• Non ci sono risultati.

The Cello tailpiece : how it affects the sound and response of the instrument

N/A
N/A
Protected

Academic year: 2021

Condividi "The Cello tailpiece : how it affects the sound and response of the instrument"

Copied!
11
0
0

Testo completo

(1)Institute of Musical Acoustics (Wiener Klangstil) iwk.mdw.ac.at. “BRIDGING. “. THE GAPS VIENNA TALK 2010 September 19–21. PROCEEDINGS OF THE SECOND VIENNA TALK ON MUSIC ACOUSTICS (Edited by Werner Goebl) ©soltiz/carinabella/photocase.com. PROCEEDINGS. =. 30 years. Sponsored by:. ISBN 978-3-900914-07-3.

(2) SCIENTIFIC COMMITTEE James Beauchamp, University of Illinois, USA Murray Campbell, University of Edinburgh, UK Stewart Carter, Wake Forest University, USA Thomas Moore, Rollins College, USA Malte Kob, University for Musik Detmold, DE Thomas Rossing, Iowa Sate University, USA David Sharp, Open University, UK Gerhard Widmer, Johannes Kepler University, AT. LOCAL ORGANIZING COMMITTEE Martina Wimmer (secretary) Alexander Mayer (web) Wilfried Kausel Gregor Widholm Sandra Carral Werner Goebl Hannes Vereecke. SPONSORED BY Austrian Acoustics Association (AAA) American Musical Instrument Society (AMIS) Acoustical Society of America (ASA) European Acoustical Association (EAA) European Society for the Cognitive Sciences of Music (ESCOM) Historic Brass Society (HBS). Proceedings of the Second Vienna Talk on Music Acoustics edited by Werner Goebl Institute of Musical Acoustics (Wiener Klangstil), University of Music and Performing Arts Vienna Anton-von-Webern-Platz 1, 1030 Vienna, Austria December 2010 (revised January 12, 2011) ISBN 978-3-900914-07-3 http://viennatalk.mdw.ac.at.

(3) o.Univ.-Prof. Mag. Dr. Werner Hasitschka Rector of the University of Music and Performing Arts Vienna. PREFACE. The Institute of Musical Acoustics („Wiener Klangstil“) celebrates its 30-year anniversary with Vienna Talk 2010, a three-day Symposium on Music Acoustics bringing together internationally renowned researchers, scholars, and instrument makers. The motto “Bridging the Gaps” reflects a central concern of the Institute: to initiate a dialogue between artists, instrument makers and scientists, a dialogue that often does not take place because of existing fundamental differences in terminology, approaches, or simply ways of thinking. Bridges between these disciplines can already be found among the members of the Institute. All of them have, in addition to their education as physicists, technicians, instrument makers, or musicologists, a strong musical background. Since its formation in 1980, the Institute has always been striving to bridge the gaps between music and physics and between artists and scientists. It was established as a competence center of Music Acoustics, a field that did not exist in Austria before. Many innovative ideas and products bear witness of the creative power of the team, such as the measuring systems and techniques for various musical instruments that have been developed to help instrument makers and musicians solve some of their specific problems. Originally founded as a one-man concern to remedy the lack of knowledge about manufacturing original Viennese orchestral instruments, the Institute successfully developed into an internationally recognized research and education center that is considered to be leading in specific areas. We are proud of this Institute, because on the one hand it reflects the wide scientific range of our university, and on the other hand it is representative of the dialogue between arts and sciences. Congratulations for this anniversary and all the best for the future!. Mit besten Grüßen Ihr Werner Hasitschka. 1.

(4) 2.

