• Non ci sono risultati.

Evidence of b -jet quenching in PbPb collisions at sNN =2.76TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Evidence of b -jet quenching in PbPb collisions at sNN =2.76TeV"

Copied!
16
0
0

Testo completo

(1)

Evidence of

b-Jet Quenching in PbPb Collisions at ffiffiffiffiffiffiffiffi

p

s

NN

¼ 2.76 TeV

S. Chatrchyan et al.* (CMS Collaboration)

(Received 15 December 2013; published 22 September 2014)

The production of jets associated to bottom quarks is measured for the first time in PbPb collisions at a center-of-mass energy of 2.76 TeV per nucleon pair. Jet spectra are reported in the transverse momentum (pT) range of80–250 GeV=c, and within pseudorapidity jηj < 2. The nuclear modification factor (RAA)

calculated from these spectra shows a strong suppression in the b-jet yield in PbPb collisions relative to the yield observed in pp collisions at the same energy. The suppression persists to the largest values of pT

studied, and is centrality dependent. The RAAis about 0.4 in the most central events, similar to previous

observations for inclusive jets. This implies that jet quenching does not have a strong dependence on parton mass and flavor in the jet pT range studied.

DOI:10.1103/PhysRevLett.113.132301 PACS numbers: 25.75.Dw, 24.85.+p

By colliding heavy nuclei at the Large Hadron Collider (LHC), one expects to reach sufficiently large energy densities to form a strongly coupled quark-gluon plasma (QGP), a state which is characterized by effective decon-finement of the quarks and gluons [1–3]. Hard-scattered partons are expected to suffer energy loss as they traverse the QGP via elastic and inelastic interactions[4,5]. This is commonly thought to be the mechanism responsible for the observed suppression of high transverse momentum (pT) hadrons and jets, or “jet quenching,” in nuclear collisions [6–16]. Measurements of parton energy loss are expected to reveal the fundamental thermodynamic and transport properties of this phase of matter (see Refs. [17,18] for recent reviews).

The quenching of jets in heavy-ion collisions is expected to depend upon the flavor of the fragmenting parton. Energy loss via gluon bremsstrahlung, which is thought to be the dominant mechanism for light partons, should be larger for gluon jets than quark jets, due to the larger color factor for gluon emission from the former. The mass of the leading parton may also play a role. Collisional energy loss could be an important effect for massive quarks and has been invoked to describe the nuclear modification factors for leptons from heavy-flavor decays at low pT[19–21]. In this regime, radiative energy loss from heavy quarks may be suppressed due to coherence effects[22,23], although the relevance of such effects in finite-size systems is a subject of debate[24]. The strongly coupled nature of the QGP may also introduce mass effects, according to a description of jet quenching based on the AdS-CFT correspondence[25,26]. Consequently, measurements of the flavor and mass

dependence of jet quenching are essential to obtain a sound theoretical description of this phenomenon.

Measurements of hadrons containing b quarks are expected to be sensitive to the details of b-quark energy loss. Recent data on single-particle production of B mesons (via nonprompt J=ψ) [27] show a smaller suppression compared to D mesons [28] and nonidentified charged particles[29,30]. Experimentally, the jet associated to a b hadron is commonly referred to a“b jet,” although the b quark is not guaranteed to be the leading parton of the jet. In relation to B mesons, b jets provide a complementary approach to study b-quark energy loss, albeit typically in a different range of pT. Through comparisons with the existing measurements of inclusive jet production [31], b-jet measurements can be used to study the flavor dependence of jet quenching, which in turn provides insight on the dynamics of parton energy loss.

The Compact Muon Solenoid (CMS) detector has excellent capabilities to perform b-jet identification (b-tagging) measurements as demonstrated in Ref. [32]. Measurements of the b-jet cross section [33] and b-jet angular correlations [34] have been performed in pp collisions at 7 TeV. This Letter presents the first measure-ments of b-jet production in heavy-ion collisions using a data set corresponding to an integrated luminosity of 150 μb−1 of PbPb collisions at ffiffiffiffiffiffiffiffis

NN

p ¼ 2.76 TeV

deliv-ered by the LHC in 2011. The comparison measurements are performed with a data set consisting of pp data recorded in 2013 and corresponding to an integrated luminosity of5.3 pb−1 at pffiffiffis¼ 2.76 TeV.

The central feature of the CMS apparatus is a super-conducting solenoid providing a magnetic field of 3.8 T. Charged particle trajectories are measured with the silicon tracker, which provides an impact parameter resolution of∼15 μm and a pT resolution of∼1.5% for 100 GeV=c particles. A PbWO4 crystal electromagnetic calorimeter and a brass-scintillator hadron calorimeter surround the * Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published articles title, journal citation, and DOI.

(2)

tracking volume. The forward regions (2.9 < jηj < 5.2, whereη ¼ − ln½tanðθ=2Þ and θ is the polar angle measured with respect to the counterclockwise beam direction) are instrumented with iron/quartz-fiber hadron forward calo-rimeters (HF). Collision centrality, defined as a percentile of the total inelastic nucleus-nucleus cross section, is calculated using the sum of the HF transverse energy [35]. A set of scintillator tiles, used for triggering and beam-halo rejection, is mounted on the inner side of the HF calorimeters. A more detailed description of the CMS detector can be found in Ref.[36].

Jets are reconstructed from particle candidates obtained from a particle-flow algorithm [37]. This algorithm improves the resolution of jets, while reducing the parton flavor dependence of the detector response as compared to a purely calorimetric measurement. The anti-kTclustering algorithm [38] is used, with a distance parameter of R ¼ 0.3. Details of the jet reconstruction, resolution and energy corrections may be found in Refs.[14,16,39]. The underlying background of bulk particle production in PbPb collisions is subtracted using the same method described in

Ref. [40]. Jet pT resolution effects are unfolded using an

iterative method[41], as implemented in the ROOUNFOLD package [42].

The Monte Carlo simulations are performed using PYTHIA 6.422 [43] with tune Z2 [44]. A parton flavor is assigned to reconstructed jets by matching them inffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ΔR ¼

Δη2þ Δϕ2 p

to generator-level partons (ϕ is the azimuthal angle measured in radians in the plane transverse to the beams). If a bottom quark is found within ΔR < 0.3 then the jet is considered to be a b jet, irrespective of any other partons in the cone. This definition includes b quarks from gluon splitting (g→ b¯b), even if the splitting occurs late in the parton shower (i.e., at low virtuality), consistent with

the theoretical treatment of heavy-flavor production in Refs. [45,46]. We note that b jets from gluon splitting comprise about 30–35% of the total b-jet cross section according to PYTHIAsimulations, although measurements of b− ¯b angular correlations at 7 TeV indicate that the contribution is somewhat larger[34]. Such jets are expected to interact differently with the QGP than those from primary b quarks [47]. To compare with PbPb data, PYTHIA events are embedded into PbPb events produced by theHYDJETgenerator (version 1.8)[48], which is tuned to reproduce event properties, such as charged-hadron multiplicity, pT spectra, and elliptic flow. The rate of bottom-quark production per nucleon-nucleon interaction in HYDJET was found to be consistent with theoretical calculations for pp collisions based on Ref.[46].

Identification of b jets is based on kinematic variables related to the relatively long lifetime and large mass of b hadrons. Charged tracks of pT> 1 GeV=c within R < 0.3 from the jet axis are used to reconstruct secondary vertices (SV) from b hadrons and/or subsequent c-hadron decays from the b→ c cascade, using an adaptive vertex fit[49]. The contribution of b jets is enhanced by requiring that SVs are far enough from the primary vertex, using a selection on the significance of the three-dimensional flight distance. This selection is chosen to give a misidentification rate of roughly 1% for light jets and 10% on charm-quark jets (c jets), based on simulation. The corresponding b-tagging efficiency is about 65% for pp and 45% for PbPb collisions. The compatibility of the simulation with data was verified by comparing basic distributions such as the χ2 of the SV fit, the number of tracks per SV, and the number of SVs per jet. Figure1(left) shows an example comparison of the SV pT distribution. The shape of the distribution is well described over the full pT range.

(GeV/c) T Secondary vertex p

0 10 20 30 40 50 60 70 80 90 100 Number of jets / 10 GeV/c 5

10 15 20 25 30 35 3 10 × Data b jets c jets light jets < 90 GeV/c T 80 < p |η| < 2 CMS -1 b μ PbPb, 150 0-100% = 2.76 TeV NN s 0 20 40 60 80 100 10 2 10 3 10 4 10 0 10 20 30 40 50 60 70 80 90 100 0.5 1 1.5 ) 2 Secondary vertex mass (GeV/c

0 1 2 3 4 5 6 0.5 1 1.5 2 2.5 3 3.5 4 4.5 3 10 × Data b jets c jets light jets < 90 GeV/c T 80 < p |η| < 2 CMS -1 b μ PbPb, 150 0-100% = 2.76 TeV NN s 0 1 2 3 4 5 6 10 2 10 3 10 0 1 2 3 4 5 6 0.5 1 1.5 Data/MC

(GeV/c) Secondary vertex mass (GeV/c )2 T

Secondary vertex p

2

Number of jets / 0.5 GeV/c

Data/MC

FIG. 1 (color online). Left: Comparison of SV pTdistribution between data and simulation for the same jet and event selections. The

simulation is normalized to the data. Right: Template fit to the SV invariant mass distribution in centrality-integrated (0–100%) PbPb collisions for jets of80 < pT< 90 GeV=c. Insets show the same comparisons with the y axis in log scale.

(3)

The SV invariant mass is calculated from the constituent tracks. An example SV mass distribution, for jets with 80 < pT< 90 GeV=c, is shown in Fig.1(right). For each jet pTbin, the b-jet purity (fb), i.e., the ratio of the number of b jets to that of inclusive jets in the tagged sample, is extracted by means of a template fit. The shapes of the light-quark, c and b contributions are determined from simulation, while their normalizations are allowed to float. After tagging, the three contributions are of comparable magnitude, as shown in the figure, but the b-quark contribution dominates above the c-quark mass threshold near2 GeV=c2, which allows for an accurate determination of the b-jet contribution. The quality of the SV mass fits was found to be good, with values of χ2 per degree of freedom typically in the range of 1–2. The proportion of tagged jets for which the SV corresponds to a b hadron from a different nucleon-nucleon interaction than the one that produced the jet was estimated from simulation to be 2% for the 20% most central PbPb collisions.

For the systematic studies described below, an alternative b-tagging strategy is employed, which uses the jet probability (JP) algorithm[32]. In contrast to direct reconstruction of SVs, the JP tagger is based on an estimate of the compatibility of tracks with the primary vertex, using their three-dimensional impact parameter significance. A probability density for this compatibility is obtained directly from data using tracks with negative impact parameter, which are unlikely to come from heavy-flavor decays. The impact parameter (IP) is defined to have the same sign as the scalar product of the vector pointing from the primary vertex to the point of closest approach with the jet direction. Tracks originating from the decay of particles traveling along the jet axis will tend to have positive IP values.

