ContentslistsavailableatScienceDirect
Seminars
in
Cancer
Biology
j ou rn a l h om ep a ge :w w w . e l s e v i e r . c o m / l o c a t e / s e m c a n c e r
Review
Tissue
invasion
and
metastasis:
Molecular,
biological
and
clinical
perspectives
W.G.
Jiang
a,∗,
A.J.
Sanders
a,
M.
Katoh
b,
H.
Ungefroren
c,
F.
Gieseler
c,
M.
Prince
d,
S.K.
Thompson
e,
M.
Zollo
f,g,
D.
Spano
g,
P.
Dhawan
h,
D.
Sliva
i,
P.R.
Subbarayan
j,
M.
Sarkar
j,
K.
Honoki
k,
H.
Fujii
k,
A.G.
Georgakilas
l,
A.
Amedei
m,
E.
Niccolai
m,
A.
Amin
n,
S.S.
Ashraf
n,
L.
Ye
a,
W.G.
Helferich
o,
X.
Yang
o,
C.S.
Boosani
p,
G.
Guha
q,
M.R.
Ciriolo
r,
K.
Aquilano
r,
S.
Chen
s,
A.S.
Azmi
t,
W.N.
Keith
u,
A.
Bilsland
u,
D.
Bhakta
q,
D.
Halicka
v,
S.
Nowsheen
w,
F.
Pantano
x,
D.
Santini
xaCardiffUniversity,Cardiff,UnitedKingdom
bNationalCancerCenter,Tokyo,Japan
cUniversityHospitalSchleswig-Holstein,Lübeck,Germany
dUniversityofMichigan,AnnArbor,MI,USA
eRoyalAdelaideHospital,Adelaide,Australia
fDepartmentofMolecularMedicineandMedicalBiotechnology(DMMBM),UniversityofNaplesFedericoII,Naples,Italy
gCEINGEBiotecnologieAvanzate,Naples,Italy
hUniversityofNebraskaMedicalCenter,Omaha,USA
iPurdueResearchPark,Indianapolis,IN,USA
jUniversityofMiami,Miami,FL,USA
kNaraMedicalUniversity,Kashihara,Japan
lPhysicsDepartment,SchoolofAppliedMathematicalandPhysicalSciences,NationalTechnicalUniversityofAthens(NTUA),Athens,Greece
mUniversityofFlorence,Florence,Italy
nUnitedArabEmiratesUniversity,AlAin,UnitedArabEmiratesandFacultyofScience,CairoUniversity,Egypt
oUniversityofIllinoisatUrbana-Champaign,Urbana,IL,USA
pCreightonUniversity,Omaha,NE,USA
qSASTRAUniversity,Thanjavur,India
rUniversityofRomeTorVergata,Rome,Italy
sOvarianandProstateCancerResearchTrustLaboratory,Surrey,UnitedKingdom
tWayneStateUniversity,Detroit,MI,USA
uUniversityofGlasgow,Glasgow,UnitedKingdom
vNewYorkMedicalCollege,Valhalla,NY,USA
wMayoClinicCollegeofMedicine,Rochester,MN,USA
xUniversityCampusBio-Medico,Rome,Italy
a
r
t
i
c
l
e
i
n
f
o
Articlehistory:
Availableonline10April2015
Keywords:
Cancermetastasis
Invasion
Cancertherapy
a
b
s
t
r
a
c
t
Cancerisakeyhealthissueacrosstheworld,causingsubstantialpatientmorbidityandmortality.Patient
prognosisistightlylinkedwithmetastaticdisseminationofthediseasetodistantsites,withmetastatic
diseasesaccountingforavastpercentageofcancerpatientmortality.Whileadvancesinthisareahave
beenmade,theprocessofcancermetastasisandthefactorsgoverningcancerspreadandestablishmentat
secondarylocationsisstillpoorlyunderstood.Thecurrentarticlesummarizesrecentprogressinthisarea
ofresearch,bothintheunderstandingoftheunderlyingbiologicalprocessesandinthetherapeutic
strate-giesforthemanagementofmetastasis.ThisreviewliststhedisruptionofE-cadherinandtightjunctions,
keysignalingpathways,includingurokinasetypeplasminogenactivator(uPA),phosphatidylinositol
3-kinase/v-aktmurinethymomaviraloncogene(PI3K/AKT),focaladhesionkinase(FAK),-catenin/zinc
fingerE-boxbindinghomeobox1(ZEB-1)andtransforminggrowthfactorbeta(TGF-),togetherwith
inactivationofactivatorprotein-1(AP-1)andsuppressionofmatrixmetalloproteinase-9(MMP-9)
activ-ityaskeytargetsandtheuseofphytochemicals,ornaturalproducts,suchasthosefromAgaricusblazei,
Albatrellusconfluens,Cordycepsmilitaris,Ganodermalucidum,PoriacocosandSilybummarianum,together
∗ Correspondingauthorat:Cardiff-PekingCancerInstituteandCardiff-CapitalMedicalUniversityJointCentreforBiomedicalResearch,CardiffUniversitySchoolofMedicine,
CardiffUniversity,HenryWellcomeBuilding,HeathPark,CardiffCF144XN,UnitedKingdom.Tel.:+442920687065.
E-mailaddress:[email protected](W.G.Jiang).
http://dx.doi.org/10.1016/j.semcancer.2015.03.008
withdietderivedfattyacidsgammalinolenicacid(GLA)andeicosapentanoicacid(EPA)andinhibitory
compoundsasusefulapproachestotargettissueinvasionandmetastasisaswellasotherhallmarkareas
ofcancer.Together,thesestrategiescouldrepresentnew,inexpensive,lowtoxicitystrategiestoaidin
themanagementofcancermetastasisaswellashavingholisticeffectsagainstothercancerhallmarks.
©2015ElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://
creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction
Thechainofeventsleadingtothemalignanttransformationof
cells,whetherthroughgeneticorepigeneticalterations, is
com-plex.Malignantcellspossesskeyhallmarks,namely,uncontrolled
growthpotentialsandtheabilitytoinvadesurroundingtissuesand
metastasize[1].Cancercellslikelypossesstheseinnateabilitiesto
someextent,thoughthedegreeandtimingofinvasionand
metas-tasismayvarydue tothegeneticand epigeneticheterogeneity
withinthetumorandfurthersignalsfromextrinsicfactors,such
asthosewithinthatparticularmicroenvironment[2].
Despitesubstantialeffortdedicatedtotheearlydetectionand
preventionofcancer,mostpatientsarelikelytohavemicro-(not
visibleusingconventionalmethods)ormacro-metastasesbythe
timetheycometomedicalattention[3,4].Cancerpatients,both
earlyandlatestage,dependentonlifespan,arelikelytodevelop
metastasis.Thismetastaticspreadoftheprimarytumoraccounts
for over 90% of patientmortality associated withsolid cancers
[1,4,5].Despitethis,researchintothefieldofmetastasis,in
compar-isontootherkeyeventssuchasproliferation,etc.,islagging.Thisis
partlyduetothecomplexityofthemetastaticprocessbutalsodue
toalackofsufficientfundingandeffortsintothisareaofresearch.
However,significantprogressinthisvitalareaofcancerresearch
hasbeenwitnessedoverthepastdecade,thoughmuchremainsto
beelucidatedbeforewefullyunderstandthisperniciouscondition
andanumberofsignificantgapsremaintobefilledbeforewecan
trulyunderstandthiscomplexprocess.
Diagnosisandtreatmentofmetastaticdiseasearevitalareasin
theconstantbattlemanypatientsfaceagainstcancer,yeteffective
treatmentsarelimitedandsubstantialmorbidityandmortalityare
stillassociatedwithmetastaticdisease[5,6].This,togetherwith
thecomplexitiessurroundingthemetastaticprocess(summarized
inFig.1)andthecomplexnatureandheterogeneityofmetastatic
tumors,fullysupportsandjustifiesfurtherresearchdedicatedto
thediscoveryofalesstoxicmeanstotreatthiscondition.Thisisthe
majormissionofgettingtoknowcancer(GTKC).Thisreviewaims
todiscusskeyknowledgegaps,explorepotentialtargetsintackling
metastasisandalsopotentialmethods,includingphytochemicals,
smallmoleculeinhibitorsandnaturalcompoundsindevisingnew
strategiesfortreatingmetastasis.