(5) CONTENTS. (alphabetically by first author). Andreas Arzt, Gerhard Widmer Robust ‘any-time’ music tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Patricia Lopes Bastos Small holes of wonder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 James W. Beauchamp In search for a source/filter model for brass instruments . . . . . . . . . . . . . . . . . . . . . . 13 James W. Beauchamp Perceptually correlated parameters of musical instrument sounds . . . . . . . . . . . . . . . . . 17 Ingrid Bendl Tools for the analysis of acoustical and physiological characteristics of the singing voice . . . . . 21 Matthias Bertsch Visualization of brass players’ warm up by infrared thermography . . . . . . . . . . . . . . . . . 24 Erica Bisesi, Richard Parncutt An accent-based approach to automatic rendering of piano performance . . . . . . . . . . . . . 26 Anders Buen What is Old Italian violin timbre? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Estefanía Cano, Christian Dittmar, Sascha Grollmisch Acoustics and signal processing in the developement of music education software . . . . . . . 153 Sandra Carral, Christophe Vergez, Cornelis J (Kees) Nederveen The characteristic sound of the oboe: Can it be played with a single reed and still maintain its tone colour? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Stewart Carter Victor-Charles Mahillon‘s theories on the construction of mouthpieces for brasswinds . . . . . . 39 Vasileios Chatziioannou, Maarten van Walstijn Parameter optimisation for woodwind single-reed models . . . . . . . . . . . . . . . . . . . . . 43 Marthe Curtit, Fazli Yahaya, Jean-Pierre Dalmont, Joël Gilbert, Olivier Cottet Bore reconstruction based on input impedance measurement . . . . . . . . . . . . . . . . . . . 47 Ekaterina Davidenkova, Irina Aldoshina History of electro-musical instruments in Russia in the first half of the 20th Century . . . . . . . 51 Matthias Demoucron The violinist’s bestiary: characterizing bowing parameters of technical bow strokes . . . . . . . . 55 Vincent Doutaut Innovative aid for instrument making: a collaborative approach between workshops and research laboratories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Eric Fouilhe, Giacomo Goli, Anne Houssay, George Stoppani The Cello tailpiece: How it affects the sound and response of the instrument . . . . . . . . . . . 63 Jobst P. Fricke Neurobiological statistics for interpreting problems of musical consonance perception . . . . . . 68 Nicola Granzotto, Paolo Ruggeri Drum sets characterization in acoustic laboratory . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.

(6) Tobias Grosshauser, Thomas Hermann Sensor fusion and multi-modal feedback for musical instrument learning and teaching. . . . . . 77 Knut Guettler Bowing gesture analysis for whom, why, and how? . . . . . . . . . . . . . . . . . . . . . . . . . 81 Dmitri Kartofelev, Anatoli Stulov Influence of the edge of the cast-iron frame curvature on the spectrum of the piano string vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Wilfried Kausel, Daniel W. Zietlow, Thomas R. Moore Transmission line modelling of acoustical systems with vibrating walls . . . . . . . . . . . . . . 89 Jeannine Lambrechts-Douillez Availibility of historic musical instruments for research. . . . . . . . . . . . . . . . . . . . . . . 93 Angela Lohri, Sandra Carral, Vasileios Chatziioannou Combination tones in the violin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Alexander Mayer, Herbert Rust An artificial excitation mechanism for an acoustical comparison of the hammered dulcimer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Arnold Myers, Robert W. Pyle, Joël Gilbert, Murray Campbell The influence of bore size on brassiness potential . . . . . . . . . . . . . . . . . . . . . . . . . 102 Cornelis J (Kees) Nederveen Effect of transverse acoustic flow on the input impedance of rapidly flaring horns. . . . . . . . 106 Zdenek Otcenasek, Pavel Dlask Possibility of ESPI visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Robert W. Pyle Is it the player or is it the instrument? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Robert W. Pyle The influence of mouthpiece cup shape on “brassiness”. . . . . . . . . . . . . . . . . . . . . . 117 Christoph Reuter, Herbert Griebel Jaco – High-quality sinusoid tracks and envelopes . . . . . . . . . . . . . . . . . . . . . . . . 121 Bernard Richardson Guitar making – the acoustician’s tale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Bernard Richardson Mode studies of plucked stringed instruments: Application of holographic interferometry . . . 129 Erwin Schoonderwaldt Control and coordination of complex bowing patterns . . . . . . . . . . . . . . . . . . . . . . 133 Sadjad Siddiq Physical modelling of the Sitar string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Lamberto Tronchin, Andrea Venturi The use of Volterra series for simiulating the nonlinear behaviour of musical instruments . . . . 141 Pei Ju Tsai, Sandra Carral Comparison of three Chinese traditional pipa music schools with the aid of sound analysis . . . 145 Gunter Ziegenhals To the influence of the wall oscillations at brass instruments. . . . . . . . . . . . . . . . . . . 149. 4.

(7)  

(8)       −     

(9)    

(10) ! "  " .     

(11)       # $%&'(#) *! *%'&) " (%"+,) *  %"-&..    

(12)    

(13)     /    !"#$   $  %

(14) &'  

(15) &)&  ' *&)& + , !    

(16)    ericf26@gmail.com  *         #    -       6 &7           -       9             :  *  ; -   *   255             -   *          <=  < -*& 0 &  " -  & *               *     -*  *     *   & >&     &  &   -&*    

(17)       *      -         &&  -    &    "  *  &   & ? -   *  -    5   &      & -  @ .     

(18) !  

(19)  !   !  0   1   ! 2  

(20)    3 !