Using the b-jet purity (fb) derived from the template fit, the b-jet yield in a given pTbin is obtained as Nb¼ Nfb=ϵ, where N is the number of all b-tagged jets and ϵ is the b-tagging efficiency. The efficiency ϵ is determined from simulation and cross-checked using the so-called reference lifetime tagger method [32], which uses the JP tagger to determine the efficiency of the SV tagger directly from data, taking advantage of the calibration of the primary vertex compatibility used in this tagger which is obtained from data. The simulation reproduces the estimate ofϵ from data to within 5%.

The unfolded b-jet pT spectra in PbPb collisions are shown in Fig.2for several centrality selections. The PbPb data are divided by TAA, computed from a Glauber model (for a review, see Ref.[50]), to scale to the expectation for pp collisions in the absence of nuclear effects. The value of TAA is the number of nucleon-nucleon (NN) collisions divided by the total inelastic NN cross section and may be interpreted as the NN equivalent luminosity per PbPb collision. Also shown is the measured b-jet cross section in pp collisions. The cross section is compared toPYTHIA

simulations, which agree well with the data, as is the case atffiffiffi s

p

¼ 7 TeV for the pT range covered by the present study[33].

The systematic uncertainties fall into two general cat-egories: b tagging and jet reconstruction. The b-tagging uncertainty on b-jet yields varies from about 12 to 18%, depending on jet pTand collision system. The uncertainty is evaluated via the following systematic variations of the tagging procedure, which influence the extracted b-tagging purity and efficiency values: (a) varying the SV flight distance selection such that ϵ differs by about 10%, (b) using ϵ from the reference lifetime tagger method [32], rather than from simulation, (c) fixing the c jet to light-quark jet normalization, rather than allowing them to float independently in the template fits, (d) using a non-b-jet template produced from non-b-jets with small JP in data, and (e) varying the gluon-splitting contribution in the b-jet and c-jet templates by 50%.

The uncertainty on the spectra due to the jet reconstruction is 10–12% for pp and 15–17% for PbPb, and is comprised of the following sources: (1) a 10% uncertainty in the jet energy resolution [51], (2) a 2% uncertainty in the jet energy scale (JES) [51], (3) an

(GeV/c) T b-jet p 100 150 200 250 GeV/c pb T pΔ PbPb NΔ AA T evt N 1 , T pΔ pp σΔ -1 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 -1 b μ PbPb, 150 Data, 0-100% 2 10 × 0-10% 3 10 × 10-30% 4 10 × 30-50% 5 10 × 50-100% -1 pp, 5.3 pb Data PYTHIA | < 2 η | CMS sNN = 2.76 TeV

FIG. 2 (color online). The b-jet yield as a function of pT is

shown for various centrality classes of PbPb collisions as indicated in the legend. The yields are scaled by the equivalent number of minimum bias events sampled and by TAA. The

spectra are also scaled by powers of 10 for visibility. The b-jet cross section in pp collisions is also shown, and compared to

PYTHIA. Vertical and horizontal bars represent statistical

uncer-tainties and bin widths, respectively, while filled boxes represent systematics uncertainties.

(4)

additional, centrality-dependent, 1–2% uncertainty in the JES in PbPb collisions due to the underlying event, evaluated from random-cone and embedding studies, and (4) an uncertainty in the unfolding procedure evaluated by varying the number of iterations and the presumed prior spectrum.

The pp luminosity has an uncertainty of 3.6%, while the uncertainty in TAAvaries from about 4% for a centrality of 0–10% to 15% for 50–100% [16].

Figure 3 shows the centrality-integrated b-jet nuclear modification factor (RAA), which is the ratio of the TAA -normalized PbPb yield and the measured pp cross section in Fig. 2, as a function of pT. The jet and b-tagging systematic uncertainties in RAA are obtained by varying the pp and PbPb data simultaneously. This results in partial cancellation, giving a systematic uncertainty of 16–21%, which is dominated by the b-tagging uncertainty. A significant suppression of the yield with respect to the pp expectation is observed in b jets, which is indicative of the parton energy loss in the hot medium. No strong trend is observed as a function of pT, although the data hint a modest rise at higher pT. The data are compared to perturbative QCD (pQCD)-based calculations from

Ref. [47]. The data are found to be consistent with a

jet-medium coupling (gmed) in the range of 1.8–2, similar to the value found for inclusive jets.

Figure 4 shows RAA as a function of the number of participating nucleons (Npart), which is derived from the centrality (as measured by the energy in the forward

calorimeters) through a Glauber calculation. Data for 80 < pT< 90 GeV=c and 90<pT<110 GeV=c are shown. For both jet selections RAA shows a smooth decrease with increasing centrality from about 0.70–0.75 to about 0.35–0.40.

The data presented in this study demonstrate the jet quenching phenomenon in the b-jet sector using fully reconstructed b jets for the first time in heavy-ion colli-sions. Integrating over all collision centralities, b jets are found to be suppressed over the80–250 GeV=c pTrange explored in this study. For the 80–110 GeV=c pT range, RAAis found to decrease with collision centrality. At larger pT, the trend is less evident due to the reduced statistical precision. The b-jet suppression is found to be qualitatively consistent with that of inclusive jets [31]. Although a sizable fraction of b-tagged jets come from gluon splitting, a large mass and/or flavor dependence for parton energy loss can be excluded. For example, a model based on strong coupling (via the AdS-CFT correspondence)[26], in which mass effects could persist to large pTwould be incompat-ible with the current data, in contrast to a perturbative model in which mass effects are expected to be small at large pT[47]. A milder mass dependence, but one which still persists to large pT, as predicted for light- and heavy-flavor hadrons in Ref.[52], cannot be ruled out with the present uncertainties.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and (GeV/c) T b-jet p 100 150 200 250 AA b-jet R 0 0.2 0.4 0.6 0.8 1 1.2 pQCD: PLB 726 (2013) 251-256 = 1.8 med g = 2.0 med g = 2.2 med g CMS -1 pp, 5.3 pb -1 b μ PbPb, 150 = 2.76 TeV NN s 0-100% |η| < 2

FIG. 3 (color online). The centrality-integrated (0–100%) b-jet RAA as a function of pT. Vertical and horizontal bars represent

statistical uncertainties and bin widths, respectively, while filled boxes represent systematics uncertainties. The normaliza-tion uncertainty from the integrated luminosity in pp collisions and from TAAis represented by the green band around unity. The

data are compared to pQCD-based calculations from Ref.[47].

part N 0 50 100 150 200 250 300 350 400 AA b-Jet R 0 0.2 0.4 0.6 0.8 1 1.2 < 90 GeV/c T 80 < p < 110 GeV/c T 90 < p CMS -1 pp, 5.3 pb -1 b μ PbPb, 150 = 2.76 TeV NN s | < 2 η | 0-10% 10-30% 30-50% 50-100%

FIG. 4 (color online). The b-jet RAA, as a function of Npartfor

two jet pT selections as indicated in the legend. Statistical

uncertainties are shown as error bars. The filled boxes represent the systematics uncertainties, excluding the TAA uncertainties,

which are depicted as open boxes. The normalization uncertainty in the integrated luminosity in pp collisions is represented by the green band around unity.

(5)

thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN;

CAS, MoST, and NSFC (China); COLCIENCIAS

(Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/ IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania);

CINVESTAV, CONACYT, SEP, and UASLP-FAI

(Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

[1] É. V. Shuryak, J. Exp. Theor. Phys. 47, 212 (1978). [2] J. C. Collins and M. J. Perry, Phys. Rev. Lett. 34, 1353

(1975).

[3] E. V. Shuryak,Nucl. Phys. A750, 64 (2005).

[4] J. D. Bjorken, Report No. FERMILAB-PUB 82-059-THY, 1982.

[5] R. Baier, D. Schiff, and B. G. Zakharov,Annu. Rev. Nucl. Part. Sci. 50, 37 (2000).

[6] K. Adcox et al. (PHENIX),Nucl. Phys. A757, 184 (2005). [7] J. Adams et al. (STAR),Nucl. Phys. A757, 102 (2005). [8] B. B. Back et al. (PHOBOS),Nucl. Phys. A757, 28 (2005). [9] I. Arsene et al. (BRAHMS),Nucl. Phys. A757, 1 (2005). [10] J. Adams et al. (STAR),Phys. Rev. Lett. 91, 072304 (2003). [11] J. Adams et al. (STAR),Phys. Rev. Lett. 95, 152301 (2005). [12] S. S. Adler et al. (PHENIX),Phys. Rev. Lett. 91, 072301

(2003).

[13] A. Adare et al. (PHENIX),Phys. Rev. C 78, 014901 (2008). [14] CMS Collaboration,Phys. Lett. B 712, 176 (2012). [15] ATLAS Collaboration, Phys. Rev. Lett. 105, 252303

(2010).

[16] CMS Collaboration,Phys. Rev. C 84, 024906 (2011). [17] J. Casalderrey-Solana and C. A. Salgado, Acta Phys. Pol. B

38, 3731 (2007).

[18] D. d’Enterria,arXiv:0902.2011.

[19] S. Wicks, W. Horowitz, M. Djordjevic, and M. Gyulassy,

Nucl. Phys. A784, 426 (2007).

[20] A. Adare et al. (PHENIX Collaboration),Phys. Rev. Lett. 98, 172301 (2007).

[21] A. Adare et al. (PHENIX Collaboration),Phys. Rev. C 84, 044905 (2011).

[22] Y. L. Dokshitzer and D. E. Kharzeev,Phys. Lett. B 519, 199 (2001).

[23] N. Armesto, C. A. Salgado, and U. A. Wiedemann,Phys. Rev. D 69, 114003 (2004).

[24] P. Aurenche and B. G. Zakharov,JETP Lett. 90, 237 (2009). [25] S. S. Gubser,Phys. Rev. D 74, 126005 (2006).

[26] W. A. Horowitz and M. Gyulassy,Phys. Lett. B 666, 320 (2008).

[27] CMS Collaboration,J. High Energy Phys. 05 (2012) 063.

[28] ALICE Collaboration,J. High Energy Phys. 09 (2012) 112.

[29] CMS Collaboration,Eur. Phys. J. C 72, 1945 (2012). [30] ALICE Collaboration,Phys. Lett. B 720, 52 (2013). [31] ATLAS Collaboration,Phys. Lett. B 719, 220 (2013). [32] CMS Collaboration,JINST 8, P04013 (2013).

[33] CMS Collaboration, J. High Energy Phys. 04 (2012) 084.

[34] CMS Collaboration, J. High Energy Phys. 03 (2011) 136.

[35] CMS Collaboration,J. High Energy Phys. 08 (2011) 141.

[36] CMS Collaboration,JINST 3, S08004 (2008).

[37] CMS Collaboration, Report No. CMS-PAS-PFT-09-001. [38] M. Cacciari, G. P. Salam, and G. Soyez, J. High Energy

Phys. 04 (2008) 063.

[39] CMS Collaboration,Phys. Lett. B 718, 773 (2013). [40] O. Kodolova, I. Vardanian, A. Nikitenko, and A. Oulianov,

Eur. Phys. J. C 50, 117 (2007).

[41] G. D’Agostini,Nucl. Instrum. Methods Phys. Res., Sect. A 362, 487 (1995).

[42] T. Adye, in Proceedings of the PHYSTAT 2011 Workshop, CERN, Geneva, Switzerland, January 2011 (CERN, Geneva, 2011), p. 313.

