• Non ci sono risultati.

Tissue invasion and metastasis: Molecular, biological and clinical perspectives

N/A
N/A
Protected

Academic year: 2021

Condividi "Tissue invasion and metastasis: Molecular, biological and clinical perspectives"

Copied!
32
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Seminars

in

Cancer

Biology

j ou rn a l h om ep a ge :w w w . e l s e v i e r . c o m / l o c a t e / s e m c a n c e r

Review

Tissue

invasion

and

metastasis:

Molecular,

biological

and

clinical

perspectives

W.G.

Jiang

a,∗

,

A.J.

Sanders

a

,

M.

Katoh

b

,

H.

Ungefroren

c

,

F.

Gieseler

c

,

M.

Prince

d

,

S.K.

Thompson

e

,

M.

Zollo

f,g

,

D.

Spano

g

,

P.

Dhawan

h

,

D.

Sliva

i

,

P.R.

Subbarayan

j

,

M.

Sarkar

j

,

K.

Honoki

k

,

H.

Fujii

k

,

A.G.

Georgakilas

l

,

A.

Amedei

m

,

E.

Niccolai

m

,

A.

Amin

n

,

S.S.

Ashraf

n

,

L.

Ye

a

,

W.G.

Helferich

o

,

X.

Yang

o

,

C.S.

Boosani

p

,

G.

Guha

q

,

M.R.

Ciriolo

r

,

K.

Aquilano

r

,

S.

Chen

s

,

A.S.

Azmi

t

,

W.N.

Keith

u

,

A.

Bilsland

u

,

D.

Bhakta

q

,

D.

Halicka

v

,

S.

Nowsheen

w

,

F.

Pantano

x

,

D.

Santini

x

aCardiffUniversity,Cardiff,UnitedKingdom

bNationalCancerCenter,Tokyo,Japan

cUniversityHospitalSchleswig-Holstein,Lübeck,Germany

dUniversityofMichigan,AnnArbor,MI,USA

eRoyalAdelaideHospital,Adelaide,Australia

fDepartmentofMolecularMedicineandMedicalBiotechnology(DMMBM),UniversityofNaplesFedericoII,Naples,Italy

gCEINGEBiotecnologieAvanzate,Naples,Italy

hUniversityofNebraskaMedicalCenter,Omaha,USA

iPurdueResearchPark,Indianapolis,IN,USA

jUniversityofMiami,Miami,FL,USA

kNaraMedicalUniversity,Kashihara,Japan

lPhysicsDepartment,SchoolofAppliedMathematicalandPhysicalSciences,NationalTechnicalUniversityofAthens(NTUA),Athens,Greece

mUniversityofFlorence,Florence,Italy

nUnitedArabEmiratesUniversity,AlAin,UnitedArabEmiratesandFacultyofScience,CairoUniversity,Egypt

oUniversityofIllinoisatUrbana-Champaign,Urbana,IL,USA

pCreightonUniversity,Omaha,NE,USA

qSASTRAUniversity,Thanjavur,India

rUniversityofRomeTorVergata,Rome,Italy

sOvarianandProstateCancerResearchTrustLaboratory,Surrey,UnitedKingdom

tWayneStateUniversity,Detroit,MI,USA

uUniversityofGlasgow,Glasgow,UnitedKingdom

vNewYorkMedicalCollege,Valhalla,NY,USA

wMayoClinicCollegeofMedicine,Rochester,MN,USA

xUniversityCampusBio-Medico,Rome,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Availableonline10April2015

Keywords:

Cancermetastasis

Invasion

Cancertherapy

a

b

s

t

r

a

c

t

Cancerisakeyhealthissueacrosstheworld,causingsubstantialpatientmorbidityandmortality.Patient

prognosisistightlylinkedwithmetastaticdisseminationofthediseasetodistantsites,withmetastatic

diseasesaccountingforavastpercentageofcancerpatientmortality.Whileadvancesinthisareahave

beenmade,theprocessofcancermetastasisandthefactorsgoverningcancerspreadandestablishmentat

secondarylocationsisstillpoorlyunderstood.Thecurrentarticlesummarizesrecentprogressinthisarea

ofresearch,bothintheunderstandingoftheunderlyingbiologicalprocessesandinthetherapeutic

strate-giesforthemanagementofmetastasis.ThisreviewliststhedisruptionofE-cadherinandtightjunctions,

keysignalingpathways,includingurokinasetypeplasminogenactivator(uPA),phosphatidylinositol

