• Non ci sono risultati.

A search for resonances decaying into a Higgs boson and a new particle X in the XH -> qqbb final state with the ATLAS detector

N/A
N/A
Protected

Academic year: 2021

Condividi "A search for resonances decaying into a Higgs boson and a new particle X in the XH -> qqbb final state with the ATLAS detector"

Copied!
22
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

A

search

for

resonances

decaying

into

a

Higgs

boson

and

a

new

particle

X in

the

XH

qqbb final

state

with

the

ATLAS

detector

.TheATLAS Collaboration

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received21September2017

Receivedinrevisedform10January2018 Accepted16January2018

Availableonline3February2018 Editor:M.Doser

A search for heavy resonances decaying intoa Higgsboson (H) and a new particle(X) is reported,

utilizing36.1 fb−1ofproton–protoncollisiondataats=13 TeV collectedduring2015and2016with

theATLASdetectorattheCERNLargeHadronCollider.TheparticleX isassumedtodecaytoapairof

lightquarks,andthefullyhadronicfinalstateXHqq¯bb is¯ analysed.Thesearchconsiderstheregime

ofhighXH resonancemasses,wherethe X andH bosonsarebothhighlyLorentz-boostedandareeach

reconstructedusingasinglejetwithlargeradiusparameter.Atwo-dimensionalphasespaceofXH mass

versus X massisscannedforevidenceofasignal,overarangeofXH resonancemassvaluesbetween

1 TeV and 4 TeV,and for X particles withmasses from50 GeVto 1000 GeV. Allsearch resultsare

consistentwiththeexpectationsforthebackgroundduetoStandardModelprocesses,and95%CLupper

limits are set,as afunctionofXH and X masses, ontheproductioncross-section oftheXHqq¯bb¯

resonance.

©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense

(http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

The Standard Model (SM), including the recently discovered Higgs boson [1,2], describes collider phenomenology for energy scalesuptoafewhundredGeV.However,anumberofissueswith theSM,includingsensitivityoftheHiggsbosonmasstoradiative corrections,indicateeitherextremefine-tuningorthepresenceof newphysicsatanenergyscalenotfarabovetheHiggsbosonmass. ManytheoreticalextensionstotheSMpredicttheexistenceofnew particles around the TeV scale, and it is natural to expect such particles to exhibit significant coupling to the Higgs boson (H ). Examples ofprevious studies at the CERN LargeHadron Collider (LHC) which are motivated by these considerations include AT-LAS[3,4]andCMS[5–8]searchesfornewresonancesdecayinginto VH,where V denotes a W or Z boson,aswellasATLAS [9]and CMS[10,11]searchesforresonancesdecayingintoHH.

ThisLetterpresents anewandmoregeneralsearch forheavy resonanceswhichdecayintotheSMHiggsbosonandanew par-ticle ( X ), utilizing a data sample corresponding to 36.1 fb−1 of proton–proton (pp) collisions at √s=13 TeV collected during 2015 and 2016 with the ATLAS detector. Since the hypothetical particleX hasnotyetbeendetected,ithasunknownproperties.It isassumedthat X decayshadronicallyintoapairoflight quarks, Xqq¯,and hasa naturalwidth whichis narrow compared to the detectorresolution. It isalso assumedthat single X

produc- E-mailaddress:atlas.publications@cern.ch.

tion issufficientlyrare thatit hasnotbeenobserved byanalyses suchastheATLASandCMSsearchesfordijetresonances[12–14]. Examples oftheoriesof physics beyondtheSM which predict theexistence ofXH resonancesincludepseudoNambu–Goldstone models [15], extended Higgs sectors [16] and extra-dimension frameworks with warped compactifications [17]. For simplicity, such XH resonances are hereafter denoted by Y . It is assumed that the newresonanceY is narrow. Thisstudyanalyses the de-cay chain YXHqq¯bb,¯ and considers the regime of high Y masses,intherangebetween1 TeV and4 TeV,withm(Y)m(X), which impliesthat the X and H bosonsareboth highly Lorentz-boosted. The X and H boson candidates are each reconstructed in a single jet with large radius parameter; these jetsare called “large-R jets” throughout this Letter and are denoted by J . Jet substructure techniques and b-tagging are used to suppress the dominant background from multijet events, to enhance the sen-sitivity to the dominant Hbb decay¯ mode, andto distinguish betweenthetwobosons.

Given their assumed decay modes, both X and Y must be bosons.However,thesearchdoesnotimposeexplicitrequirements on their electriccharge,spin orpolarization states,andutilizes a simple eventselection that doesnot seekto exploit angular cor-relations orother variables that would be sensitive to particular spin states.The analysisutilizesthereconstructed Y mass asthe final discriminant,searching foran excess due toa resonance in the YXHJJ mass distribution,separately inalarge number ofoverlappingrangesofX mass.

https://doi.org/10.1016/j.physletb.2018.01.042

0370-2693/©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

Amodified formof thebenchmark heavy vector triplet (HVT) model[18,19]isusedtoprovideameasureoftheimplicationsof theresults ofthe search within one particulartheoretical frame-work.TheHVTmodelprovidesasimplifiedphenomenological La-grangian that predicts heavy spin-1 resonances which are pro-ducedviaqq annihilation,¯ andwhichcanhavesignificant branch-ingratiosfordecaysintobosonpairs,withlongitudinallypolarized bosons.Thesearchresultsareusedtosetlimitsontheproduction cross-section σ(ppYXHqq¯bb¯)within the HVT theoret-ical framework, to provide an interpretation in the case where both X andY have spin 1.The searchoverlaps withthe VH and HH searches, when the X mass window extends around the V and H mass values, respectively, in which cases the results are foundtobecompatiblewiththoseanalyses.However, thecurrent searchconsidersamuchwiderrangeofX masses,from50 GeV to 1000 GeV.

2. ATLASdetector

The ATLAS detector [20] is a general-purpose particle physics detectorusedtoinvestigateabroadrangeofphysicsprocesses. AT-LASincludesaninnerdetector(ID)surroundedbya superconduct-ingsolenoid,electromagnetic(EM)andhadroniccalorimeters,and amuon spectrometer (MS). The ID consistsofa siliconpixel de-tector,includingtheinsertableB-layer[21]installedafterRun1of theLHC,asiliconmicrostripdetectorandastraw-tubetracker.The IDisimmersedinsidea2 Taxialmagneticfieldfromthesolenoid andprovides precisiontrackingofchargedparticles with pseudo-rapidity1 |η|<2.5.Thestraw-tubetrackeralsoprovidestransition

radiationmeasurements for electron identification. The calorime-tersystemconsistsoffinelysegmentedsamplingcalorimeters us-inglead/liquid-argonforthedetectionofEMshowersupto|η|=

3.2,andcopperortungsten/liquid-argonforhadronicshowersfor 1.5<|η|<4.9. In the central region (|η|<1.7), a steel/scintil-lator hadronic calorimeteris used. Outside the calorimeters, the MS incorporatesmultiplelayers of triggerandtrackingchambers withinamagneticfield producedbyasystemofsuperconducting toroids, enabling an independent precise measurement of muon trackmomentafor |η|<2.7.The ATLAS detectorhasa two-level triggersystem.Thefirst-level(L1)triggerisimplementedin hard-ware anduses the calorimeter andmuon systems to reduce the acceptedevent rate to 100 kHz. The L1 trigger is followed by a software-basedhigh-leveltriggertoreducetheacceptedeventrate toapproximately1kHzforofflineanalysis[22].

3. Signalandbackgroundsimulation

Samples of simulated signal and background events are used to optimize the event selection and to estimate the background contributionsfromvariousSMprocesses.

The YXH signal was simulatedby modifying the HVT[18, 19] configuration for W→WH decays, replacing the W boson withanarrow resonanceY , andthe W bosonby X . Thenew X bosonwas assumedtohavespin1,anaturalwidthof2GeV,and abranching ratio(B) of100% fordecays Xud.¯ Theproperties ofthe Higgs bosonwere assumedto be asdescribed in the SM, withitsmasssetto125.5GeV anddecaysintobb and¯ cc enabled¯

1 ATLASusesaright-handedcoordinatesystemwithitsoriginatthe nominal interactionpoint(IP)inthecentreofthedetectorandthez-axisalongthebeam pipe.Thex-axispointsfromtheIPtothecentreoftheLHCring,andthe y-axis pointsupwards.Cylindricalcoordinates(r,φ)areusedinthetransverseplane,φ

beingtheazimuthalanglearoundthebeampipe.Thepseudorapidityisdefinedin termsofthepolarangleθasη= −ln tan(θ/2).Angulardistanceismeasuredin unitsofR≡(η)2+ (φ)2.

inthesimulation.GiventheSMbranchingratiosandtherelevant experimentalperformancefactors,Higgsbosondecaystobb domi-¯ natethesignalefficiency.Thesignalsamplesweregeneratedwith Madgraph5_aMC@NLO 2.2.2 [23] interfacedto Pythia 8.186 [24] for parton shower and hadronization, with the NNPDF2.3 next-to-leading-order (NLO)partondistributionfunction(PDF) set[25] and the ATLAS A14 set of tuned parameters (tune) [26] for the underlying event. Approximately 100 signal samples were gener-ated,eachwithindividualvaluesofY and X masses,chosen ina two-dimensional grid of valuesranging from 1 TeV to 4 TeV for m(Y) andfrom50 GeV to1000 GeV form(X).The requirements m(Y)>1 TeV and m(Y)m(X) were applied, to focus on the kinematicregime wherethe X and H bosons arehighly Lorentz-boosted.

ThedominantSMbackgroundisduetomultijetprocessesand, as described in Section 7, is evaluated using data-driven tech-niques. Some cross-checkswere performedusingsimulated mul-tijeteventsgeneratedwith Pythia 8.186, withtheNNPDF2.3NLO PDFandtheATLASA14tune.

Minor background contributions, which are estimated using simulated samples, are due to tt production¯ and to vector bo-son production in association with jets (V +jets). The tt samples¯ were generated with Powheg-Box v2 [27] with the CT10 PDF set [28], interfacedwith Pythia 6.428[29] andthe Perugia 2012 tune forthepartonshower [30]using theCTEQ6L1PDF set[31]. The cross-section of the t¯t process was normalized to the result of a QCD calculation at next-to-next-leading order and next-to-next-leading logarithmic accuracy (NNLO+NNLL), asimplemented in Top++ 2.0[32].The V +jetsbackgroundsamplesweregenerated with Sherpa 2.1.1[33]interfacedwiththeCT10PDFset,including onlyhadronic V decays.Matrixelementsofup tofourextra par-tons were calculatedat leading order inQCD. The V +jets events arenormalizedtotheNNLOcross-sections[34].