[43] T. Sjöstrand, S. Mrenna, and P. Skands, J. High Energy Phys. 05 (2006) 026.

[44] R. Field,arXiv:1010.3558.

[45] S. Frixione and M. L. Mangano, Nucl. Phys. B483, 321 (1997).

[46] M. Cacciari, S. Frixione, N. Houdeau, M. L. Mangano, P. Nason, and G. Ridolfi,J. High Energy Phys. 10 (2012) 137.

[47] J. Huang, Z.-B. Kang, and I. Vitev,Phys. Lett. B 726, 251 (2013).

[48] I. P. Lokhtin and A. M. Snigirev, Eur. Phys. J. C 45, 211 (2006).

[49] R. Fruhwirth, W. Waltenberger, and P. Vanlaer,J. Phys. G 34, N343 (2007).

[50] M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg,

Annu. Rev. Nucl. Part. Sci. 57, 205 (2007). [51] CMS Collaboration,JINST 6, P11002 (2011).

[52] A. Buzzatti and M. Gyulassy,Phys. Rev. Lett. 108, 022301 (2012).

(6)

S. Chatrchyan,1 V. Khachatryan,1 A. M. Sirunyan,1 A. Tumasyan,1 W. Adam,2 T. Bergauer,2 M. Dragicevic,2 J. Erö,2 C. Fabjan,2,bM. Friedl,2R. Frühwirth,2,bV. M. Ghete,2C. Hartl,2N. Hörmann,2J. Hrubec,2M. Jeitler,2,bW. Kiesenhofer,2

V. Knünz,2 M. Krammer,2,bI. Krätschmer,2 D. Liko,2 I. Mikulec,2D. Rabady,2,c B. Rahbaran,2H. Rohringer,2 R. Schöfbeck,2 J. Strauss,2 A. Taurok,2 W. Treberer-Treberspurg,2 W. Waltenberger,2 C.-E. Wulz,2,b V. Mossolov,3 N. Shumeiko,3J. Suarez Gonzalez,3S. Alderweireldt,4M. Bansal,4S. Bansal,4T. Cornelis,4E. A. De Wolf,4X. Janssen,4 A. Knutsson,4S. Luyckx,4L. Mucibello,4S. Ochesanu,4B. Roland,4R. Rougny,4H. Van Haevermaet,4P. Van Mechelen,4 N. Van Remortel,4 A. Van Spilbeeck,4 F. Blekman,5 S. Blyweert,5 J. D’Hondt,5 N. Heracleous,5 A. Kalogeropoulos,5

J. Keaveney,5 T. J. Kim,5S. Lowette,5 M. Maes,5 A. Olbrechts,5 D. Strom,5 S. Tavernier,5W. Van Doninck,5 P. Van Mulders,5G. P. Van Onsem,5I. Villella,5C. Caillol,6B. Clerbaux,6G. De Lentdecker,6L. Favart,6A. P. R. Gay,6 A. Léonard,6P. E. Marage,6A. Mohammadi,6L. Perniè,6 T. Reis,6 T. Seva,6 L. Thomas,6 C. Vander Velde,6P. Vanlaer,6

J. Wang,6 V. Adler,7 K. Beernaert,7 L. Benucci,7 A. Cimmino,7S. Costantini,7S. Dildick,7 G. Garcia,7 B. Klein,7 J. Lellouch,7J. Mccartin,7A. A. Ocampo Rios,7D. Ryckbosch,7S. Salva Diblen,7M. Sigamani,7N. Strobbe,7F. Thyssen,7

M. Tytgat,7 S. Walsh,7 E. Yazgan,7 N. Zaganidis,7 S. Basegmez,8 C. Beluffi,8,dG. Bruno,8 R. Castello,8A. Caudron,8 L. Ceard,8G. G. Da Silveira,8C. Delaere,8T. du Pree,8D. Favart,8L. Forthomme,8A. Giammanco,8,eJ. Hollar,8P. Jez,8

M. Komm,8 V. Lemaitre,8 J. Liao,8 O. Militaru,8 C. Nuttens,8 D. Pagano,8 A. Pin,8 K. Piotrzkowski,8 A. Popov,8,f L. Quertenmont,8 M. Selvaggi,8M. Vidal Marono,8 J. M. Vizan Garcia,8 N. Beliy,9 T. Caebergs,9 E. Daubie,9

G. H. Hammad,9 G. A. Alves,10M. Correa Martins Junior,10T. Martins,10M. E. Pol,10M. H. G. Souza,10 W. L. Aldá Júnior,11W. Carvalho,11J. Chinellato,11,gA. Custódio,11E. M. Da Costa,11D. De Jesus Damiao,11 C. De Oliveira Martins,11S. Fonseca De Souza,11H. Malbouisson,11M. Malek,11D. Matos Figueiredo,11L. Mundim,11

H. Nogima,11 W. L. Prado Da Silva,11 J. Santaolalla,11A. Santoro,11A. Sznajder,11E. J. Tonelli Manganote,11,g A. Vilela Pereira,11C. A. Bernardes,12bF. A. Dias,12a,hT. R. Fernandez Perez Tomei,12aE. M. Gregores,12bC. Lagana,12a

P. G. Mercadante,12b S. F. Novaes,12a S. S. Padula,12a V. Genchev,13,cP. Iaydjiev,13,c A. Marinov,13S. Piperov,13 M. Rodozov,13G. Sultanov,13 M. Vutova,13A. Dimitrov,14I. Glushkov,14R. Hadjiiska,14V. Kozhuharov,14 L. Litov,14 B. Pavlov,14P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15M. Chen,15R. Du,15C. H. Jiang,15D. Liang,15S. Liang,15 X. Meng,15R. Plestina,15,iJ. Tao,15X. Wang,15Z. Wang,15C. Asawatangtrakuldee,16Y. Ban,16Y. Guo,16W. Li,16S. Liu,16

Y. Mao,16S. J. Qian,16H. Teng,16D. Wang,16L. Zhang,16W. Zou,16C. Avila,17C. A. Carrillo Montoya,17 L. F. Chaparro Sierra,17C. Florez,17J. P. Gomez,17B. Gomez Moreno,17J. C. Sanabria,17N. Godinovic,18D. Lelas,18 D. Polic,18I. Puljak,18Z. Antunovic,19M. Kovac,19V. Brigljevic,20K. Kadija,20J. Luetic,20D. Mekterovic,20S. Morovic,20 L. Tikvica,20 A. Attikis,21 G. Mavromanolakis,21J. Mousa,21C. Nicolaou,21F. Ptochos,21 P. A. Razis,21M. Finger,22 M. Finger Jr.,22Y. Assran,23,jS. Elgammal,23,kT. Elkafrawy,23,lA. Ellithi Kamel,23,mM. A. Mahmoud,23,n A. Radi,23,k,l M. Kadastik,24M. Müntel,24M. Murumaa,24M. Raidal,24L. Rebane,24A. Tiko,24P. Eerola,25G. Fedi,25M. Voutilainen,25 J. Härkönen,26V. Karimäki,26R. Kinnunen,26M. J. Kortelainen,26T. Lampén,26K. Lassila-Perini,26S. Lehti,26T. Lindén,26 P. Luukka,26T. Mäenpää,26T. Peltola,26E. Tuominen,26J. Tuominiemi,26E. Tuovinen,26L. Wendland,26T. Tuuva,27

M. Besancon,28F. Couderc,28M. Dejardin,28 D. Denegri,28B. Fabbro,28J. L. Faure,28F. Ferri,28S. Ganjour,28 A. Givernaud,28P. Gras,28G. Hamel de Monchenault,28P. Jarry,28E. Locci,28J. Malcles,28A. Nayak,28 J. Rander,28 A. Rosowsky,28M. Titov,28S. Baffioni,29F. Beaudette,29P. Busson,29C. Charlot,29N. Daci,29T. Dahms,29M. Dalchenko,29

L. Dobrzynski,29A. Florent,29R. Granier de Cassagnac,29P. Miné,29C. Mironov,29I. N. Naranjo,29M. Nguyen,29 C. Ochando,29P. Paganini,29D. Sabes,29R. Salerno,29Y. Sirois,29C. Veelken,29Y. Yilmaz,29A. Zabi,29J.-L. Agram,30,o

J. Andrea,30 D. Bloch,30J.-M. Brom,30E. C. Chabert,30C. Collard,30 E. Conte,30,o F. Drouhin,30,oJ.-C. Fontaine,30,o D. Gelé,30U. Goerlach,30C. Goetzmann,30 P. Juillot,30A.-C. Le Bihan,30P. Van Hove,30 S. Gadrat,31S. Beauceron,32 N. Beaupere,32G. Boudoul,32S. Brochet,32J. Chasserat,32R. Chierici,32D. Contardo,32P. Depasse,32H. El Mamouni,32

J. Fan,32J. Fay,32S. Gascon,32M. Gouzevitch,32B. Ille,32T. Kurca,32M. Lethuillier,32L. Mirabito,32 S. Perries,32 J. D. Ruiz Alvarez,32L. Sgandurra,32V. Sordini,32M. Vander Donckt,32P. Verdier,32S. Viret,32H. Xiao,32 Z. Tsamalaidze,33,pC. Autermann,34S. Beranek,34M. Bontenackels,34B. Calpas,34M. Edelhoff,34L. Feld,34O. Hindrichs,34 K. Klein,34A. Ostapchuk,34A. Perieanu,34F. Raupach,34J. Sammet,34S. Schael,34D. Sprenger,34H. Weber,34B. Wittmer,34

V. Zhukov,34,f M. Ata,35J. Caudron,35E. Dietz-Laursonn,35D. Duchardt,35 M. Erdmann,35R. Fischer,35A. Güth,35 T. Hebbeker,35C. Heidemann,35K. Hoepfner,35D. Klingebiel,35S. Knutzen,35P. Kreuzer,35M. Merschmeyer,35A. Meyer,35 M. Olschewski,35K. Padeken,35P. Papacz,35H. Reithler,35S. A. Schmitz,35L. Sonnenschein,35D. Teyssier,35S. Thüer,35 M. Weber,35V. Cherepanov,36 Y. Erdogan,36G. Flügge,36H. Geenen,36M. Geisler,36 W. Haj Ahmad,36F. Hoehle,36

(7)

B. Kargoll,36T. Kress,36Y. Kuessel,36J. Lingemann,36,cA. Nowack,36I. M. Nugent,36L. Perchalla,36O. Pooth,36A. Stahl,36 I. Asin,37N. Bartosik,37J. Behr,37W. Behrenhoff,37U. Behrens,37A. J. Bell,37M. Bergholz,37,qA. Bethani,37K. Borras,37 A. Burgmeier,37A. Cakir,37L. Calligaris,37A. Campbell,37S. Choudhury,37F. Costanza,37C. Diez Pardos,37S. Dooling,37 T. Dorland,37G. Eckerlin,37D. Eckstein,37T. Eichhorn,37G. Flucke,37A. Geiser,37A. Grebenyuk,37P. Gunnellini,37 S. Habib,37J. Hauk,37G. Hellwig,37M. Hempel,37D. Horton,37H. Jung,37M. Kasemann,37 P. Katsas,37 J. Kieseler,37 C. Kleinwort,37M. Krämer,37D. Krücker,37W. Lange,37J. Leonard,37K. Lipka,37W. Lohmann,37,qB. Lutz,37R. Mankel,37 I. Marfin,37I.-A. Melzer-Pellmann,37A. B. Meyer,37J. Mnich,37A. Mussgiller,37S. Naumann-Emme,37O. Novgorodova,37 F. Nowak,37H. Perrey,37A. Petrukhin,37D. Pitzl,37R. Placakyte,37A. Raspereza,37P. M. Ribeiro Cipriano,37C. Riedl,37