3-kinase/v-aktmurinethymomaviraloncogene(PI3K/AKT),focaladhesionkinase(FAK),␤-catenin/zinc

fingerE-boxbindinghomeobox1(ZEB-1)andtransforminggrowthfactorbeta(TGF-␤),togetherwith

inactivationofactivatorprotein-1(AP-1)andsuppressionofmatrixmetalloproteinase-9(MMP-9)

activ-ityaskeytargetsandtheuseofphytochemicals,ornaturalproducts,suchasthosefromAgaricusblazei,

Albatrellusconfluens,Cordycepsmilitaris,Ganodermalucidum,PoriacocosandSilybummarianum,together

∗ Correspondingauthorat:Cardiff-PekingCancerInstituteandCardiff-CapitalMedicalUniversityJointCentreforBiomedicalResearch,CardiffUniversitySchoolofMedicine,

CardiffUniversity,HenryWellcomeBuilding,HeathPark,CardiffCF144XN,UnitedKingdom.Tel.:+442920687065.

E-mailaddress:[email protected](W.G.Jiang).

http://dx.doi.org/10.1016/j.semcancer.2015.03.008

(2)

withdietderivedfattyacidsgammalinolenicacid(GLA)andeicosapentanoicacid(EPA)andinhibitory

compoundsasusefulapproachestotargettissueinvasionandmetastasisaswellasotherhallmarkareas

ofcancer.Together,thesestrategiescouldrepresentnew,inexpensive,lowtoxicitystrategiestoaidin

themanagementofcancermetastasisaswellashavingholisticeffectsagainstothercancerhallmarks.

©2015ElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://

creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Thechainofeventsleadingtothemalignanttransformationof

cells,whetherthroughgeneticorepigeneticalterations, is

com-plex.Malignantcellspossesskeyhallmarks,namely,uncontrolled

growthpotentialsandtheabilitytoinvadesurroundingtissuesand

metastasize[1].Cancercellslikelypossesstheseinnateabilitiesto

someextent,thoughthedegreeandtimingofinvasionand

metas-tasismayvarydue tothegeneticand epigeneticheterogeneity

withinthetumorandfurthersignalsfromextrinsicfactors,such

asthosewithinthatparticularmicroenvironment[2].

Despitesubstantialeffortdedicatedtotheearlydetectionand

preventionofcancer,mostpatientsarelikelytohavemicro-(not

visibleusingconventionalmethods)ormacro-metastasesbythe

timetheycometomedicalattention[3,4].Cancerpatients,both

earlyandlatestage,dependentonlifespan,arelikelytodevelop

metastasis.Thismetastaticspreadoftheprimarytumoraccounts

for over 90% of patientmortality associated withsolid cancers

[1,4,5].Despitethis,researchintothefieldofmetastasis,in

compar-isontootherkeyeventssuchasproliferation,etc.,islagging.Thisis

partlyduetothecomplexityofthemetastaticprocessbutalsodue

toalackofsufficientfundingandeffortsintothisareaofresearch.

However,significantprogressinthisvitalareaofcancerresearch

hasbeenwitnessedoverthepastdecade,thoughmuchremainsto

beelucidatedbeforewefullyunderstandthisperniciouscondition

andanumberofsignificantgapsremaintobefilledbeforewecan

trulyunderstandthiscomplexprocess.

Diagnosisandtreatmentofmetastaticdiseasearevitalareasin

theconstantbattlemanypatientsfaceagainstcancer,yeteffective

treatmentsarelimitedandsubstantialmorbidityandmortalityare

stillassociatedwithmetastaticdisease[5,6].This,togetherwith

thecomplexitiessurroundingthemetastaticprocess(summarized

inFig.1)andthecomplexnatureandheterogeneityofmetastatic

tumors,fullysupportsandjustifiesfurtherresearchdedicatedto

thediscoveryofalesstoxicmeanstotreatthiscondition.Thisisthe

majormissionofgettingtoknowcancer(GTKC).Thisreviewaims

todiscusskeyknowledgegaps,explorepotentialtargetsintackling

metastasisandalsopotentialmethods,includingphytochemicals,

smallmoleculeinhibitorsandnaturalcompoundsindevisingnew

strategiesfortreatingmetastasis.