2. Cellularpropertiesandmetastasis
2.1. Cell–celladhesion
Incancersderivedfromtheepithelium,inter-cellularstructures
and cell–cell adhesion are key factors in maintaininga
coher-entprimarytumormass[7,8].Abnormalitiesinthesestructures,
throughmutationor dysregulation,canleadtothedissociation
oftheprimarytumorandanenhancedpotentialfor
dissemina-tionandmetastaticspreadofcancercellstosecondarylocations
[7–9]. Keystructures involvedin maintainingthis adhesiveness
betweencellsincludeadherensjunctions(includingdesmosomes),
tightjunctions(TJ)and gapjunctions.While gapjunctions
con-feraweakadhesionstructureandTJs,amodestone,theadherens
junctionsprovidethemostpowerfulsourceofadhesionin
epithe-lialcells.Perhapsoneofthestrongestandmoststudiedregulators
ofadhesionisE-cadherin(cadherin-1orCDH1),amemberofthe
cadherinfamilyofproteins.E-cadherin,togetherwithassociated
catenins,playsakeyroleinmaintainingcell–celladhesionandis
alsoinvolvedintheregulationofthecellcycleregulatorsp27kip1
andp57kip2,whichareinvolvedincell–cellcontactinhibitionin
normalepithelium,butwhicharelostordisturbedincancercells,
mainly due to the loss of E-cadherin in cancer cells [8,10,11].
Hence,reducedcell–celladhesionnotonlyenhancesthe
poten-tialformetastaticdisseminationofcancercellsbutalso,through
lossofcontactinhibition,promotesuncontrolledcellgrowth[7].
E-cadherin has alsobeen established as a key mediator of the
epithelial–mesenchymaltransition(EMT)process(discussedin
Section2.4).Thus,enhancedexpressionofkeycadherinmolecules
couldofferpotentialasastrategytocontrolmetastatic
dissemina-tion,thoughrealizingthispotentialhasproveddifficult;thusfar
therehavebeenfewreportsidentifyingviabletreatmentoptions
inthisregard.However,thereareanumberofnoteworthyoptions,
namelythepolyunsaturatedfattyacidsgammalinolenicacid(GLA)
anddihomo-␥-linolenicacid(DGLA),bothobtainablethroughthe
diet.ThesehavebeenreportedtobekeyregulatorsofE-cadherin
and desmosomal cadherins in cancer cells and have also been
reportedtohavebeneficialeffectsforpatientswithseveralcancer
typesincludingpancreaticcancerandbreastcancer[12–15].The
desirableeffectsoftheseessentialfattyacids(EFAs)wereblocked
bynon-EFA,aslongchainedoleicderivativesonhumancelllines
[16].
2.1.1. Claudinsincancer
TheTJcomplexistheapicalmostjunctionalcomplexinmost
typesofepithelialandendothelialcells.TJsarethegasket-likeseals
thatencircleeachcolumnarepithelialcellarounditsapicalpole.
Theyservetworoles:(1)theyhelptomaintaincellpolarityby
phys-icallyseparatingtheapicalandthebasolateralmembranedomains
and(2)theypreventfreeinterchangeofsubstancesbydiffusion
alongtheparacellularpathwaybetweentheluminaland
antilu-minaltissue fluidcompartments.TJs andtheirpermeabilityare
importantintheformationofthebloodbrainbarrier,bloodretinal
barrierandbloodtestisbarrier.TheTJproteinscanbesub-divided
intotheintegralmembraneproteinssuchasoccludin,tricellulin,
marvelD3,junctionaladhesionmolecules(JAMs)andtheclaudin
family(currently27members[17])andthecytoplasmicproteins.
ThecytoplasmicadaptorproteinsarethezonulaoccludensorZO
proteins,andaredesignatedZO-1,-2,and-3.Theseproteinslink
themembrane proteinstotheactin cytoskeleton.Traditionally,
researcheffortsfocusedonbarrierandfencefunctions,however,
thereisanewmovementinthefield,whichistounderstandhow
TJ proteinsparticipate in cellproliferation, transformation, and
metastasissuppression.Recentstudieshavedemonstratedtherole
ofTJsduringepithelialtissueremodeling,woundrepair,
inflamma-tion,andtransformationintotumors.Epithelialmultilayeringwas
associatedwithincreasedTJpermeability[18],activationofprotein
kinaseC(PKC)-␣[19]andphosphorylationofTJproteins[20].
StudiesfocusingonthemoleculararchitectureoftheTJhave
now confirmed that theclaudin family of proteinsis the
inte-gralcomponentoftheTJ.Lossofcell–celladhesioniscentralto
thecellulartransformationand acquisitionofmetastatic
poten-tial,however,theroletheclaudinfamilyofproteinsmayplayin
aseriesofpathophysiologicalevents,includinghumancarcinoma
Fig.1. Themetastaticcascadeandpotentialfortherapeuticinterruption.Changesincellularpropertiesarenecessarytoallowthedevelopmentofaninvasivephenotype
andprogressionthroughthemetastaticcascade.Keyeventsofthecascadeareoutlined.Targetingsuchproperties/eventsortheunderlyingsignalingpathwaysusinglow
claudinmouseknockoutmodelshavedemonstratedtheir
impor-tantroleinthemaintenanceoftissueintegrityinvariousorgans.
Themechanismsofclaudinregulationandtheirexactrolesin
nor-malphysiologyanddiseasearebeingelucidated,butmuchwork
remainstobedone.
Thereare27typesofclaudinsinmammals[17,21]andtheyare
dividedinclassicandnon-classicclaudinsbasedontheirsequence
similarity[21].Classicclaudinsincludeclaudins1–10,14,15,17
and 19and non classicclaudins11–13,16, 18 and 20–24[21].
Claudinsarefoundinepithelial,mesothelial,glialand
endothe-lialcells[22–24]withamolecularweightofaround20kDaand
incellmembranestheyarecomposedoftwoextracellularloops,
EL1andEL2,fourtransmembranedomains,onesmall20amino
acidlongintracellularpartbetweenthetwoextracellularloopsand
theintracellularaminoterminalandcarboxyterminalends[21,25].
The carboxyterminalend hasregions which recognize thePDZ
(postsynapticdensityprotein,Drosophiladisklargetumor
sup-pressor,andzonulaoccludens-1protein)domainsofZO-1,ZO-2
andZO-3[25].ThelargerEL1loopinfluencesparacellularcharge
selectivitywhereasthesmallerEL2loopbindstothe
correspond-ingclaudinoftheneighboringcell[25].Claudinexpressionand
functionsareregulatedatmultiplelevelsandbydiverse
mech-anisms [26,27]. Animportant question related to regulation of
claudinexpressionandcanceristherolethatclaudinsmayplay
intheEMTprocess[28,29].Theparacellularbarriermodulatedby
claudinmemberscanbeaffectedbyawiderangeof
physiologi-calfactorsincludingcellsignalingpathways,hormones,cytokines,
anddisruptionofthecell–cellcontacts.Post-translational
modifi-cations,includingphosphorylation,lipidmodificationandremoval
ofclaudinsbyendocytosis,appeartobepotentialmechanismsfor
theregulationofclaudins.Phosphorylationhasbeenlinkedtoboth
increasesanddecreasesinTJassemblyandfunction.Mostclaudin
proteinshaveputativeserineand/orthreonine phosphorylation
sitesintheircytoplasmiccarboxyterminaldomains.Forinstance,
proteinkinaseA(PKA)–mediatedphosphorylationhasbeenshown
todecreaseassemblyofclaudin-3intoTJs[30],yetisnecessary
forclaudin-16assemblyandfunction[31].Claudin-3and-4can
bephosphorylatedin ovariancancercellsbyPKA, akinase
fre-quentlyactivatedinovariancancer[30].Claudinphosphorylation
associatedwithTJdisassemblyisalsoenhancedbyEPHreceptor
A1(EphA1),whichisrecruitedtobindtoclaudin-4byforminga
complexwithephrin-B1[32].StudieshaveimplicatedPKCinthe
regulationofTJs throughphorbolesterstimulation[30,33].
Fur-thermore,modulationofmitogen-activatedproteinkinase(MAPK)
signaling,specificallyextracellularsignal-regulatedkinase(ERK)
1/2andp38,aswellasphosphatidylinositol3-kinase(PI3K)have
aprofound effectonTJsealingand claudinexpression[30].TJs
arealsoremodeledatamoremacroscopiclevelthrough strand
breaksandreformation[34].Clathrin-mediatedendocytosisplays
animportantroleinthisprocess[35,36].Claudinsareinternalized
byauniquemechanism,wherethetightlyopposedmembranes
oftheTJareendocytosedtogetherintooneoftheadjoiningcells
[24].HostfactorsandcytokinescanalsoinfluenceTJturnoverand
claudinexpression[37],forinstance,interferon(IFN)-␥increases
claudinendocytosisandTJpermeability[38].Otherinflammatory
cytokines,suchastumor-necrosisfactor(TNF)-␣andinterleukin
(IL)-13,downregulateclaudinsandinduceamarkedincreasein
paracellularpermeabilitybyepithelialcellsinculture[39,40].