Forallsimulatedsamplesexceptthoseproducedusing Sherpa, EvtGen v1.2.0 [35] was used to model the properties of bottom andcharmhadrondecays.Theeffectofmultiple pp interactionsin thesameandneighbouringbunchcrossings(pile-up)wasincluded by overlaying minimum-biasevents simulatedwith Pythia 8.186 oneachgeneratedevent[36].Thedetectorresponsewassimulated with a GEANT4[37] based framework [38] andthe events were processedwiththesamereconstructionsoftwareasthat usedfor data.

4. Eventreconstruction

The reconstruction and identification ofhadronically decaying bosonsisperformedusingjets.Large-R jetsarereconstructedwith theanti-kt algorithm[39,40]withradiusparameter R=1.0 from three-dimensional topological clusters of energy deposits in the calorimeter[41]. Thelarge-R jets are requiredtohave transverse momentum pT>250 GeV and|η|<2.0.

Track-jets are formed fromcharged-particle tracks with pT> 0.4 GeV and|η|<2.5 thatsatisfyasetofhitandimpact parame-tercriteriatoreduce thecontaminationfrompile-upinteractions, and are clustered usingthe anti-kt algorithm with R=0.2 [42]. Onlytrack-jetswithpT>25 GeV thatareconstructedfromatleast twotracksareconsideredinthisanalysis.

Tomitigate pile-up effectsand softradiation,the large-R jets aretrimmed[43],andthenaresubsequentlyreclusteredinto sub-jets using the kt algorithm [44]. To compensate for the limited angular resolutionof the calorimeter,the mass oflarge-R jets is computedusing a combinationofcalorimeterandtracking infor-mation[45].Thecombinedjetmassisdefinedas

(3)

mJwcalo×mcaloJ +wtrack×  mtrackJ p calo T ptrackT  , wheremcalo

J isthecalorimeter-onlyestimate ofthejet mass.The variable mtrack

J is the jet mass estimated via tracks with pT> 0.4 GeV associated with the large-R jet using “ghost associa-tion” [39], and is scaled in the combined mass formula by the ratioofcalorimeterto track pT estimatesinorderto account for themissingneutral-particlecomponentinthetrack-jet.Theghost associationtechniquereliesonrepeatingthejetclusteringprocess withtheadditionofmeasuredtracksthathavethesamedirection butinfinitesimally small pT,sothatthejetpropertiesremain un-affected.A trackisassociatedwithajetifitiscontainedinthejet afterthisre-clusteringprocedure.Theweightingfactors wcalo and wtrackdependon pT satisfywcalo+wtrack=1,andareusedto op-timizethecombinedmassresolution.Topartiallyaccount forthe energycarriedby muonsfromsemileptonicb-hadrondecays,the four-momentum ofthe closest muon candidate satisfying “Tight” muon identificationcriteria[46] with pT >4 GeV and|η|<2.5 thatiswithinR=0.2 ofatrack-jetthatisb-taggedisaddedto thecalorimeterjetfour-momentum[47].Inthisstudy,onlylarge-R jetswithmJ>50 GeV areconsideredforfurtheranalysis.

Identifyingalarge-R jetasahadronicallydecayingHiggsboson candidateis aided by usingtrack-jets matched viaghost associa-tionto thelarge-R jet[48].The identificationofb-hadronsrelies onamultivariateb-taggingalgorithm[49]appliedtoasetoftracks in a region of interest around each track-jet axis. The b-tagging requirementsresultinan efficiencyof 77%fortrack-jets contain-ing b-hadrons,andthe misidentificationrateis ∼2% (∼24%)for light-flavour(charm) jets. Thesewere determined ina sample of simulatedtt events.¯ Forsimulatedsamplestheb-tagging efficien-ciesare corrected,basedonthe jet pT,to matchthosemeasured indata[50].

Identifyingalarge-R jetasahadronicallydecaying Xqq¯ bo-son candidate is aided by usingjet substructuretechniques. The variable D2 isdefined2 asaratiooftwo- andthree-point energy correlationfunctions[51,52],whicharebasedontheenergiesand pairwiseangulardistancesofparticleswithinajet.Thisvariableis optimized[53]todistinguishbetweenjetsoriginatingfroma sin-glepartonandthosefromthetwo-bodydecayofaheavyparticle. Adetaileddescriptionoftheoptimization,performedusing simu-latedV decays,canbefoundinRefs.[54,55].StudiesofboostedW bosondecays[54] demonstratethatthe D2 variableiswell mod-elled,withgoodagreementobservedbetweendataandsimulation. “Loose” electrons and muonsare reconstructed andidentified asdescribedinRefs.[46,56].TheseleptonshavepT>7 GeV,|η|< 2.5 (2.47) formuons(electrons), |d0|/σd0<3(5)and|z0sinθ|< 0.5 mm,whered0 istransverseimpactparameterwithrespectto thebeamline, σd0 isthecorrespondinguncertainty,andz0 isthe distancebetweenthelongitudinal positionofthe trackalongthe beamlineatthepointwhered0 ismeasuredandthelongitudinal position of the primary vertex. An isolation criterion is also ap-plied.Specifically,withinaconeofsizeR=0.2(0.3)aroundan electron(muon), thescalar sumoftransversemomenta oftracks dividedbytheleptonpTisrequiredtobelessthanacut-offvalue, chosentoprovideaconstantefficiencyofaround99%asafunction ofpT and|η|.

5. Eventselection

Events are selected from the 2015 (2016) running period using a trigger that requires a single large-R jet with pT >

2 Theangularexponent

β,definedinRef.[51],issettounity.

Fig. 1. Illustration of the definitions ofthe various mutually exclusivedata re-gions.ThedataaredividedintoLowSidebands(LSB),SignalRegions(SR),andHigh Sidebands(HSB)accordingtothemassofthecandidateHiggsjet.Eachregionis subdividedfurtheraccordingtothenumberofb-taggedjetsassociated withthe candidateHiggsjet.The0-tagsamplesatisfyingtheSRmasscutisdenotedbyCR0 toemphasizeitsuseasacontrolregioninthebackgrounddetermination,rather thanasanadditionalsignalregion.

360(420) GeV.Selectedevents arerequired tohaveatleast one primary vertex(PV)that has atleasttwo associated tracks, each with transversemomentum pT>0.4 GeV. Forevents withmore thanonePVcandidate,theonewiththelargesttrackp2Tis cho-senasthehard-scatterPV.Toselectahadronicfinal state,events with one or more “Loose” charged leptons (electrons or muons) arevetoed.

Events are kept only ifthey contain atleast two large-R jets. Foreventswithmorethantwolarge-R jets,onlythetwo“leading” jets, namely thosewith highest pT, areconsidered as possible X and H candidates. Toensure high anduniformtrigger efficiency, theleadinglarge-R jetmustsatisfypT>450 GeV.

Additional requirements are imposed to distinguish hadroni-callydecayingbosoncandidatesfrombackgroundjets.Tobe iden-tified asa Higgs jet candidate,the combined mass of the jet is required to satisfy 75 GeV<mJ <145 GeV, a criterion that is

∼90% efficientforHiggsboson jets. Thenumber ofb-taggedjets inside the Higgs jet is used to categorize the events in two or-thogonalsignalregions:the“1-tag”signalregion(SR1)and“2-tag” signal region(SR2)definitionsrequireHiggscandidatestocontain exactlyoneandtwob-taggedjets,respectively.TheSR1region re-covers some efficiencylossin thehighY mass region wherethe angularseparation betweenthe twob-quarksfromtheHiggs de-cay is smallandthe fragmentationproducts are merged [47]. As depictedin Fig. 1anddescribedinSection7,anumberofdifferent samples of events are selected to be used as part of the back-groundestimationstrategy.Thesesamplesincludeeventswiththe Higgs jetcandidate withamass inthe so-called“highsideband” (HSB) region with 145 GeV<mJ<200 GeV, as well as events ina “lowsideband” (LSB)region with50 GeV<mJ<75 GeV.In addition, “0-tag” samples,with Higgs candidates that pass these various massrequirements but have no associated b-taggedjets, arealsoselected.The0-tagsidebandsamplesaredenotedbyLSB0 andHSB0.The0-tagsamplesatisfyingtheSRmasscutisdenoted byCR0toemphasizeitsuseasacontrolregioninthebackground determination (seeSection 7), ratherthanasan additionalsignal region.

If both large-R jetsfulfil the Higgs massrequirement, the jet with the highest number of associated b-tagged jets is chosen as the Higgs candidate. In case both have the same number of b-tagged jets, the ambiguity is resolved by assigning the leading pT large-R jetas the Higgs candidate. Studies of signal samples withm(X)=110 GeV demonstratethat,inthelowerm(Y)region, theprobabilitytocorrectlyidentifytheH andX jetsis98.8%.This

(4)

Fig. 2. Efficiencies,asafunctionofm(Y)andm(X)forallthegeneratedsignalsamples,fortheselectiondefining(a)the1-tagsignalregion(SR1)and(b)the2-tagsignal region(SR2).(Forinterpretationofthereferencestocolourinthisfigure,thereaderisreferredtothewebversionofthisarticle.)

valuedecreasesto89.5%form(Y)=4 TeV,duetothefalling effi-ciencyintheveryhighmassregiontotagtwo separateb-tagged jetswithinthe H jet.

Thelarge-R jet whichisnot chosen asthe Higgscandidateis assigned to the X hypothesis. The jet substructure variable D2, described previously, is used to check whether the X candidate jet is compatible with the two-prong structure expected due to itsassumed Xqq¯ decay.The requirementon the value of D2 correspondsto thatdefinedinRefs. [54,55]toprovide aconstant efficiency of 50% for selecting hadronic V decays, when applied alongwithan associated requirementthatmJ lies withina win-dow around the V mass.Given that the X mass is a priori un-known,theeventselectiondoesnotmakeanyrequirementonthe massofthe X candidate jetbeyond themJ>50 GeV restriction appliedtoalllarge-R jets,howeverthedataareinterpretedin win-dowsofmX.