(21)  !  4   .   

(22)       ". .  .     3    2          

(23)   3 !2    3        

(24)      !       

(25)     !  3         3 !  (2  ! 

(26)   .   3  .  

(27)          2      ! 2  

(28)

(29)  !       

(30)

(31)    1      

(32)      

(33)    !   3  

(34)     5     2       !

(35)   

(36)  6      0  

(37)     7  

(38)     

(39)  ! 8    2  

(40)       3  ! 

(41)   2 !     9      2 !       2     2   ! 

(42)    ! :   &    !  

(43)  

(44)

(45)  

(46)      2 3   . . !  44%  -  -0      *   A&  BC *           &            )&     *             #   &       *     -   &  &  =&  &44DBC  .      -E55A;-      *  A   D     *F "&  - ./ & 1?0 &    ?%  &  .?,     -  * *  ?  E        * *  ?  D $- 0-* *  $       & &E *  -E55A;F-  -    -&   &     .      &    ;   . !  55 G&  *     -0  B%C            &    %    *   &     &*       FH/4DA;1 -    0  %55 355A;"   )&     *      *        & .    .  !. .    *      -  &*  *           *   &. /    0   1                   * &  ! -           -&           *         & "   *  2 3 4  5   &     * -     *  0    

(47) &'  *&)& +   -       0       &  "  &         * * &        3   &                 -*             &. *    "--   &  - .   "-0-  *                      *   9   &     &        &  "   -  &      ** H - &      H   *  "  - & *       &*F  6

(48)    7   *      I&  . 63.

(49)  

(50)       −     

(51)    

(52) ! "  " .    -           >  6#)& 7  *  &           *          **   .     )&             *       6$$   7- &     & *   * 6

(53)   7  - *     6

(54)   7 -    * &    *                 )&     -&      >     &   * *   &  "        - *    %     -&     * *  . *      " -  -                N            *      2M *         &*  G          &           &        - &      &  &      "  -    * & *  -     0       &         *           -        )&    . # *                *&       9  *&  &              -   B,C"  & -   - $      & $&'9-0  I   *              *               &         *            &*       *    *&        &   -      J   &    "  &         *   *        &      F  * * &  *                     "  *   -    *  -       *&         -  *     **        G  -                 &  -0       *        *  . $& F              -     **      *  / 1. ". "#    ". $'(. !$& -    - &    -"  -  -     -        *    )&   % .  !  $&  %    I&  -      **      *       &  &       & *         &    "-     * & *    , -  )&  *    *      -   /%3    - * D  * 1                      "  )&  -  ,,0A;,  DEE%D * "  -  &  +=,3**  * 53D35      +=&I .5D ;     * * %E#. $% !&%'(. "  I  &*& !I * -0  I  . "       .       &&  *   -     I   $       -      D4E*"         &  H #       *     . *  "          "       0   " *    -* &     *& -     "   FB   K K        K   K K K C      -*&   /  $&  1 + &      -            .    -         . $& %F             *0    *  **              * & *    -   0   -                *       *        )&   $           *      *                    &       )&     *  *   -  * & *  - 0 . "". (). O   )& *    -  -   $$O  &  / $& ,1   * *  G * &        & /        *  1 $     * - &   

(55)  $ &   H  - / $& E1  *  *       $$  &         *   -      $  + *& !       )&  . $& F" FB K       K   K K C "   *-    *  &   -   /-       1       )&        * L,-     *   * &  " *      -   &     EM      . 64.

(56)  

(57)       −     

(58)    

(59) ! "  " .  )&      *     .  &      & -   0. #   4* - &/ $& D1 "    &  *              * *    --    & -  -    - * %  &      A * ;#5*      " * ED2   . * *      0     *               "   )&   -        &*            HP             #  " * 34 * * .  . * -    *    . *. +. /$PI#&    DE,A;1. $& ,F           $$  O   &     H  -  # *  --    &               *      &           )&       )&   )&  -   G --  DEE%D,,0A;)&  -    )&    &  5D2A; . . $& 2F

(60)  . !  * -  *  -      -     00 G -   * *  / $& 21           "  * &            * G    -                &   * -   -4A;/5N1-       )&    & 5D2A;/ %%1 G          *  -    &. *. $& EF  

(61)  $ &   H - . +. /=  DE,A;1. "      * -    &   H

(62)        &   * & *      %       &  -    *&        &   * . * . . $& 3F* . !  & * - *    * ?   0      0        *      /  $& 31"*      * &    0  -&  * *  *                           )&   #%5* J% -   *     -     )&   2A;#%5 * J,   &      -  A;          *      )&        * & G   ,* *      *   *.*&* G                 *    &      *    -   )&   $& DF 

(63)                   . 65.

