• Non ci sono risultati.

Evaluation of the RumiWatchSystem for measuring grazing behaviour of cows

N/A
N/A
Protected

Academic year: 2021

Condividi "Evaluation of the RumiWatchSystem for measuring grazing behaviour of cows"

Copied!
9
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Journal

of

Neuroscience

Methods

j ou rn a l h o m epa g e :w w w . e l s e v i e r . c o m / l o c a t e / j n e u m e t h

Research

article

Evaluation

of

the

RumiWatchSystem

for

measuring

grazing

behaviour

of

cows

J.

Werner

a,b,∗

,

L.

Leso

a,c

,

C.

Umstatter

d

,

J.

Niederhauser

e

,

E.

Kennedy

a

,

A.

Geoghegan

a

,

L.

Shalloo

a

,

M.

Schick

d

,

B.

O’Brien

a

aTeagasc,Animal&GrasslandResearchandInnovationCentre,Moorepark,Fermoy,Co.Cork,Ireland bUniversityofHohenheim,InstituteforAgriculturalEngineering,70599Stuttgart,Germany cUniversityofFlorence,DepartmentofAgricultural,FoodandForestrySystems,50145Firenze,Italy dAgroscope,ResearchDivisionCompetitivenessandSystemEvaluation,8356Ettenhausen,Switzerland eInnoCleverGmbH,Tiergartenstrasse7,4410Liestal,Switzerland

h

i

g

h

l

i

g

h

t

s

•TheRumiWatchSystemcansuccessfullymonitorbehaviourofgrazingcows.

•HighcorrelationbetweenRumiWatchSystemandvisualobservationindeterminingtimebudgetfordifferentcowactivities. •HighcorrelationbetweenRumiWatchSystemandvisualobservationindetermininggrazingbitesandruminationchews. •TheRumiWatchSystemwasproventobeanaccurateresearchtoolformeasuringdetailedgrazingbehaviourofcows.

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received31January2017

Receivedinrevisedform15August2017 Accepted16August2017

Availableonline24August2017

Keywords: Validation Sensortechnology Monitoringbehavior Boutcriteria Grazingbites Grazingtime

a

b

s

t

r

a

c

t

Feedingbehaviourisanimportantparameterofanimalperformance,healthandwelfare,aswellas reflectinglevelsandqualityoffeedavailable.Previously,sensorswereonlyusedformeasuringanimal feedingbehaviourinindoorhousingsystems.However,sensorssuchastheRumiWatchSystemcanalso monitorsuchbehaviourcontinuouslyinpasture-basedenvironments.Therefore,theaimofthisstudy wastovalidatetheRumiWatchSystemtorecordcowactivityandfeedingbehaviourinapasture-based system.TheRumiWatchSystemwasevaluatedagainstvisualobservationacrosstwodifferent experi-ments.Thetimedurationperhouratgrazing,rumination,walking,standingandlyingrecordedbythe RumiWatchSystemwascomparedtothevisualobservationdatainExperiment1.Concordance Correla-tionCoefficient(CCC)valuesofCCC=0.96forgrazing,CCC=0.99forrumination,CCC=1.00forstanding andlyingandCCC=0.92forwalkingwereobtained.Thenumberofgrazingandruminationboutswithin onehourwerealsoanalysedresultinginCohen‘sKappa(␬)=0.62and␬=0.86forgrazingand rumina-tionbouts,respectively.Experiment2focusedonthevalidationofgrazingbitesandruminationchews. TheaccordancebetweenvisualobservationandautomatedmeasurementbytheRumiWatchSystemwas highwithCCC=0.78andCCC=0.94forgrazingbitesandruminationchews,respectively.Theseresults indicatethattheRumiWatchSystemisareliablesensortechnologyforobservingcowactivityandfeeding behaviourinapasturebasedmilkproductionsystem,andmaybeusedforresearchpurposesinagrazing environment.

©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Withincreasingscaleonfarms,anddecliningavailablelabour, thereisarequirementfortechnologiesthatassistfarmersintheir

∗ Correspondingauthorat:Animal&GrasslandResearchandInnovationCentre, Moorepark,Fermoy,Co.Cork,Ireland.

E-mailaddress:jessicaanna.werner@teagasc.ie(J.Werner).

daytodaymanagement.Animalmanagementinvolvesensuring thehealthandwelfareoftheanimals;reactingtocertaineventsin theanimalreproductivecycleandimprovingefficiencyinfeed pro-visionforconversionintoananimalproduct,suchasmilkormeat. Especiallyinapasturebasedsystemthebalancebetweenthefeed offeredandtheherddemandneedstobeoptimizedtomaximise grassutilisationwhilesimultaneouslyensuringthatanimalsare wellfedatpasture.Shortageinlabourandtimetoobserveanimals makes it difficult for farmers tomonitor all animals intensely. https://doi.org/10.1016/j.jneumeth.2017.08.022

(2)

Automated monitoring for quantifying physiological and behavioural parameters, e.g. oestrus, somatic cell count and feeding behaviour, can give an insight into overall health sta-tus, important animal events as well as helping with feeding management.Foracontinuousmonitoringofthesephysiological and behaviouralparameters sensor-based, easy-to-usetools for farmersneedtobedeveloped.

Oneofthebestindicatorsofhealthandwelfareofdairycowsis feedingbehaviour.AstudybyBareilleetal.(2003)showedthatfeed intakewasinfluencedbyanumberofdifferentdiseasessuchasmilk fever,ketosisorhooflesions.Thereisabenefittodetect emerg-ingdiseasesearlierbymonitoringthefeedingbehaviourofdairy cowsautomatically.Previousresearchhasshownthatadeclinein ruminationtimecanbeusedasareliablepredictorofbothhealth andfertilityeventsandisalsomentionedtobeanindicatorfor cowstress(Herskinetal.,2004).Feedingbehaviourcanalsobe usedtooptimise grasslandmanagement decisionswitha focus onincreasinganimalintakeandreducinggrassresiduals.Itisof keyimportancetomeasure,manageandallocateaccuratelythe feedavailableandofferedtothecows,irrespectiveofthefarming systeminordertooptimisefarmefficiencyandprofitability.The estimationoffeedintakebasedonbehaviouralparameters,such asfeedingtimeorbitefrequency,providesvaluableinformation thatcanbeusedtomanagecows.Pahletal.(2015)conducteda studyinanindoorfeedingsystemtocomparefeedingandchewing timewithmeasuredintakedataobtainedbyweighingofthe feed-ingtroughs.Theyconcludedthatitwasappropriatetousefeeding behaviourforestimatingintakeinbarnsystems.

Somemethodshavebeendevelopedtopredictintakein grass-basedsystems(Undietal.,2008), suchastheN-alkane-method (Dillon and Stakelum, 1988).This methoddetermines the feed intake by the usage of an orally applied bolus with synthetic faecesmarker.These measurementsare labour-intensive, time-consumingandinvasive,asthecowshavetobedosedorallytwice adayovera2-weekperiod.Analternativeapproachusedto deter-minefeedintakewastheIGERanimalrecordingsystem(Mezzalira etal.,2014).Thisconsistedofanosebandsensorthatmeasured jawmovementbyelectricalresistance(Rutteretal.,1997).Itcould identifyandmeasuregrazingandrumination.However,the max-imumrecordingperiodofthissystemwas24h,andtheanalysis ofthedataviathe“Graze software”wasverylaborious (Rutter, 2000).Furthermore,thedistributionandcommercialsupportfor thistechnologyhasceasedinrecentyears.Butanewtechnology, theRumiWatchSystemmayhavethepotentialtoimprovedata captureandreplacetheIGERanimalrecordingsystem.