ThemassoftheYXH candidateisrequiredtobelargerthan 1 TeV.The efficienciesforthe1-tagand2-tagsignalregion selec-tionsare presentedasa functionofm(Y)andm(X) in Fig. 2 for thevarioussignal samples.Nosignal sampleswithm(Y)>4 TeV weresimulated,duetothelowexpectedsensitivityforsuchhigh masseswiththecurrentdata sample. However, dataeventswith higherreconstructed Y mass valuesare included inthe overflow bininthemassdistributions.

6. Signalmodelling

Thesignalsearchinthetwo-dimensionalspaceofm(Y)versus m(X)employsasliding-windowtechniquetothemJ spectrumof the X candidatejet,dividingthedataintoaseriesofoverlapping mJ ranges.Asdescribed inSection 9,foreachmJ windowofthe X candidatejet,thecorrespondingmJJ distributionisexaminedfor evidenceofanexcessduetoasignal,wheremJJdenotesthe invari-antmassofthesystemformedbytheH and X candidatelarge-R jets.

The reconstructed X mass resolution varies from 12 GeV to 40 GeV.ThewidthsoftheoverlappingmJ windowsfortheX can-didatejet are chosen to be around twice the X mass resolution, butalsotakeintoaccountthelimitednumberofdataevents.The centralvaluesofneighbouringmJ windowsareshiftedbyroughly halfofthe X massresolution, ensuringthat they overlapanddo notleavegapsinthesearchcoverage. Studiesinwhichsimulated

signalswereinjectedatvariousmassvalueswereusedto demon-stratethereasonablenessofthewindowchoices.

The reconstructed YXH mass resolutionvaries fromabout 65 GeV to 100 GeV.Foreach mJ windowofthe X candidate jet, thebinningforthecorrespondingmJJ distributionischosentobe atleastaslargeasthe Y massresolution,dependent onthesize ofthedatasample.

Giventhe large numberof possiblem(Y)and m(X)values in the ranges considered, a parameterization of the signal is used to interpolatebetweenthemass valuesforwhich signal samples were generated.Probability distributionfunctionsforthemJJ and mJ shapesare builtusingtheRooKeysPdfclassoftheRooFit package [57].Multidimensional morphing methods,implemented inthe RooMomentMorphNDclass [58], aresubsequentlyapplied to parameterize grid points using the surrounding four nearby points.Thenormalizationoftheparameterizedsignalsisestimated usinglinearinterpolation.

7. Backgroundestimation

Aftertheeventselection,over96%oftheSMbackground orig-inates from multijet processes. A data-driven method is used to determinetheshapeofthedominantmultijetbackground,withits normalizationinthesignal regionsbeingdetermined withthefit proceduredescribedinSection9.Thesmalladditionalbackground contributionsfromtt and¯ V +jetsproductionareestimatedvia sim-ulation.Thebackgrounddeterminationisperformedseparately in eachofthemJ windowsconsideredforthe X candidatejetmass.

As depicted in Fig. 1, the event sample, before any specific requirementsaremadeonthemassoftheX candidatejet,is sepa-ratedintomutuallyexclusivecategoriesaccordingtothemassand number of b-tagged jets of the Higgs boson candidate. The SR1 andSR2regions areusedto performthesignal search,while the othersevenregionsareusedascontrolregionstodevelopand val-idate thebackgroundmodel.The multijetbackgroundcomponent ineach ofthesevencontrol regionsisdetermined bysubtracting fromthedatathett and¯ V +jetscontributionspredictedby simu-lation.

ThemodellingofthedominantmultijetbackgroundintheSR1 andSR2signal regionsstarts fromtheCR0sample, forwhichthe candidate Higgsjet satisfiesthe SR requirementon the jet mass buthasno associatedb-taggedjets. TheCR0sample should con-tain negligible signal contamination. The basicstrategy is to use

(5)

Fig. 3. ThemJJmassdistributionsinthemJwindowofthe X candidatejetfrom133 GeV to171 GeV afterthelikelihoodfitforeventsin(a)the1-tagsignalregion(SR1) and(b)the2-tagsignalregion(SR2).Thehighestmassbinincludesanyoverflows.Thebackgroundexpectationisgivenbythefilledhistogramsandtheratiooftheobserved datatothebackground(Data/Bkg)isshowninthelowerpanel.Theuncertaintiesshownarethoseafterthefitdescribedinthetext.Oneparticularexampleofapossible signalmodel,namelywithm(X)=152 GeV andm(Y)=1.8 TeV,isoverlaidwithanarbitraryoverallnormalization,illustratingthecorrespondingcontributionsthatwould beexpectedintheSR1andSR2regions.Panel(c)showstheresultant95%CLupperlimitontheproductioncross-section,σ(ppYXHqq¯bb¯).(Forinterpretationof thereferencestocolourinthisfigure,thereaderisreferredtothewebversionofthisarticle.)

eventsintheCR0samplewithatleastone(two)track-jet(s) asso-ciatedwiththeHiggsjettomodeltheshapeofthemultijet back-groundintheSR1(SR2)signalregion.However,sourcesofpossible differences between the multijet components of CR0 versus SR1 andSR2includechangesintheunderlyingeventpopulations due totheabsenceorpresenceofb-quarksaswellaskinematic differ-encesarisingfromtheapplicationofb-tagging,sincetheb-tagging efficiencydepends on the pT and η ofthe track-jet. The correc-tionsrequiredtotakethesedifferencesintoaccountareextracted from the HSB events. In each of the HSB regions with different numberof b-tags(HSB0, HSB1,HSB2), apair oftwo-dimensional histograms isfilled, one of pT versus η forthe leading track-jet, and the other for the subleading track-jet. Subsequently, leading andsubleadingtrackjetreweightingmapsarecreatedbydividing the HSB1 and HSB2 histograms by the corresponding HSB0 his-togram. AGaussian kernel,similar to that appliedin Ref. [59], is used to smooth out statisticalfluctuations by takinga weighted sumofneighbouringbins.Theweightisinverselyproportionalto the width of the Gaussian kernel and dependson the statistical

uncertaintyofeachbin.Theresultisareductionofstatistical fluc-tuations,whileaddingnegligiblebiastothedistributions.

TodescribetheSRmultijetbackgroundshapes,theCR0events are reweighted using themaps inbins oftrack-jet pT and η ex-tractedfromthesideband.The reweightingisperformedonlyfor the 2-tag samples, as the modelling of the shape of the multi-jet background in the 1-tag sideband regions without reweight-ing isobserved to be adequate. Due to the correlationsbetween the kinematicvariablesofthe twoleading track-jets usedforthe reweighting, multiple reweighting iterations are performed, until the track-jet properties, pT and η, are matched within statistical uncertainties.

The background modelling is validated by using the same method to predictthe background inthe LSBregions in thelow masssidebands,andthencomparingwiththedataandobtaining goodagreement.Agreementisalsoconfirmedinthesignalregion by integratingoverall valuesofthe massofthe X candidatejet, thereby dilutinganypossible signalcontamination toa negligible level.

(6)

Fig. 4. ThemJJ massdistributionsinthemJ windowofthe X candidatejetfrom288 GeV to340 GeV afterthelikelihoodfitforeventsin(a)the1-tagsignalregion(SR1) and(b)the2-tagsignalregion(SR2).Thehighestmassbinincludesanyoverflows.Thebackgroundexpectationisgivenbythefilledhistogramsandtheratiooftheobserved datatothebackground(Data/Bkg)isshowninthelowerpanel.Theuncertaintiesshownarethoseafterthefitdescribedinthetext.Oneparticularexampleofapossible signalmodel,namelywithm(X)=314 GeV andm(Y)=2.3 TeV,isoverlaidwithanarbitraryoverallnormalization,illustratingthecorrespondingcontributionsthatwould beexpectedintheSR1andSR2regions.Panel(c)showstheresultant95%CLupperlimitontheproductioncross-section,σ(ppYXHqq¯bb¯).(Forinterpretationof thereferencestocolourinthisfigure,thereaderisreferredtothewebversionofthisarticle.)

8. Systematicuncertainties

The main systematic uncertainty in the background estimate arises from the potential mis-modelling of the background pro-cesses.Asdescribed inSection 7,themultijet backgroundshapes inthe two signal regions are estimateddirectly fromdata using sidebandregions.Todeterminethesystematicuncertaintyinthis method,themultijetbackgroundshapesintheHSB1andHSB2 re-gions are compared, ineach mJ window of the X candidate jet, to those of the reweighted HSB0 multijet distributions. The dif-ferences,inbinsofmJJ,fittedwithalineareusedasthemultijet modellingsystematicuncertainties.Thelargestobservedshape dif-ference is found to be approximately 12%, while the smallest is 3%.Anormalizationuncertaintyof30%isassignedtothesmallt¯t background,basedontheATLAStt differential¯ cross-section mea-surement[60]. The sameuncertainty isconservatively applied to thesmallV +jetsbackgroundcomponent.

The uncertainty inthe combined 2015+2016 integrated lumi-nosity is 2.1%. It is derived, following a methodology similar to thatdetailedinRef.[61],fromacalibrationoftheluminosityscale

using x– y beam–separationscans performedinAugust 2015and May 2016. This uncertainty is applied to the yields of both the signalandthesmallt¯t andV +jetsbackgrounds,whicharenot de-terminedfromdata.

Additional systematic uncertainties in the signal acceptance arisefromthechoiceofPDFsetandtheuncertaintyintheamount of initial- and final-state radiation. For all the two-dimensional massgridpoints, aconstant 5%uncertaintyisapplied andcovers botheffects.

Uncertaintiesrelatedtothesignalparameterizationmethodare estimated by comparing the massdistributions ofgenerated sig-nalpointstothosepredictedfrommorphing nearbypoints inthe two-dimensionalspaceofm(Y)versusm(X).Thelargestobserved normalization deviation is ∼8%, while differences in the signal shape also reach levels up to ∼8%. Both effects are included as uniformuncorrelatedsystematicuncertainties.

Systematic uncertainties which account for experimental ef-fects onthe signal shape includethe large-R jetmass scale and mass resolution,as well as D2 and the b-tagging.The impact of eachoftheseeffectsisevaluatedbyshiftingeachvariable

(7)

accord-Fig. 5. ThemJJmassdistributionsinthemJwindowofthe X candidatejetfrom500 GeV to584 GeV afterthelikelihoodfitforeventsin(a)the1-tagsignalregion(SR1) and(b)the2-tagsignalregion(SR2).Thehighestmassbinincludesanyoverflows.Thebackgroundexpectationisgivenbythefilledhistogramsandtheratiooftheobserved datatothebackground(Data/Bkg)isshowninthelowerpanel.Theuncertaintiesshownarethoseafterthefitdescribedinthetext.Oneparticularexampleofapossible signalmodel,namelywithm(X)=542 GeV andm(Y)=2.9 TeV,isoverlaidwithanarbitraryoverallnormalization,illustratingthecorrespondingcontributionsthatwould beexpectedintheSR1andSR2regions.Panel(c)showstheresultant95%CLupperlimitontheproductioncross-section,σ(ppYXHqq¯bb¯).(Forinterpretationof thereferencestocolourinthisfigure,thereaderisreferredtothewebversionofthisarticle.)