E. Ron,37M. O. Sahin,37J. Salfeld-Nebgen,37 P. Saxena,37R. Schmidt,37,q T. Schoerner-Sadenius,37M. Schröder,37 M. Stein,37A. D. R. Vargas Trevino,37R. Walsh,37C. Wissing,37M. Aldaya Martin,38V. Blobel,38H. Enderle,38J. Erfle,38

E. Garutti,38K. Goebel,38M. Görner,38M. Gosselink,38J. Haller,38R. S. Höing,38H. Kirschenmann,38R. Klanner,38 R. Kogler,38J. Lange,38I. Marchesini,38J. Ott,38T. Peiffer,38N. Pietsch,38D. Rathjens,38C. Sander,38H. Schettler,38 P. Schleper,38E. Schlieckau,38A. Schmidt,38M. Seidel,38J. Sibille,38,rV. Sola,38H. Stadie,38G. Steinbrück,38D. Troendle,38

E. Usai,38L. Vanelderen,38 C. Barth,39C. Baus,39J. Berger,39 C. Böser,39E. Butz,39T. Chwalek,39W. De Boer,39 A. Descroix,39A. Dierlamm,39M. Feindt,39M. Guthoff,39,cF. Hartmann,39,c T. Hauth,39,c H. Held,39K. H. Hoffmann,39

U. Husemann,39I. Katkov,39,f A. Kornmayer,39,c E. Kuznetsova,39P. Lobelle Pardo,39D. Martschei,39 M. U. Mozer,39 T. Müller,39M. Niegel,39A. Nürnberg,39O. Oberst,39G. Quast,39K. Rabbertz,39F. Ratnikov,39S. Röcker,39F.-P. Schilling,39 G. Schott,39H. J. Simonis,39F. M. Stober,39R. Ulrich,39J. Wagner-Kuhr,39S. Wayand,39T. Weiler,39R. Wolf,39M. Zeise,39 G. Anagnostou,40G. Daskalakis,40T. Geralis,40S. Kesisoglou,40A. Kyriakis,40D. Loukas,40A. Markou,40C. Markou,40

E. Ntomari,40A. Psallidas,40I. Topsis-giotis,40 L. Gouskos,41A. Panagiotou,41N. Saoulidou,41E. Stiliaris,41 X. Aslanoglou,42I. Evangelou,42G. Flouris,42C. Foudas,42P. Kokkas,42N. Manthos,42I. Papadopoulos,42E. Paradas,42 G. Bencze,43 C. Hajdu,43P. Hidas,43D. Horvath,43,sF. Sikler,43 V. Veszpremi,43G. Vesztergombi,43,tA. J. Zsigmond,43 N. Beni,44 S. Czellar,44J. Molnar,44J. Palinkas,44Z. Szillasi,44 J. Karancsi,45P. Raics,45Z. L. Trocsanyi,45B. Ujvari,45 S. K. Swain,46S. B. Beri,47V. Bhatnagar,47N. Dhingra,47R. Gupta,47M. Kaur,47M. Z. Mehta,47M. Mittal,47N. Nishu,47

A. Sharma,47J. B. Singh,47A. Kumar,48A. Kumar,48 S. Ahuja,48A. Bhardwaj,48B. C. Choudhary,48A. Kumar,48 S. Malhotra,48M. Naimuddin,48K. Ranjan,48V. Sharma,48R. K. Shivpuri,48S. Banerjee,49 S. Bhattacharya,49 K. Chatterjee,49S. Dutta,49 B. Gomber,49S. Jain,49S. Jain,49R. Khurana,49A. Modak,49 S. Mukherjee,49D. Roy,49

S. Sarkar,49M. Sharan,49A. P. Singh,49 A. Abdulsalam,50D. Dutta,50S. Kailas,50V. Kumar,50A. K. Mohanty,50,c L. M. Pant,50P. Shukla,50A. Topkar,50T. Aziz,51R. M. Chatterjee,51S. Ganguly,51S. Ghosh,51M. Guchait,51,uA. Gurtu,51,v

G. Kole,51S. Kumar,51 M. Maity,51,w G. Majumder,51K. Mazumdar,51G. B. Mohanty,51B. Parida,51K. Sudhakar,51 N. Wickramage,51,x S. Banerjee,52S. Dugad,52H. Arfaei,53H. Bakhshiansohi,53H. Behnamian,53S. M. Etesami,53,y

A. Fahim,53,z A. Jafari,53M. Khakzad,53M. Mohammadi Najafabadi,53M. Naseri,53 S. Paktinat Mehdiabadi,53 B. Safarzadeh,53,aaM. Zeinali,53M. Grunewald,54M. Abbrescia,55a,55bL. Barbone,55a,55b C. Calabria,55a,55b S. S. Chhibra,55a,55bA. Colaleo,55aD. Creanza,55a,55cN. De Filippis,55a,55cM. De Palma,55a,55bL. Fiore,55aG. Iaselli,55a,55c

G. Maggi,55a,55c M. Maggi,55a B. Marangelli,55a,55bS. My,55a,55c S. Nuzzo,55a,55bN. Pacifico,55a A. Pompili,55a,55b G. Pugliese,55a,55cR. Radogna,55a,55bG. Selvaggi,55a,55bL. Silvestris,55aG. Singh,55a,55bR. Venditti,55a,55bP. Verwilligen,55a

G. Zito,55a G. Abbiendi,56aA. C. Benvenuti,56aD. Bonacorsi,56a,56b S. Braibant-Giacomelli,56a,56b L. Brigliadori,56a,56b R. Campanini,56a,56bP. Capiluppi,56a,56b A. Castro,56a,56bF. R. Cavallo,56a G. Codispoti,56a,56b M. Cuffiani,56a,56b G. M. Dallavalle,56a F. Fabbri,56a A. Fanfani,56a,56b D. Fasanella,56a,56bP. Giacomelli,56a C. Grandi,56a L. Guiducci,56a,56b S. Marcellini,56aG. Masetti,56aM. Meneghelli,56a,56b A. Montanari,56a F. L. Navarria,56a,56bF. Odorici,56a A. Perrotta,56a F. Primavera,56a,56bA. M. Rossi,56a,56bT. Rovelli,56a,56bG. P. Siroli,56a,56bN. Tosi,56a,56bR. Travaglini,56a,56bS. Albergo,57a,57b G. Cappello,57a M. Chiorboli,57a,57bS. Costa,57a,57bF. Giordano,57a,c R. Potenza,57a,57b A. Tricomi,57a,57bC. Tuve,57a,57b

G. Barbagli,58a V. Ciulli,58a,58b C. Civinini,58a R. D’Alessandro,58a,58b E. Focardi,58a,58b E. Gallo,58a S. Gonzi,58a,58b V. Gori,58a,58bP. Lenzi,58a,58bM. Meschini,58aS. Paoletti,58aG. Sguazzoni,58aA. Tropiano,58a,58bL. Benussi,59S. Bianco,59 F. Fabbri,59D. Piccolo,59P. Fabbricatore,60aR. Ferretti,60a,60bF. Ferro,60aM. Lo Vetere,60a,60bR. Musenich,60aE. Robutti,60a S. Tosi,60a,60bA. Benaglia,61a M. E. Dinardo,61a,61b S. Fiorendi,61a,61b,c S. Gennai,61a A. Ghezzi,61a,61bP. Govoni,61a,61b

M. T. Lucchini,61a,61b,cS. Malvezzi,61a R. A. Manzoni,61a,61b,c A. Martelli,61a,61b,c D. Menasce,61a L. Moroni,61a M. Paganoni,61a,61b D. Pedrini,61a S. Ragazzi,61a,61b N. Redaelli,61a T. Tabarelli de Fatis,61a,61bS. Buontempo,62a N. Cavallo,62a,62c F. Fabozzi,62a,62c A. O. M. Iorio,62a,62bL. Lista,62a S. Meola,62a,62d,c M. Merola,62a P. Paolucci,62a,c

(8)

P. Azzi,63aN. Bacchetta,63aD. Bisello,63a,63bA. Branca,63a,63bR. Carlin,63a,63bP. Checchia,63aT. Dorigo,63aU. Dosselli,63a M. Galanti,63a,63b,c F. Gasparini,63a,63b P. Giubilato,63a,63bA. Gozzelino,63a K. Kanishchev,63a,63c S. Lacaprara,63a I. Lazzizzera,63a,63c M. Margoni,63a,63bA. T. Meneguzzo,63a,63b F. Montecassiano,63a M. Passaseo,63aJ. Pazzini,63a,63b M. Pegoraro,63a N. Pozzobon,63a,63bP. Ronchese,63a,63bF. Simonetto,63a,63bE. Torassa,63a M. Tosi,63a,63bP. Zotto,63a,63b A. Zucchetta,63a,63bG. Zumerle,63a,63bM. Gabusi,64a,64bS. P. Ratti,64a,64bC. Riccardi,64a,64bP. Vitulo,64a,64bM. Biasini,65a,65b

G. M. Bilei,65aL. Fanò,65a,65b P. Lariccia,65a,65bG. Mantovani,65a,65bM. Menichelli,65a F. Romeo,65a,65bA. Saha,65a A. Santocchia,65a,65b A. Spiezia,65a,65bK. Androsov,66a,bb P. Azzurri,66a G. Bagliesi,66a J. Bernardini,66aT. Boccali,66a

G. Broccolo,66a,66c R. Castaldi,66a M. A. Ciocci,66a,bbR. Dell’Orso,66a F. Fiori,66a,66c L. Foà,66a,66c A. Giassi,66a M. T. Grippo,66a,bb A. Kraan,66a F. Ligabue,66a,66c T. Lomtadze,66aL. Martini,66a,66bA. Messineo,66a,66bC. S. Moon,66a,cc

F. Palla,66a A. Rizzi,66a,66bA. Savoy-Navarro,66a,dd A. T. Serban,66a P. Spagnolo,66a P. Squillacioti,66a,bb R. Tenchini,66a G. Tonelli,66a,66bA. Venturi,66a P. G. Verdini,66a C. Vernieri,66a,66c L. Barone,67a,67bF. Cavallari,67a D. Del Re,67a,67b

M. Diemoz,67a M. Grassi,67a,67bC. Jorda,67a E. Longo,67a,67b F. Margaroli,67a,67bP. Meridiani,67aF. Micheli,67a,67b S. Nourbakhsh,67a,67bG. Organtini,67a,67bR. Paramatti,67aS. Rahatlou,67a,67bC. Rovelli,67a L. Soffi,67a,67bP. Traczyk,67a,67b N. Amapane,68a,68b R. Arcidiacono,68a,68c S. Argiro,68a,68bM. Arneodo,68a,68c R. Bellan,68a,68bC. Biino,68a N. Cartiglia,68a

