul, Republic of Korea

Y. Choi, Y.K. Choi, J. Goh, M.S. Kim, E. Kwon, B. Lee, J. Lee, S. Lee, H. Seo, I. Yu Sungkyunkwan University, Suwon, Republic of Korea

I. Grigelionis, A. Juodagalvis Vilnius University, Vilnius, Lithuania

(14)

H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz33, R. Lopez-Fernandez, J. Martínez-Ortega, A. Sanchez-Hernandez, L.M. Villasenor-Cendejas

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico S. Carrillo Moreno, F. Vazquez Valencia Universidad Iberoamericana, Mexico City, Mexico

H.A. Salazar Ibarguen

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

D. Krofcheck

University of Auckland, Auckland, New Zealand

A.J. Bell, P.H. Butler, R. Doesburg, S. Reucroft, H. Silverwood University of Canterbury, Christchurch, New Zealand

M. Ahmad, M.I. Asghar, J. Butt, H.R. Hoorani, S. Khalid, W.A. Khan, T. Khurshid, S. Qazi, M.A. Shah, M. Shoaib

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

H. Bialkowska, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, G. Wrochna, P. Zalewski

National Centre for Nuclear Research, Swierk, Poland

G. Brona, K. Bunkowski, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, W. Wolszczak

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

N. Almeida, P. Bargassa, C. Beirão Da Cruz E Silva, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro,

F. Nguyen, J. Rodrigues Antunes, J. Seixas2, J. Varela, P. Vischia

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, V. Konoplyanikov, A. Lanev, A. Malakhov, V. Matveev, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, N. Skatchkov,

V. Smirnov, A. Zarubin Joint Institute for Nuclear Research, Dubna, Russia

S. Evstyukhin, V. Golovtsov, Y. Ivanov, V. Kim, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Nuclear Research, Moscow, Russia

V. Epshteyn, M. Erofeeva, V. Gavrilov, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, A. Spiridonov, V. Stolin, E. Vlasov, A. Zhokin

(15)

V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov, A. Vinogradov P.N. Lebedev Physical Institute, Moscow, Russia

A. Belyaev, E. Boos, V. Bunichev, M. Dubinin7, L. Dudko, A. Gribushin, V. Klyukhin, O. Kodolova,

I. Lokhtin, A. Markina, S. Obraztsov, M. Perfilov, V. Savrin, N. Tsirova Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

I. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

P. Adzic34, M. Djordjevic, M. Ekmedzic, D. Krpic34, J. Milosevic

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

M. Aguilar-Benitez, J. Alcaraz Maestre, C. Battilana, E. Calvo, M. Cerrada, M. Chamizo Llatas2, N. Colino,

B. De La Cruz, A. Delgado Peris, D. Domínguez Vázquez, C. Fernandez Bedoya, J.P. Fernández Ramos, A. Ferrando, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, G. Merino, E. Navarro De Martino, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero,

J. Santaolalla, M.S. Soares, C. Willmott

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain C. Albajar, J.F. de Trocóniz

Universidad Autónoma de Madrid, Madrid, Spain

H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias, J. Piedra Gomez

Universidad de Oviedo, Oviedo, Spain

J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, S.H. Chuang, J. Duarte Campderros, M. Fernandez, G. Gomez, J. Gonzalez Sanchez, A. Graziano, C. Jorda, A. Lopez Virto, J. Marco, R. Marco,

C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, T. Rodrigo, A.Y. Rodríguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, R. Vilar Cortabitarte

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, J. Bendavid, J.F. Benitez,

C. Bernet8, G. Bianchi, P. Bloch, A. Bocci, A. Bonato, O. Bondu, C. Botta, H. Breuker, T. Camporesi,

G. Cerminara, T. Christiansen, J.A. Coarasa Perez, S. Colafranceschi35, D. d’Enterria, A. Dabrowski,

A. David, A. De Roeck, S. De Visscher, S. Di Guida, M. Dobson, N. Dupont-Sagorin, A. Elliott-Peisert, J. Eugster, W. Funk, G. Georgiou, M. Giffels, D. Gigi, K. Gill, D. Giordano, M. Girone, M. Giunta, F. Glege, R. Gomez-Reino Garrido, S. Gowdy, R. Guida, J. Hammer, M. Hansen, P. Harris, C. Hartl, A. Hinzmann, V. Innocente, P. Janot, E. Karavakis, K. Kousouris, K. Krajczar, P. Lecoq, Y.-J. Lee, C. Lourenço, N. Magini, M. Malberti, L. Malgeri, M. Mannelli, L. Masetti, F. Meijers, S. Mersi, E. Meschi, R. Moser, M. Mulders, P. Musella, E. Nesvold, L. Orsini, E. Palencia Cortezon, E. Perez, L. Perrozzi, A. Petrilli, A. Pfeiffer,

M. Pierini, M. Pimiä, D. Piparo, M. Plagge, L. Quertenmont, A. Racz, W. Reece, J. Rojo, G. Rolandi36,

M. Rovere, H. Sakulin, F. Santanastasio, C. Schäfer, C. Schwick, I. Segoni, S. Sekmen, A. Sharma, P. Siegrist,

P. Silva, M. Simon, P. Sphicas37, D. Spiga, M. Stoye, A. Tsirou, G.I. Veres21, J.R. Vlimant, H.K. Wöhri,

S.D. Worm38, W.D. Zeuner

CERN, European Organization for Nuclear Research, Geneva, Switzerland

W. Bertl, K. Deiters, W. Erdmann, K. Gabathuler, R. Horisberger, Q. Ingram, H.C. Kaestli, S. König, D. Kotlinski, U. Langenegger, D. Renker, T. Rohe

Figura

Fig. 1. Predicted t ¯ t cross section at NNLO + NNLL, as a function of the top-quark pole mass (top) and of the strong coupling constant (bottom), using five different NNLO PDF sets, compared to the cross section measured by CMS assuming m t = m polet .
Fig. 2. Probability distributions for the predicted t ¯ t cross section at NNLO + NNLL with m pole t = 173
Fig. 5. Results obtained for α S ( m Z ) from the measured t ¯ t cross section together

Riferimenti

Documenti correlati

In fact, Computer-aided Drug Design (CADD) methods, compared to the classical experimental procedures, allows to investigate the mechanism of action of various atomic

A questo punto ripetendo la procedura a specchio, sopra e sotto l’allineamento iniziale 0-16, possiamo costruire il perimetro del reticolo con passo 1,00m prolungando in

130 Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic 131 State Research Center Institute for High Energy Physics (Protvino), NRC KI,

Si tratta di una tecnica ormai collaudata in medicina umana, rapida, semplice e economica, di rilevante importanza diagnostica al fine di valutare le alterazioni

Il libro di CONTE - DE MARTIN, Franco Miotto Pareti del cielo - Libri Passioni, storie e ricordi di una vita libera a cura di Marco Conte e Roberto de Martin, Nuovi

Nel settore sanitario, oggi la criticità relativa alla straordinaria diffusione delle tecnologie innovative (ad es. pancreas artificiale) connesse in rete nell’ambito sanitario

Variation of diffuse emission is noticeable across the Large Magellanic Cloud (LMC) but absent across the bar of the Small Magellanic Cloud (SMC). We also measure the integrated