Fig. 6. The(a)expectedand(b)observed95%CLlimitsontheproductioncross-sectionσ(ppYXHqq¯bb¯)(z-axis)inthetwo-dimensionalspaceofm(Y)versus m(X).(Forinterpretationofthereferencestocolourinthisfigure,thereaderisreferredtothewebversionofthisarticle.)

(8)

ing tothese systematicuncertainties andthen re-performing the signalparameterization.Based onthemeasurements documented inRefs. [55,62], a 2% uncertainty isassigned forthe large-R jets pTscale,while uncertainties of20% and15%, respectively, are as-signedforthelarge-R jetmass resolutionandD2 resolution. Un-certaintiesin the correction factors forthe b-taggingare applied to the simulated event samples by looking at dedicated flavour-enrichedsamplesindata.Anadditionaltermisincludedto extrap-olatethemeasureduncertaintiestothehigh-pTregionofinterest. Thistermiscalculatedfromsimulatedeventsbyconsidering varia-tionsofthequantitiesaffectingtheb-taggingperformancesuchas the impact parameter resolution, percentage of poorly measured tracks,descriptionofthe detectormaterial, andtrackmultiplicity per jet. The dominant effect on the uncertainty when extrapo-lating to high pT is related to the change in tagging efficiency when smearing the track impact parameters based on the reso-lution measured in data and simulation. The uncertainty in the b-taggingefficiencyismeasuredasafunctionofb-jetpTand ηfor track-jetswith pT<250 GeV,whileforhigher pT valuesit is ex-trapolatedusingsimulation[50].Theseuncertaintiesvarybetween 2%and8%inthelower pTrange,andrisetoapproximately9%for track-jetswithpT>400 GeV.

9. Statisticaltreatmentandresults

The signal search in the two-dimensional space of m(Y) ver-susm(X)isperformedbyapplyingasliding-windowtechniqueto themJ spectrum ofthe X candidate jet, which divides the data into a series of overlapping mJ ranges. For each mJ window, a binnedmaximum-likelihoodfitisthenperformedtotheresultant mJJ distributions in both SR1 and SR2 signal regions simultane-ously. A test statistic based on the profile likelihood ratio [63] is used to test hypothesized values of the globalsignal strength (μ),correspondingtotheHVTmodel.Thesystematicuncertainties, described previously, are modelled with Gaussian or log-normal constraint terms (nuisance parameters) in the definition of the likelihoodfunction.

EachmJ windowoftheX candidatejetisfittedindependently, butas the mass ranges overlap, the fit results are correlated. In eachfit,thenormalizationsofthemultijetbackgroundsintheSR1 andSR2signal regions are treatedas free parameters. All ofthe systematicuncertaintiesaretreatedascorrelatedbetweenthetwo signalregions.

Thedatadistributionsandfitresultsareshownforthree exam-plemJ windowsofthe X candidatejetin Figs. 3–5.Ineachcase, the left (right) upperplot shows the mJJ distribution in the SR1 (SR2)signalregion,andtheresultsofthesimultaneousfitare su-perimposedon theplots. Examplesofpossible signal models are also shown, with arbitrary overall normalization, illustrating the corresponding contributions that would be expected in the SR1 andSR2regions. Thedatadistributions arewell describedby the fittedSMbackground,andthereisnosignificantevidenceofa sig-nal. The same conclusion is valid for all mJ windows of the X candidatejet.

The fits to the data are used to set upper limits on the pro-ductioncross-section, σ(ppYXHqq¯bb¯).Exclusion limits are computedusing the CLs method [64],with a value of μ re-gardedasexcluded at the95% confidencelevel (CL) whenCLs is lessthan5%. Thecorresponding limit plotsare includedinpanel (c)of Figs. 3–5.

Asummaryoftheexpectedandobserved95%CLlimitsonthe production cross-section, σ(ppYXHqq¯bb¯), is given in thetwo-dimensional plane ofm(Y)versus m(X) in Fig. 6.For X mass windows around the V and Higgs boson mass values, the resultsare found tobe compatible withthededicated ATLAS VH

Fig. 7. Differencesbetweenthe observedandtheexpected95%CLlimitson the resonanceproductioncross-sectionσ(ppYXHqq¯bb¯),expressedinterms ofmultiplesofσ,theequivalentGaussiansignificance.(Forinterpretationofthe referencestocolourinthisfigure,thereaderisreferredtothewebversionofthis article.)

andHH searchesreportedinRefs.[4]and [9],respectively. To vi-sualizeboththemagnitudeandthesignofdiscrepanciesbetween the expectedand observed limits, Fig. 7 presentsthe differences betweentheexpectedandobservedlimits,expressedinmultiples of σ,theequivalentGaussiansignificance.Themaximumobserved deviationhasalocalsignificanceofabout2.5σ,corresponding to aglobaldeviationof1.2σ.

10. Conclusion

A search for new heavy resonances Y decaying into a Higgs boson and a new particle X was carried out using 36.1 fb−1 of pp collision data collected at √s=13 TeV by ATLAS during the 2015and2016 runsof theCERN Large HadronCollider. The YXHqq¯bb channel¯ was studied using a generic approach in thetopological regime where both bosons are highly Lorentz-boosted, and each is reconstructed as a single jet with a large radiusparameter.Jetsubstructureandb-taggingtechniquesare ex-ploitedtotagthe X andHiggsbosonsandtoreducethedominant multijetbackground.Values of Y ( X )massinthe rangeof1 TeV to4 TeV (50 GeV to1000 GeV)wereconsidered.

A search for evidence of an excess in the XH mass spectrum was made in a large number ofoverlapping sliding windows in the mass of the X particle. The data are found to be in agree-mentwiththeStandardModelbackgroundexpectationsandonly small deviations are observed, with local (global) significance of no more than 2.5σ (1.2σ). Withinthe framework of a modified Heavy Vector Triplet model, upper limits on the resonance pro-duction cross-section σ(ppYXHqq¯bb¯) were setat95% CLinthetwo-dimensionalspaceoftheY massversustheX mass. Acknowledgements

We thank CERN forthe very successfuloperation of the LHC, aswell as thesupport staff fromour institutionswithout whom ATLAScouldnotbeoperatedefficiently.

WeacknowledgethesupportofANPCyT,Argentina;YerPhI, Ar-menia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azer-baijan; SSTC, Belarus; CNPq andFAPESP, Brazil; NSERC, NRC and CFI,Canada; CERN; CONICYT, Chile;CAS, MOSTandNSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic;DNRFandDNSRC,Denmark;IN2P3-CNRS,CEA-DRF/IRFU, France; SRNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo

(9)

Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Mo-rocco;NWO,Netherlands;RCN,Norway;MNiSWandNCN,Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden;SERI, SNSF and Cantons of BernandGeneva,Switzerland;MOST,Taiwan;TAEK,Turkey;STFC, United Kingdom; DOE andNSF, United Statesof America. In ad-dition, individual groups and members have received support fromBCKDF,theCanadaCouncil,CANARIE,CRC, ComputeCanada, FQRNT,and theOntario Innovation Trust, Canada; EPLANET,ERC, ERDF,FP7, Horizon2020andMarieSkłodowska-CurieActions, Eu-ropean Union;Investissements d’AvenirLabexandIdex, ANR, Ré-gionAuvergne andFondation PartagerleSavoir, France;DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia pro-grammes co-financed by EU-ESF and the Greek NSRF; BSF, GIF andMinerva, Israel; BRF, Norway; CERCA Programme Generalitat deCatalunya,GeneralitatValenciana,Spain;theRoyalSocietyand LeverhulmeTrust,UnitedKingdom.

The crucial computingsupport fromall WLCG partners is ac-knowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Swe-den),CC-IN2P3(France),KIT/GridKA(Germany),INFN-CNAF(Italy), NL-T1(Netherlands),PIC(Spain),ASGC(Taiwan),RAL(UK)andBNL (USA),theTier-2facilitiesworldwideandlargenon-WLCGresource providers.Majorcontributorsofcomputingresourcesarelisted in Ref.[65].

References

[1]ATLASCollaboration,Observationofanewparticleinthesearchforthe Stan-dardModelHiggsbosonwiththeATLASdetectorattheLHC,Phys.Lett.B716 (2012)1,arXiv:1207.7214[hep-ex].

[2]CMSCollaboration,Observationofanewboson atamassof125GeVwith theCMSexperimentattheLHC,Phys.Lett.B716(2012)30,arXiv:1207.7235 [hep-ex].

[3]ATLASCollaboration,SearchfornewresonancesdecayingtoaW or Z boson

and aHiggsbosoninthe + bb,¯ vbb,¯ and νν¯bb channels¯ with pp

colli-sionsat√s=13 TeVwiththeATLAS detector,Phys. Lett.B765(2017)32, arXiv:1607.05621[hep-ex].

[4]ATLASCollaboration,SearchforheavyresonancesdecayingtoaW orZ boson

andaHiggsbosonintheqq¯()bb final¯ stateinpp collisionsat√s=13 TeV withtheATLASdetector,arXiv:1707.06958[hep-ex],2017.

[5]CMSCollaboration,Searchforheavyresonancesthatdecayintoavectorboson andaHiggsbosoninhadronicfinalstatesat√s=13 TeV,Eur.Phys.J.C77 (2017)636,arXiv:1707.01303[hep-ex].

[6]CMSCollaboration,SearchforamassiveresonancedecayingintoaHiggsboson

and aW or Z bosoninhadronicfinalstatesinproton–protoncollisionsat

s=8 TeV,J.HighEnergyPhys.02(2016)145,arXiv:1506.01443[hep-ex].

[7]CMSCollaboration,SearchformassiveWHresonancesdecayingintothe νbb¯

finalstateat√s=8 TeV,Eur.Phys.J.C76(2016)237,arXiv:1601.06431 [hep-ex].