2. Cellularpropertiesandmetastasis

2.1. Cell–celladhesion

Incancersderivedfromtheepithelium,inter-cellularstructures

and cell–cell adhesion are key factors in maintaininga

coher-entprimarytumormass[7,8].Abnormalitiesinthesestructures,

throughmutationor dysregulation,canleadtothedissociation

oftheprimarytumorandanenhancedpotentialfor

dissemina-tionandmetastaticspreadofcancercellstosecondarylocations

[7–9]. Keystructures involvedin maintainingthis adhesiveness

betweencellsincludeadherensjunctions(includingdesmosomes),

tightjunctions(TJ)and gapjunctions.While gapjunctions

con-feraweakadhesionstructureandTJs,amodestone,theadherens

junctionsprovidethemostpowerfulsourceofadhesionin

epithe-lialcells.Perhapsoneofthestrongestandmoststudiedregulators

ofadhesionisE-cadherin(cadherin-1orCDH1),amemberofthe

cadherinfamilyofproteins.E-cadherin,togetherwithassociated

catenins,playsakeyroleinmaintainingcell–celladhesionandis

alsoinvolvedintheregulationofthecellcycleregulatorsp27kip1

andp57kip2,whichareinvolvedincell–cellcontactinhibitionin

normalepithelium,butwhicharelostordisturbedincancercells,

mainly due to the loss of E-cadherin in cancer cells [8,10,11].

Hence,reducedcell–celladhesionnotonlyenhancesthe

poten-tialformetastaticdisseminationofcancercellsbutalso,through

lossofcontactinhibition,promotesuncontrolledcellgrowth[7].

E-cadherin has alsobeen established as a key mediator of the

epithelial–mesenchymaltransition(EMT)process(discussedin

Section2.4).Thus,enhancedexpressionofkeycadherinmolecules

couldofferpotentialasastrategytocontrolmetastatic

dissemina-tion,thoughrealizingthispotentialhasproveddifficult;thusfar

therehavebeenfewreportsidentifyingviabletreatmentoptions

inthisregard.However,thereareanumberofnoteworthyoptions,

namelythepolyunsaturatedfattyacidsgammalinolenicacid(GLA)

anddihomo-␥-linolenicacid(DGLA),bothobtainablethroughthe

diet.ThesehavebeenreportedtobekeyregulatorsofE-cadherin

and desmosomal cadherins in cancer cells and have also been

reportedtohavebeneficialeffectsforpatientswithseveralcancer

typesincludingpancreaticcancerandbreastcancer[12–15].The

desirableeffectsoftheseessentialfattyacids(EFAs)wereblocked

bynon-EFA,aslongchainedoleicderivativesonhumancelllines

[16].

2.1.1. Claudinsincancer

TheTJcomplexistheapicalmostjunctionalcomplexinmost

typesofepithelialandendothelialcells.TJsarethegasket-likeseals

thatencircleeachcolumnarepithelialcellarounditsapicalpole.

Theyservetworoles:(1)theyhelptomaintaincellpolarityby

phys-icallyseparatingtheapicalandthebasolateralmembranedomains

and(2)theypreventfreeinterchangeofsubstancesbydiffusion

alongtheparacellularpathwaybetweentheluminaland

antilu-minaltissue fluidcompartments.TJs andtheirpermeabilityare

importantintheformationofthebloodbrainbarrier,bloodretinal

barrierandbloodtestisbarrier.TheTJproteinscanbesub-divided

intotheintegralmembraneproteinssuchasoccludin,tricellulin,

marvelD3,junctionaladhesionmolecules(JAMs)andtheclaudin

family(currently27members[17])andthecytoplasmicproteins.