Growth factor receptors that are important in the
regula-tionofcellproliferationandsurvivalincludingepidermalgrowth
factor (EGF), hepatocyte growth factor (HGF) and insulin like
growthfactor(IGF)receptorsregulateclaudinexpressionand
cel-lulardistributionthoughonceagainincell/tissuespecificmanner
[28,29,41].ClaudintranscriptioncanberegulatedbytheSnail/Slug
family[42].ItiswellestablishedthatoverexpressionofSnailin
epithelialcellsinducesEMTandtheacquisitionofmigratoryand
invitroinvasivebehavior.SnailandSlugbindtotheE-boxmotifs
presentinthehumanclaudin-1promoterwhichplayacritical
neg-ativeregulatoryroleinbreastcancercelllinesthatexpressedlow
levelsofclaudin-1[42].Caudaltypehomeobox2(Cdx-2),
hepa-tocyteNuclearFactor1-alpha(HNF-␣),andGATAbindingprotein
4(GATA-4)[43,44]canbindtothepromoterregionsofvarious
claudingenesandaffecttheirexpression.Furthermore,ithasbeen
shownthatcolonicclaudin-1transcriptsareregulatedbySmad-4,
aknowntumorsuppressoraswellashistonedeacetylase(HDAC)
inhibitorsandthussupportacomplexregulationatmultiple
lev-els[45,46].Collectively,thedataprovidesanemergingpictureof
theimportanceofclaudinhomeostasisinnormalandpathological
tissuefunction,butthereremainsmuchtobelearned,especially
regardingwhetheritmaybepossibletoidentifyadistinctclaudin
signatureintheinitiationandprogressionofvarioustumortypes.
Alterationsinclaudinexpressionprofilesduring
tumorigene-sisbegsthequestionof howclaudinsareregulatedin different
tissuesinbothnormalandpathologicalsituations.Tanetal.[47]
haveshownthattheexpressionanddistributionofclaudin-1is
associatedwithcelldissociationstatusinpancreaticcancercells
throughMAPK2activation.Bycontrast,claudin-7hasbeenfound
tobedecreasedininvasiveductalcarcinomas[48],headandneck
cancer[49]andmetastaticbreastcancer[37].Ontheotherhand,
claudin-3and-4arefrequentlyelevatedinvariouscancers
includ-ingpancreaticductaladenocarcinoma,prostate,uterine,ovarian
cancer[38]andbreastcancer[50]whilehepatocellularandrenal
carcinomasexpressedlowerlevelsofclaudins-4and-5[22].While
lowerexpressionofclaudin-2wasalsoseeninbreastand
pros-taticcarcinomas,expressionsofclaudin-1andclaudin-7thatwere
undetectableinnormalcervicalsquamous epitheliumincreased
inthecervicalneoplasia[22,51].Intriguingly,recentstudieshave
shownthatexpressionofcertainclaudins,especiallyclaudin-1and
claudin-4, increasesduring metastasisandgeneticinhibition of
theirexpressionhasaprofoundeffectonthemetastaticabilities
ofcancercellsthoughinatissuespecificfashion[52–54].Thereis
thepossibilitythatmutationsinclaudinsmaybecausaltotumor
formation.However,todatethereisnosystematicsequencedata
onclaudinsinanytumortype.Ontheotherhand,gene
silenc-ing due topromoter hypermethylationis a commonfeatureof
humancancers[55]andithasbeensuggestedtounderliethe
down-regulationofclaudinsincertaintumors.Forexample,aCpGisland
wasidentifiedwithinthecodingsequenceoftheclaudin-4gene,
andtreatmentwithamethyl-transferaseinhibitorrestored
expres-sionoftheproteininprimaryculturespreparedfromhigh-grade
humanbladdertumors [56].Furthermore,claudin-4expression
alsocorrelatedwithitsgenemethylationprofileinhealthyand
tumoralbladdersfrom20patientsandclaudin-6expressionis
par-tiallysilencedbypromoterCpGislandhypermethylationinMCF-7
breastcarcinomacells,whileasynergisticeffectofademethylator
andhistonedeacetylaseinhibitorsupregulatestheexpressionof
endogenousclaudin-6,andsensitizesthecellsforapoptosis[57].
Intuitively,themechanismbywhichdecreasedclaudinexpression
might lead to the compromised TJ function and thus,
neopla-siaiseasytocomprehend,buthowincreasedclaudinexpression
contributestoneoplasticprogressionislessclear.Oneplausible
mechanismisthatupregulationoraberranttissueexpressionof
certainclaudinsmaycontributetoneoplasiabydirectlyalteringTJ
structureandfunction.Furthermore,itispostulatedthatclaudins
mayalsoaffectcellsignalingpathways.Claudinproteinsarelikely
involvedinsignalingpathwaysviabindingdomainstoZO-1attheir
carboxylterminus[58].
Cell–celladhesionproteinsareknowntoplayanimportantrole
incellulartransformationwhendisplacedfromtheirnormal
mem-brane localizationand could serve asoncogenic molecules, the
beststudiedmoleculebeing-catenin[59].Asimilarfunctional
studiesareneededtosupportsuchanotion.Anincreasein
claudin-1expressionhasbeenreportedinhumanprimarycoloncarcinoma,
inmetastasissamplesandinthecelllinesderivedfromprimary
andmetastatictumorscomparedtotheirnormalcounterparts[54].
Crucially,therewasnuclearlocalizationofclaudin-1ina
signifi-cantsubsetofcoloncancersamples,particularlyamongthesubset
oflivermetastaticlesions.Nuclearlocalizationofseveralcell
junc-tionproteins(-catenin,ZO-1,ZO-2)isknowntobecorrelatedwith
oncogenictransformationandcellproliferation[60].Mutantsofthe
TJproteinZO-1thatnolongerlocalizeattheplasmamembrane
inducedramaticEMTinMadin-DarbycaninekidneyIcells[61].
Similarly,geneticmanipulationsofclaudin-1expressionincolon
cancercelllinesinducedchangesincellularphenotype,with
struc-turalandfunctionalchangesinmarkersofEMT,andhadsignificant
effectsuponthegrowthofxenograftedtumorsandmetastasisin
athymicmice.Notably,regulationofE-cadherinexpressionand
-catenin/Tcfsignalingemergedasoneofthepotentialmechanism
underlyingclaudin-1dependentchangesand therebysuggested
complexinterplaybetweendifferentcell–celladhesionmolecules
[54].Expressionofspecificclaudin familymemberscanbe
reg-ulatedbythewingless-typeMMTVintegrationsitefamily(Wnt)
signalingpathway.Claudin-1andclaudin-2areshowntobetarget
genesregulatedby-cateninsignaling[62,63].
Metastasisisacomplexphenomenonthatrequiresanumber
of specific steps such as decreased adhesion, increased
motil-ity and invasion, proteolysis, and resistance to apoptosis [64].
Claudin-5promotesprocessingofpro-matrixmetalloproteinase-2
(pro-MMP-2)bymembranetype1-MMP(MT1-MMP).Expression
of claudin-5 not only replaced tissue inhibitors of
metallopro-teinases (TIMP)-2 in pro-MMP-2 activation by MT1-MMP but
also promoted activation of pro-MMP-2 mediated by all
MT-MMPsandMT1-MMPmutantslackingthetransmembranedomain
(DeltaMT1-MMP)[65].It appearsthat interactionof MMPwith
claudins might play an important role in tumorigenesis,
inva-sionandmetastasismediatedbyclaudinexpression.Ithasbeen
observedthat overexpression ofclaudin-1in colon cancercells
increasedactivityofbothMMP-2andMMP-9whileinhibitionof
claudin-1resultedinasignificantdecreaseinMMP-9activity[54].
Similarly,overexpressionofclaudin-3or4inovarianepithelialcells
increasedMMP-2activity[52].AnincreaseinmRNAtranscription
andproteinexpressionofMT1-MMPwasalsoobservedin
claudin-10overexpressingcells,inwhichclaudin-1,-2,and-4werealso
upregulated,suggestingthattheexpressionofclaudin-10in
can-cercellsmaydysregulatetheexpressionofotherclaudinfamily
members[66].
Mostmalignanttumorsarederivedfrom,andmostpathogens
invadethebodyviatheepithelium.Theepitheliumisthereforea
potenttargetforimprovingdrugabsorption,treatingcancer,and
curinginfectiousdiseases.ModulationofTJsealsisapopular
strat-egyforimprovingdrugabsorption.TJscompartmentalizetheapical
andbasalmembranedomainsofepithelialcells,leadingtothe
for-mationofcellularpolarity.Lossofcell–cellinteractionandcellular
polarity,whichoftenoccursin cancercells during
carcinogene-sis,leadstoexposureof TJcomponentsonthecellularsurface.