[8]CMSCollaboration,Searchfornarrowhigh-massresonancesinproton–proton collisionsat√s=8 TeV decayingtoaZ andaHiggsboson,Phys.Lett.B748 (2015)255,arXiv:1502.04994[hep-ex].

[9]ATLASCollaboration,SearchforpairproductionofHiggsbosonsinthebbb¯ b¯

finalstateusingproton–protoncollisionsat√s=13 TeV withtheATLAS de-tector,Phys.Rev.D94(2016)052002,arXiv:1606.04782[hep-ex].

[10]CMSCollaboration,SearchforheavyresonancesdecayingtotwoHiggsbosons in final states containing four b quarks, Eur. Phys. J. C 76 (2016) 371, arXiv:1602.08762[hep-ex].

[11]CMSCollaboration,SearchforresonantpairproductionofHiggsbosons decay-ingtotwobottomquark–antiquarkpairsinproton–protoncollisionsat8TeV, Phys.Lett.B749(2015)560,arXiv:1503.04114[hep-ex].

[12]ATLASCollaboration,Searchfornewphenomenaindijeteventsusing37fb−1

ofpp collisiondatacollectedat √s=13 TeV withtheATLASdetector,Phys. Rev.D96(2017)052004,arXiv:1703.09127[hep-ex].

[13]CMS Collaboration,Searchfordijetresonancesinproton–protoncollisionsat

s=13 TeV andconstraintsondarkmatterandothermodels,Phys.Lett.B 769(2017)520,arXiv:1611.03568[hep-ex].

[14]CMS Collaboration, Search for low mass vector resonances decaying into quark–antiquark pairs in proton–proton collisions at √s=13 TeV, arXiv:1710.00159[hep-ex],2017.

[15]J.Galloway,A.L.Kagan,A.Martin,AUVcompletepartiallycomposite-pNGB Higgs,Phys.Rev.D95(2017)035038,arXiv:1609.05883[hep-ph].

[16]U.Ellwanger,M.Rodriguez-Vazquez,Simultaneoussearchfor extralightand heavyHiggsbosonsviacascadedecays,arXiv:1707.08522[hep-ph],2017.

[17]K.S.Agashe,et al.,LHCsignalsfromcascadedecaysofwarpedvector reso-nances,J.HighEnergyPhys.05(2017)078,arXiv:1612.00047[hep-ph].

[18]D.Pappadopulo,A.Thamm,R.Torre,A.Wulzer,Heavyvectortriplets:bridging theoryanddata,J.HighEnergyPhys.09(2014)060,arXiv:1402.4431[hep-ph].

[19]J.deBlas,J.M.Lizana, M.Perez-Victoria,Combiningsearches of Z and W

bosons,J.HighEnergyPhys.01(2013)166,arXiv:1211.2229[hep-ph].

[20]ATLASCollaboration,TheATLASexperimentattheCERNLargeHadronCollider, J.Instrum.3(2008)S08003.

[21] ATLASCollaboration,ATLASinsertableB-layertechnicaldesignreport, ATLAS-TDR-19,URL:https://cds.cern.ch/record/1291633;

ATLAS insertable B-layer technical design report addendum, ATLAS-TDR-19-ADD-1,URL:https://cds.cern.ch/record/1451888.

[22]ATLASCollaboration,PerformanceoftheATLAStrigger systemin2015,Eur. Phys.J.C77(2017)317,arXiv:1611.09661[hep-ex].

[23]J.Alwall,etal.,Theautomatedcomputationoftree-levelandnext-to-leading orderdifferentialcrosssections,andtheirmatchingtopartonshower simula-tions,J.HighEnergyPhys.07(2014)079,arXiv:1405.0301[hep-ph].

[24]T.Sjöstrand,S.Mrenna,P.Z.Skands,AbriefintroductiontoPYTHIA8.1,Comput. Phys.Commun.178(2008)852,arXiv:0710.3820[hep-ph].

[25]R.D.Ball,etal.,PartondistributionswithLHCdata,Nucl.Phys.B867(2013) 244,arXiv:1207.1303[hep-ph].

[26] ATLAS Collaboration, ATLAS Pythia 8tunes to 7 TeV data, ATL-PHYS-PUB-2014-021,URL:https://cds.cern.ch/record/1966419,2014.

[27]S.Frixione,B.R.Webber,MatchingNLOQCDcomputationsandpartonshower simulations,J.HighEnergyPhys.06(2002)029,arXiv:hep-ph/0204244.

[28]H.-L.Lai,etal.,Newpartondistributionsforcolliderphysics,Phys.Rev.D82 (2010)074024,arXiv:1007.2241[hep-ph].

[29]T.Sjöstrand, S.Mrenna,P.Z.Skands,PYTHIA6.4PhysicsandManual,J.High EnergyPhys.05(2006)026,arXiv:hep-ph/0603175.

[30]P.Z.Skands,TuningMonteCarlogenerators:thePerugiatunes,Phys.Rev.D82 (2010)074018,arXiv:1005.3457[hep-ph].

[31]J.Pumplin,et al.,Newgenerationofpartondistributionswithuncertainties from global QCD analysis, J. High Energy Phys. 07 (2002) 012, arXiv:hep-ph/0201195.

[32]M.Czakon, A.Mitov, Top++: aprogramfor the calculation ofthe top-pair cross-sectionat hadroncolliders,Comput.Phys.Commun.185(2014)2930, arXiv:1112.5675[hep-ph].

[33]T.Gleisberg,etal.,EventgenerationwithSHERPA1.1,J.HighEnergyPhys.02 (2009)007,arXiv:0811.4622[hep-ph].

[34]C.Anastasiou,L.J.Dixon,K.Melnikov,F.Petriello,HighprecisionQCDathadron colliders:electroweakgaugebosonrapiditydistributionsatNNLO,Phys.Rev.D 69(2004)094008,arXiv:hep-ph/0312266.

[35]D.J.Lange,TheEvtGenparticledecaysimulationpackage,Nucl.Instrum. Meth-odsA462(2001)152.

[36] ATLAS Collaboration, Detector level leading track underlying event dis-tributions at 13 TeV measured in ATLAS, ATL-PHYS-PUB-2015-019, URL:

https://cds.cern.ch/record/2037684,2015.

[37]S.Agostinelli,etal.,GEANT4:asimulationtoolkit,Nucl.Instrum.MethodsA 506(2003)250.

[38]ATLASCollaboration, TheATLASsimulation infrastructure,Eur.Phys. J.C70 (2010)823,arXiv:1005.4568[hep-ex].

[39]M.Cacciari,G.P.Salam,G.Soyez,Theanti-ktjetclusteringalgorithm,J.High

EnergyPhys.04(2008)063,arXiv:0802.1189[hep-ph].

[40]M.Cacciari,G.P.Salam,G.Soyez,FastJetusermanual,Eur.Phys.J.C72(2012) 1896,arXiv:1111.6097[hep-ph].

[41]ATLASCollaboration,TopologicalcellclusteringintheATLAScalorimetersand itsperformanceinLHCRun1,arXiv:1603.02934[hep-ex],2016.

[42] ATLAS Collaboration, Expected performance of boosted Higgs (→bb)¯ bo-sonidentificationwith theATLAS detector at √s=13 TeV, ATL-PHYS-PUB-2015-035,URL:https://cds.cern.ch/record/2042155,2015.

[43]D.Krohn,J.Thaler,L.-T.Wang,Jettrimming,J.HighEnergyPhys.02(2010) 084,arXiv:0912.1342[hep-ph].

[44]S.Catani,Y.L.Dokshitzer,M.H.Seymour,B.R.Webber,Longitudinallyinvariant

Ktclusteringalgorithmsforhadronhadroncollisions,Nucl.Phys.B406(1993)

187.

[45] ATLASCollaboration,JetmassreconstructionwiththeATLASdetectorinearly Run 2data, ATLAS-CONF-2016-035,URL: https://cds.cern.ch/record/2200211, 2016.

[46]ATLASCollaboration,MuonreconstructionperformanceoftheATLASdetector inproton–protoncollisiondataat√s=13 TeV,Eur.Phys.J.C76(2016)292, arXiv:1603.05598[hep-ex].

[47] ATLASCollaboration,BoostedHiggs(→bb)¯ bosonidentificationwiththe AT-LASdetectorat√s=13 TeV,ATLAS-CONF-2016-039,URL:https://cds.cern.ch/ record/2206038,2016.

(10)

[48] ATLASCollaboration,Flavortaggingwithtrack-jetsinboostedtopologieswith the ATLAS detector, ATL-PHYS-PUB-2014-013,URL: https://atlas.web.cern.ch/ Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2014-013,2014.

[49] ATLAS Collaboration, Optimisation of the ATLAS b-tagging performance for the 2016 LHC run, ATL-PHYS-PUB-2016-012, URL: https://cds.cern.ch/ record/2160731,2016.

[50]ATLASCollaboration,Performanceofb-jetidentificationintheATLAS experi-ment,J.Instrum.11(2016)P04008,arXiv:1512.01094[hep-ex].

[51]A.J.Larkoski,I.Moult,D.Neill,Powercountingtobetterjetobservables,J.High EnergyPhys.12(2014)009,arXiv:1409.6298[hep-ph].

[52]A.J.Larkoski,I.Moult,D.Neill,Analyticboostedbosondiscrimination,J.High EnergyPhys.05(2016)117,arXiv:1507.03018[hep-ph].

[53] ATLASCollaboration,Performanceoftopquarkand W bosontagginginRun 2withATLAS,ATLAS-CONF-2017-064,URL:https://cds.cern.ch/record/2281054, 2017.

[54]ATLASCollaboration,Identificationofboosted,hadronicallydecayingW bosons

and comparisonswith ATLASdata takenat √s=8 TeV, Eur.Phys. J.C76 (2016)154,arXiv:1510.05821[hep-ex].

[55] ATLASCollaboration, Identificationofboosted,hadronically-decaying W and Z bosonsin√s=13 TeV MonteCarlosimulationsforATLAS, ATL-PHYS-PUB-2015-033,URL:https://cds.cern.ch/record/2041461,2015.

[56] ATLASCollaboration,ElectronefficiencymeasurementswiththeATLAS detec-torusingthe2015LHCproton–protoncollisiondata,ATLAS-CONF-2016-024, URL:https://cds.cern.ch/record/2157687,2016.

[57]W.Verkerke,D. Kirkby,The RooFittoolkitfordatamodeling,arXiv:physics/ 0306116[physics.data-an],2003.