TheRumiWatchSystem wasinitially developed byNydegger andBollhalder(2010)attheSwissFederalResearchInstitute (Agro-scope, Tänikon, Switzerland) for behavioural measurements on cowsfedindoorsandiscommerciallydistributedbythecompany (Itin+HochGmbH,Liestal,Switzerland)since2010.Itiswell estab-lishedasasensortechnologyinindoorhousingsystems(Ruuska etal.,2016)andhasundergoneanumberofmodificationsin devel-opmentasaresearchandadvisorytool(Zehneretal.,2012).Most ofthemodificationswereconductedtooptimizetheanalysis soft-ware,theRumiWatchConverter,basedondevelopmentofdifferent algorithmstoanalysetherawdata.InastudyofZehneretal.(2017) differentversionsoftheRumiWatchConverterwerevalidatedin indoorhousingsystemsagainstvisualobservation.Further modi-ficationsofappliedalgorithmsintheRumiWatchConverter,such asthedefinitionofeachgrazingbite,wereconductedtorecord grazingbehaviourasfeedingbehaviourdiffersinindoorhousing systemsandpasture-basedsystems.Asitisabsolutelycriticalthat anyanimalbehavioursensoroperatescorrectlyinmonitoringthe appropriateparameters, theobjectiveofthis studywasto vali-dateanupdated andadapted versionof theRumiWatchSystem forthemeasurementofgrazingbehaviourinapasture-basedmilk

productionsystem.Twoseparateexperimentswereconductedto validateparameterssuchasgrazing,rumination,walking,standing andlyingtime,aswellasgrazingbitesandruminationchews. 2. Materialandmethods

ValidationoftheRumiWatchSystemwasconductedintwo sep-arateexperimentswithindividualcowherdsatTeagasc,Animal andGrasslandResearchandInnovationCentre(Fermoy,Co.Cork, Ireland,50◦07N;8◦16W).Experiments1and2tookplaceinthe periodsof10thto19thofMay2016and31stofMayto2ndofJune 2016,respectively. The experimentalgrazing areas represented permanentgrasslandwith70%perennialryegrassand30%annual meadowgrass.Thisstudywaspartofalargerstudywhere differ-entlevelsoffeedallowancewereallocatedtodairycowsacross differentperiodsofthelactationandfordifferentdurations. 2.1. Sensortechnology

TheRumiWatchSystemconsistsoftwoseparatedeviceswith associated software packages for managing the sensors (Rumi-WatchManager)andanalysingdata(RumiWatchConverter).

TheRumiWatchhalterincorporatesanosebandpressure sen-sor,a3-axisaccelerometeraswellasadatalogger.Thenoseband sensorcomprisesanoil-filledtubewithabuilt-inpressuresensor. Thepressureinsidethetubechangeswithalternationdueto chew-ingactivitiesandisrecordedina10Hzresolution.Thoserawdata aresavedonanintegrated4GBSD-cardforupto4months,which isimplementedtogetherwiththedataloggerinaprotectiveboxon therightsideofthehalter.Ontheleftside,thereisapowersupply withtwo3.6Vbatteriesintegratedinasimilarlyconstructedbox. Basedondifferentpressuresignaturesofthenosebandpressure sensor,theRumiWatchConverterisabletodetectjawmovements andclassifiesthembasedonfrequencyandrhythmtogetherwith accelerationpatternsintograzingbites/chews,ruminationchews oranyotheractivity.Additionally,thetimedurationofthose differ-entclassificationsisrecorded.Furtherinformationabouttechnical componentscanbefoundinWerneretal.(2016),Zehneretal. (2012)andZehneretal.(2017).

TheRumiWatchpedometerconsistsofaprotectiveplasticbox witha3-axisaccelerometerintegrated.Similartothehalter,there isanSD-Cardandadataloggerconnectedwiththe23.6Vbatteries builtintothebox.Accelerationrawdataforthex-,y-andz-axisare recordedina10Hzresolution.TheRumiWatchConverterisableto classifytheaccelerationrawdatabyapplyingspecificalgorithms intostanding,walking,lyingaswellasamountofstrides.Further informationaboutthedevelopmentandvalidationcanbefoundin Alsaaodetal.(2015).

TheRumiWatchManager2(V.2.1.0.0)andtheRumiWatch Con-verter(V.0.7.3.36)wereusedforExperiments1and2ofthecurrent study.Thereweretwodifferentapproachesfortimeresolutions. The 1-min summary data were categorized into differentfocal behaviourclassificationsbytheRumiWatchConverter.The Con-verteralsocreatednumericalvaluesbasedonacalculationofthe timeduration(minperperiod)offocalbehavioursineachofthe definedtimeresolutions,e.g.5-min,10min,1hsummaries.

The RumiWatch Converter V.0.7.3.36 used three different parameterstomonitorandcalculategrazingtime.Twoparameters consideredinthisstudywereusedtocalculategrazingtime.EAT1 determinedgrazingwithheadpositiondown,EAT2determined grazingwithheadpositionup.Furthermore,therewere parame-tersforgrazingandruminationboutbehaviourintegratedinthe RumiWatchConverterV.0.7.3.36withgrazingboutsand rumina-tionbouts.Agrazingboutwasdefinedasanevent,wheregrazing wasdetectedforaminimumdurationof7minandtheinter-bout

(3)

Table1

Experimentalprotocolfordatacollectionofcowbehaviourbyvisualobservation.

Day Time Observer1 Observer2

Cownumbers Cownumbers

1 09:00–11:00 1,2,3 4,5,6 12:00–14:00 4,5,6 1,2,3 17:00–19:00 1,2,3 4,5,6 2 09:00–11:00 7,8,9 10,11,12 12:00–14:00 10,11,12 7,8,9 17:00–19:00 7,8,9 10,11,12 3 05:00–07:00 4,5,6 1,2,3 11:00–13:00 1,2,3 4,5,6 19:00–21:00 4,5,6 1,2,3 4 05:00–07:00 10,11,12 7,8,9 11:00–13:00 7,8,9 10,11,12 19:00–21:00 10,11,12 7,8,9

interval wasdefined witha minimumthreshold of 7min.That meant,thatifacowwasnotshowinganygrazingbehaviourfor ≤7minorshecommencedtoruminate,thedetectionofthe graz-ingboutwasstopped.Thesedefinitionsweresimilartothoseused inastudybyPérez-Ramírezetal.(2009)afterBrunetal.(1984).A secondboutparameter,aruminationboutwasdefinedashavinga minimumdurationof3minandaninter-boutintervalwitha mini-mumthresholdof1min.ThestudyofWolfgeretal.(2015)applied similarcriteria.