Theclaudinfamily ofproteinsis anattractivetargetfor
antitu-mortherapy consideringtheepithelium-specificexpressionand
thehighspecificityofclaudinexpressionpatternsincancer.Itis
worthmentioningthatclaudinfamilymembersareexpressedin
aprecisetissue-specific mannerand thuscouldserve astumor
specificbiomarkers.Inthisregard,asetoffourmarkers,
includ-ingclaudin-3, wasfoundto besufficient to accuratelyidentify
all158ovariancancerstested,includingeightearly-stageserous
cancers[67].Furthermore,claudin expressionmaybeusedasa
prognosticindicatorbecausehighclaudin-1expressionhasbeen
showntobeassociatedwithtumorprogressionandmetastasisin
coloncancer[68].Atthesametime,in breastcancer,claudin-1
expressionisdifferentialbetweenthesubtypesandlowversushigh
claudin-1expressionhelpsidentifyhighlyaggressivetriple
nega-tivebreastcancer[69].Similarly,claudin-10expressionhasbeen
showntobeanindependentprognosticfactorforhepatocellular
carcinomarecurrenceaftercurativehepatectomy[70].Regarding
theidentificationoftheclaudinfamilyofproteinsastoolsto
iden-tifyand/orclassifytumortypes,serialanalysisofgeneexpression
(SAGE)studiesof thebreast [71]andovarian [72]cancershave
allowedforthefirsttimetheidentificationofspecificclaudin
fam-ilymembersaspotentialbiomarkersforthesecancers.Although
largescaleanalysisinaclinicalsettingwillberequiredto
estab-lishsuchpotentialofclaudins,basicresearchonclaudinsislikely
toremainvaluableforprovidingimportantinsightsintonormal
andneoplasticcellularphysiology.Preclinicalstudieshaveshown
thattumorcellsoverexpressingclaudinscanbesuccessfully
tar-geted viaseveral approaches, includingthe useof anti-claudin
antibodiesaswellasthecytolytic enterotoxin fromClostridium
perfringens.However,mostofthestudieshaveconcentrated
pri-marilyuponclaudin-3andclaudin-4[73].Bothoftheseproteins
havebeenidentifiedastargetsofC.perfringensenterotoxin(CPE)
andhave beenreportedtobeoverexpressedinmultipletumor
typesincludingovarianandprostatecancer. Yetanother
poten-tialapproachthathasbeensuggestedistheuseofclaudinsasdrug
deliverysystemusingPseudomonasaeruginosaexotoxinA(PE).PE
iswidelyusedincancer-targetingstudiesasitbindstothecell
surfaceandisinternalizedviaendocytosis.Followingthis,aPE
frag-ment,proteinsynthesisinhibitoryfactor(PSIF),escapesfromthe
endosometothecytosol[74],whereitinhibitsproteinsynthesis
byinhibitingelongationfactor2.PSIFlacksthereceptor-binding
domainofPE,andfusionofatumorantigensuchasclaudinswith
PSIFisapromisingstrategyforcancer-targetingtherapy.Therapies
specifictocertainclaudinfamilymemberscouldalsoserveas
adju-vanttherapies.Highlyincreasedandcytosolic/nuclearclaudin-1
expressionincoloncancerhasbeenreported[54,75]andclaudin-1
dysregulationmodulatesthebalancebetweentheNotch-and
Wnt-signalingtodysregulatecolonocytedifferentiationandpromotes
tumorgrowthandprogression.SinceNotchandorWnt-signaling
inhibitioncarriesinherenthightoxicity,theuseofclaudin-1based
therapymayprovideanalternative.
2.2. Cell–matrixadhesion
Interactionand adhesionbetweencells andthe surrounding
extracellularmatrix(ECM)classicallyinvolvescellsurfaceintegrins
whichinteractandbindECMproteincomponents[76].Functional
integrinsconsistofaheterodimerstructuremadeupofdifferent
␣-and-subunitsanddifferentintegrinstructurespossess
dif-feringaffinitiesfordifferentmatrixproteins[76].Theinteraction
betweenintegrinsandtheECMtriggersa seriesofintercellular
eventsthatnotonlyresultsintheadhesionofthecelltotheECM
butalsoformsamechanismforcommunicationbetween
intracel-lulareventsandthesurroundingECM.Thisprocessofcell–matrix
adhesionisessentialfortheattachmentofcancercellstothe
sur-roundingmatrixandsubsequentlythedegradationofthematrix
barrier[9].Anumberofintegrinshavebeenlinkedtometastatic
likelihoodandcancerand/orstromalcellsmaydepositECM
pro-teinsthatagaincanenhancemetastaticprogression.Blockingthe
extracellularpartofthecell–matrixadhesionbymeansof
antibod-ies,smallpeptides,andothernatural-andphytochemicalshasbeen
demonstratedandhasbeencoveredbyanotherarticleinthisissue.
However,blockingtheintracellularsignalingeventhasalsoproved
tobeausefulapproachininhibitingthisimportanteventduring
cancermetastasis.Keyeventsfollowingthematrix–integrin
inter-actionincludeactivationofthefocaladhesionkinase(FAK),paxillin
anddownstreamchainsignalingevents[77].Thus,inhibitingFAK
CD44representsanotherkeycell adhesionmoleculethat holds
potentialasanantimetastatictargetboththroughitsrolein
inter-actingwithothercelltypesandtheECM.TheCD44gene,located
athumanchromosome11p13,encodestheCD44sandCD44v
iso-forms,whicharisethroughalternativesplicing.CD44sandCD44v
isoforms share the extracellular globular region that includes
binding sites for hyaluronan,collagen, laminin and fibronectin
aswellasthecytoplasmictailregionthatincludesbindingsites
for ERM domainproteins (Ezrin, Radixin and Moesin),Ankyrin
andS6kinaserelatedkinase(SRK).CD44functionsasa
hyaluro-nanreceptor,co-receptorforgrowthfactorsandasanadhesion
molecule[78–82].CD44isinvolvedinthemalignantphenotypes
ofcancerstem cells,includingEMT,invasion,metastasis,
recur-rence, resistance to chemotherapy and resistance to radiation
therapy[82–85],whichclearlyindicatesthatCD44isapotential
targetofcancertherapy.Humanizedanti-CD44v6monoclonal
anti-body BIWA-4 (bivatuzumab), paclitaxel-conjugated hyaluronan
prodrugHYTAD1-p20(ONCOFID-P),SN-38-conjugatedhyaluronan
prodrug ONCOFID-S, hyaluronan–irinotecan complex and other
hyaluronan-conjugateddrugsorsiRNAshavebeendevelopedas
cancer therapeutics [86]. Therapeutics targeted to cell–matrix
adhesionmayrepresentausefulstrategytoblockcancercellsfrom
settlingonandsubsequentlypenetratingvascularorcavitylining
andhencenegativelyimpactingtheirabilitytoestablishsecondary
tumorsinthenewsite.
2.3. Cellularmigration
Whileessentialtonormaldevelopmentandhomeostasis,the
processofcellularmigrationisalsoatraitessentialfor
metasta-sis.Enhancedmigrationiskeyacrossthemetastaticcascadeand
isinvolvedintheinitialscatteringofcellsandmigrationfromthe
primarytumor,thepenetrationofthebasementmembraneand
ECMandintravasationandextravasationofvessels.Themigration
ofcellsrequiresanumberofintra-andextra-cellulareventssuch
asthedetectionofextracellularsignalsbythecells,synthesisofcell
surfaceproteinsandthecoordinationofintracellularsignalingand
cytoskeletonproteins.Throughouttheliterature,cellmigrationhas
beentightlylinkedtocancerprogressionandmetastasis.
Numer-ousproteinsandpathwayshavebeenimplicatedinalteringthe
migratorypotentialsofcancercellsandthereforetheiraggressive
nature[87,88].Hence,givenitsessentialroleincancerprogression,
treatmentsthatinhibitcellmigrationorsuchproteins/pathways
involved in enhancing cellular motility represent an attractive
strategy forcontrollingmetastatic dissemination.While in
nor-malphysiologycellularmigrationislessactive,thereareprocesses
whereitisessential,suchaswoundhealing,andhencemustbe
takenintoconsideration.Currentlytherearemanycompoundsthat
inhibitcellularmigration,althoughveryfewhavebeentestedina
clinicalsetting.
2.4. EMT
The process through which epithelial cells undergo a series
of morphological and biochemical changes to take on a more
mesenchymal phenotype is known as epithelial–mesenchymal
transition.EMT is widespreadthroughout normal development
buthasalsobeenlinkedtotheestablishmentofamoreinvasive,
motilecancercellphenotypefacilitatingdetachmentand
dissem-inationawayfromtheprimarytumor[89–92].EMTinvolvesthe
lossofcell–celladhesionandthepolarizedepithelialmorphology
through thecharacteristic loss of epithelialcell junctional
pro-teins suchas E-cadherin, claudinsand ZO-1, and a subsequent
increaseinmesenchymalmarkerssuchasN-cadherin,vimentin
andfibronectinandcytoskeletalreorganization[91,93].Indeed,the
lossofE-cadherinandsubsequentreplacementwithN-cadherin
(‘cadherinswitching’)isacharacteristicofEMT,seeninmany
can-certypesandisthoughttoaccountsomewhatfortheenhanced
invasiveandmotilepropertiesofcancercells[8].Unsurprisingly,
alterationsincelladhesionmolecules(CAM)suchasE-cadherin,
impacttheprocessesofcell–celladhesionandcell–matrix
adhe-sionandsubsequentlytheirmetastaticpotential.E-cadherinplays
anessentialroleintheadhesionofcellsandtissuesandtogether
withothermembersoftheadhesivecomplex,suchas-catenin,
regulatescelladhesion,signalingandtranscriptionincancersand
controlmetastaticprogression[94].Indeed,studieshave
demon-stratedanassociationbetweenlossofE-cadherinand␣-catenin
expression with enhanced tumor cell invasiveness [95]. Other
workhasdemonstratedaninversecorrelationbetweenE-cadherin
expressionandtumorcellinvasionandmotilityandsimilarlywith
metastaticdiseaseincancerpatients[96].Thetranslocationof
-cateninfromtheadhesivestructuretothenucleus,aneventleading
totranscriptionalactivationofanumberoftargetgeneshasalso
beendemonstratedtocorrelatewithdevelopmentofa
mesenchy-malphenotype[97,98].