[58]M.Baak,S.Gadatsch,R.Harrington,W.Verkerke,Interpolationbetween multi-dimensional histogramsusinganewnon-linearmoment morphingmethod, Nucl.Instrum.MethodsA771(2015)39,arXiv:1410.7388[physics.data-an].

[59]ATLASCollaboration,Jetenergymeasurementanditssystematicuncertaintyin proton–protoncollisionsat√s=7 TeV withtheATLASdetector,Eur.Phys.J.C 75(2015)17,arXiv:1406.0076[hep-ex].

[60]ATLAS Collaboration,Measurementofthe differentialcross-sectionofhighly boostedtopquarksasafunctionoftheirtransversemomentumin√s=8 TeV proton–proton collisionsusing the ATLAS detector, Phys. Rev.D 93 (2016) 032009,arXiv:1510.03818[hep-ex].

[61]ATLAS Collaboration, Luminosity determination in pp collisions at √s=

8 TeV using theATLAS detector at theLHC,Eur.Phys. J.C76 (2016)653, arXiv:1608.03953[hep-ex].

[62]ATLAS Collaboration, Performanceofjet substructuretechniquesfor large-R jetsinproton–protoncollisionsat√s=7 TeV usingtheATLASdetector,J.High EnergyPhys.09(2013)076,arXiv:1306.4945[hep-ex].

[63]Glen Cowan, KyleCranmer, Eilam Gross,Ofer Vitells, Asymptotic formulae for likelihood-based tests ofnew physics, Eur. Phys. J. C 71 (2011) 1554, arXiv:1007.1727[physics.data-an],Erratum:Eur.Phys.J.C73(2013)2501.

[64]A.L.Read,Presentation ofsearch results:theCL(s) technique,J.Phys. G28 (2002)2693.

[65] ATLAS Collaboration, ATLAS computingacknowledgements 2016–2017, ATL-GEN-PUB-2016-002,URL:https://cds.cern.ch/record/2202407.

TheATLASCollaboration

M. Aaboud137d, G. Aad88, B. Abbott115,O. Abdinov12,∗,B. Abeloos119,S.H. Abidi161,O.S. AbouZeid139,

N.L. Abraham151, H. Abramowicz155, H. Abreu154, R. Abreu118, Y. Abulaiti148a,148b,

B.S. Acharya167a,167b,a, S. Adachi157,L. Adamczyk41a,J. Adelman110, M. Adersberger102,T. Adye133,

A.A. Affolder139,Y. Afik154, C. Agheorghiesei28c,J.A. Aguilar-Saavedra128a,128f,S.P. Ahlen24,

F. Ahmadov68,b, G. Aielli135a,135b, S. Akatsuka71, H. Akerstedt148a,148b,T.P.A. Åkesson84,E. Akilli52,

A.V. Akimov98,G.L. Alberghi22a,22b,J. Albert172,P. Albicocco50, M.J. Alconada Verzini74,

S.C. Alderweireldt108,M. Aleksa32, I.N. Aleksandrov68, C. Alexa28b,G. Alexander155, T. Alexopoulos10,

M. Alhroob115,B. Ali130,M. Aliev76a,76b, G. Alimonti94a, J. Alison33, S.P. Alkire38,B.M.M. Allbrooke151,

B.W. Allen118, P.P. Allport19, A. Aloisio106a,106b,A. Alonso39, F. Alonso74,C. Alpigiani140,

A.A. Alshehri56,M.I. Alstaty88,B. Alvarez Gonzalez32, D. Álvarez Piqueras170,M.G. Alviggi106a,106b,

B.T. Amadio16, Y. Amaral Coutinho26a,C. Amelung25,D. Amidei92, S.P. Amor Dos Santos128a,128c,

S. Amoroso32, C. Anastopoulos141, L.S. Ancu52,N. Andari19,T. Andeen11, C.F. Anders60b, J.K. Anders77,

K.J. Anderson33,A. Andreazza94a,94b,V. Andrei60a,S. Angelidakis37, I. Angelozzi109,A. Angerami38,

A.V. Anisenkov111,c, N. Anjos13,A. Annovi126a,126b, C. Antel60a, M. Antonelli50, A. Antonov100,∗,

D.J. Antrim166,F. Anulli134a, M. Aoki69, L. Aperio Bella32,G. Arabidze93,Y. Arai69,J.P. Araque128a,

V. Araujo Ferraz26a, A.T.H. Arce48,R.E. Ardell80,F.A. Arduh74,J-F. Arguin97, S. Argyropoulos66,

M. Arik20a, A.J. Armbruster32,L.J. Armitage79,O. Arnaez161,H. Arnold51,M. Arratia30, O. Arslan23,

A. Artamonov99,∗, G. Artoni122, S. Artz86,S. Asai157, N. Asbah45,A. Ashkenazi155,L. Asquith151,

K. Assamagan27,R. Astalos146a,M. Atkinson169,N.B. Atlay143,K. Augsten130, G. Avolio32,B. Axen16,

M.K. Ayoub35a, G. Azuelos97,d, A.E. Baas60a, M.J. Baca19,H. Bachacou138, K. Bachas76a,76b,M. Backes122,

P. Bagnaia134a,134b,M. Bahmani42,H. Bahrasemani144,J.T. Baines133, M. Bajic39,O.K. Baker179,

P.J. Bakker109,E.M. Baldin111,c,P. Balek175,F. Balli138, W.K. Balunas124, E. Banas42,

A. Bandyopadhyay23,Sw. Banerjee176,e, A.A.E. Bannoura178,L. Barak155, E.L. Barberio91,

D. Barberis53a,53b,M. Barbero88, T. Barillari103,M-S Barisits65,J.T. Barkeloo118,T. Barklow145,

N. Barlow30, S.L. Barnes36c,B.M. Barnett133, R.M. Barnett16, Z. Barnovska-Blenessy36a,A. Baroncelli136a,

G. Barone25,A.J. Barr122,L. Barranco Navarro170, F. Barreiro85,J. Barreiro Guimarães da Costa35a,

R. Bartoldus145, A.E. Barton75,P. Bartos146a,A. Basalaev125, A. Bassalat119,f, R.L. Bates56,S.J. Batista161,

J.R. Batley30, M. Battaglia139,M. Bauce134a,134b,F. Bauer138, K.T. Bauer166,H.S. Bawa145,g,

J.B. Beacham113,M.D. Beattie75, T. Beau83, P.H. Beauchemin165,P. Bechtle23,H.P. Beck18,h, H.C. Beck57,

K. Becker122,M. Becker86,C. Becot112,A.J. Beddall20e,A. Beddall20b,V.A. Bednyakov68,

M. Bedognetti109,C.P. Bee150, T.A. Beermann32,M. Begalli26a, M. Begel27, J.K. Behr45,A.S. Bell81,

G. Bella155, L. Bellagamba22a, A. Bellerive31,M. Bellomo154, K. Belotskiy100,O. Beltramello32,

(11)

E. Benhar Noccioli179, J. Benitez66,D.P. Benjamin48,M. Benoit52, J.R. Bensinger25, S. Bentvelsen109,

L. Beresford122, M. Beretta50,D. Berge109,E. Bergeaas Kuutmann168, N. Berger5, L.J. Bergsten25,

J. Beringer16,S. Berlendis58,N.R. Bernard89, G. Bernardi83,C. Bernius145,F.U. Bernlochner23, T. Berry80,

P. Berta86,C. Bertella35a, G. Bertoli148a,148b, I.A. Bertram75,C. Bertsche45,G.J. Besjes39,

O. Bessidskaia Bylund148a,148b, M. Bessner45,N. Besson138,A. Bethani87,S. Bethke103,A. Betti23,

A.J. Bevan79, J. Beyer103,R.M. Bianchi127, O. Biebel102, D. Biedermann17, R. Bielski87,K. Bierwagen86,

N.V. Biesuz126a,126b,M. Biglietti136a, T.R.V. Billoud97, H. Bilokon50,M. Bindi57, A. Bingul20b,

C. Bini134a,134b,S. Biondi22a,22b, T. Bisanz57,C. Bittrich47, D.M. Bjergaard48, J.E. Black145, K.M. Black24,

R.E. Blair6, T. Blazek146a, I. Bloch45, C. Blocker25, A. Blue56,U. Blumenschein79, S. Blunier34a,

G.J. Bobbink109,V.S. Bobrovnikov111,c, S.S. Bocchetta84,A. Bocci48, C. Bock102, M. Boehler51,

D. Boerner178, D. Bogavac102,A.G. Bogdanchikov111, C. Bohm148a, V. Boisvert80,P. Bokan168,i,

T. Bold41a,A.S. Boldyrev101,A.E. Bolz60b,M. Bomben83,M. Bona79, M. Boonekamp138, A. Borisov132,

G. Borissov75, J. Bortfeldt32, D. Bortoletto122,V. Bortolotto62a,D. Boscherini22a, M. Bosman13,

J.D. Bossio Sola29, J. Boudreau127,E.V. Bouhova-Thacker75, D. Boumediene37,C. Bourdarios119,

S.K. Boutle56, A. Boveia113,J. Boyd32, I.R. Boyko68, A.J. Bozson80, J. Bracinik19, A. Brandt8,G. Brandt57,

O. Brandt60a, F. Braren45, U. Bratzler158,B. Brau89,J.E. Brau118, W.D. Breaden Madden56,

K. Brendlinger45,A.J. Brennan91,L. Brenner109, R. Brenner168,S. Bressler175,D.L. Briglin19,

T.M. Bristow49, D. Britton56,D. Britzger45,F.M. Brochu30, I. Brock23,R. Brock93,G. Brooijmans38,

T. Brooks80,W.K. Brooks34b,E. Brost110,J.H Broughton19,P.A. Bruckman de Renstrom42,

D. Bruncko146b, A. Bruni22a,G. Bruni22a,L.S. Bruni109, S. Bruno135a,135b,BH Brunt30, M. Bruschi22a,

N. Bruscino127, P. Bryant33, L. Bryngemark45,T. Buanes15,Q. Buat144,P. Buchholz143, A.G. Buckley56,

I.A. Budagov68,F. Buehrer51,M.K. Bugge121, O. Bulekov100, D. Bullock8,T.J. Burch110, S. Burdin77,

C.D. Burgard109, A.M. Burger5,B. Burghgrave110, K. Burka42, S. Burke133, I. Burmeister46,J.T.P. Burr122,