2.2. Experiment1

2.2.1. Animalsandtreatments

Agroupoftwelvespringcalvingdairycowsfromaherdof15 inapasture-based milkproductionsystemwasused.Thecows wereonaverage91±12daysinmilkatthestart ofthe experi-ment.ThegroupconsistedofanequalnumberofHolstein-Friesian (HF)andJerseycrossbred(JEX)cowswithfourprimiparous1and eightmultiparouscows2,ranginginlactationnumberfrom2to 6.Themeanbodyweightwas477±65kgandtheaveragebody conditionscore(BCS)was2.8±0.2rangingfrom1to5,measured undertheEdmonsonetal.(1989)scoringsystem.Theaveragemilk yieldovertheexperimentalperiodwas22.5±4.5kg/cow/day.All cowsfollowedasimilarmilkingroutine.Cowsweremilkedtwice aday(6:30hand14:30h)andspentapproximately1.5−2.0hper milkingawayfromthepaddock.

Cowswereonagrassonlydietandreceivedagrassallocation twicedailyaftermilking.Pre-andpost-grazingswardheightwas measureddailywitharisingplatemeter(diameter355mmand 3.2kg/m2;Jenquip,Fielding,NewZealand).Pre-grazingheightof grassaveraged11.9±2.5cm,whilepost-grazingheightaveraged 4.5±0.8cmduringtheexperimentalperiod.Theaverage experi-mentalpaddockareaovertheexperimentalperiodwas0.15ha.All cowswereidentifiablebynumberspaintedontheirsides(1–12). 2.2.2. Experimentaldesign

Cowbehaviouraldatawascollectedbyvisualobservationand byautomatedrecordingoftheRumiWatchSystem.Twopreviously trainedobserverswereusedtomonitorthecows.Thecowgroup

wasdividedinto4subgroupsof3cowseach.Eachsubgroupwas observedbyeach observeron3occasionsperdayover a4day period(Table1).Observationstookplaceover2-hperiodsbetween dawn(05:00) anddusk (21:00)excluding milkingtimes,which extendedfrom7:00to9:00and14:00to17:00h.

Visualobservationwasperformedby1-minscansamplingas usedinthestudyofBüchelandSundrum(2014).Behaviouraldata wascategorizedasfeedingbehaviour(FB)andactivitybehaviour (AB).Feedingbehaviourwasfurtherclassifiedasgrazing, ruminat-ingandotheractivities,whileactivitybehaviourwasclassifiedas standing,walkingandlying(Beaucheminetal.,1989).Thedifferent behaviourclassificationsaredescribedinTable2.Thedatawere recordedonamanualspreadsheet andweretransferred manu-allytoanelectronicspreadsheet(Microsoft ExcelVersion2010; MicrosoftCorporation,Redmond,USA)foranalysis.

Withregardtotheautomateddatacollection,the RumiWatch-Systemcomprisedoftwodevices,ahalterplacedontheheadand a pedometerplacedonthelefthind leg.TheRumiWatch Man-ager2wasusedtosynchronizebothRumiWatchdevicestoUTC (UniversalTimeCoordinated)atthebeginningoftheexperiment. 2.2.3. Datapreparation

Therewere144h(8640min)ofvalidobservations.Thisvisually recordeddatawereassembledinthreeways.Firstlythedatawas assignedtotheappropriateclassificationwithinthecategoriesof FBandABat1-minintervals.Secondly,thetimedurationofthe specificclassificationsofFBandABweretotalledfor1-hintervals. Finally,thenumberofstartedgrazingboutsandfinishedgrazing boutsandthenumberofstartedruminationboutsandfinished ruminationboutswerecalculatedforeach1-hperiod.

Theautomaticallycaptureddataofthehalterandpedometer weredownloadedusingtheRumiWatchManager2.Forthis,the microUSB-portintegratedinthesensorswasconnectedviaa USB-cabletothecomputerandtherawdataweretransferred.Further, theRumiWatchConverter(V.0.7.3.36)wasusedtoconverttheraw datainto1-minand1-hsummaries.Thosesummariescomprised comparableparameterstothoseoutlinedaboveforthevisualdata (classificationat 1-minintervals,duration of specificbehaviour classification perhour and numbers ofgrazing and rumination bouts).Fortheanalysisofgrazingtime,thetotalofEAT1TIMEand EAT2TIMEwascalculated.

2.3. Experiment2

2.3.1. Animalsandtreatments

TheobjectiveofthistrialwastovalidatetheRumiWatch nose-bandsensorforthenumberofgrazingbitesandruminationchews. Agroupoftwelvespringcalvingdairycowswerefittedwith Rumi-Watchnosebandsensors.Allcowswereidentifiablebynumbers (1–12)paintedonbothsidesofeachcow.Theexperimentextended overa2-day-periodwithanadjustmentperiodtothenoseband sensorof8dayspriortothestartingoftheexperiment.Twocow breedswereincludedwith7Holstein-Friesian(HF)and5Jersey crossbreds(JEX).Thegroupconsistedof3primiparousand9 mul-tiparouscows,rangingfrom2to6parities.Averagecowmilkyield

Table2

Definitionofdifferentbehaviourcategoriesforobservers,adaptedfromBikkeretal.(2014)andAlsaaodetal.(2015). Behaviour Definition

Feedingbehaviour

Grazing Cows’muzzleislocatednearorabovethegrassandmakesbitingmotiontoingestgrass,orcow’s headpositionupandmakingchewingmotion

Ruminating Regurgitation,chewing,salivationandswallowingofingestedgrass

Otheractivities Anyothermovementsofthemuzzle,whicharenotassociatedwithgrassintake Activitybehaviour

Standing Cowisinanuprightpositionbutisnotwalking

Walking Cowtakesatleast3consecutivestridesinthesamedirection(forwardorbackward) Lying Cowisrestingontheground(notstanding)

(4)

Table3

Experimentalprotocolfordatacollectiononcowbehaviour(ruminationchewsandgrazingbites),byvisualobservation.Observedcowsweremonitoredin5-minperiods inthestatedorderascendingordescendingbyeachobserver.

Day Time Observer1 Observer2 Observer3 Observer4

CowNo. CowNo. CowNo. CowNo.

1 09:30–11:30 17612 71612 126→17 61217 12.00–14.00 17612 71612 126→17 61217 17:00–19:00 1→6 7→12 6→1 12→7 7→12 1→6 12→7 6→1 2 04:30–06:30 17612 71612 126→17 61217 11:00–13:00 17612 71612 126→17 61217 19:00–21:00 1→6 7→12 6→1 12→7 7→12 1→6 12→7 6→1

overtheexperimentalperiodwas20.8±4.7kg/cow/day.Cowshad anaveragebodyweightof496±69kgandaBCSof2.9±0.2.The cowswereonagrassonlydietandweremaintainedinthesame paddockthroughouttheexperimentalperiod.Theyhadadlibitum accesstowater,andfreshgrasswasprovidedoncedailydirectly after morning milking. Milking times were twice daily (6:30h and 14:30h) during which thecows spend 1.5-2.0hper milk-ingawayfromthepaddock.Pre-andpost-grazingswardheight wasmeasuredwithanautomatedrisingplatemeterwhich isa grass measuringdevice(Grasshopper, TrueNorth Technologies, Shannon,Co.Clare,Ireland;(McSweeneyetal.,2015))onone occa-sionduringtheexperiment.Averagepre-grazingandpost-grazing heightwere14.7cmand6.1cm,respectively,onanexperimental areaof0.36ha.