ThecytoplasmicadaptorproteinsarethezonulaoccludensorZO

proteins,andaredesignatedZO-1,-2,and-3.Theseproteinslink

themembrane proteinstotheactin cytoskeleton.Traditionally,

researcheffortsfocusedonbarrierandfencefunctions,however,

thereisanewmovementinthefield,whichistounderstandhow

TJ proteinsparticipate in cellproliferation, transformation, and

metastasissuppression.Recentstudieshavedemonstratedtherole

ofTJsduringepithelialtissueremodeling,woundrepair,

inflamma-tion,andtransformationintotumors.Epithelialmultilayeringwas

associatedwithincreasedTJpermeability[18],activationofprotein

kinaseC(PKC)-␣[19]andphosphorylationofTJproteins[20].

StudiesfocusingonthemoleculararchitectureoftheTJhave

now confirmed that theclaudin family of proteinsis the

inte-gralcomponentoftheTJ.Lossofcell–celladhesioniscentralto

thecellulartransformationand acquisitionofmetastatic

poten-tial,however,theroletheclaudinfamilyofproteinsmayplayin

aseriesofpathophysiologicalevents,includinghumancarcinoma

(3)

Fig.1. Themetastaticcascadeandpotentialfortherapeuticinterruption.Changesincellularpropertiesarenecessarytoallowthedevelopmentofaninvasivephenotype

andprogressionthroughthemetastaticcascade.Keyeventsofthecascadeareoutlined.Targetingsuchproperties/eventsortheunderlyingsignalingpathwaysusinglow

(4)

claudinmouseknockoutmodelshavedemonstratedtheir

impor-tantroleinthemaintenanceoftissueintegrityinvariousorgans.

Themechanismsofclaudinregulationandtheirexactrolesin

nor-malphysiologyanddiseasearebeingelucidated,butmuchwork

remainstobedone.

Thereare27typesofclaudinsinmammals[17,21]andtheyare

dividedinclassicandnon-classicclaudinsbasedontheirsequence

similarity[21].Classicclaudinsincludeclaudins1–10,14,15,17

and 19and non classicclaudins11–13,16, 18 and 20–24[21].

Claudinsarefoundinepithelial,mesothelial,glialand

endothe-lialcells[22–24]withamolecularweightofaround20kDaand

incellmembranestheyarecomposedoftwoextracellularloops,

EL1andEL2,fourtransmembranedomains,onesmall20amino

acidlongintracellularpartbetweenthetwoextracellularloopsand

theintracellularaminoterminalandcarboxyterminalends[21,25].

The carboxyterminalend hasregions which recognize thePDZ

(postsynapticdensityprotein,Drosophiladisklargetumor

sup-pressor,andzonulaoccludens-1protein)domainsofZO-1,ZO-2

andZO-3[25].ThelargerEL1loopinfluencesparacellularcharge

selectivitywhereasthesmallerEL2loopbindstothe

correspond-ingclaudinoftheneighboringcell[25].Claudinexpressionand

functionsareregulatedatmultiplelevelsandbydiverse

mech-anisms [26,27]. Animportant question related to regulation of

claudinexpressionandcanceristherolethatclaudinsmayplay

intheEMTprocess[28,29].Theparacellularbarriermodulatedby

claudinmemberscanbeaffectedbyawiderangeof

physiologi-calfactorsincludingcellsignalingpathways,hormones,cytokines,

anddisruptionofthecell–cellcontacts.Post-translational

modifi-cations,includingphosphorylation,lipidmodificationandremoval

ofclaudinsbyendocytosis,appeartobepotentialmechanismsfor

theregulationofclaudins.Phosphorylationhasbeenlinkedtoboth

increasesanddecreasesinTJassemblyandfunction.Mostclaudin

proteinshaveputativeserineand/orthreonine phosphorylation

sitesintheircytoplasmiccarboxyterminaldomains.Forinstance,

proteinkinaseA(PKA)–mediatedphosphorylationhasbeenshown

todecreaseassemblyofclaudin-3intoTJs[30],yetisnecessary

forclaudin-16assemblyandfunction[31].Claudin-3and-4can

bephosphorylatedin ovariancancercellsbyPKA, akinase

fre-quentlyactivatedinovariancancer[30].Claudinphosphorylation

associatedwithTJdisassemblyisalsoenhancedbyEPHreceptor

A1(EphA1),whichisrecruitedtobindtoclaudin-4byforminga

complexwithephrin-B1[32].StudieshaveimplicatedPKCinthe

regulationofTJs throughphorbolesterstimulation[30,33].