Initiationsignals,suchasHGF,EGFandtransforminggrowth
factor (TGF-) arebelieved toonsettheEMTprocess,
result-inginupregulationofEMT-inducingtranscriptionalfactorssuch
asSnail,SlugandTwist[99–102].Slug,SnailandTwisthavebeen
implicatedininfluencingtheexpressionofEMTproteinsandare
hencelinkedtometastasis[103–105].ForexampleSlugandSnail
areinvolvedinthedown-regulationofE-cadherin[99,106]andthe
expressionbetweenSnailandE-cadherin isinverselycorrelated
ina numberof cancersincludingbreastcancer[107].Similarly,
asdiscussedinSection2.1.1,Snailexertsregulatoryeffectsover
membersoftheTJsuchastheclaudins.Theseinitiationfactorsalso
actonothereffectormoleculestobringaboutEMT, suchasthe
MMPfamily.Membersofthisfamilyofproteinasesplaykeyroles
inmatrix-degradation,invasion,motilityandadhesionandare
fre-quentlydysregulatedincancerprogression.SlugandSnailhave
bothbeenimplicatedintheupregulationofMMP-2andMMP-9
andsubsequentEMTinitiation[108].
The process of EMT and subsequent acquisition of an
inva-sive,motilephenotypewithenhancedlikelihoodofinvasionand
disseminationrepresentsakeyinterestincancerresearch.
Thera-peuticstrategiesthatcanspecificallytargetthisprocessincancer
cellsarelikelytobeeffectiveinreducingthemetastaticpotential
oftumorcells.
2.5. Molecularnetworksinthetumormicroenvironment
It is now well established that solid tumors are not
sim-plyaggregates of replicatingneoplasticcells but arealsoliving
entities, composed of numerous cell types, whose complexity
approaches,andmayevenexceed,thatofnormalhealthytissues.
Manynon-malignantcelltypes,referredtoasthestroma,populate,
atmajority,thesolidtumors.Thesenon-malignantcellsinclude
fibroblasts,residentepithelialcells,pericytes,myofibroblasts,
vas-cularandlymphovascularendothelialcellsandinfiltratingcellsof
theimmunesystem.Duringmalignantprogression,neoplasticcells
acquiretheabilitytorecruit,incorporateandreprogramthe
biol-ogyandthefunctionofthesehealthyhostcells, thusproviding
themwithsupport,essentialnutrientsand weaponstohamper
antitumorimmuneactivity.Inturn,therecruitednon-malignant
cellsrespondbyenhancingtheneoplasticphenotypeofthenearby
cancercells,whichagainfeedsignalingbacktothestromato
con-tinueitsreprogramming.Thus,thepreviousideathatthemalignant
phenotype of tumor cells was exclusively determined by
cell-autonomousgeneticandepigeneticalterationsisnowreplacedby
thehypothesisthatthemalignantprogressionofcancernotonly
dependsontumorcells’geneticaberrationsbutalsoonthe
Fig.2.Cellularinteractionswithinthetumormicroenvironment.Numerousinteractionsbetweencelltypesareinvolvedthroughouttumorprogressionandmetastasis.
Communicationbetweenmaincomponentsofthesurroundingmicroenvironmentplayvitalrolesinenhancingmetastaticpotential,epithelialtomesenchymaltransition
thecellsofthestromaandcancercellswithinthetumor
microen-vironment[109,110](Fig.2).
Among the non-malignant cells that inhabit the tumor
microenvironment,cancer-associatedfibroblasts(CAFs)andtumor
infiltrating-immuneinflammatory cells arenoteworthybecause
oftherolestheyplayintumordevelopmentandmalignant
pro-gression. CAFs secrete factors that act on tumor cells in both
paracrineandautocrinefashions,thusresultinginamore
aggres-sivecancerphenotype.Acrossmostcancers,activatedCAFssecrete
a wide variety of growth factors, chemokines, collagens, and
ECM-modifyingenzymes,whichcollectivelysupplya
communica-tionnetworkandanalteredthree-dimensionalECMscaffoldthat
togethergovernproliferationofcancercellsandtumorinvasion
andmetastasisacrosstissuetypes.Theyalsocontributetotumor
progressionbyrecruitingtumor-promotingimmunecellsand
sup-portingangiogenesis.Thetumorinfiltrating-immunecellsinclude
thetumor-associatedmacrophages(TAMs),myeloid-derived
sup-pressorcells (MDSCs),dendritic cells(DCs), tumorinfiltratingT
cells,regulatoryTcells(Tregs)andmastcells[109].Tumorcells
secretechemokinesandcytokinesthatareabletorecruitmastcells,
DCs,TAMsandMDSCs.Tumorcellsalsoactivatemastcells,promote
theexpansionoftheMDSCsandthepolarizationofTAMs.
Further-moretumorsbothinhibitDCmaturationthroughIL-10secretion,
thusleadingtoantigen-specificanergy,andreprogramtheDCs,
inducingthemtoexertimmunosuppressive orangiogenic
func-tions,thusresultinginanimmunosuppressiveandinflammatory
tumormicroenvironment.Oncerecruitedtothetumor
microen-vironment,theseimmune cellscancontributetothemalignant
progression of the cancer-cell phenotypeby supporting tumor
proliferation,survival,invasion,metastasis,angiogenesisandECM
remodeling.
Incancercells,theconstitutiveactivationofvarioussignaling
pathways (including MAPK, signal transducer and activator of
transcription 3 (STAT3)and -catenin pathways) resultsinthe
secretion of cytokines which modulate the recruitment and
function of the stromal cells. In particular, the tumor-derived
regulated on activation, normal T cell expressed and secreted
(RANTES)/Chemokine(C–Cmotif)ligand5(CCL5)cytokine
stimu-latesCAFs toexternalizethe S100A4 protein,which stimulates
tumor-cell survival and migration, up-regulation of theMMPs,
down-regulationofTIMPs,activationofthenuclearfactorofkappa
lightpolypeptidegeneenhancerinBcells(NF-B)andMAPK
path-ways,infiltrationofTcellsandfinally,up-regulationofRANTES,
thusgeneratinga signalamplificationloop.RANTESalsoinduce
angiogenesisand actaschemoattractantsforadditionaleffector
immunecells.Tumor-derivedstemcellfactor(SCF)promotesthe
recruitmentand activation of mastcells and theMDSC
expan-sion.Tumorsalsosecretethethymicstromallymphopoietin(TSLP)
and bone marrow stromal cell antigen 2 (BST2). TSLP induces
DCstoexpressOX40ligand, whichdirectsCD4+ Tcellsto
gen-erateTH2cellssecretingIL-4andIL-13.Thesecytokinesprevent
tumorcellapoptosisandindirectlypromotetheproliferationof
tumorcellsbystimulatingTAMstosecreteEGF.BST2isaligand
ofimmunoglobulin-liketranscript7(ILT7),whichisexpressedon
DCssurface.TheinteractionofILT7onDCswithBST2ontumor
cellsresultsininhibitionofIFN-␣andpro-inflammatorycytokines
productionbyDCswithimmunosuppressiveeffects.
Oncogeneactivationandsubsequentsignalactivationin
can-cercellstriggermultiplecascadesthusresultinginthesecretion
ofseveralimmunosuppressivemolecules,includingTGF-,IL-10,
IL-6, vascularendothelial growthfactor(VEGF), CCL2/monocyte
chemoattractantprotein1(MCP1),cyclooxygenase-2(COX2),that
induce the immunosuppressive immune cells. Production and
secretionofthese factorsbyboth cancerand surroundingcells
enhancetumorcellproliferation,migrationandinvasion.
Further-moreitenhancestheproductionofimmunosuppressivecytokines
and chemokines, including TGF- itself, IL-10 and CCL2/MCP1.
TGF-and thepotentialfortargetingthis signalingpathwayin
canceris discussed in Section4.2. A plethora of recent reports
haspaintedaconsistentpictureofhowstromalcells(CAFsand
inflammatorycells)canpromotemalignantprogression.Indeed,
within theprimary tumormicroenvironment, thestromal cells
providepotentoncogenicsignals,suchasTGF-,HGF,EGF,Wnt,
andbasicfibroblastgrowthfactor(bFGF),whichstimulate
cancer-cellproliferation,survivalandinvasion,thusfacilitatingmetastasis.