D. Büscher51, V. Büscher86,P. Bussey56,J.M. Butler24, C.M. Buttar56,J.M. Butterworth81,P. Butti32,

W. Buttinger27,A. Buzatu153,A.R. Buzykaev111,c, C.-Q. Changqiao36a,S. Cabrera Urbán170,

D. Caforio130, H. Cai169, V.M. Cairo40a,40b, O. Cakir4a, N. Calace52,P. Calafiura16, A. Calandri88,

G. Calderini83,P. Calfayan64,G. Callea40a,40b,L.P. Caloba26a, S. Calvente Lopez85, D. Calvet37,

S. Calvet37,T.P. Calvet88, R. Camacho Toro33, S. Camarda32,P. Camarri135a,135b,D. Cameron121,

R. Caminal Armadans169, C. Camincher58, S. Campana32,M. Campanelli81, A. Camplani94a,94b,

A. Campoverde143,V. Canale106a,106b, M. Cano Bret36c, J. Cantero116, T. Cao155,

M.D.M. Capeans Garrido32, I. Caprini28b, M. Caprini28b,M. Capua40a,40b, R.M. Carbone38,

R. Cardarelli135a, F. Cardillo51,I. Carli131,T. Carli32,G. Carlino106a,B.T. Carlson127,L. Carminati94a,94b,

R.M.D. Carney148a,148b, S. Caron108,E. Carquin34b,S. Carrá94a,94b, G.D. Carrillo-Montoya32,D. Casadei19,

M.P. Casado13,j, A.F. Casha161,M. Casolino13, D.W. Casper166, R. Castelijn109,V. Castillo Gimenez170,

N.F. Castro128a,k, A. Catinaccio32,J.R. Catmore121,A. Cattai32, J. Caudron23, V. Cavaliere169,

E. Cavallaro13,D. Cavalli94a,M. Cavalli-Sforza13,V. Cavasinni126a,126b,E. Celebi20d, F. Ceradini136a,136b,

L. Cerda Alberich170,A.S. Cerqueira26b,A. Cerri151,L. Cerrito135a,135b, F. Cerutti16, A. Cervelli22a,22b,

S.A. Cetin20d,A. Chafaq137a, D. Chakraborty110, S.K. Chan59,W.S. Chan109, Y.L. Chan62a, P. Chang169,

J.D. Chapman30, D.G. Charlton19,C.C. Chau31,C.A. Chavez Barajas151, S. Che113,S. Cheatham167a,167c,

A. Chegwidden93,S. Chekanov6, S.V. Chekulaev163a, G.A. Chelkov68,l, M.A. Chelstowska32, C. Chen36a,

C. Chen67,H. Chen27,J. Chen36a,S. Chen35b,S. Chen157,X. Chen35c,m,Y. Chen70,H.C. Cheng92,

H.J. Cheng35a,35d,A. Cheplakov68,E. Cheremushkina132,R. Cherkaoui El Moursli137e,E. Cheu7,

K. Cheung63, L. Chevalier138,V. Chiarella50, G. Chiarelli126a,126b,G. Chiodini76a,A.S. Chisholm32,

A. Chitan28b, Y.H. Chiu172, M.V. Chizhov68,K. Choi64, A.R. Chomont37, S. Chouridou156, Y.S. Chow62a,

V. Christodoulou81,M.C. Chu62a, J. Chudoba129, A.J. Chuinard90,J.J. Chwastowski42,L. Chytka117,

A.K. Ciftci4a,D. Cinca46,V. Cindro78, I.A. Cioara23, A. Ciocio16, F. Cirotto106a,106b, Z.H. Citron175,

M. Citterio94a, M. Ciubancan28b,A. Clark52,M.R. Clark38, P.J. Clark49,R.N. Clarke16, C. Clement148a,148b,

Y. Coadou88, M. Cobal167a,167c,A. Coccaro52,J. Cochran67, L. Colasurdo108, B. Cole38, A.P. Colijn109,

J. Collot58,T. Colombo166,P. Conde Muiño128a,128b,E. Coniavitis51, S.H. Connell147b, I.A. Connelly87,

S. Constantinescu28b,G. Conti32, F. Conventi106a,n, M. Cooke16, A.M. Cooper-Sarkar122,F. Cormier171,

K.J.R. Cormier161,M. Corradi134a,134b, E.E. Corrigan84,F. Corriveau90,o,A. Cortes-Gonzalez32,

(12)

S.J. Crawley56, R.A. Creager124, G. Cree31,S. Crépé-Renaudin58,F. Crescioli83,W.A. Cribbs148a,148b,

M. Cristinziani23,V. Croft112,G. Crosetti40a,40b,A. Cueto85,T. Cuhadar Donszelmann141,

A.R. Cukierman145,J. Cummings179,M. Curatolo50,J. Cúth86, S. Czekierda42,P. Czodrowski32,

G. D’amen22a,22b, S. D’Auria56, L. D’eramo83, M. D’Onofrio77, M.J. Da Cunha Sargedas De Sousa128a,128b,

C. Da Via87,W. Dabrowski41a,T. Dado146a,T. Dai92, O. Dale15,F. Dallaire97, C. Dallapiccola89,

M. Dam39,J.R. Dandoy124,M.F. Daneri29,N.P. Dang176,A.C. Daniells19, N.S. Dann87, M. Danninger171,

M. Dano Hoffmann138,V. Dao150,G. Darbo53a,S. Darmora8,J. Dassoulas3,A. Dattagupta118,

T. Daubney45, W. Davey23,C. David45,T. Davidek131,D.R. Davis48,P. Davison81, E. Dawe91,

I. Dawson141,K. De8, R. de Asmundis106a,A. De Benedetti115,S. De Castro22a,22b, S. De Cecco83,

N. De Groot108,P. de Jong109, H. De la Torre93,F. De Lorenzi67,A. De Maria57,D. De Pedis134a,

A. De Salvo134a,U. De Sanctis135a,135b, A. De Santo151,K. De Vasconcelos Corga88,

J.B. De Vivie De Regie119,R. Debbe27,C. Debenedetti139, D.V. Dedovich68,N. Dehghanian3,

I. Deigaard109,M. Del Gaudio40a,40b,J. Del Peso85, D. Delgove119, F. Deliot138,C.M. Delitzsch7,

A. Dell’Acqua32,L. Dell’Asta24,M. Dell’Orso126a,126b, M. Della Pietra106a,106b, D. della Volpe52,

M. Delmastro5,C. Delporte119, P.A. Delsart58, D.A. DeMarco161, S. Demers179, M. Demichev68,

A. Demilly83,S.P. Denisov132,D. Denysiuk138, D. Derendarz42, J.E. Derkaoui137d,F. Derue83,

P. Dervan77, K. Desch23,C. Deterre45,K. Dette161, M.R. Devesa29,P.O. Deviveiros32,A. Dewhurst133,

S. Dhaliwal25,F.A. Di Bello52, A. Di Ciaccio135a,135b, L. Di Ciaccio5, W.K. Di Clemente124,

C. Di Donato106a,106b, A. Di Girolamo32, B. Di Girolamo32, B. Di Micco136a,136b, R. Di Nardo32,

K.F. Di Petrillo59, A. Di Simone51, R. Di Sipio161,D. Di Valentino31,C. Diaconu88, M. Diamond161,

F.A. Dias39,M.A. Diaz34a,E.B. Diehl92,J. Dietrich17,S. Díez Cornell45,A. Dimitrievska14,J. Dingfelder23,

P. Dita28b, S. Dita28b, F. Dittus32, F. Djama88, T. Djobava54b, J.I. Djuvsland60a,M.A.B. do Vale26c,

M. Dobre28b,D. Dodsworth25,C. Doglioni84,J. Dolejsi131, Z. Dolezal131,M. Donadelli26d,

S. Donati126a,126b, J. Donini37,J. Dopke133, A. Doria106a, M.T. Dova74,A.T. Doyle56, E. Drechsler57,

M. Dris10, Y. Du36b, J. Duarte-Campderros155, F. Dubinin98,A. Dubreuil52,E. Duchovni175,

G. Duckeck102, A. Ducourthial83, O.A. Ducu97,p,D. Duda109, A. Dudarev32,A. Chr. Dudder86,

E.M. Duffield16, L. Duflot119, M. Dührssen32,C. Dulsen178, M. Dumancic175, A.E. Dumitriu28b,

A.K. Duncan56, M. Dunford60a, A. Duperrin88,H. Duran Yildiz4a, M. Düren55,A. Durglishvili54b,

D. Duschinger47,B. Dutta45,D. Duvnjak1, M. Dyndal45,B.S. Dziedzic42, C. Eckardt45, K.M. Ecker103,

R.C. Edgar92, T. Eifert32, G. Eigen15,K. Einsweiler16, T. Ekelof168, M. El Kacimi137c, R. El Kosseifi88,

V. Ellajosyula88, M. Ellert168,S. Elles5,F. Ellinghaus178,A.A. Elliot172, N. Ellis32,J. Elmsheuser27,

M. Elsing32, D. Emeliyanov133,A. Emerman38, Y. Enari157, J.S. Ennis173,M.B. Epland48,J. Erdmann46,

A. Ereditato18,M. Ernst27, S. Errede169, M. Escalier119,C. Escobar170, B. Esposito50,

O. Estrada Pastor170,A.I. Etienvre138,E. Etzion155,H. Evans64,A. Ezhilov125,M. Ezzi137e,

F. Fabbri22a,22b,L. Fabbri22a,22b,V. Fabiani108, G. Facini81, R.M. Fakhrutdinov132, S. Falciano134a,

R.J. Falla81,J. Faltova32, Y. Fang35a,M. Fanti94a,94b,A. Farbin8,A. Farilla136a,E.M. Farina123a,123b,

T. Farooque93, S. Farrell16,S.M. Farrington173,P. Farthouat32, F. Fassi137e,P. Fassnacht32,

D. Fassouliotis9, M. Faucci Giannelli49, A. Favareto53a,53b, W.J. Fawcett122,L. Fayard119, O.L. Fedin125,q,

W. Fedorko171,S. Feigl121, L. Feligioni88,C. Feng36b, E.J. Feng32,M. Feng48,M.J. Fenton56,

A.B. Fenyuk132,L. Feremenga8,P. Fernandez Martinez170, J. Ferrando45,A. Ferrari168,P. Ferrari109,