S. Casasso,68a,68bM. Costa,68a,68bA. Degano,68a,68b N. Demaria,68a C. Mariotti,68a S. Maselli,68a E. Migliore,68a,68b V. Monaco,68a,68bM. Musich,68aM. M. Obertino,68a,68cG. Ortona,68a,68bL. Pacher,68a,68bN. Pastrone,68aM. Pelliccioni,68a,c

A. Potenza,68a,68bA. Romero,68a,68b M. Ruspa,68a,68c R. Sacchi,68a,68bA. Solano,68a,68bA. Staiano,68a U. Tamponi,68a S. Belforte,69aV. Candelise,69a,69b M. Casarsa,69a F. Cossutti,69a G. Della Ricca,69a,69b B. Gobbo,69a C. La Licata,69a,69b M. Marone,69a,69bD. Montanino,69a,69bA. Penzo,69aA. Schizzi,69a,69bT. Umer,69a,69bA. Zanetti,69aS. Chang,70T. Y. Kim,70 S. K. Nam,70D. H. Kim,71G. N. Kim,71J. E. Kim,71M. S. Kim,71D. J. Kong,71S. Lee,71Y. D. Oh,71H. Park,71D. C. Son,71 J. Y. Kim,72Z. J. Kim,72S. Song,72S. Choi,73D. Gyun,73B. Hong,73M. Jo,73H. Kim,73Y. Kim,73K. S. Lee,73S. K. Park,73 Y. Roh,73M. Choi,74J. H. Kim,74C. Park,74I. C. Park,74S. Park,74G. Ryu,74Y. Choi,75Y. K. Choi,75J. Goh,75E. Kwon,75

B. Lee,75J. Lee,75 S. Lee,75H. Seo,75I. Yu,75A. Juodagalvis,76J. R. Komaragiri,77H. Castilla-Valdez,78 E. De La Cruz-Burelo,78I. Heredia-de La Cruz,78,eeR. Lopez-Fernandez,78J. Martínez-Ortega,78A. Sanchez-Hernandez,78 L. M. Villasenor-Cendejas,78S. Carrillo Moreno,79F. Vazquez Valencia,79H. A. Salazar Ibarguen,80E. Casimiro Linares,81

A. Morelos Pineda,81 D. Krofcheck,82P. H. Butler,83 R. Doesburg,83S. Reucroft,83 H. Silverwood,83M. Ahmad,84 M. I. Asghar,84J. Butt,84H. R. Hoorani,84S. Khalid,84W. A. Khan,84T. Khurshid,84S. Qazi,84M. A. Shah,84M. Shoaib,84

H. Bialkowska,85M. Bluj,85,ffB. Boimska,85T. Frueboes,85M. Górski,85M. Kazana,85K. Nawrocki,85 K. Romanowska-Rybinska,85M. Szleper,85G. Wrochna,85P. Zalewski,85G. Brona,86K. Bunkowski,86M. Cwiok,86 W. Dominik,86K. Doroba,86A. Kalinowski,86M. Konecki,86J. Krolikowski,86M. Misiura,86W. Wolszczak,86P. Bargassa,87 C. Beirão Da Cruz E Silva,87P. Faccioli,87P. G. Ferreira Parracho,87M. Gallinaro,87F. Nguyen,87J. Rodrigues Antunes,87 J. Seixas,87,cJ. Varela,87P. Vischia,87S. Afanasiev,88P. Bunin,88I. Golutvin,88I. Gorbunov,88A. Kamenev,88V. Karjavin,88 V. Konoplyanikov,88G. Kozlov,88A. Lanev,88A. Malakhov,88V. Matveev,88,ggP. Moisenz,88V. Palichik,88V. Perelygin,88

S. Shmatov,88N. Skatchkov,88V. Smirnov,88A. Zarubin,88V. Golovtsov,89 Y. Ivanov,89V. Kim,89P. Levchenko,89 V. Murzin,89V. Oreshkin,89I. Smirnov,89V. Sulimov,89L. Uvarov,89S. Vavilov,89A. Vorobyev,89A. Vorobyev,89 Y. Andreev,90A. Dermenev,90S. Gninenko,90N. Golubev,90M. Kirsanov,90N. Krasnikov,90A. Pashenkov,90D. Tlisov,90 A. Toropin,90V. Epshteyn,91V. Gavrilov,91N. Lychkovskaya,91V. Popov,91G. Safronov,91S. Semenov,91A. Spiridonov,91

V. Stolin,91E. Vlasov,91A. Zhokin,91V. Andreev,92M. Azarkin,92I. Dremin,92M. Kirakosyan,92A. Leonidov,92 G. Mesyats,92S. V. Rusakov,92A. Vinogradov,92A. Belyaev,93E. Boos,93A. Ershov,93 A. Gribushin,93 V. Klyukhin,93 O. Kodolova,93V. Korotkikh,93I. Lokhtin,93S. Obraztsov,93S. Petrushanko,93V. Savrin,93A. Snigirev,93I. Vardanyan,93 I. Azhgirey,94I. Bayshev,94S. Bitioukov,94V. Kachanov,94A. Kalinin,94D. Konstantinov,94V. Krychkine,94V. Petrov,94

R. Ryutin,94A. Sobol,94 L. Tourtchanovitch,94S. Troshin,94N. Tyurin,94A. Uzunian,94A. Volkov,94P. Adzic,95,hh M. Djordjevic,95M. Ekmedzic,95J. Milosevic,95M. Aguilar-Benitez,96J. Alcaraz Maestre,96C. Battilana,96E. Calvo,96

M. Cerrada,96M. Chamizo Llatas,96,c N. Colino,96B. De La Cruz,96A. Delgado Peris,96D. Domínguez Vázquez,96 C. Fernandez Bedoya,96J. P. Fernández Ramos,96A. Ferrando,96J. Flix,96M. C. Fouz,96P. Garcia-Abia,96 O. Gonzalez Lopez,96S. Goy Lopez,96J. M. Hernandez,96M. I. Josa,96 G. Merino,96E. Navarro De Martino,96 J. Puerta Pelayo,96A. Quintario Olmeda,96I. Redondo,96L. Romero,96M. S. Soares,96C. Willmott,96C. Albajar,97

J. F. de Trocóniz,97 M. Missiroli,97H. Brun,98J. Cuevas,98J. Fernandez Menendez,98S. Folgueras,98

(9)

J. Duarte Campderros,99M. Fernandez,99G. Gomez,99J. Gonzalez Sanchez,99A. Graziano,99A. Lopez Virto,99J. Marco,99 R. Marco,99C. Martinez Rivero,99F. Matorras,99F. J. Munoz Sanchez,99J. Piedra Gomez,99T. Rodrigo,99 A. Y. Rodríguez-Marrero,99A. Ruiz-Jimeno,99L. Scodellaro,99I. Vila,99R. Vilar Cortabitarte,99D. Abbaneo,100 E. Auffray,100 G. Auzinger,100M. Bachtis,100 P. Baillon,100A. H. Ball,100D. Barney,100J. Bendavid,100 L. Benhabib,100 J. F. Benitez,100C. Bernet,100,iG. Bianchi,100P. Bloch,100A. Bocci,100A. Bonato,100O. Bondu,100C. Botta,100H. Breuker,100 T. Camporesi,100 G. Cerminara,100T. Christiansen,100J. A. Coarasa Perez,100S. Colafranceschi,100,ii M. D’Alfonso,100

D. d’Enterria,100A. Dabrowski,100A. David,100F. De Guio,100 A. De Roeck,100S. De Visscher,100 S. Di Guida,100 M. Dobson,100 N. Dupont-Sagorin,100A. Elliott-Peisert,100J. Eugster,100G. Franzoni,100 W. Funk,100M. Giffels,100 D. Gigi,100K. Gill,100M. Girone,100M. Giunta,100F. Glege,100 R. Gomez-Reino Garrido,100S. Gowdy,100 R. Guida,100 J. Hammer,100M. Hansen,100 P. Harris,100V. Innocente,100 P. Janot,100 E. Karavakis,100 K. Kousouris,100K. Krajczar,100

P. Lecoq,100 C. Lourenço,100 N. Magini,100L. Malgeri,100M. Mannelli,100L. Masetti,100F. Meijers,100 S. Mersi,100 E. Meschi,100F. Moortgat,100M. Mulders,100P. Musella,100L. Orsini,100E. Palencia Cortezon,100E. Perez,100L. Perrozzi,100

A. Petrilli,100 G. Petrucciani,100 A. Pfeiffer,100 M. Pierini,100 M. Pimiä,100 D. Piparo,100 M. Plagge,100 A. Racz,100 W. Reece,100G. Rolandi,100,jjM. Rovere,100H. Sakulin,100F. Santanastasio,100C. Schäfer,100C. Schwick,100S. Sekmen,100

A. Sharma,100P. Siegrist,100 P. Silva,100 M. Simon,100P. Sphicas,100,kk J. Steggemann,100 B. Stieger,100M. Stoye,100 A. Tsirou,100G. I. Veres,100,tJ. R. Vlimant,100H. K. Wöhri,100W. D. Zeuner,100W. Bertl,101K. Deiters,101W. Erdmann,101 R. Horisberger,101Q. Ingram,101H. C. Kaestli,101S. König,101D. Kotlinski,101U. Langenegger,101D. Renker,101T. Rohe,101 F. Bachmair,102L. Bäni,102L. Bianchini,102P. Bortignon,102M. A. Buchmann,102B. Casal,102N. Chanon,102A. Deisher,102

G. Dissertori,102 M. Dittmar,102M. Donegà,102M. Dünser,102 P. Eller,102C. Grab,102D. Hits,102W. Lustermann,102 B. Mangano,102A. C. Marini,102 P. Martinez Ruiz del Arbol,102 D. Meister,102 N. Mohr,102C. Nägeli,102,ll P. Nef,102 F. Nessi-Tedaldi,102 F. Pandolfi,102 L. Pape,102F. Pauss,102 M. Peruzzi,102M. Quittnat,102 F. J. Ronga,102 M. Rossini,102

A. Starodumov,102,mmM. Takahashi,102 L. Tauscher,102,a K. Theofilatos,102 D. Treille,102R. Wallny,102H. A. Weber,102 C. Amsler,103,nnV. Chiochia,103 A. De Cosa,103 C. Favaro,103 A. Hinzmann,103 T. Hreus,103M. Ivova Rikova,103 B. Kilminster,103B. Millan Mejias,103J. Ngadiuba,103P. Robmann,103H. Snoek,103S. Taroni,103M. Verzetti,103Y. Yang,103

M. Cardaci,104K. H. Chen,104C. Ferro,104C. M. Kuo,104 S. W. Li,104 W. Lin,104 Y. J. Lu,104 R. Volpe,104S. S. Yu,104 P. Bartalini,105 P. Chang,105Y. H. Chang,105Y. W. Chang,105Y. Chao,105K. F. Chen,105 P. H. Chen,105C. Dietz,105