Moreover, thesecells produce severalangiogenesis-modulating
enzymes,suchasVEGF,thymidinephosphorylase,MMP-2,
MMP-7,MMP-9,MMP-12,COX2,urokinaseplasminogenactivator(uPA)
andcathepsinsBandD,whichtogetherdegradetheECM,again
promotingmetastasis.TAMspromotecarcinoma-cellmotilityand
invasion throughaparacrine signalingloopbetweenthetumor
cells and the TAMs. Withinthis loop the macrophages express
EGF,whichpromotesformationofelongatedprotrusionsandcell
invasionbycarcinomacells.Inaddition,EGFpromotesthe
expres-sionofcolonystimulatingfactor1(CSF-1)bythecarcinomacells,
which further promote the expression of EGF by macrophages
generating a positive-feedback loop. The secretion of
stromal-cell-derived factor 1 (SDF1), alsoknown as chemokine (C–X–C
motif) ligand12 (CXCL12), by TAMs and CAFsat a tumor site
canenhancetheinvasion,intravasation,metastasisformationand
recruitmentofMDSCs,TAMsandendothelialcellstotheprimary
tumor.Thisenhancementofinvasionandintravasationdepends
uponchemokine(C–X–Cmotif)receptor4(CXCR4)signaling,andit
ismostlikelytooccurthroughactivationofCXCR4onmacrophages,
whichresultsinincreasedparacrineinteractionswithtumorcells
inthetumormicroenvironment.IncreasedCXCL12/SDF1secretion
alsogivesrisetoanincreasedmicrovesseldensity,whichmight
alsobemediatedbyTAMsandmightcontributetoanalteredtumor
architecture,thusresultinginincreasedintravasationthroughthe
presenceofahigherdensityofentrancesitesintotheblood,with
acorrespondingincreaseintheformationofmetastases.The
sig-nificanceofCXCL12/CXCR4signalinginbreastcancerinvasionand
metastasisiswidelyappreciated.CXCR4expressioninbreast
can-cercellshasbeenshowntoincreasemetastasisthroughthehoming
oftumorcellstositesofincreasedCXCL12expression,suchasthe
lymphnodes.Similarly,theinteractionofCXCL12/SDF1andCXCR4
expressedonmammaryadenocarcinomaMTLn3cellsincreasesthe
chemotacticandinvasivebehaviorofthesecellstoCXCL12/SDF1,
aswellastheirmotilebehaviorwithintheprimarytumorandtheir
abilitytointravasate.TAM-derivedCCL17andCCL22chemokines
preferentiallyattract Tcellsubsets that aredevoidof cytotoxic
functions,suchasTregsandTh2lymphocytes.TAM-derivedCCL18
recruitsnaïveTcells,whichinduceTcellanergy.Withinthetumor
microenvironmentIL-10,secretednotonlybyimmunecells,but
alsoby CAFsand tumorcells, is themain cytokineresponsible
fortheestablishmentoftheimmunosuppressivemilieu.
Further-more,IL-10,togetherwithIL-4,IL-6andIL-13,inducesmonocyte
differentiationtowardamatureM2-polarizedphenotypethatis
characteristic of TAMs. At the tumor site, the IL-1 and IL-6
cytokines,S100A8andS100A9pro-inflammatoryproteinsandthe
chemoattractantmoleculesCCL2/MCP1,CXCL12/SDF1andCXCL5
arethemainfactorsthatareresponsiblefortherecruitmentand
theinductionofMDSCs.VEGFisoneofthemainfactors
responsi-blefortheexpansionofMDSCs,whileIL-4,IL-13,IFN-␥,IL-1and
TGF-turnontheirsuppressivefunctions.MDSCsproducehigh
levelsofIL-17,whichfurtherexacerbatestheinflammatorytumor
microenvironment.
Thegrowingbodyof evidenceregardingtherolesplayedby
non-malignantcells ofthetumormicroenvironmentin
promot-ingtumor progressionindicatethat it isconceivable that these
cellscanserveasnoveltherapeutictargetsinthecancertreatment.
Table1
Effectsofapprovedandexperimentaltargetedagentsontumorcellsandtumormicroenvironmentstromalcells.
Drug Drugclass Target Effectontumor Effectontheimmunesystem References
STI571(Gleevecor imatinibmesylate) Smallmolecule inhibitor PDGFRand c-Kit
Reducesmicrovesseldensity Preventsmastcellproliferation andsurvival
[283,284]
Bevacizumab Monoclonal
antibody
VEGF Blocksangiogenesis IncreasesDCmaturation,shiftsDC
differentiationtowardmatureDCs
insteadofMDSCsandincreasesDC
primingofTcells
[285,286]
IM-2C6 Antibody VEGFR Blocksangiogenesis NA [287]
SU5416 Smallmolecule
inhibitor
VEGFR Reducesvasculardensity NA [288]
MMI-166 Smallmolecule
inhibitor
MMP-2and
MMP-9
SuppressesMMP-2andMMP-9
activities;inhibitsangiogenesis
andtumorgrowth
NA [289] S-3304 Smallmolecule inhibitor MMP-2and MMP-9 InhibitsMMP-2andMMP-9 NA [290]
Dasatinib Smallmolecule
inhibitor
c-Kit,ABL,SRC,
PDGFR
Inducesapoptosisinleukemiccell Inducesapoptosisinmastcell [117]
Dipyridamole Smallmolecule Wnt,MAPK
andNF-B
pathways
Decreasestumorgrowthand
metastasis
DecreasesTAMandMDSC
infiltration
[118]
Bindarit Smallmolecule CCL2/MCP1 Decreasestumorgrowthand
metastasis
DecreasesTAMandMDSC
infiltration
[119]
Upanap-126 RNAaptamer uPA Delaystheproteoliticconversion
ofpro-uPAtoactiveuPA;inhibits
tumorcellinvasion;reducesthe
tumorcellintravasationand
dissemination NA [111] ATN-658 Monoclonal antibody uPAreceptor (uPAR)
Decreasestumorcellinvasionand
migrationandtumorvolume
NA [112]
L2G7/Rilotumumab Monoclonal
antibody
HGF Inhibitsthetumorgrowth NA [113,291,292]
Trastuzumab Monoclonal
antibody
HER2 Blocksgrowthsignals PrimesantitumorCTLs,boostsNK
secretionofIFN-␥andmediates
potentantibody-dependent cellularcytotoxicity [293] Cetuximab Monoclonal antibody EGFreceptor (EGFR)
Blocksgrowthsignals Immuneactivating:increasesMHC
classIandMHCclassIIexpression;
augmentsDCprimingof tumor-specificCTLs. [294] MGA271 Monoclonal antibody B7-H3 NA Mediatespotent antibody-dependentcellular cytotoxicity [295]
AMD3100 Smallmolecule CXCR4/CXCL12
(SDF1) signaling
Sensitizescancercellsto
chemotherapy:inhibitstumor
growth
Reducestherecruitmentof
bone-marrowderivedcells
[114–116]
Celecoxib Smallmolecule
inhibitor
COX2 NA DecreasesbothMDSCnumbers
andfunction
[296]
5-Fluorouracil Smallmolecule Thymidylate
synthase
Promotesthecytotoxicityoftumor
cells
InducesMDSCapoptoticcelldeath [297]
All-trans-retinoicacid
(ATRA)
VitaminA
derivative
NA NA ReducesMDSCs [298]
Sclareol Phytochemical NA Decreasesthetumorsize DecreasesthenumberofTregs [120]
Temozolomide Smallmolecule DNA Promotesthecytotoxicityoftumor
cells
ReducesthenumberofTregs [121]
moleculeinhibitors,antibodiesorphytochemicalsthatspecifically
targetmoleculesandsignalingpathwaysinvolvedinthe
recruit-ment,activationandfunctionoftumorinfiltratingnon-malignant
cellshavebeentestedinbothanimalmodelsandhuman.Table1
summarizesthemost up-to-datedrugsavailablewithpotential
useincancertherapy,knowneffectsontumorcellsandactivity
againsttumor-stromalmicroenvironmentcommunications.
Sev-eral strategies to inhibit either CAF activation or CAF-derived
factors(e.g.HGF,uPA,CXCL12/SDF1)have beenappliedin
pre-clinicalstudiesof cancertherapies and theresultshave shown
efficacyintheinhibitionoftumorgrowthandinvasion[111–116].
Similarly,severalimmunotherapeuticapproacheshavebeen
devel-oped to target immune cells that infiltrate the tumor. Some
anti-angiogenicagentsimpairproliferationandsurvival ofmast
cellsandinduceDCmaturationandtheirantitumoractivity(e.g.