R. Ferrari123a,D.E. Ferreira de Lima60b, A. Ferrer170, D. Ferrere52,C. Ferretti92,F. Fiedler86, A. Filipˇciˇc78,

M. Filipuzzi45, F. Filthaut108, M. Fincke-Keeler172,K.D. Finelli24, M.C.N. Fiolhais128a,128c,r, L. Fiorini170,

A. Fischer2, C. Fischer13,J. Fischer178,W.C. Fisher93, N. Flaschel45,I. Fleck143,P. Fleischmann92,

R.R.M. Fletcher124, T. Flick178, B.M. Flierl102,L.R. Flores Castillo62a, M.J. Flowerdew103,G.T. Forcolin87,

A. Formica138,F.A. Förster13, A. Forti87,A.G. Foster19, D. Fournier119,H. Fox75,S. Fracchia141,

P. Francavilla126a,126b,M. Franchini22a,22b,S. Franchino60a,D. Francis32,L. Franconi121, M. Franklin59,

M. Frate166,M. Fraternali123a,123b,D. Freeborn81, S.M. Fressard-Batraneanu32, B. Freund97,

D. Froidevaux32,J.A. Frost122,C. Fukunaga158,T. Fusayasu104,J. Fuster170, O. Gabizon154,

A. Gabrielli22a,22b, A. Gabrielli16,G.P. Gach41a,S. Gadatsch32, S. Gadomski80, G. Gagliardi53a,53b,

L.G. Gagnon97,C. Galea108, B. Galhardo128a,128c, E.J. Gallas122,B.J. Gallop133,P. Gallus130,G. Galster39,

K.K. Gan113,S. Ganguly37,Y. Gao77,Y.S. Gao145,g, F.M. Garay Walls34a,C. García170,

(13)

V. Garonne121,A. Gascon Bravo45, K. Gasnikova45,C. Gatti50,A. Gaudiello53a,53b, G. Gaudio123a,

I.L. Gavrilenko98,C. Gay171, G. Gaycken23, E.N. Gazis10, C.N.P. Gee133,J. Geisen57,M. Geisen86,

M.P. Geisler60a,K. Gellerstedt148a,148b,C. Gemme53a, M.H. Genest58, C. Geng92, S. Gentile134a,134b,

C. Gentsos156, S. George80,D. Gerbaudo13, G. Geßner46,S. Ghasemi143, M. Ghneimat23,B. Giacobbe22a,

S. Giagu134a,134b,N. Giangiacomi22a,22b, P. Giannetti126a,126b,S.M. Gibson80,M. Gignac171,

M. Gilchriese16, D. Gillberg31, G. Gilles178,D.M. Gingrich3,d,M.P. Giordani167a,167c,F.M. Giorgi22a,

P.F. Giraud138, P. Giromini59, G. Giugliarelli167a,167c,D. Giugni94a, F. Giuli122,C. Giuliani103,

M. Giulini60b,B.K. Gjelsten121,S. Gkaitatzis156, I. Gkialas9,s,E.L. Gkougkousis13,P. Gkountoumis10,

L.K. Gladilin101, C. Glasman85,J. Glatzer13, P.C.F. Glaysher45,A. Glazov45,M. Goblirsch-Kolb25,

J. Godlewski42, S. Goldfarb91,T. Golling52, D. Golubkov132,A. Gomes128a,128b,128d, R. Gonçalo128a,

R. Goncalves Gama26a,J. Goncalves Pinto Firmino Da Costa138, G. Gonella51,L. Gonella19,

A. Gongadze68,J.L. Gonski59, S. González de la Hoz170,S. Gonzalez-Sevilla52, L. Goossens32,

P.A. Gorbounov99, H.A. Gordon27, B. Gorini32, E. Gorini76a,76b, A. Gorišek78,A.T. Goshaw48,

C. Gössling46, M.I. Gostkin68,C.A. Gottardo23,C.R. Goudet119, D. Goujdami137c,A.G. Goussiou140,

N. Govender147b,t,E. Gozani154,I. Grabowska-Bold41a,P.O.J. Gradin168,E.C. Graham77,J. Gramling166,

E. Gramstad121,S. Grancagnolo17, V. Gratchev125,P.M. Gravila28f,C. Gray56,H.M. Gray16,

Z.D. Greenwood82,u, C. Grefe23,K. Gregersen81, I.M. Gregor45,P. Grenier145,K. Grevtsov5, J. Griffiths8,

A.A. Grillo139,K. Grimm75,S. Grinstein13,v,Ph. Gris37, J.-F. Grivaz119, S. Groh86, E. Gross175,

J. Grosse-Knetter57,G.C. Grossi82, Z.J. Grout81, A. Grummer107,L. Guan92,W. Guan176, J. Guenther32,

F. Guescini163a,D. Guest166,O. Gueta155,B. Gui113, E. Guido53a,53b,T. Guillemin5,S. Guindon32,

U. Gul56, C. Gumpert32,J. Guo36c,W. Guo92, Y. Guo36a,w,R. Gupta43,S. Gurbuz20a,G. Gustavino115,

B.J. Gutelman154, P. Gutierrez115,N.G. Gutierrez Ortiz81,C. Gutschow81,C. Guyot138,M.P. Guzik41a,

C. Gwenlan122, C.B. Gwilliam77, A. Haas112,C. Haber16, H.K. Hadavand8, N. Haddad137e, A. Hadef88,

S. Hageböck23, M. Hagihara164, H. Hakobyan180,∗,M. Haleem45, J. Haley116, G. Halladjian93,

G.D. Hallewell88,K. Hamacher178, P. Hamal117, K. Hamano172, A. Hamilton147a, G.N. Hamity141,

P.G. Hamnett45,K. Han36a,x,L. Han36a,S. Han35a,35d, K. Hanagaki69,y,K. Hanawa157, M. Hance139,

D.M. Handl102,B. Haney124, P. Hanke60a,J.B. Hansen39, J.D. Hansen39,M.C. Hansen23,P.H. Hansen39,

K. Hara164,A.S. Hard176,T. Harenberg178, F. Hariri119, S. Harkusha95,P.F. Harrison173,

N.M. Hartmann102,Y. Hasegawa142,A. Hasib49, S. Hassani138,S. Haug18,R. Hauser93, L. Hauswald47,

L.B. Havener38,M. Havranek130,C.M. Hawkes19, R.J. Hawkings32, D. Hayden93, C.P. Hays122,

J.M. Hays79,H.S. Hayward77,S.J. Haywood133,T. Heck86, V. Hedberg84,L. Heelan8, S. Heer23,

K.K. Heidegger51,S. Heim45, T. Heim16, B. Heinemann45,z, J.J. Heinrich102,L. Heinrich112, C. Heinz55,

J. Hejbal129,L. Helary32,A. Held171, S. Hellman148a,148b,C. Helsens32,R.C.W. Henderson75,Y. Heng176,

S. Henkelmann171,A.M. Henriques Correia32,S. Henrot-Versille119, G.H. Herbert17, H. Herde25,

V. Herget177, Y. Hernández Jiménez147c, H. Herr86, G. Herten51, R. Hertenberger102, L. Hervas32,

T.C. Herwig124,G.G. Hesketh81,N.P. Hessey163a,J.W. Hetherly43,S. Higashino69,E. Higón-Rodriguez170,

K. Hildebrand33,E. Hill172, J.C. Hill30, K.H. Hiller45, S.J. Hillier19,M. Hils47, I. Hinchliffe16, M. Hirose51,

D. Hirschbuehl178,B. Hiti78, O. Hladik129,D.R. Hlaluku147c, X. Hoad49,J. Hobbs150,N. Hod163a,

M.C. Hodgkinson141,P. Hodgson141, A. Hoecker32, M.R. Hoeferkamp107, F. Hoenig102,D. Hohn23,

T.R. Holmes33,M. Homann46, S. Honda164, T. Honda69,T.M. Hong127, B.H. Hooberman169,

W.H. Hopkins118,Y. Horii105, A.J. Horton144,J-Y. Hostachy58, A. Hostiuc140, S. Hou153,

A. Hoummada137a, J. Howarth87,J. Hoya74,M. Hrabovsky117,J. Hrdinka32, I. Hristova17,J. Hrivnac119,

T. Hryn’ova5, A. Hrynevich96, P.J. Hsu63, S.-C. Hsu140, Q. Hu27, S. Hu36c, Y. Huang35a,Z. Hubacek130,

F. Hubaut88,F. Huegging23, T.B. Huffman122,E.W. Hughes38, M. Huhtinen32,R.F.H. Hunter31,P. Huo150,

N. Huseynov68,b,J. Huston93,J. Huth59, R. Hyneman92, G. Iacobucci52, G. Iakovidis27, I. Ibragimov143,

L. Iconomidou-Fayard119,Z. Idrissi137e,P. Iengo32,O. Igonkina109,aa, T. Iizawa174, Y. Ikegami69,

M. Ikeno69, Y. Ilchenko11,ab,D. Iliadis156,N. Ilic145,F. Iltzsche47, G. Introzzi123a,123b,P. Ioannou9,∗,

M. Iodice136a,K. Iordanidou38,V. Ippolito59,M.F. Isacson168,N. Ishijima120,M. Ishino157,

M. Ishitsuka159, C. Issever122,S. Istin20a, F. Ito164, J.M. Iturbe Ponce62a, R. Iuppa162a,162b,H. Iwasaki69,

J.M. Izen44, V. Izzo106a, S. Jabbar3, P. Jackson1,R.M. Jacobs23, V. Jain2,K.B. Jakobi86,K. Jakobs51,

S. Jakobsen65, T. Jakoubek129, D.O. Jamin116,D.K. Jana82, R. Jansky52, J. Janssen23, M. Janus57,

Riferimenti

Documenti correlati

empirical models and the Hapke model to study the spatial variations of photometric properties.. The

Concluding, we can say that the translators adapted the temporal values of the source language (i.e., 13 th century Italian rhymed poetry) to Armenian, when the temporal

functions which have them? 4. What does the graph of the absolute value or modulus function look like? 5. We begin this formal completion by recalling the precise definition of a

Con il servizio di &#34;documentazione traffico&#34; puoi conoscere il dettaglio di ogni telefonata, connessione dati o altro evento, effettuato dalla tua linea con l'indicazione

The main findings of our study are as follows: (1) type 1 diabetic adults with NAFLD on ultrasonography had a substantially higher prevalence of distal symmetric polyneuropathy

Chimerization of astroglial population in the lumbar spinal cord after mesenchymal stem cell transplantation prolongs survival in a rat model of amyotrophic lateral sclerosis..