U. Grundler,105W.-S. Hou,105Y. Hsiung,105K. Y. Kao,105Y. J. Lei,105 Y. F. Liu,105R.-S. Lu,105 D. Majumder,105 E. Petrakou,105X. Shi,105J. G. Shiu,105Y. M. Tzeng,105M. Wang,105R. Wilken,105B. Asavapibhop,106N. Suwonjandee,106 A. Adiguzel,107M. N. Bakirci,107,ooS. Cerci,107,ppC. Dozen,107I. Dumanoglu,107E. Eskut,107S. Girgis,107G. Gokbulut,107

E. Gurpinar,107I. Hos,107E. E. Kangal,107A. Kayis Topaksu,107G. Onengut,107,qqK. Ozdemir,107S. Ozturk,107,oo A. Polatoz,107 K. Sogut,107,rrD. Sunar Cerci,107,pp B. Tali,107,pp H. Topakli,107,oo M. Vergili,107 I. V. Akin,108T. Aliev,108 B. Bilin,108S. Bilmis,108M. Deniz,108H. Gamsizkan,108A. M. Guler,108G. Karapinar,108,ssK. Ocalan,108A. Ozpineci,108

M. Serin,108 R. Sever,108U. E. Surat,108M. Yalvac,108M. Zeyrek,108 E. Gülmez,109B. Isildak,109,ttM. Kaya,109,uu O. Kaya,109,uuS. Ozkorucuklu,109,vvH. Bahtiyar,110,wwE. Barlas,110K. Cankocak,110Y. O. Günaydin,110,xxF. I. Vardarlı,110

M. Yücel,110 L. Levchuk,111 P. Sorokin,111J. J. Brooke,112E. Clement,112D. Cussans,112 H. Flacher,112R. Frazier,112 J. Goldstein,112 M. Grimes,112G. P. Heath,112H. F. Heath,112J. Jacob,112 L. Kreczko,112 C. Lucas,112Z. Meng,112 D. M. Newbold,112,yyS. Paramesvaran,112 A. Poll,112 S. Senkin,112 V. J. Smith,112 T. Williams,112A. Belyaev,113,zz C. Brew,113R. M. Brown,113D. J. A. Cockerill,113J. A. Coughlan,113K. Harder,113S. Harper,113J. Ilic,113E. Olaiya,113

D. Petyt,113C. H. Shepherd-Themistocleous,113 A. Thea,113I. R. Tomalin,113W. J. Womersley,113 S. D. Worm,113 M. Baber,114R. Bainbridge,114O. Buchmuller,114D. Burton,114D. Colling,114N. Cripps,114M. Cutajar,114P. Dauncey,114

G. Davies,114M. Della Negra,114 W. Ferguson,114 J. Fulcher,114 D. Futyan,114A. Gilbert,114A. Guneratne Bryer,114 G. Hall,114Z. Hatherell,114J. Hays,114G. Iles,114M. Jarvis,114G. Karapostoli,114M. Kenzie,114R. Lane,114R. Lucas,114,yy

L. Lyons,114 A.-M. Magnan,114J. Marrouche,114B. Mathias,114 R. Nandi,114J. Nash,114A. Nikitenko,114,mm J. Pela,114 M. Pesaresi,114K. Petridis,114M. Pioppi,114,aaaD. M. Raymond,114S. Rogerson,114A. Rose,114C. Seez,114P. Sharp,114,a

A. Sparrow,114A. Tapper,114 M. Vazquez Acosta,114T. Virdee,114 S. Wakefield,114 N. Wardle,114J. E. Cole,115 P. R. Hobson,115 A. Khan,115 P. Kyberd,115D. Leggat,115 D. Leslie,115W. Martin,115I. D. Reid,115P. Symonds,115 L. Teodorescu,115M. Turner,115J. Dittmann,116K. Hatakeyama,116A. Kasmi,116H. Liu,116T. Scarborough,116O. Charaf,117 S. I. Cooper,117C. Henderson,117P. Rumerio,117A. Avetisyan,118T. Bose,118C. Fantasia,118A. Heister,118P. Lawson,118 D. Lazic,118J. Rohlf,118 D. Sperka,118J. St. John,118 L. Sulak,118 J. Alimena,119S. Bhattacharya,119 G. Christopher,119

(10)

D. Cutts,119Z. Demiragli,119A. Ferapontov,119A. Garabedian,119U. Heintz,119S. Jabeen,119G. Kukartsev,119E. Laird,119 G. Landsberg,119M. Luk,119M. Narain,119M. Segala,119T. Sinthuprasith,119T. Speer,119 J. Swanson,119 R. Breedon,120 G. Breto,120M. Calderon De La Barca Sanchez,120S. Chauhan,120M. Chertok,120J. Conway,120R. Conway,120P. T. Cox,120 R. Erbacher,120M. Gardner,120W. Ko,120A. Kopecky,120R. Lander,120T. Miceli,120D. Pellett,120J. Pilot,120F. Ricci-Tam,120 B. Rutherford,120M. Searle,120 S. Shalhout,120 J. Smith,120 M. Squires,120M. Tripathi,120S. Wilbur,120 R. Yohay,120

V. Andreev,121 D. Cline,121R. Cousins,121S. Erhan,121 P. Everaerts,121C. Farrell,121M. Felcini,121J. Hauser,121 M. Ignatenko,121C. Jarvis,121 G. Rakness,121 P. Schlein,121,a E. Takasugi,121 V. Valuev,121M. Weber,121 J. Babb,122 R. Clare,122J. Ellison,122J. W. Gary,122G. Hanson,122J. Heilman,122P. Jandir,122F. Lacroix,122H. Liu,122O. R. Long,122

A. Luthra,122M. Malberti,122H. Nguyen,122A. Shrinivas,122J. Sturdy,122S. Sumowidagdo,122 S. Wimpenny,122 W. Andrews,123J. G. Branson,123G. B. Cerati,123S. Cittolin,123R. T. D’Agnolo,123D. Evans,123A. Holzner,123R. Kelley,123

D. Kovalskyi,123 M. Lebourgeois,123J. Letts,123I. Macneill,123S. Padhi,123C. Palmer,123 M. Pieri,123 M. Sani,123 V. Sharma,123 S. Simon,123E. Sudano,123M. Tadel,123Y. Tu,123A. Vartak,123S. Wasserbaech,123,bbbF. Würthwein,123 A. Yagil,123J. Yoo,123D. Barge,124C. Campagnari,124T. Danielson,124K. Flowers,124P. Geffert,124C. George,124F. Golf,124 J. Incandela,124C. Justus,124R. Magaña Villalba,124N. Mccoll,124V. Pavlunin,124J. Richman,124R. Rossin,124D. Stuart,124 W. To,124C. West,124A. Apresyan,125A. Bornheim,125J. Bunn,125Y. Chen,125E. Di Marco,125J. Duarte,125D. Kcira,125

A. Mott,125H. B. Newman,125C. Pena,125 C. Rogan,125M. Spiropulu,125 V. Timciuc,125 R. Wilkinson,125 S. Xie,125 R. Y. Zhu,125 V. Azzolini,126 A. Calamba,126R. Carroll,126T. Ferguson,126Y. Iiyama,126 D. W. Jang,126M. Paulini,126 J. Russ,126H. Vogel,126 I. Vorobiev,126J. P. Cumalat,127 B. R. Drell,127 W. T. Ford,127 A. Gaz,127E. Luiggi Lopez,127 U. Nauenberg,127 J. G. Smith,127 K. Stenson,127K. A. Ulmer,127S. R. Wagner,127J. Alexander,128A. Chatterjee,128 N. Eggert,128L. K. Gibbons,128W. Hopkins,128A. Khukhunaishvili,128B. Kreis,128N. Mirman,128G. Nicolas Kaufman,128 J. R. Patterson,128A. Ryd,128E. Salvati,128W. Sun,128W. D. Teo,128J. Thom,128J. Thompson,128J. Tucker,128Y. Weng,128

L. Winstrom,128 P. Wittich,128 D. Winn,129S. Abdullin,130M. Albrow,130J. Anderson,130 G. Apollinari,130 L. A. T. Bauerdick,130A. Beretvas,130 J. Berryhill,130P. C. Bhat,130 K. Burkett,130J. N. Butler,130V. Chetluru,130 H. W. K. Cheung,130F. Chlebana,130S. Cihangir,130V. D. Elvira,130I. Fisk,130J. Freeman,130Y. Gao,130E. Gottschalk,130 L. Gray,130D. Green,130S. Grünendahl,130O. Gutsche,130D. Hare,130R. M. Harris,130J. Hirschauer,130B. Hooberman,130

S. Jindariani,130 M. Johnson,130 U. Joshi,130K. Kaadze,130 B. Klima,130S. Kwan,130 J. Linacre,130D. Lincoln,130 R. Lipton,130J. Lykken,130 K. Maeshima,130 J. M. Marraffino,130V. I. Martinez Outschoorn,130 S. Maruyama,130 D. Mason,130P. McBride,130 K. Mishra,130 S. Mrenna,130 Y. Musienko,130,gg S. Nahn,130C. Newman-Holmes,130 V. O’Dell,130O. Prokofyev,130 N. Ratnikova,130 E. Sexton-Kennedy,130 S. Sharma,130 W. J. Spalding,130 L. Spiegel,130 L. Taylor,130S. Tkaczyk,130N. V. Tran,130L. Uplegger,130E. W. Vaandering,130R. Vidal,130A. Whitbeck,130J. Whitmore,130 W. Wu,130F. Yang,130J. C. Yun,130D. Acosta,131P. Avery,131D. Bourilkov,131T. Cheng,131S. Das,131M. De Gruttola,131

G. P. Di Giovanni,131 D. Dobur,131R. D. Field,131M. Fisher,131Y. Fu,131I. K. Furic,131J. Hugon,131B. Kim,131 J. Konigsberg,131 A. Korytov,131A. Kropivnitskaya,131T. Kypreos,131 J. F. Low,131K. Matchev,131 P. Milenovic,131,ccc G. Mitselmakher,131 L. Muniz,131 A. Rinkevicius,131L. Shchutska,131 N. Skhirtladze,131 M. Snowball,131 J. Yelton,131 M. Zakaria,131 V. Gaultney,132S. Hewamanage,132S. Linn,132P. Markowitz,132 G. Martinez,132J. L. Rodriguez,132 T. Adams,133A. Askew,133 J. Bochenek,133J. Chen,133B. Diamond,133J. Haas,133S. Hagopian,133 V. Hagopian,133 K. F. Johnson,133H. Prosper,133V. Veeraraghavan,133M. Weinberg,133M. M. Baarmand,134B. Dorney,134M. Hohlmann,134 H. Kalakhety,134F. Yumiceva,134M. R. Adams,135L. Apanasevich,135V. E. Bazterra,135R. R. Betts,135I. Bucinskaite,135