2.3.2. Experimentaldesign

Theaccordancebetweenallfourobserverswasmeasuredover twodaysin24 5-minperiods.Fourpreviously trainedobservers thenmonitoredonecowperobserverfor5-minperiodstovalidate the number of grazing bitesand ruminationchews. The num-berofgrazingbitesandruminationchewswasrecordedusinga handheldcomputerwithaspeciallyprogrammedapplication.This applicationwasprogrammedtorecordeachgrazingbiteor rumi-nationchewbypressingabuttononthehandheldcomputer.Each bite/chewinthe5-minmeasurementperiodwasthensummarized intheoutputtothetotalamountofbites/chewsper5min.Agrazing bitewasdefinedasacombinationofjaw,tongueandneck move-menttoripgrassaccompaniedbyagrassbitingsound(Baileyetal., 1996).Ruminationchewswerecountedafterregurgitation took placeandabolustravelledthroughtheoesophagustoreachthe mouth(Schirmannetal.,2009).AsinExperiment1,the observa-tionalperiodswereextendedto2-hperiodsand occurredthree timesaday(Table3).Allobservationstookplacebetween04:30 and21:00h.Every5-minobservationperiodwasalternatedwitha 5-minbreakperiod.Cowswererotatedacrossobserversforevery 5-minobservationperiod,suchthattheobservermonitoredeach ofthe12cowsduringeach2-hourobservationperiod.

2.3.3. Datapreparation

Thedatarecordedonthehandheldcomputerincludedthe num-berofvisuallyobservedruminationchewsandgrazingbites.This datawassubsequentlytotalledwithinaspreadsheetapplication. Intotal249observationperiodswereanalysed,whichhadbeen collectedoverthe2-dayperiod.Theobservationperiodsconsisted of181periodsofgrazingbiteobservationsand71periodsof rumi-nationchewobservations.Datawereexcluded,whentwodifferent behaviourtypes(grazingbitesandruminationchews)were moni-toredwithinone5-minperiod.Periodswhereneithergrazingbites

norruminationchewswereobserved,werealsoexcludedfromthe dataset.

Withregardtothedataautomaticallyrecordedbythe Rumi-Watch noseband sensor, these data were classified into the categoriesofgrazingbitesandruminationchews.Thedatawere thenconvertedbytheRumiWatchConverter(V.0.7.3.36)into 5-minintervals,summarizingthenumbersofruminationchewsor grazingbites.Foranalysingruminationchews,thealgorithmswith theplausibilitycheckfunctionforminimumdurationof3minwere turnedoff.

2.4. Statisticalanalysis

StatisticalanalysiswasperformedusingRversion3.3.1(R Foun-dationforStatisticalComputing,Vienna,Austria).Thefollowing analyseswerecarriedouttoassessagreementbetweenthe Rumi-WatchSystemandvisualobservations,dependingonthetypeof datarecordedatdifferenttimeperiods.

InExperiment1, Cohen’sKappa(␬)wascalculatedtoassess agreementbetween RumiWatchSystemand visualobservations whenFBandABwererecordedat1-minresolution(Cohen,1960). The␬–valueswereinterpretedinasimilarmannerasbyLandis andKoch(1977),where:poor:␬<0.00,slight:␬=0.00–0.20,fair: ␬=0.21–0.40,moderate:␬=0.41–0.60,substantial:␬=0.61–0.80, andalmostperfect:␬=0.81–1.00.

Thepercentageagreement(PA)ofthe1-minresolutiondatafor bothcategoriesofFBandABandspecificclassifications,e.g.grazing, rumination,standing,walking,etc.recordedbyvisualobservation andRumiWatchSystemwascomputedusingthefollowingformula, usedbyMartinetal.(1993):

PA[%]= total numbers of agreement

total numbers of agreement+total numbers ofdisagreement×100

Anumberoftestswereconductedonthevariableswithnumeric valuestoassessagreementbetweendataoftheRumiWatchSystem andvisualobservations.ThebehaviouraldatafromtheRumiWatch noseband sensor and from thepedometer were subjectedto a graphicalanalysisinaBland-Altman-PlotandaSpearman’sRank correlation(rs)andaconcordancecorrelationcoefficient(CCC)was calculated,usingtheU-statistics(Carrascoetal.,2007). Interpreta-tionofrs-valuesandCCCwerebasedoncriteriadefinedbyHinkle etal.(2003)asfollows:Negligible=0.0–0.3,low=0.3–0.5, moder-ate=0.5–0.7,high=0.7–0.9andveryhigh=0.9–1.00.

TheBland-Altman-Plotsdemonstratedtheagreementbetween bothmeasurementmethods.Thiswasconductedbyplottingthe differences(automatedmeasurement−visualobservation)against the means of visual observationand automated measurement. TheBland-Altman-analysisindicatedthemeandifferences(bias), betweenthepairedautomaticallyrecordedandvisuallyobserved

(5)

values,with95%-confidenceintervals (CI). It alsodisplayedthe lower and upper limits of agreement along with their relative 95%-confidenceintervals.Thelimitsofagreementwerecalculated as±1.96*standarddeviationfrommeandifference.Althoughthe parameterswerenotnormallydistributed,theBland-Altman-plots wereused,asthedifferencesbetweenthepairedvaluesfollowed anormaldistribution.Inaddition,amethodtodetermine signifi-cantdifferencesbetweentwomeasurementsbyGiavarina(2015) wasalsoappliedontheBland-Altman-analysis.Thebias(ormean difference)wasconsideredtobesignificantwhenthelineof equal-itywasnotwithinthe95%CIofthemeandifference.Therefore,a significantunder-oroverestimationwasdeclaredwhenthelineof equalitywasnotincludedinthe95%CIofthemeandifference.

Forthevalidationofbouts(grazingandrumination),therewere valuesbetween0and2forboutsstartedorfinishedwithineach 1-hperiodmeasured.Therefore,thesevaluesweretreatedas ordi-nalvariables.Theagreementforgrazingandruminatingboutswas assessedusingweighedkappastatisticsandpercentageagreement, asexplainedabove.

In Experiment 2 grazing bites and rumination chews were countedbyhumanobservers during 5-minperiods. Agreement betweeneverypairedobserverwasevaluatedusingCCCandamong allobserversviaoverallCCC.Numberofgrazingbitesand rumi-nation chews per 5-min period were analysed using the same methods for numeric variables as described in Experiment 1, includingSpearman’s Rankcorrelation, CCC and Bland-Altman-Analysis.

3. Results 3.1. Experiment1

Thecomparisonofcategoricaldataofthenosebandsensorand ofthepedometerisshowninTable4.TheCohen’sKappavalue was␬=0.84forthevisualfeedingbehaviourmeasurements com-paredwiththenosebandsensorand␬=0.89forthevisualactivity measurementscomparedtothepedometer.Usingan interpreta-tionofLandisandKoch(1977),theseresultsindicateanalmost perfectagreementofvisualandautomaticallyrecordeddataona 1-minresolution.Thisresultissupportedbytheoverallagreement of91.1%forthenosebandsensorand95%forthepedometer.