Fur-thermore,modulationofmitogen-activatedproteinkinase(MAPK)

signaling,specificallyextracellularsignal-regulatedkinase(ERK)

1/2andp38,aswellasphosphatidylinositol3-kinase(PI3K)have

aprofound effectonTJsealingand claudinexpression[30].TJs

arealsoremodeledatamoremacroscopiclevelthrough strand

breaksandreformation[34].Clathrin-mediatedendocytosisplays

animportantroleinthisprocess[35,36].Claudinsareinternalized

byauniquemechanism,wherethetightlyopposedmembranes

oftheTJareendocytosedtogetherintooneoftheadjoiningcells

[24].HostfactorsandcytokinescanalsoinfluenceTJturnoverand

claudinexpression[37],forinstance,interferon(IFN)-␥increases

claudinendocytosisandTJpermeability[38].Otherinflammatory

cytokines,suchastumor-necrosisfactor(TNF)-␣andinterleukin

(IL)-13,downregulateclaudinsandinduceamarkedincreasein

paracellularpermeabilitybyepithelialcellsinculture[39,40].

Growth factor receptors that are important in the

regula-tionofcellproliferationandsurvivalincludingepidermalgrowth

factor (EGF), hepatocyte growth factor (HGF) and insulin like

growthfactor(IGF)receptorsregulateclaudinexpressionand

cel-lulardistributionthoughonceagainincell/tissuespecificmanner

[28,29,41].ClaudintranscriptioncanberegulatedbytheSnail/Slug

family[42].ItiswellestablishedthatoverexpressionofSnailin

epithelialcellsinducesEMTandtheacquisitionofmigratoryand

invitroinvasivebehavior.SnailandSlugbindtotheE-boxmotifs

presentinthehumanclaudin-1promoterwhichplayacritical

neg-ativeregulatoryroleinbreastcancercelllinesthatexpressedlow

levelsofclaudin-1[42].Caudaltypehomeobox2(Cdx-2),

hepa-tocyteNuclearFactor1-alpha(HNF-␣),andGATAbindingprotein

4(GATA-4)[43,44]canbindtothepromoterregionsofvarious

claudingenesandaffecttheirexpression.Furthermore,ithasbeen

shownthatcolonicclaudin-1transcriptsareregulatedbySmad-4,

aknowntumorsuppressoraswellashistonedeacetylase(HDAC)

inhibitorsandthussupportacomplexregulationatmultiple

lev-els[45,46].Collectively,thedataprovidesanemergingpictureof

theimportanceofclaudinhomeostasisinnormalandpathological

tissuefunction,butthereremainsmuchtobelearned,especially

regardingwhetheritmaybepossibletoidentifyadistinctclaudin

signatureintheinitiationandprogressionofvarioustumortypes.

Alterationsinclaudinexpressionprofilesduring

tumorigene-sisbegsthequestionof howclaudinsareregulatedin different

tissuesinbothnormalandpathologicalsituations.Tanetal.[47]