R. Cavanaugh,135 O. Evdokimov,135 L. Gauthier,135 C. E. Gerber,135 D. J. Hofman,135S. Khalatyan,135 P. Kurt,135 D. H. Moon,135C. O’Brien,135C. Silkworth,135P. Turner,135N. Varelas,135 U. Akgun,136 E. A. Albayrak,136,ww B. Bilki,136,dddW. Clarida,136K. Dilsiz,136F. Duru,136 M. Haytmyradov,136J.-P. Merlo,136H. Mermerkaya,136,eee A. Mestvirishvili,136A. Moeller,136J. Nachtman,136H. Ogul,136Y. Onel,136F. Ozok,136,wwS. Sen,136P. Tan,136E. Tiras,136 J. Wetzel,136T. Yetkin,136,fffK. Yi,136B. A. Barnett,137B. Blumenfeld,137S. Bolognesi,137D. Fehling,137A. V. Gritsan,137 P. Maksimovic,137C. Martin,137M. Swartz,137P. Baringer,138A. Bean,138G. Benelli,138R. P. Kenny III,138M. Murray,138 D. Noonan,138S. Sanders,138J. Sekaric,138R. Stringer,138Q. Wang,138J. S. Wood,138A. F. Barfuss,139I. Chakaberia,139 A. Ivanov,139S. Khalil,139M. Makouski,139Y. Maravin,139L. K. Saini,139S. Shrestha,139I. Svintradze,139J. Gronberg,140 D. Lange,140F. Rebassoo,140 D. Wright,140 A. Baden,141 B. Calvert,141 S. C. Eno,141J. A. Gomez,141 N. J. Hadley,141 R. G. Kellogg,141T. Kolberg,141Y. Lu,141M. Marionneau,141A. C. Mignerey,141K. Pedro,141A. Skuja,141J. Temple,141

(11)

L. Di Matteo,142V. Dutta,142G. Gomez Ceballos,142M. Goncharov,142D. Gulhan,142M. Klute,142Y. S. Lai,142Y.-J. Lee,142 A. Levin,142P. D. Luckey,142T. Ma,142C. Paus,142 D. Ralph,142C. Roland,142 G. Roland,142G. S. F. Stephans,142 F. Stöckli,142 K. Sumorok,142D. Velicanu,142 J. Veverka,142B. Wyslouch,142 M. Yang,142A. S. Yoon,142 M. Zanetti,142 V. Zhukova,142B. Dahmes,143A. De Benedetti,143A. Gude,143 S. C. Kao,143 K. Klapoetke,143Y. Kubota,143J. Mans,143

N. Pastika,143 R. Rusack,143A. Singovsky,143N. Tambe,143J. Turkewitz,143J. G. Acosta,144L. M. Cremaldi,144 R. Kroeger,144S. Oliveros,144L. Perera,144R. Rahmat,144D. A. Sanders,144D. Summers,144E. Avdeeva,145K. Bloom,145

S. Bose,145 D. R. Claes,145 A. Dominguez,145R. Gonzalez Suarez,145J. Keller,145D. Knowlton,145I. Kravchenko,145 J. Lazo-Flores,145 S. Malik,145F. Meier,145G. R. Snow,145 J. Dolen,146 A. Godshalk,146 I. Iashvili,146S. Jain,146

A. Kharchilava,146A. Kumar,146S. Rappoccio,146Z. Wan,146G. Alverson,147E. Barberis,147D. Baumgartel,147 M. Chasco,147 J. Haley,147 A. Massironi,147D. Nash,147T. Orimoto,147D. Trocino,147D. Wood,147 J. Zhang,147 A. Anastassov,148K. A. Hahn,148A. Kubik,148L. Lusito,148N. Mucia,148N. Odell,148B. Pollack,148 A. Pozdnyakov,148

M. Schmitt,148S. Stoynev,148 K. Sung,148M. Velasco,148S. Won,148D. Berry,149 A. Brinkerhoff,149 K. M. Chan,149 A. Drozdetskiy,149M. Hildreth,149C. Jessop,149D. J. Karmgard,149 N. Kellams,149J. Kolb,149K. Lannon,149W. Luo,149

S. Lynch,149 N. Marinelli,149 D. M. Morse,149 T. Pearson,149M. Planer,149R. Ruchti,149J. Slaunwhite,149N. Valls,149 M. Wayne,149 M. Wolf,149A. Woodard,149L. Antonelli,150B. Bylsma,150L. S. Durkin,150S. Flowers,150C. Hill,150 R. Hughes,150 K. Kotov,150T. Y. Ling,150 D. Puigh,150M. Rodenburg,150G. Smith,150 C. Vuosalo,150 B. L. Winer,150 H. Wolfe,150H. W. Wulsin,150E. Berry,151P. Elmer,151V. Halyo,151P. Hebda,151J. Hegeman,151A. Hunt,151P. Jindal,151 S. A. Koay,151P. Lujan,151D. Marlow,151T. Medvedeva,151M. Mooney,151J. Olsen,151P. Piroué,151X. Quan,151A. Raval,151 H. Saka,151D. Stickland,151C. Tully,151J. S. Werner,151S. C. Zenz,151 A. Zuranski,151E. Brownson,152 A. Lopez,152 H. Mendez,152J. E. Ramirez Vargas,152 E. Alagoz,153 D. Benedetti,153 G. Bolla,153 D. Bortoletto,153 M. De Mattia,153 A. Everett,153 Z. Hu,153M. Jones,153 K. Jung,153M. Kress,153 N. Leonardo,153D. Lopes Pegna,153V. Maroussov,153 P. Merkel,153D. H. Miller,153N. Neumeister,153B. C. Radburn-Smith,153I. Shipsey,153D. Silvers,153A. Svyatkovskiy,153

F. Wang,153 W. Xie,153L. Xu,153 H. D. Yoo,153J. Zablocki,153Y. Zheng,153 N. Parashar,154A. Adair,155B. Akgun,155 K. M. Ecklund,155F. J. M. Geurts,155 W. Li,155 B. Michlin,155B. P. Padley,155R. Redjimi,155 J. Roberts,155 J. Zabel,155 B. Betchart,156A. Bodek,156R. Covarelli,156P. de Barbaro,156R. Demina,156Y. Eshaq,156T. Ferbel,156A. Garcia-Bellido,156 P. Goldenzweig,156J. Han,156A. Harel,156D. C. Miner,156G. Petrillo,156D. Vishnevskiy,156M. Zielinski,156A. Bhatti,157 R. Ciesielski,157L. Demortier,157K. Goulianos,157G. Lungu,157S. Malik,157C. Mesropian,157S. Arora,158A. Barker,158

J. P. Chou,158 C. Contreras-Campana,158E. Contreras-Campana,158D. Duggan,158 D. Ferencek,158 Y. Gershtein,158 R. Gray,158E. Halkiadakis,158D. Hidas,158A. Lath,158S. Panwalkar,158M. Park,158R. Patel,158V. Rekovic,158J. Robles,158

S. Salur,158S. Schnetzer,158 C. Seitz,158 S. Somalwar,158 R. Stone,158 S. Thomas,158P. Thomassen,158M. Walker,158 K. Rose,159 S. Spanier,159Z. C. Yang,159 A. York,159O. Bouhali,160,ggg R. Eusebi,160W. Flanagan,160 J. Gilmore,160 T. Kamon,160,hhhV. Khotilovich,160V. Krutelyov,160R. Montalvo,160I. Osipenkov,160Y. Pakhotin,160A. Perloff,160J. Roe,160

A. Safonov,160 T. Sakuma,160 I. Suarez,160A. Tatarinov,160D. Toback,160N. Akchurin,161C. Cowden,161J. Damgov,161 C. Dragoiu,161P. R. Dudero,161K. Kovitanggoon,161S. Kunori,161S. W. Lee,161T. Libeiro,161I. Volobouev,161E. Appelt,162

A. G. Delannoy,162 S. Greene,162A. Gurrola,162W. Johns,162C. Maguire,162Y. Mao,162A. Melo,162M. Sharma,162 P. Sheldon,162B. Snook,162 S. Tuo,162J. Velkovska,162 M. W. Arenton,163 S. Boutle,163 B. Cox,163B. Francis,163

J. Goodell,163R. Hirosky,163A. Ledovskoy,163C. Lin,163C. Neu,163J. Wood,163S. Gollapinni,164 R. Harr,164 P. E. Karchin,164C. Kottachchi Kankanamge Don,164P. Lamichhane,164D. A. Belknap,165L. Borrello,165D. Carlsmith,165

M. Cepeda,165S. Dasu,165 S. Duric,165 E. Friis,165M. Grothe,165 R. Hall-Wilton,165M. Herndon,165 A. Hervé,165 P. Klabbers,165 J. Klukas,165 A. Lanaro,165A. Levine,165R. Loveless,165A. Mohapatra,165I. Ojalvo,165T. Perry,165

G. A. Pierro,165G. Polese,165I. Ross,165A. Sakharov,165T. Sarangi,165A. Savin165 and W. H. Smith165 (CMS Collaboration)

1

Yerevan Physics Institute, Yerevan, Armenia

2

Institut für Hochenergiephysik der OeAW, Wien, Austria

3

National Centre for Particle and High Energy Physics, Minsk, Belarus

4

Universiteit Antwerpen, Antwerpen, Belgium

5

Vrije Universiteit Brussel, Brussel, Belgium

(12)

7Ghent University, Ghent, Belgium 8

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

9Université de Mons, Mons, Belgium 10

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12

Universidade Estadual Paulista, Universidade Federal do ABC, São Paulo, Brazil

12aUniversidade Estadual Paulista, Brazil 12b

Universidade Federal do ABC, Brazil

13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria 14

University of Sofia, Sofia, Bulgaria

15Institute of High Energy Physics, Beijing, China 16

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China

17Universidad de Los Andes, Bogota, Colombia 18

Technical University of Split, Split, Croatia

19University of Split, Split, Croatia 20

Institute Rudjer Boskovic, Zagreb, Croatia

21University of Cyprus, Nicosia, Cyprus 22

Charles University, Prague, Czech Republic

23Academy of Scientific Research and Technology of the Arab Republic of Egypt,

Egyptian Network of High Energy Physics, Cairo, Egypt

24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 25

Department of Physics, University of Helsinki, Helsinki, Finland

26Helsinki Institute of Physics, Helsinki, Finland 27

Lappeenranta University of Technology, Lappeenranta, Finland

28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France 29

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

30Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse,

CNRS/IN2P3, Strasbourg, France

31Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France 32

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

33Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia 34

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

35RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 36

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

37Deutsches Elektronen-Synchrotron, Hamburg, Germany 38

University of Hamburg, Hamburg, Germany

39Institut für Experimentelle Kernphysik, Karlsruhe, Germany 40

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

41University of Athens, Athens, Greece 42

University of Ioánnina, Ioánnina, Greece

43Wigner Research Centre for Physics, Budapest, Hungary 44

Institute of Nuclear Research ATOMKI, Debrecen, Hungary

45University of Debrecen, Debrecen, Hungary 46

National Institute of Science Education and Research, Bhubaneswar, India

47Panjab University, Chandigarh, India 48

University of Delhi, Delhi, India

49Saha Institute of Nuclear Physics, Kolkata, India 50

Bhabha Atomic Research Centre, Mumbai, India

51Tata Institute of Fundamental Research - EHEP, Mumbai, India 52

Tata Institute of Fundamental Research - HECR, Mumbai, India

53Institute for Research in Fundamental Sciences (IPM), Tehran, Iran 54

University College Dublin, Dublin, Ireland

55INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy 55a

INFN Sezione di Bari, Italy

55bUniversità di Bari, Italy 55c

Politecnico di Bari, Italy

56INFN Sezione di Bologna, Università di Bologna, Bologna, Italy 56a

INFN Sezione di Bologna, Italy

56bUniversità di Bologna, Italy 57

(13)