STI571andbevacizumab).Theimpairmentofthestemcellfactor
(SCF)/c-Kit signalingpathwaybydasatinibinduces apoptosisof
bothtumorcellsandmastcells[117].Severalimmuno-therapeutic
strategiesthattargetMDSCsandthatcanneutralizetheir
immuno-suppressiveeffectshavebeenreportedinbothanimalmodelsand
human.Thesestrategiesincludeapproachesthatareaimedatthe
inductionofdifferentiationoftheseimmaturecells[e.g.
all-trans-retinoicacid(ATRA)],orofadecreaseintheirnumberandtumor
infiltration(e.g.dipyridamoleandbindarit),oratinterferingwith
theirimmunosuppressivefunctions(celocoxib),orkillingMDSCs(5
fluorouracil-or5FU).Interestingly,dipyridamole[118]andbindarit
[119]decreasetheinfiltrationnotonlyofMDSCsbutalsoofTAMsin
breastandprostatecancerproofofconceptanimalmodelstudies.
Finallysclareolandtemozolomidereducetumorgrowthandthe
numberoftumorinfiltratingTregs[120,121].Therefore,although
furtherstudieswillbeneededtodeterminewhichcell(s)is/arethe
andselective,thereisnodoubtthatthetherapeutictargetingof
tumormicroenvironmentcells representsa valuablestrategyto
complementconventionalanticancerstrategies.
2.6. Cancerstemcells(CSC)
Cancerstemcells(CSC)presentanexcitingyetsomewhat
con-troversialfieldincancerresearch.Inthecancerstemcellmodelof
carcinogenesisthereisahierarchicalorganizationofcancercells.
TheCSCrepresentahighlytumorigenicsub-populationofcancer
cellsthatcanbeisolatedfromothercancercellsinthesametumor.
Thesehighlytumorigeniccellshavebeenproposedascrucialto
thegrowthanddevelopmentofprimarytumorsandarebelieved
toberesistanttoconventionaltherapyandthereforelikelytobe
responsiblefordiseaserecurrenceandtreatmentfailures.CSCwere
firstisolatedinacutemyelogenousleukemia(AML)andsubsequent
investigationsofsolidtumorshaverevealedthepresenceofhighly
tumorigeniccancercells(CSC)inessentiallyeverysolidcancertype
includingbreast,lung,colon,pancreas,headandneck[122–127].
ThecriticalcharacteristicsofaCSCrequirethesecancercells
to be: tumorigenic, able to reproduce the original tumor
het-erogeneityincludingboth thetumorigenicandnon-tumorigenic
subpopulationsofcancercells,self-renewing,andseparablefrom
theothercancercells. CSCtypicallyrepresentonlyasmall
sub-population(<10%)oftheentirecancercellpopulation.Avariety
ofcellssurfacemarkersandbiologicalmarkershavebeenusedto
isolatetheCSCpopulationfromothercancercells,includingCD24,
CD44,CD26,CD133,epithelialspecificantigen(ESA),andaldehyde
dehydrogenaseactivity(ALDH)[128].Sofar,nosinglemarkeror
combinationofmarkershasprovenusefulforisolatingCSCfrom
everytumorsite.TheexpressionofCSCmarkersinprimarytumors
hasbeenfoundinsomestudiestobeassociatedwithtumorstage,
prognosisandresponsetotherapy.Itisalogicalextensionofthe
CSCtheorytohypothesizethat,asCSCaretheonlycancercells
thatcanproduceaprimarytumor,CSCmustalsobeessentialfor
thedevelopmentofmetastaticdisease.
Inbreastcancer,cellscharacterizedbyhighCD44expression
andlowlevelsofCD24expression(CD44+CD24−/low)havebeen
showntoencompasstheCSCsubpopulationofcancercells[125].
AnothermarkerfortheidentificationofCSCinbreastcancerishigh
levelsALDHexpression,alsoamarkerformanynormalstemcell
populations[123].Bycomparinggeneexpressionprofilesbetween
ALDH+andALDH−breastcancercells,a413-genebreastCSC
sig-naturewasdetermined.Amongthedifferentiallyexpressedgenes,
thegeneencodingfortheIL-8receptorCXCR1/IL-8RA,previously
describedtobeinvolvedintheregulationofcancergrowthand
metastasis,wasfound.TheALDH+CSCderivedfrombreast
can-cercelllineswereshowntobesignificantlymoremetastaticthan
ALDH−cellsbyintracardiacinjectioninNonobesediabetic/severe
combinedimmunodeficiency(NOD-SCID)miceindicatinga
pos-sibleroleforCXCR1/IL8-RAinthemetastaticpotentialofbreast
CSC.AdditionallythesameCSC-enrichedpopulationsgaveriseto
extra-pulmonarymetastasesinthepancreas,liver,spleenand
kid-ney[129].Similarresultshavebeenshowninheadandneckcancer
wheretheCSCcollectedbasedonCD44expressionwereshown
tobeessentialformetastaticformationinatailveinmodeland
inanorthotopicheadandneckcancermodel[130,131].Thisdata
supportstheconceptthatCSCarecriticaltothedevelopmentof
metastasis.
There is accumulating evidence of cellular heterogeneity
within the CSC compartment with some CSC exhibiting an
enhancedpotentialforthedevelopmentofmetastasis.Evidence
formetastaticandnon-metastaticCSCwasfirstraisedincancerof
thepancreas.ThepancreaticCSCpopulationisdefinedbyCD133
expression.InvivostudiesoftheCD133+CSCrevealeda
subpopu-lationofmigratingCSCdefinedbysurfaceexpressionofCXCR4.
CXCR4 isa proteinthat haspreviouslybeenimplicated in
can-cercellmetastaticpotential[132].Usinganorthotopicmodelof
pancreaticcanceronlythemigratingCSCpopulation,expressing
CD133+CXCR4+,wereabletoestablishlivermetastasis.Inhibition
ofCXCR4significantlyreducedtheCSCmetastaticpotential[133].
Theseresultsaresignificantasthefirstobservationofthe
impor-tanceoftheCSCphenotypetotheirmetastaticpotentialaswellas
theroleofCXCR4inregulatingthisbehaviorinCSC[134].
AdditionalevidenceoftheexistenceofdifferentCSCsubtypes
responsible for specific behaviorsexists in colon cancer. It has
beenreportedthatcolonCSChavethreedistinctphenotypes;
self-renewing long-term (LT-TICs), tumortransient amplifying cells
(T-TAC),anddelayedcontributing(DC-TICs).Interestinglythe
self-renewing LT-TICs were the only subpopulation of CSCable to
contributetometastasisformation[135].Morerecently,CD26was
confirmedasamarkerformetastaticCSCincoloncancer[136].
NoneofthepatientswithoutCD26-expressingcancercellsintheir
primarytumorsdevelopedmetastases,whilethemajorityofthose
whosetumorscontainedCD26+cellsdid.Inanimalmodels,both
CD26+and CD26− cells werecapableof giving risetoprimary
tumors,however, onlyCD26+cells hadthecapacity toproduce
metastasis[137].These reportsconfirm theimportanceof CSC,
andmorespecificallythemigratorysubpopulationsofCSC,tothe
developmentofmetastasisincoloncancer.
EMThasbeenimplicatedasanimportantmechanismbywhich
cancercellsgainmetastaticpotential.Manycancertypeshavebeen
showntoexhibitEMT.EMTisbelievedtorepresentacrucialstep
towardcancercellsacquiringinvasivenessandthepotentialto
pro-duce metastasis[138].Thereis accumulatingevidencethatCSC
undergoEMTandthisabilityhasimportantregulatoryfunctions
relatedtoCSCbehavior.StudieshaverevealedthatEMTcaninduce
apparentlydifferentiatedcancercellstogainaCSC-likephenotype
increasingtheirtumorgenicityandtheirabilitytomigratetoand
invadetissuesdistantfromtheprimarytumor.Additionally,
can-cercellsundergoingEMThavebeenshowntobeenrichedforCSC
[139].CSCexpressmanyEMTregulatingfactorsincludingTWIST,
SnailandSlugsuggestingthesegenesplayanimportantregulatory
roleinCSCbehavior[140].
ThepreferentiallocationofEMTcellsalongtheinvasivefrontof
tumorsandtheassociationofEMTwithhighWntsignalinglevels
havebeendemonstrated.Thisincludesthenuclearaccumulationof
-catenin,evidenceofWntactivation,observedincellsundergoing
EMTattheinvasivefront[134].Signalsfromthetumor
microenvi-ronmenthavebeendemonstratedtoelicitWntsignalingincolon
cancercells,inducingEMTandallowingfortheirdetachmentand
spreadfromtheprimarytumorsite.ObservationsregardingEMT
andWntexpressioninlocationswithinprimarytumorswhereCSC
typicallyresideledtotheconceptofmigratingCSCasproposedby
Brabletzetal.in2005[134].