haveshownthattheexpressionanddistributionofclaudin-1is

associatedwithcelldissociationstatusinpancreaticcancercells

throughMAPK2activation.Bycontrast,claudin-7hasbeenfound

tobedecreasedininvasiveductalcarcinomas[48],headandneck

cancer[49]andmetastaticbreastcancer[37].Ontheotherhand,

claudin-3and-4arefrequentlyelevatedinvariouscancers

includ-ingpancreaticductaladenocarcinoma,prostate,uterine,ovarian

cancer[38]andbreastcancer[50]whilehepatocellularandrenal

carcinomasexpressedlowerlevelsofclaudins-4and-5[22].While

lowerexpressionofclaudin-2wasalsoseeninbreastand

pros-taticcarcinomas,expressionsofclaudin-1andclaudin-7thatwere

undetectableinnormalcervicalsquamous epitheliumincreased

inthecervicalneoplasia[22,51].Intriguingly,recentstudieshave

shownthatexpressionofcertainclaudins,especiallyclaudin-1and

claudin-4, increasesduring metastasisandgeneticinhibition of

theirexpressionhasaprofoundeffectonthemetastaticabilities

ofcancercellsthoughinatissuespecificfashion[52–54].Thereis

thepossibilitythatmutationsinclaudinsmaybecausaltotumor

formation.However,todatethereisnosystematicsequencedata

onclaudinsinanytumortype.Ontheotherhand,gene

silenc-ing due topromoter hypermethylationis a commonfeatureof

humancancers[55]andithasbeensuggestedtounderliethe

down-regulationofclaudinsincertaintumors.Forexample,aCpGisland

wasidentifiedwithinthecodingsequenceoftheclaudin-4gene,

andtreatmentwithamethyl-transferaseinhibitorrestored

expres-sionoftheproteininprimaryculturespreparedfromhigh-grade

humanbladdertumors [56].Furthermore,claudin-4expression

alsocorrelatedwithitsgenemethylationprofileinhealthyand

tumoralbladdersfrom20patientsandclaudin-6expressionis

par-tiallysilencedbypromoterCpGislandhypermethylationinMCF-7

breastcarcinomacells,whileasynergisticeffectofademethylator

andhistonedeacetylaseinhibitorsupregulatestheexpressionof

endogenousclaudin-6,andsensitizesthecellsforapoptosis[57].

Intuitively,themechanismbywhichdecreasedclaudinexpression

might lead to the compromised TJ function and thus,

neopla-siaiseasytocomprehend,buthowincreasedclaudinexpression

contributestoneoplasticprogressionislessclear.Oneplausible

mechanismisthatupregulationoraberranttissueexpressionof

certainclaudinsmaycontributetoneoplasiabydirectlyalteringTJ

structureandfunction.Furthermore,itispostulatedthatclaudins

mayalsoaffectcellsignalingpathways.Claudinproteinsarelikely

involvedinsignalingpathwaysviabindingdomainstoZO-1attheir

carboxylterminus[58].

Cell–celladhesionproteinsareknowntoplayanimportantrole

incellulartransformationwhendisplacedfromtheirnormal

mem-brane localizationand could serve asoncogenic molecules, the

beststudiedmoleculebeing␤-catenin[59].Asimilarfunctional

(5)

studiesareneededtosupportsuchanotion.Anincreasein

claudin-1expressionhasbeenreportedinhumanprimarycoloncarcinoma,

inmetastasissamplesandinthecelllinesderivedfromprimary

andmetastatictumorscomparedtotheirnormalcounterparts[54].

Crucially,therewasnuclearlocalizationofclaudin-1ina

signifi-cantsubsetofcoloncancersamples,particularlyamongthesubset

oflivermetastaticlesions.Nuclearlocalizationofseveralcell

junc-tionproteins(␤-catenin,ZO-1,ZO-2)isknowntobecorrelatedwith

oncogenictransformationandcellproliferation[60].Mutantsofthe

TJproteinZO-1thatnolongerlocalizeattheplasmamembrane

inducedramaticEMTinMadin-DarbycaninekidneyIcells[61].

Similarly,geneticmanipulationsofclaudin-1expressionincolon

cancercelllinesinducedchangesincellularphenotype,with

struc-turalandfunctionalchangesinmarkersofEMT,andhadsignificant

effectsuponthegrowthofxenograftedtumorsandmetastasisin

athymicmice.Notably,regulationofE-cadherinexpressionand

␤-catenin/Tcfsignalingemergedasoneofthepotentialmechanism

underlyingclaudin-1dependentchangesand therebysuggested

complexinterplaybetweendifferentcell–celladhesionmolecules

[54].Expressionofspecificclaudin familymemberscanbe

reg-ulatedbythewingless-typeMMTVintegrationsitefamily(Wnt)

signalingpathway.Claudin-1andclaudin-2areshowntobetarget

genesregulatedby␤-cateninsignaling[62,63].