57aINFN Sezione di Catania, Italy 57b

Università di Catania, Italy

57cCSFNSM, Italy 58

INFN Sezione di Firenze, Università di Firenze, Firenze, Italy

58aINFN Sezione di Firenze, Italy 58b

Università di Firenze, Italy

59INFN Laboratori Nazionali di Frascati, Frascati, Italy 60

INFN Sezione di Genova, Università di Genova, Genova, Italy

60aINFN Sezione di Genova, Italy 60b

Università di Genova, Italy

61INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy 61a

INFN Sezione di Milano-Bicocca, Italy

61bUniversità di Milano-Bicocca, Italy 62

INFN Sezione di Napoli, Università di Napoli’Federico II’, Università della Basilicata (Potenza), Università G. Marconi (Roma), Napoli, Italy

62a

INFN Sezione di Napoli, Italy

62bUniversità di Napoli’Federico II’, Italy 62c

Università della Basilicata (Potenza), Italy

62dUniversità G. Marconi (Roma), Italy 63

INFN Sezione di Padova, Università di Padova, Università di Trento (Trento), Padova, Italy

63aINFN Sezione di Padova, Italy 63b

Università di Padova, Italy

63cUniversità di Trento (Trento), Italy 64

INFN Sezione di Pavia, Università di Pavia, Pavia, Italy

64aINFN Sezione di Pavia, Italy 64b

Università di Pavia, Italy

65aNFN Sezione di Perugia, Italy 65b

Università di Perugia, Italy

66INFN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy 66a

INFN Sezione di Pisa, Italy

66bUniversità di Pisa, Italy 66c

Scuola Normale Superiore di Pisa, Italy

67INFN Sezione di Roma, Università di Roma, Roma, Italy 67a

INFN Sezione di Roma, Italy

67bUniversità di Roma, Italy 68

INFN Sezione di Torino, Università di Torino, Università del Piemonte Orientale (Novara), Torino, Italy

68aINFN Sezione di Torino, Italy 68b

Università di Torino, Italy

68cUniversità del Piemonte Orientale (Novara), Italy 69

INFN Sezione di Trieste, Università di Trieste, Trieste, Italy

69aINFN Sezione di Trieste, Italy 69b

Università di Trieste, Italy

70Kangwon National University, Chunchon, Korea 71

Kyungpook National University, Daegu, Korea

72Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 73

Korea University, Seoul, Korea

74University of Seoul, Seoul, Korea 75

Sungkyunkwan University, Suwon, Korea

76Vilnius University, Vilnius, Lithuania 77

University of Malaya Jabatan Fizik, Kuala Lumpur, Malaysia

78Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 79

Universidad Iberoamericana, Mexico City, Mexico

80Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 81

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

82University of Auckland, Auckland, New Zealand 83

University of Canterbury, Christchurch, New Zealand

84National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 85

National Centre for Nuclear Research, Swierk, Poland

86Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland 87

(14)

88Joint Institute for Nuclear Research, Dubna, Russia 89

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

90Institute for Nuclear Research, Moscow, Russia 91

Institute for Theoretical and Experimental Physics, Moscow, Russia

92P.N. Lebedev Physical Institute, Moscow, Russia 93

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

94State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 95

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

96Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain 97

Universidad Autónoma de Madrid, Madrid, Spain

98Universidad de Oviedo, Oviedo, Spain 99

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

100CERN, European Organization for Nuclear Research, Geneva, Switzerland 101

Paul Scherrer Institut, Villigen, Switzerland

102Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 103

Universität Zürich, Zurich, Switzerland

104National Central University, Chung-Li, Taiwan 105

National Taiwan University (NTU), Taipei, Taiwan

106Chulalongkorn University, Bangkok, Thailand 107

Cukurova University, Adana, Turkey

108Physics Department, Middle East Technical University, Ankara, Turkey 109

Bogazici University, Istanbul, Turkey

110Istanbul Technical University, Istanbul, Turkey 111

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

112University of Bristol, Bristol, United Kingdom 113

Rutherford Appleton Laboratory, Didcot, United Kingdom

114Imperial College, London, United Kingdom 115

Brunel University, Uxbridge, United Kingdom

116Baylor University, Waco, USA 117

The University of Alabama, Tuscaloosa, USA

118Boston University, Boston, USA 119

Brown University, Providence, USA

120University of California, Davis, Davis, USA 121

University of California, Los Angeles, USA

122University of California, Riverside, Riverside, USA 123

University of California, San Diego, La Jolla, USA

124University of California, Santa Barbara, Santa Barbara, USA 125

California Institute of Technology, Pasadena, USA

126Carnegie Mellon University, Pittsburgh, USA 127

University of Colorado at Boulder, Boulder, USA

128Cornell University, Ithaca, USA 129

Fairfield University, Fairfield, USA

130Fermi National Accelerator Laboratory, Batavia, USA 131

University of Florida, Gainesville, USA

132Florida International University, Miami, USA 133

Florida State University, Tallahassee, USA

134Florida Institute of Technology, Melbourne, USA 135

University of Illinois at Chicago (UIC), Chicago, USA

136The University of Iowa, Iowa City, USA 137

Johns Hopkins University, Baltimore, USA

138The University of Kansas, Lawrence, USA 139

Kansas State University, Manhattan, USA

140Lawrence Livermore National Laboratory, Livermore, USA 141

University of Maryland, College Park, USA

142Massachusetts Institute of Technology, Cambridge, USA 143

University of Minnesota, Minneapolis, USA

144University of Mississippi, Oxford, USA 145

University of Nebraska-Lincoln, Lincoln, USA

146State University of New York at Buffalo, Buffalo, USA 147

(15)

148Northwestern University, Evanston, USA 149

University of Notre Dame, Notre Dame, USA

150The Ohio State University, Columbus, USA 151

Princeton University, Princeton, USA

152University of Puerto Rico, Mayaguez, USA 153

Purdue University, West Lafayette, USA

154Purdue University Calumet, Hammond, USA 155

Rice University, Houston, USA

156University of Rochester, Rochester, USA 157

The Rockefeller University, New York, USA

158Rutgers, The State University of New Jersey, Piscataway, USA 159

University of Tennessee, Knoxville, USA

160Texas A&M University, College Station, USA 161

Texas Tech University, Lubbock, USA

162Vanderbilt University, Nashville, USA 163

University of Virginia, Charlottesville, USA

164Wayne State University, Detroit, USA 165

University of Wisconsin, Madison, USA

aDeceased. b

Also at Vienna University of Technology, Vienna, Austria.

cAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland. d

Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France.

e

Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.

fAlso at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia. g

Also at Universidade Estadual de Campinas, Campinas, Brazil.

hAlso at California Institute of Technology, Pasadena, USA. i

Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.

jAlso at Suez Canal University, Suez, Egypt. k

Also at British University in Egypt, Cairo, Egypt.

lAlso at Ain Shams University, Cairo, Egypt. m

Also at Cairo University, Cairo, Egypt.

nAlso at Fayoum University, El-Fayoum, Egypt. o

Also at Université de Haute Alsace, Mulhouse, France.

pAlso at Joint Institute for Nuclear Research, Dubna, Russia. q

Also at Brandenburg University of Technology, Cottbus, Germany.

rAlso at The University of Kansas, Lawrence, USA. s

Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.

tAlso at Eötvös Loránd University, Budapest, Hungary. u

Also at Tata Institute of Fundamental Research - HECR, Mumbai, India.

vAlso at King Abdulaziz University, Jeddah, Saudi Arabia. w

Also at University of Visva-Bharati, Santiniketan, India.

xAlso at University of Ruhuna, Matara, Sri Lanka. y

Also at Isfahan University of Technology, Isfahan, Iran.

zAlso at Sharif University of Technology, Tehran, Iran. aa

Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.

bbAlso at Università degli Studi di Siena, Siena, Italy. cc

Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France.

ddAlso at Purdue University, West Lafayette, USA. ee

Also at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico.

ffAlso at National Centre for Nuclear Research, Swierk, Poland. gg

Also at Institute for Nuclear Research, Moscow, Russia.

hhAlso at Faculty of Physics, University of Belgrade, Belgrade, Serbia. ii

Also at Facoltà Ingegneria, Università di Roma, Roma, Italy.

jjAlso at Scuola Normale e Sezione dell’INFN, Pisa, Italy. kk

Also at University of Athens, Athens, Greece.

llAlso at Paul Scherrer Institut, Villigen, Switzerland. mm

Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.

(16)

ooAlso at Gaziosmanpasa University, Tokat, Turkey. pp

Also at Adiyaman University, Adiyaman, Turkey.

qqAlso at Cag University, Mersin, Turkey. rr

Also at Mersin University, Mersin, Turkey.

ssAlso at Izmir Institute of Technology, Izmir, Turkey. tt

Also at Ozyegin University, Istanbul, Turkey.

uuAlso at Kafkas University, Kars, Turkey. vv

Also at Istanbul University, Faculty of Science, Istanbul, Turkey.

wwAlso at Mimar Sinan University, Istanbul, Istanbul, Turkey. xx

Also at Kahramanmaras Sütcü Imam University, Kahramanmaras, Turkey.

yyAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom. zz

Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.

aaaAlso at INFN Sezione di Perugia, Università di Perugia, Perugia, Italy. bbb

Also at Utah Valley University, Orem, USA.

cccAlso at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia. ddd

Also at Argonne National Laboratory, Argonne, USA.

eeeAlso at Erzincan University, Erzincan, Turkey. fff

Also at Yildiz Technical University, Istanbul, Turkey.

gggAlso at Texas A&M University at Qatar, Doha, Qatar. hhh

Figura

FIG. 1 (color online). Left: Comparison of SV p T distribution between data and simulation for the same jet and event selections
FIG. 2 (color online). The b-jet yield as a function of p T is
Figure 3 shows the centrality-integrated b-jet nuclear modification factor (R AA ), which is the ratio of the T AA  -normalized PbPb yield and the measured pp cross section in Fig

Riferimenti

Documenti correlati

Through social research applied to the analysis and intervention in the field of social policies for young refugees, the CAP seeks to work towards the recognition and certification

1 Department of Dynamic and Clinical Psychology, Sapienza University of Rome 2 Italian Association for the Study of Emotion Dysregulation Disorders, Rome 3 Integrated Department

Biochemical studies of Aloe vera (Aloe barbadensis Miller) gel of the field grown and micropropagated plants at different developmental stages. La Sabila (Aloe spp.):

The present study extends previous findings by demonstrating that the LP-211 treatment (0.25 mg/kg, once per day for 7 days) rescues RTT-related phenotypic alterations,

Esso apre il Titolo V del Testo unico, interamente dedicato ai servizi e agli interventi pubblici locali, e pertanto funge (o, comunque, dovrebbe fungere) da “bussola”

Keywords: quasilinear elliptic equation, weak Cerami–Palais–Smale condition, Ambrosetti– –Rabinowitz condition, break of symmetry, perturbation method, supercritical

Evaluation of Legionella air contamination in healthcare facilities by different sampling methods: An Italian multicenter study. Evaluation of bioaerosol sampling techniques

In order to provide absolute frequency cali- bration, the CW laser frequency (which determines the microresonator combs offset frequency) is linked to the 10 MHz RF signal of