Theevaluationof1-hsummariesoffeedingbehaviourmeasured bythevisualobservationandbythenosebandsensorispresented inFig.1andTable5.Grazingwasdetectedbyvisualobservation ashavingoccurredfor40.5min/h(median), whilegrazing time detectedbytheautomated sensorsystemwasrecorded witha medianof47min/hour.Aslightoverestimationoftheautomated systemingrazingminperhourisdisplayedinFig.1(a).According toBland-Altman-Statisticsthemeandifferencewas4.41min/hour, andthisoverestimationisshownasthesolidlineinFig.1(a).The correlationofrs=0.96andaCCC=0.96isclassifiedasveryhighfor determinegrazingtime.

Thecomparisonofruminationtimemeasuredbyvisual obser-vationandby theautomated methodisshown inFig.1(b) and Table5.Thecorrelationofrs=0.98andaCCC=0.99isveryhigh. Theautomatedsystemrecordedarangeofmeasuredminof rumi-nationbetween0and59,withamedianof0.Alternatively,the observersrecordedarangefrom0to57minwithamedianof2min ruminationperhour.InTable5theanalysisofthe Bland-Altman-Plotispresented. Thebiasof0.03min/hour alongwiththe95% CIof−3.04and3.10demonstratedaperfectagreementbetween theautomatedsystemandtheobservers.Themeanofallvalues wascompletelyaccurateand95%ofallrecordedvaluesdistributed themselvesinadifferencerangeof±3min/hour.

Fig.1.AgreementofautomatedRumiWatchnosebandsensormeasurementsand visualobservationsoffeedingbehaviour(a)grazingand(b)ruminationtimein1-h periods,displayedinBland-Altman-plots(solidlineindicatesthemeandifference; dashedlinesindicateupperandlower95%limitsofagreement).

Thetotalagreementformeasuringstartedandfinishedgrazing boutswithin1-hperiodswasPA=84.7% andPA=85.4%, respec-tively,whereastheagreementforruminationboutsstartedand finishedwasPA=93.1%and PA=93.8%.Theweighedkappa val-uesshowedamoderateagreementbetweenvisualandautomated measurement with values of =0.62 and =0.66 for grazing bouts started and finished, respectively. The rumination bouts showedimprovedperformance,withanalmostperfectagreement of␬=0.86forboutsstartedandboutsfinished.

Thevalidationofthepedometerintermsofmeasuringactivity behaviourinapasture-basedsystemisshowninFig.2.Standing timeandlyingtimeweredeterminedaccuratelybythesensor sys-temwitha correlationofrs=0.99,while walkingtimewasless accuratelydeterminedbythesensorwithacorrelationofrs=0.77. Therewerelessminutesperhourofwalkingdetectedin compari-sontostandingandlying.Themedianofwalkingtimewas1minfor visualobservationandrangedfrom0to18minperhourwhereas theautomatedsystemrecorded2minperhour,rangingfrom0to 17minperhour.Grazingtimewassignificantlyoverestimatedand timeatotheractivitieswassignificantlyunderestimated. Signifi-cantdifferencesofbiaswerealsoobservedbetweenthepedometer andvisualrecordingsinstandingtimeandwalkingtime(Table5). 3.2. Experiment2

Inthis experimenttheaccuracyof theRumiWatchSystemin measuringgrazing bites and rumination chews was examined. Thedegreeofagreementbetweenobserverswasanalysedinitially

(6)

Table4

Cohen’sKappa(␬)andpercentageagreementbetweenvisualobservationsandautomatedmeasurementsbyRumiWatchforfeedingandactivitybehaviourona1-min resolution.

Category Cohen’s␬ Agreementbetweenvisualand automatedmeasurement(%)

Classification Agreementbetweenvisualand automatedmeasurement(%) Feedingbehaviour(Grazing,

Ruminating,OtherActivities) 0.84 91.1

Grazing 91.5

Ruminating 94.3 OtherActivities 81.4 Activitybehaviour(Standing,

Walking,Lying) 0.89 95.0

Standing 96.3

Walking 95.4

Lying 98.7

Table5

Spearman’srho(rs),ConcordanceCorrelationCoefficient(CCC),andBland-Altman-analysis(Bias,upperandlower95%limitsofagreementwith95%CI)ofautomated

measurementsversusvisualobservationsina1-hresolutionfordifferentbehaviourclassifications.

Behaviourtimeinmin/h rs CCC Bias(95%CI) Lower(95%CI) Upper(95%CI)

Grazing 0.96 0.96 4.41 −4.69 13.51 (3.64;5.17) (−6.02;−3.37) (12.19;14.84) Rumination 0.98 0.99 −0.03 * −3.10 3.10 (−0.29;0.22) (−3.55;−2.66) (2.59;3.48) Otheractivities 0.91 0.90 −4.38(−5.12;−3.63) −13.20(−14.49;−11.92) 4.45(3.17;5.74) Standing 0.97 1.00 −0.69(−0.92;−0.47) −3.35(−3.74;−2.96) 1.96 (1.57;2.35) Lying 0.99 1.00 0.05*(−0.07; −1.35 1.45 0.17) (−1.55;−1.15) (1.24;1.65) Walking 0.78 0.92 0.85(0.63;1.06) −1.71(−2.08;−1.33) 3.40(3.02;3.77) *=nosignificantover-estimationorunder-estimationbetweenautomatedsystemandvisualobservation

Fig.2. AgreementofautomatedRumiWatchpedometermeasurementsandvisualobservationsforactivitybehaviour(a)standing;(b)walking;(c)lyingin1-hperiods displayedinBland-Altman-plots(solidlineindicatesthemeandifference;dashedlinesindicateupperandlower95%limitsofagreement).

(Table6).TheCCC-valuesdeterminedforgrazingbitesand rumi-nationchewswereCCC=0.98andCCC=1.00respectively,which demonstratedaveryhighagreementbetweenallfourobservers.

The comparison between the automated system and visual observationsinmeasuringgrazingbitesarepresentedinFig.3a) andTable7.Thevisuallycountedgrazingbitesrangedfrom0to

387per5-minperiod,withamedianof232bites.However,the RumiWatchSystemrecordedgrazingbitesbetween0and419,with a median of280bites.The Bland-Altman-Plot showedthat the automatedmeasurement slightlyoverestimated thenumbersof grazingbites.Abiasof36grazingbites/5min,withalower95% limitofagreementof−66grazingbites/5minandanupper95%

(7)

Table6

Concordance Correlation Coefficient (CCC) for each observer paired with all observersandoverallCCCbetweenallfourobserversinmeasuringgrazingbites andruminationchews.

Behaviour [n/5min]

CCC Overall

CCC Observer1 Observer2 Observer3 Observer4 Grazing bites 1 0.97 0.97 0.99 0.98 2 0.99 1.00 3 0.99 Rumination chews 1 1.00 1.00 0.99 1.00 2 0.99 0.99 3 0.98

Fig.3.AgreementofautomatedRumiWatchnosebandsensormeasurementsand visualobservationsfor(a)grazingbitesand(b)ruminationchews,in5-minperiod, displayedinBland-Altman-plots(solidlineindicatesthemeandifference;dashed linesindicateupperandlower95%limitsofagreement).

limitofagreementof138grazingbites/5minconfirmedthe sig-nificantoverestimationofgrazingbitesbytheRumiWatchSystem. Overall,theagreementforgrazingbitesbetweenthetwo measure-mentapproachesforgrazingbiteswashigh,withrs=0.81anda CCC=0.78(Table7).