Metastasisisacomplexphenomenonthatrequiresanumber

of specific steps such as decreased adhesion, increased

motil-ity and invasion, proteolysis, and resistance to apoptosis [64].

Claudin-5promotesprocessingofpro-matrixmetalloproteinase-2

(pro-MMP-2)bymembranetype1-MMP(MT1-MMP).Expression

of claudin-5 not only replaced tissue inhibitors of

metallopro-teinases (TIMP)-2 in pro-MMP-2 activation by MT1-MMP but

also promoted activation of pro-MMP-2 mediated by all

MT-MMPsandMT1-MMPmutantslackingthetransmembranedomain

(DeltaMT1-MMP)[65].It appearsthat interactionof MMPwith

claudins might play an important role in tumorigenesis,

inva-sionandmetastasismediatedbyclaudinexpression.Ithasbeen

observedthat overexpression ofclaudin-1in colon cancercells

increasedactivityofbothMMP-2andMMP-9whileinhibitionof

claudin-1resultedinasignificantdecreaseinMMP-9activity[54].

Similarly,overexpressionofclaudin-3or4inovarianepithelialcells

increasedMMP-2activity[52].AnincreaseinmRNAtranscription

andproteinexpressionofMT1-MMPwasalsoobservedin

claudin-10overexpressingcells,inwhichclaudin-1,-2,and-4werealso

upregulated,suggestingthattheexpressionofclaudin-10in

can-cercellsmaydysregulatetheexpressionofotherclaudinfamily

members[66].

Mostmalignanttumorsarederivedfrom,andmostpathogens

invadethebodyviatheepithelium.Theepitheliumisthereforea

potenttargetforimprovingdrugabsorption,treatingcancer,and

curinginfectiousdiseases.ModulationofTJsealsisapopular

strat-egyforimprovingdrugabsorption.TJscompartmentalizetheapical

andbasalmembranedomainsofepithelialcells,leadingtothe

for-mationofcellularpolarity.Lossofcell–cellinteractionandcellular

polarity,whichoftenoccursin cancercells during

carcinogene-sis,leadstoexposureof TJcomponentsonthecellularsurface.

Theclaudinfamily ofproteinsis anattractivetargetfor

antitu-mortherapy consideringtheepithelium-specificexpressionand

thehighspecificityofclaudinexpressionpatternsincancer.Itis

worthmentioningthatclaudinfamilymembersareexpressedin

aprecisetissue-specific mannerand thuscouldserve astumor

specificbiomarkers.Inthisregard,asetoffourmarkers,

includ-ingclaudin-3, wasfoundto besufficient to accuratelyidentify

all158ovariancancerstested,includingeightearly-stageserous

cancers[67].Furthermore,claudin expressionmaybeusedasa

prognosticindicatorbecausehighclaudin-1expressionhasbeen

showntobeassociatedwithtumorprogressionandmetastasisin

coloncancer[68].Atthesametime,in breastcancer,claudin-1

expressionisdifferentialbetweenthesubtypesandlowversushigh

claudin-1expressionhelpsidentifyhighlyaggressivetriple

nega-tivebreastcancer[69].Similarly,claudin-10expressionhasbeen

showntobeanindependentprognosticfactorforhepatocellular

carcinomarecurrenceaftercurativehepatectomy[70].Regarding

theidentificationoftheclaudinfamilyofproteinsastoolsto

iden-tifyand/orclassifytumortypes,serialanalysisofgeneexpression

(SAGE)studiesof thebreast [71]andovarian [72]cancershave

allowedforthefirsttimetheidentificationofspecificclaudin

fam-ilymembersaspotentialbiomarkersforthesecancers.Although

largescaleanalysisinaclinicalsettingwillberequiredto

estab-lishsuchpotentialofclaudins,basicresearchonclaudinsislikely

toremainvaluableforprovidingimportantinsightsintonormal

andneoplasticcellularphysiology.Preclinicalstudieshaveshown

thattumorcellsoverexpressingclaudinscanbesuccessfully

tar-geted viaseveral approaches, includingthe useof anti-claudin

antibodiesaswellasthecytolytic enterotoxin fromClostridium

perfringens.However,mostofthestudieshaveconcentrated

pri-marilyuponclaudin-3andclaudin-4[73].Bothoftheseproteins

havebeenidentifiedastargetsofC.perfringensenterotoxin(CPE)