(64)  

(65)       −     

(66)    

(67) ! "  " . *".     & 1-     ,  &-    /  $&  1:       -   .*      I%    0 .      *   &         -  . * # &

(68)       * H

(69)        * . +",. / $P   1.  "  *      *   * &    *  ,  !      * ,/   "1             !    I   *    )&   & *DEA; 4%2A;/KE5N1. *.. +.. /PI 1 . $& 4?* %. !    *  &*               *    *  * /  $&  41  0  *              *   -        I *                 -       0  0    G   -   -                &         &  "  * & &      * 

(70)  %  *        &    -     )&      -        -     

(71)  %   #5A * ;*     . **. . :               D   *         . * -      F 00    *   */ $& 1      .      -    " * &  ** -   * "  0            0& *  G                  * &    0 *       )&  -  25A; G -  %5 J% -   *     * D *  &  -F  0-   EEA;     & D5A; -     * &  G -   J,   &          &    0     "           &   &    -    -          *   G      *EE* ** D        )&   K  2%  A;  -   -  .   #* &                0   * & "  *    * * ,LE G          )&  -  55A;/I 2N1  0         *   . +*. /$P #    1. . $& 5F* ,. !  &   * -   --  .    &    )&            *   -     *         *      /  $& 51     *  .-  -  +-  &* *.*&** &       * L ! -  - * E  * /  -1

(72)  ,     =K*      . *-. $& F* D. +*/. /# P  # 1. +/. *32,A; 3E2EA;/&HP1. . :   * &*            -            I% /  $& %1 "  *    -     -  #.  J% *        & & -          &  -           #* &   * D 0        0 -   .      .     G                        0    & &     )&    * . $& F

(73)  E. "    *   /*   *   . 66.

(74)  

(75)       −     

(76)    

(77) ! "  " . G     *  %5  F     &   &       -    G       )&     4A; -     * & . $& EF

(78)  4. :               -       .          -             -  * .  ./ $& E1 *    *    .   . -  G &      4*         &   IF & & *  -    *        *    -  * . *     9  "  -  *   -  -        "  *    #5A * ;*      - * ,  -  # &       =K*              &         * -   * DN# . */%51        -      *   *  4    4  N   -    * 

(79)       %   *        &    -    )&       -                 -    . .   $& %F* 2. *0. . +0. $ )&   *E5A; 34DEA;/ 1. "      * - &&   &      &     &    *  *   .     &*  $          *&-  &    -        &*  &      . .  BC A&    

(80)   

(81)

(82)  

(83)    

(84) 0    

(85)    !   & #&   Q&:R%/  !!1EI344% BC &=&   '2   /    & #&  Q&:%/  !!1 

(86)   44D2I, B%CG& Q; 3  

(87)  9 5   ! 1   S#5Q & &   >&,RE  !55 B,C $&    H  H*  A&  #     H   !    3  3  

(88)       !  TO"!5D5 "

(89)   & A*&554.  $& ,F

(90)  3 :    *      .      - *   0 *  -  -         .  -    / $& ,1. *1. +1. 2

(91) 

(92) 3F- -&0   0H        * &    H - &    O" !5D56G& A 7     " *   

(93)  H   9 -0

(94)   . $ )&   *D%A; %%DA;/& P1. . 67.

(95)

Riferimenti

Documenti correlati

(Received 9 September 2013; accepted 9 January 2014; published online 13 February 2014) From first-principle fluid dynamics, complemented by a rigorous state equation ac- counting

Specifically, we demonstrate that the TiO 2 background pressure during pulsed laser deposition and the annealing conditions offer control over the formation of Au nanoparticles

8 the reverberation times obtained with four different source-receiver arrangements are shown: it can be seen that the reverberation of the empty stage dominates the acoustic

The method can be basically explained as the superposition of two simultaneous periphonic reproduction systems: cross-talk cancelled reproduction over a pair of closely-spaced

Estimate background noise (starting from a time corresponding to a decay of 5-10 dB based on actual slope after the actual crosspoint but 10% of length of IR should be the

z The system is based on two indipendently designed groups of loudspeakers: a Stereo Dipole, responsible for the reproduction of the direct sound and early reflections coming from

☐ S-3 Capitale Naturale ed Ecosistemi Marini ed Oceanici ☐ S-4 Capitale Naturale ed Ecosistemi Lagunari o di Transizione ☐ S-5 Capitale Naturale ed Ecosistemi delle Acque Interne