Theevaluationofthemeasuredruminationchewsbyvisualand automatedrecordingsdemonstratedpositiveresultsasshownin Fig.3(b).Thevisuallycountedruminationchewsrangedfrom2 to386chews/5-minperiodwithamedianof323chews. Alterna-tively,theRumiWatchSystemrecordedamedianof330rumination chews/5min.The agreement between observer and automated systemishighercomparedtothatforgrazingbites,witha correla-tionofr=0.81andaCCC=0.94.TheBland-Altman-plotofFig.3(b) alsoillustratedgraphically,thatthemeandifferencebetweenboth measurementmethodsisverysmallwithavalueof7.24 rumina-tionchewsper5-minperiod.Limits ofagreement(dashedlines inFig.3(b)indicatethatthemeandifferencesbetweenautomated measurementandvisualobservationliebetween−51.44and65.92 chewsper5-minperiod.

4. Discussion 4.1. Experiment1

The automated measurement of grazing time by the Rumi-WatchSystemwascomparedwithvisualobservationandahigh level of accuracy with a very high correlation of rs=0.96 was observed.Thecorrelationwasslightlyhigherthanthatofother sys-temsusedtodetectfeedingbehaviourinthestudyofBorchersetal. (2016).Inthatstudy,anr=0.88andCCC=0.82wasestablishedfor theCowManager‘SensOor’system(Agis,Harmelen,Netherlands) andr=0.93 andCCC=0.79for the‘TrackACow’system(ENGS, RoshPina,Israel).Theresultsinthecurrentstudyalsoindicated thattheRumiWatchsensorslightlyoverestimatedgrazingtimein comparisontovisualobservation.Whentheparameter‘EAT1TIME’ (headpositiondown)wasconsideredinisolation,thecorrelation wasincreased tors=0.97 and CCC=0.99. Thisshowed thatthe parameter‘EAT2TIME’(headpositionup)mayhaveincludedsome behaviourswhichshouldnotbeconsideredasfeedingbehaviours (e.g.licking).Thus,itmaybebeneficialtodefineingreaterdetail, thebehaviours that should beincluded in thedifferentoutput parametersoftheRumiWatchConverter.

Ruminationtime wasnot significantlydifferentbetweenthe RumiWatchnosebandsensorandvisualobservation.Thisresult iscomparabletoastudyofKrögeretal.(2016),inwhichthe nose-bandsensorwasvalidatedfordifferentfeedingregimesinanindoor situation.Furthermore,astudyofBorchersetal.(2016)showed theRumiWatchSystemtobeslightlymore accurate(CCC=0.99) thantheSmartbowsystem(SmartbowGmbH,Jutogasse,Austria) (CCC=0.96)indetectingruminationtime.

AlthoughtheappliedalgorithmsoftheRumiWatchConverter differeddependingonthechosenoutputresolution,theaccuracy in1-minsummariesand1-hsummarieswasveryhigh.For1-min summariesthechallengeforthealgorithmswastoevaluateeach minuteseparatelywithoutanymajorplausibilitychecksontime periodsbeforeorafterthemeasuredminute.Additionally,error

Table7

Spearman’srho(rs),ConcordanceCorrelationCoefficient(CCC),andBland-Altman-analysis(Bias,upperandlower95%limitsofagreementwith95%CI)ofautomated

measurementsagainstvisualobservationsofgrazingbitesandruminationchewsin5-minperiods.

Behaviour(n./5min) rs CCC Bias(95%CI) Lower(95%CI) Upper(95%CI)

Grazingbites 0.81 0.78 36.01 −66.16 138.19

(28.36;43.66) (−79.41;−52.93) (124.95;151.44) Ruminationchews 0.81 0.94 7.24(−0.15;−14.33) −51.44(−63.72;−39.17) 65.92(53.64;78.19)

(8)

detectedbetweenautomatedandvisualobservationshaspotential tobemoreobviouswith1-minsummariesthan1-hsummaries,as someoftheerrorsmaybecompensatedfor,inthetotallingofthe 60min(1-h)value.Whilethehighresolutionof1-minrecording mightnotbeasimportantforacommercialapplication,the bene-fitforresearchpurposesissignificant.Particularly,inbehavioural research,thereactiontotreatmentsonaveryhightimeresolution isvaluable.Visualobservations,ontheotherhand,aremore dif-ficultduetothepersonsandtimecommitmentrequired,aswell asthereducedpracticabilityofconductinghighresolution1-min scansamplingduringnighthours.Therefore,anautomated mea-surementsystemwouldallowincreasedmeasurementandadds functionalitytomanyoftheexperimentsconductedonanon-going basis.

Duetotheexperimentalsetupusedforvalidatingbout param-eters againstvisual observationsthere were limitations forthe automatedsysteminusingtheplausibilityalgorithms.The plausi-bilitycheckscanbeperformedbestoncontinuousdata.However, theshortperiodsof1-hobservationsasusedinthisstudy accumu-latedtoomanycut-offpoints.Therefore,theresultsofamoderate agreementbetweenvisualandautomatedmeasurementmightbe explainedinthisoverallcontext.Itislikelythatwithcontinuous observationsoverextendedperiodsoftime,thoseerrorsoffalsely allocatedstartedorfinishedboutswithin1-hperiodswouldbe reduced.

TheresultsoftheRumiWatchpedometerwereveryaccurate indetectingstandingandlyingbehaviours.Alsaaodetal.(2015) describedandvalidatedthealgorithmfortheRumiWatch pedome-terintheirpublicationandachievedsimilaraccurateresultsfor standingandlyingtimes.Theaccuracyofdetectingwalking cor-rectlyinthecurrentstudywasweakerwithrs=0.78thantheother classificationsofstandingwithrs=0.97andlyingwithrs=0.99.This maybeduetothefactthatbehavioursoflyingandstandingare moreeasilydetected,andthereforemorecorrectlydetectedthan walkingbehaviour.

4.2. Experiment2

Theinter-observerreliabilitywassuccessfullytestedtoensure thevalidityoftheresults.Theoverallresultamongallobservers for grazing and rumination was indicated by a CCC=0.98 and a CCC=1.00, respectively. Similar results were considered by Schirmannetal.(2009)tobeasufficientlyaccuratereferenceto beusedasagroundtruthinplaceofvisualobservationtovalidate anothersensorsystem.Furthermore,theobservationalperiodsin thecurrentstudywereadjustedfrom10minperiodsasoutlinedin Werneretal.(2016)to5minperiods.Thiswastoensuremaximum concentrationbytheobserverwithpotentiallygreateraccuracyin countingallgrazingbites.Additionally, thefocuswasplaced on grazingbitesandruminationchewstoimprovereliability. Record-ingeveryindividualjawmovement(e.g.licking,chewing,etc.)was identifiedaschallengingfortheobservers.