EMT has been shown to be a reversible process in that
mesenchymal-to-epithelialtransition(MET)cantransform
mes-enchymalcellsbacktotheirepithelialstate.Similarlymetastatic
CSCmayrespond tolocalcuesto revertfromtheir
mesenchy-malstatebacktotheiroriginalepithelialstate.OncetheCSChave
returnedtotheiroriginalepithelialconditiontheycanform
grow-ing metastatic deposits.It is highly likely that CSClead to the
developmentofmetastasesbyacquiringmesenchymalproperties
thatenhancetheirabilitytomigrateandinvadeandthentransition
backtotheirepithelialphenotypetoformametastasis.The
fac-torsthatregulateEMTincancercellsarebeingstudiedinmultiple
cancertypesbutarenotyetfullyunderstood.Thetumor
microen-vironmenthasbeenproposedasanimportantregulatorofEMTin
CSCincludinglocalfactorssuchashypoxia,cytokinesincludingIL-6
andcancerassociatedcellsincludingtumorassociatedfibroblasts,
mesenchymalstemcells,andlymphocytesabletosecretediffusible
Althoughattractiveandinagreementwithmanygenetic
anal-ysesandwiththeevaluationofCSCinprimarytumorsandanimal
models,todatethecausativeroleofCSCinmetastasisformationhas
notbeenformallyproven.Metastasesrepresentoneofthekey
fac-torsintreatmentfailuresinpatientswithcancer.Recognitionthat
CSCplayacriticalroleinthedevelopmentofmetastasisisan
impor-tantsteptowardincreasingourunderstandingofhowmetastasis
develop.ThefactorsthatmodulatetheCSCmetastaticphenotype
havenotyetbeenfullyelucidatedandrequiremoreintensive
inves-tigation.Thisworkwillleadtomoreeffectiveanticancertherapy
andimprovedoutcomeforpatients.
3. Cancercelldisseminationandthemetastaticcascade
3.1. Organspecificmetastasis
The predisposition of certain body sites or organs to house
metastaticcellsandestablishsecondarytumorshasbeen
appar-entforcenturiesandhasbeenfamouslyexplainedinPaget’s‘seed
andsoil’theoryofmetastasis[143].Thistheorydictatesthata
spe-cifictumorcell(theseed)willonlyestablishinaparticularsuitable
organorlocation(thesoil).Indeed,manycancershaveanincreased
propensitytoestablishsecondarymetastasisatcertainsites.For
example,breastandprostatecancersappeartobepredisposedto
metastasizingtotheboneenvironmentwhereasgastrointestinal
cancersfrequentlymetastasizetothelungandliver[2,144].Indeed
afeworgansrepresentthemainsecondarydestinationformost
cancers,namely,theliver,lung,boneandbrain,whileorganssuch
asthespleenandheartrarelyhostmetastasis.Thefactors
underly-ingthisorganspecificpredispositionformetastaticdissemination
bymanycancertypesarelargelyunknownandarewidelybeing
studiedwithinthescientificcommunity.Establishmentofsuch
fac-torsmayagainyieldintuitivestrategiestolimitmetastaticdisease.
3.1.1. Targetingbonemetastasis
Bonemetastasesareacommoncomplicationofseveraltypes
ofcancers,includingbreast,prostateandlungcancer.The
occur-renceofthesebonemetastasesdeeplyimpacttheprognosisand
thequalityof lifeofpatientsandareresponsibleforsignificant
morbidity.Bonemetastases are oftenosteolytic(due to
signifi-cantbonedestruction),sometimessclerotic(duetoanexcessof
boneformation)ormixed.Numerousmechanismsandfactorsare
involvedintheinvasion,colonizationandestablishmentoftumor
cells in the bone microenvironment. The complex sequence of
eventsthatleadtotheonsetofbonemetastasesnotonlyinvolves
processescommontoanyothermetastasisbutalsoprocessesthat
aremorespecifictothebone tissue(tumor cellinvasioninthe
boneenvironment,implantationoftumorcellsinbonemarrow,
osteomimicry,deregulationofosteoblast\osteoclastactivity)[145].
Thecurrentsectionillustratesprogressmadetowardthe
under-standing,treatmentsandmanagementofthisparticularformof
metastaticdisease.
Thespreadofmetastaticcellsfromthebloodstreamtothebone
marrow involves factors that are produced by osteoblasts and
stromalcellsinthebonemarrow.Amongthesefactors,akeyrole
is played bychemokines (CXCL12, CXCL13, chemokine (C-X3-C
motif)ligand1(CX3CL1),CCL22)thatstimulatecancercell
migra-tiontothebonemarrow,sincetheyexpressmembranereceptors
correspondingtothesechemokines[145].For example,CXCL12
anditsreceptor CXCR4play animportantrole inbone tropism
of cancer cells and treatment with inhibitors of CXCR4 (AMD
3100,T140)orCXCL12(OTP-9908)hasdemonstratedefficacyin
decreasingtheformationofbonemetastasesinexperimental
mod-elsofbreastcancerorprostatecancer[145,146].Inaddition,some
proteins (bone sialoprotein, osteonectin, osteopontin, collagen)
canstimulatebonematrixinvasionbybindingthesurfaceoftumor
cellsthroughspecificmembranereceptorssuchasintegrins␣V3
and␣21[145]andithasbeendemonstratedthatbreastcancer
cells expressing␣V3 integrin and prostate cancer expressing
the␣V2,havehigherincidenceofbonemetastases[147].There
is preclinical evidence that ␣V3 integrin inhibition is ableto
prevent bone colonization by ␣V3 expressing human breast
cancercells[148].Severalongoingclinicaltrialsareevaluatingthe
anticancereffectofintegrinantagonistsinadvancedrefractoryand
metastaticcancers,butonlyonephaseIclinicaltrialisevaluating
integrin antagonists (GLPG0187) in cancer patients with bone
metastasis(NCT01313598)[149,150].
It has been demonstrated that the tyrosine kinase c-MET
promotes stemness phenotype, tumor growth, invasion, and
metastasisin severalmalignancies. Inparticular,c-METis
over-expressedin prostatecancercells andisassociated withtumor
progression and metastatic invasion to bone [151].
Cabozan-tinib (XL184) is an oral small molecule inhibitor of multiple
kinasesignalingpathwaysincludingc-METandvascular
endothe-lial growth factor receptor 2 (VEGFR2). A recent phase II
“randomizeddiscontinuation”trialinpatientswithmetastatic
cas-trationresistantprostatecancer(mCRPC)included171menwith
castration-resistantprostatecancer(CRPCfromalargerphaseII
randomized discontinuation trial that included multiple tumor
typestreatedwithcabozantinib).Therandomizationwasstopped
after122patientsbecauseofimprovementsinbonescansanda
decreaseinpain.Atthetimethestudywashalted,agroupof31
patientshadbeenrandomlyassigned.Inthisgroup,therewasa
markedimprovementintheprimaryendpointofprogression-free
survival(PFS)inthepatientsreceivingcabozantinibcomparedwith
placebo(p<0.001)[152].PhaseIIItrialsarecurrentlyonongoing.
Cathepsins are a class of globular lysosomal proteases that
belongtothepapain-likecysteineprotease familyexpressedin
awidevarietyoftissuesincludingthebone,wheretheyappears
tobeakeyenzymeinbone matrixdegradation[153].Different
cancersexpresscathepsinK,includingprostateandbreastcancers
[154].Untilrecently,aroleforcathepsinKinbonemetastasishad
beenmainlyattributedtoitsabilitytodegradenativecollagenI,a
processnecessaryfortheexpansionofthetumorwithinthebone.
Forexample,thehumanbreast,boneseeking,cancercellline
MDA-MB-231/B02secretedcathepsinKandtreatmentofthesecellswith
acathepsinKantagonistcaninhibittumorinvasion[155].Duetoits
selectivity,odanacatibistheonlycathepsinKinhibitorinclinical
development.AphaseIIcontrolledstudyonwomenwithbreast
cancerand established bone metastasis,randomized toreceive
dailyadministrationofodanacatiborasingledoseofzoledronic
acid,showedreducedboneremodelingmarkers(urinaryNTx)after
4weekstreatment,demonstratingthatodanacatibisaseffectiveas
zoledronatetoreduceboneresorptionmarkers[156].
ReceptorActivator ofNuclearFactor-B Ligand(RANKL),the
Receptor Activator of Nuclear Factor-B (RANK) and thedecoy
receptor osteoprotegerin (OPG) are members of the TNF and
TNF-receptorsuperfamily,whichareabletoinduceproliferation,
differentiation,activationandapoptosisofosteoclasticcells.Bone
remodelingis mediated bythe interactionof RANKL expressed
ontheosteoblasts,RANKexpressedontheosteoclastsurfaceand
OPGwhichpreventsosteoclast activation[157].Murinemodels
haveshownthatRANKLisabletoactaschemoattractantandasa
pro-migratoryfactorinRANK-expressingbreastandprostate
can-cercelllines and thatRANKL inhibition is abletoreduce bone
lesionsandtumorburdeninamelanomamodelofbone
metasta-sis[158].IthasalsobeendemonstratedthatRANKprimarytumor
expressionlevelscorrelatewiththeoccurrenceofbonemetastases
andthatRANK-expressingcancercouldbefoundinupto80%of
bonemetastasesoriginatedfromsolidtumor[159,160],suggesting