TheRumiWatchSystemslightlyoverestimatedthenumberof grazingbites.Thismaybeduetothenosebandsensorbeingvery sensitiveindetectingpressuredifferences.However,anerrorin visualobservationofgrazingbiteswasalsodetected.Thiswaslikely duetothehighfrequencyofgrazingbites.Thereforethetrueor cor-rectnumberofgrazingbitesmayliebetweenthevaluesrecorded byautomated measurementand visualobservation. Astudyby Championetal.(1997)didconsiderthatdetectionofgrazingbites bytheautomated systemmaybemore accuratethandetection byvisualobservation.AfurtherstudybyDelagardeetal.(1999) alsoshowed,theRumiWatchSystemtobeasstronglycorrelated tovisualobservationinrecordingnumberofbitesperminasthe audiorecordingsystemtheyusedintheirstudywiththeR2values rangingfrom0.72to0.98.

InarecentlypublishedstudybyKrögeretal.(2016),the Rumi-WatchSystem was compared to visual observationin terms of accuracyincapturingruminationchewsat10-minresolution,and aCCCof0.92wasobserved.Inthecurrentstudy,aCCCvalueof 0.94 wasobserved fora similarcomparison.Thisrepresenteda slightincrease in accuracy,which maybe aconsequence ofan updatedversionoftheRumiWatchConverterusedinthecurrent study.However,itisalsotruethatthedietdifferedinboth stud-ies,withafeedingregimeincludingroughage,concentrateanda mixeddietbeingusedinthestudyofKrögeretal.(2016)whilea grassdietwaspredominantinthisstudy.Theobservationalperiods alsodifferedbetweenthestudies,withtheKrögeretal.(2016)and currentstudiesusing10-minand5-minresolutions,respectively. Astheplausibilitychecksforruminationarebasedoncontinuous datathethresholdofaminimumof3mintodetectruminationhad tobeturnedoff.Therefore,theresultsofthetwostudiesarenot entirelycomparable.Forrecordingofcontinuousdataover long-termperiods,thisplausibilitycheckfunctionshouldnotinfluence theaccuracyindetectingruminationchews.

In contrast to most commercially available systems in use on-farm, thecost of the RumiWatchSystemand itsapplication involvinga halter mightnot befeasible forwidespread useon farms.However,asaresearchtoolitcouldbeveryvaluable.With thewide ability ofrecording everyjawmovement,thespecific differentiation in grazing bites and rumination chews, as well asthequantification oftime durationsofruminationand graz-ing,theRumiWatchSystemisauniquetoolformeasuringgrazing behaviourlong-term.Withfurtherdevelopment,itmaybesuitable toestimatefeedintakeofdairycowsonpasture,basedon mea-suringbitesandchews.AsBerckmans(2006)mentioned, visual observationcanrepresentalimitingfactorinbehaviouralresearch, duetothenecessityforrestrictedobservationperiodsandahigh demandinlabour.Therefore,theavailability ofanaccurateand reliableautomatedtechnologymaybeveryusefulandappropriate. 5. Conclusions

Overall, the results indicated that the RumiWatchSystem showedahighlevelofaccuracyinmeasuringfeedingbehaviourof cowsinagrazingenvironment,eventhoughitwasoriginally devel-opedforcowsinindoorfeedingsystems.Theaccuracyof1-min summariesand1-hsummarieswasveryhighwithkappa-values between0.85and0.89andCCC-valuesrangingfrom0.92to0.99, respectively.Thenosebandsensortendedtooverestimategrazing timeandgrazingbitesslightly,whereasthedetectionof rumina-tiontimewasveryaccurate.Theaccuracybetweenobserverand automatedmeasurementwasmoderatefordetectingrumination chewsduetoissuesregardingplausibilitychecksforthespecific experimentalperiods.Thevalidationof thenewlyimplemented parametersintheRumiWatchConverterV.0.7.3.36forgrazingand ruminationboutsdelivered moderateor highconcordance.The pedometershowedverypromisingresultswithCCC-valuesranging from0.92to1.00.Itsperformanceindetectingwalkingwasslightly weakerthanindetectingstandingandlying,butstillappropriate forameasurementsystem.Basedonthoseresults,itmaybe con-cludedthattheRumiWatchSystemisareliablesensortechnology tomonitorgrazingbehaviourandthus,isausefultoolforresearch purposesinagrazingenvironment.

Acknowledgements

We gratefully acknowledgeCassandre Matras and Diarmuid McSweeneyforconductingfieldobservationsinthepaddocks. Fur-thermore,wewouldliketothankScienceFoundationIrelandfor fundingtheproject“PrecisionDairy”.Wewouldalsoliketothank

(9)

Itin+HochGmbHforcontributinghardwaresolutions.Forfunding thefirstauthor,wewouldliketoacknowledgetheWalsh Fellow-shipProgram.

References

Alsaaod,M.,Niederhauser,J.J.,Beer,G.,Zehner,N.,Schuepbach-Regula,G.,Steiner, A.,2015.Developmentandvalidationofanovelpedometeralgorithmto quantifyextendedcharacteristicsofthelocomotorbehaviorofdairycows.J. DairySci.98,6236–6242.

Büchel,S.,Sundrum,A.,2014.Technicalnote:evaluationofanewsystemfor measuringfeedingbehaviorofdairycows.Comput.Electron.Agric.108,12–16.

Bailey,D.W.,Gross,J.E.,Laca,E.A.,Rittenhouse,L.R.,Coughenour,M.B.,Swift,D.M., Sims,P.L.,1996.Mechanismsthatresultinlargeherbivoregrazingdistribution patterns.J.RangeManage.49,386–400.

Bareille,N.,Beaudeau,F.,Billon,S.,Robert,A.,Faverdin,P.,2003.Effectsofhealth disordersonfeedintakeandmilkproductionindairycows.Livest.Product. Sci.83,53–62.

Beauchemin,K.A.,Zelin,S.,Genner,D.,Buchanan-Smith,J.G.,1989.Anautomatic systemforquantificationofeatingandruminatingactivitiesofdairycattle housedinstalls.J.DairySci.72,2746–2759.

Berckmans,D.,2006.Automaticon-linemonitoringofanimalsbyprecision livestockfarming.In:GEERS,R.,Madec,F.(Eds.),LivestockProductionand Society.WageningenAcademicPublishers.

Bikker,J.P.,VanLaar,H.,Rump,P.,Doorenbos,J.,VanMeurs,K.,Griffioen,G.M., Dijkstra,J.,2014.Technicalnote:evaluationofanear-attachedmovement sensortorecordcowfeedingbehaviorandactivity.J.DairySci.97,2974–2979.

Borchers,M.,Chang,Y.,Tsai,I.,Wadsworth,B.,Bewley,J.,2016.Avalidationof technologiesmonitoringdairycowfeeding,ruminating,andlyingbehaviors.J. DairySci.99,7458–7466.

Brun,J.,Prache,S.,Béchet,G.,1984.Aportabledeviceforeatingbehaviourstudies. In:5thGrazingWorkshop,Midlothian,UK.

Carrasco,J.L.,Jover,L.,King,T.S.,Chinchilli,V.M.,2007.ComparisonofConcordance correlationcoefficientestimatingapproacheswithskeweddata.J.Biopharm. Stat.17,673–684.

Champion,R.,Rutter,S.,Orr,R.,1997.Distinguishingbitesandchewsinrecordings ofthegrazingjawmovementsofcattle.Proceedingsofthe5thResearch ConferenceoftheBritishGrasslandSociety,8–10.

Cohen,J.,1960.Acoefficientofagreementfornominalscales.Educ.Psychol.Meas. 20,37–46.

Delagarde,R.,Caudal,J.-P.,Peyraud,J.-L.,1999.Developmentofanautomatic bitemeterforgrazingcattle.Annalesdezootechnie48,329–339.

Dillon,P.,Stakelum,G.,1988.Theuseofn-alkanesandchromicoxideasmarkers fordeterminingfeedintake,faecaloutputanddigestibilityindairycows.In: Proceedingsofthe12thGeneralMeetingoftheEuropeanGrassland Federation,Dublin,pp.154–158.

Edmonson,A.,Lean,I.,Weaver,L.,Farver,T.,Webster,G.,1989.Abodycondition scoringchartforHolsteindairycows.J.DairySci.72,68–78.

Giavarina,D.,2015.Understandingblandaltmananalysis.Biochem.Med.25, 141–151.

Herskin,M.S.,Munksgaard,L.,Ladewig,J.,2004.Effectsofacutestressorson nociception:adrenocorticalresponsesandbehaviorofdairycows.Physiol. Behav.83,411–420.

Hinkle,D.E.,Wiersma,W.,Jurs,S.G.,2003.AppliedStatisticsfortheBehavioral Sciences.CengageLearning,Wadsworth.

Kröger,I.,Humer,E.,Neubauer,V.,Kraft,N.,Ertl,P.,Zebeli,Q.,2016.Validationofa nosebandsensorsystemformonitoringruminatingactivityincowsunder differentfeedingregimens.Livest.Sci.193,118–122.

Landis,J.R.,Koch,G.G.,1977.Themeasurementofobserveragreementfor categoricaldata.Biometrics,159–174.

Martin,P.,Bateson,P.P.G.,Bateson,P.,1993.MeasuringBehaviour:AnIntroductory Guide,2nded.CambridgeUniversityPress.

McSweeney,D.,Foley,C.,Halton,P.,O’Brien,B.,Pol-VanDasselaar,A.,Aarts,H., Vliegher,A.D.,Elgersma,A.,Reheul,D.,Reijneveld,J.,2015.Calibrationofan automatedgrassheightmeasurementtoolequippedwithglobalpositioning systemtoenhancetheprecisionofgrassmeasurementinpasture-based farmingsystems.Grasslandandforagesinhighoutputdairyfarmingsystems. In:Proceedingsofthe18thSymposiumoftheEuropeanGrasslandFederation, Wageningen,TheNetherlands,15–17June2015.WageningenAcademic Publishers,pp.265–267.

Mezzalira,J.C.,DeFaccioCarvalho,P.C.,Fonseca,L.,Bremm,C.,Cangiano,C.,Gonda, H.L.,Laca,E.A.,2014.Behaviouralmechanismsofintakeratebyheifersgrazing swardsofcontrastingstructures.Appl.Anim.Behav.Sci.153,1–9.

Nydegger,F.,Bollhalder,H.,2010.VorrichtungzumErfassenderKauaktivität. Switzerlandpatentapplication.September15,2010.

Pérez-Ramírez,E.,Peyraud,J.,Delagarde,R.,2009.Restrictingdailytimeatpasture atlowandhighpastureallowance:effectsonpastureintakeandbehavioral adaptationoflactatingdairycows.J.DairySci.92,3331–3340.

Pahl,C.,Hartung,E.,Grothmann,A.,Mahlkow-Nerge,K.,Haeussermann,A.,2015.

Suitabilityoffeedingandchewingtimeforestimationoffeedintakeindairy cows.Animal10,1–6.

Rutter,S.,Champion,R.,Penning,P.,1997.Anautomaticsystemtorecordforaging behaviourinfree-rangingruminants.Appl.Anim.Behav.Sci.54,185–195.

Rutter,S.M.,2000.Graze:aprogramtoanalyzerecordingsofthejawmovements ofruminants.Behaviorresearchmethods.Instrum.Comput.32,86–92.

Ruuska,S.,Kajava,S.,Mughal,M.,Zehner,N.,Mononen,J.,2016.Validationofa pressuresensor-basedsystemformeasuringeating:ruminationanddrinking behaviourofdairycattle.Appl.Anim.Behav.Sci.174,19–23.

Schirmann,K.,VonKeyserlingk,M.A.,Weary,D.M.,Veira,D.M.,Heuwieser,W., 2009.Technicalnote:validationofasystemformonitoringruminationin dairycows.J.DairySci.92,6052–6055.

Undi,M.,Wilson,C.,Ominski,K.,Wittenberg,K.,2008.Comparisonoftechniques forestimationofforagedrymatterintakebygrazingbeefcattle.Can.J.Anim. Sci.88,693–701.

Werner,J.,Umstatter,C.,Zehner,N.,Niederhauser,J.,Schick,M.,2016.Validation ofasensor-basedautomaticmeasurementsystemformonitoringchewing activityinhorses.Livest.Sci.186,53–58.

Wolfger,B.,Timsit,E.,Pajor,E.A.,Cook,N.,Barkema,H.W.,Orsel,K.,2015.Technical note:accuracyofaneartag-attachedaccelerometertomonitorrumination andfeedingbehaviorinfeedlotcattle1.J.Anim.Sci.93,3164–3168.

Zehner,N.,Niederhauser,J.J.,Nydegger,F.,Grothmann,A.,Keller,M.,Hoch,M., Haeussermann,A.,Schick,M.,2012.Validationofanewhealthmonitoring system(RumiWatch)forcombinedautomaticmeasurementofrumination, feedintake,waterintakeandlocomotionindairycows.In:International ConferenceofAgriculturalEngineering-CIGR-AgEng2012:Agricultureand EngineeringforaHealthierLife,8–12July2012Valencia,Spain,C-0438.

Zehner,N.,Umstätter,C.,Niederhauser,J.J.,Schick,M.,2017.Systemspecification andvalidationofanosebandpressuresensorformeasurementofruminating andeatingbehaviorinstable-fedcows.Comput.Electron.Agric.136,31–41.

Riferimenti

Documenti correlati

Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable

Sul piano della necessità assoluta in senso no- umenico, Kant conclude invece all’impos- sibilità di determinarne il senso, come si e- sprime al termine della sezione

(2nd journey) (1) from Ḫattusa through the Zippalanda Gate (King’s Gate, Yerkapı or the gate in the lower city leading up to Yazılıkaya and then to Yozgat) to Ḫarranassa

The objective of this article is studying alternative ICT architectures for the CPS-ization of a production line, namely, a serial line, which matches the main requirements needed

samples the leakage current remain very low in the range A/cm , even after fluences of the order of n/cm. Actually the material is behaving as in- trinsic because it is

Transcript copies of genes coding for CBS, SAHH, and BHMT enzymes in the liver of rainbow trout fed a control diet with no inclusion of HI meal and two other diets with 25% (HI25) and

S1: Optimization of the composition of AFB1-HRP diluent and of the washing solution, Figure S2: Calibration curve for the HPLC-MS/MS method to measure AFB1 in cannabis products,

15 relazione diretta con i destinatari, dovrebbe essere gestita in modo integrato e continuo, a supporto dell’affinamento del servizio. I limiti maggiori di questi archivi riguardo