andhave beenreportedtobeoverexpressedinmultipletumor

typesincludingovarianandprostatecancer. Yetanother

poten-tialapproachthathasbeensuggestedistheuseofclaudinsasdrug

deliverysystemusingPseudomonasaeruginosaexotoxinA(PE).PE

iswidelyusedincancer-targetingstudiesasitbindstothecell

surfaceandisinternalizedviaendocytosis.Followingthis,aPE

frag-ment,proteinsynthesisinhibitoryfactor(PSIF),escapesfromthe

endosometothecytosol[74],whereitinhibitsproteinsynthesis

byinhibitingelongationfactor2.PSIFlacksthereceptor-binding

domainofPE,andfusionofatumorantigensuchasclaudinswith

PSIFisapromisingstrategyforcancer-targetingtherapy.Therapies

specifictocertainclaudinfamilymemberscouldalsoserveas

adju-vanttherapies.Highlyincreasedandcytosolic/nuclearclaudin-1

expressionincoloncancerhasbeenreported[54,75]andclaudin-1

dysregulationmodulatesthebalancebetweentheNotch-and

Wnt-signalingtodysregulatecolonocytedifferentiationandpromotes

tumorgrowthandprogression.SinceNotchandorWnt-signaling

inhibitioncarriesinherenthightoxicity,theuseofclaudin-1based

therapymayprovideanalternative.

2.2. Cell–matrixadhesion

Interactionand adhesionbetweencells andthe surrounding

extracellularmatrix(ECM)classicallyinvolvescellsurfaceintegrins

whichinteractandbindECMproteincomponents[76].Functional

integrinsconsistofaheterodimerstructuremadeupofdifferent

␣-and␤-subunitsanddifferentintegrinstructurespossess

dif-feringaffinitiesfordifferentmatrixproteins[76].Theinteraction

betweenintegrinsandtheECMtriggersa seriesofintercellular

eventsthatnotonlyresultsintheadhesionofthecelltotheECM

butalsoformsamechanismforcommunicationbetween

intracel-lulareventsandthesurroundingECM.Thisprocessofcell–matrix

adhesionisessentialfortheattachmentofcancercellstothe

sur-roundingmatrixandsubsequentlythedegradationofthematrix

barrier[9].Anumberofintegrinshavebeenlinkedtometastatic

likelihoodandcancerand/orstromalcellsmaydepositECM

pro-teinsthatagaincanenhancemetastaticprogression.Blockingthe

extracellularpartofthecell–matrixadhesionbymeansof

antibod-ies,smallpeptides,andothernatural-andphytochemicalshasbeen

demonstratedandhasbeencoveredbyanotherarticleinthisissue.

However,blockingtheintracellularsignalingeventhasalsoproved

tobeausefulapproachininhibitingthisimportanteventduring

cancermetastasis.Keyeventsfollowingthematrix–integrin

inter-actionincludeactivationofthefocaladhesionkinase(FAK),paxillin

anddownstreamchainsignalingevents[77].Thus,inhibitingFAK

(6)

CD44representsanotherkeycell adhesionmoleculethat holds

potentialasanantimetastatictargetboththroughitsrolein

inter-actingwithothercelltypesandtheECM.TheCD44gene,located

athumanchromosome11p13,encodestheCD44sandCD44v

iso-forms,whicharisethroughalternativesplicing.CD44sandCD44v

isoforms share the extracellular globular region that includes

binding sites for hyaluronan,collagen, laminin and fibronectin

aswellasthecytoplasmictailregionthatincludesbindingsites

for ERM domainproteins (Ezrin, Radixin and Moesin),Ankyrin

andS6kinaserelatedkinase(SRK).CD44functionsasa

hyaluro-nanreceptor,co-receptorforgrowthfactorsandasanadhesion

molecule[78–82].CD44isinvolvedinthemalignantphenotypes

ofcancerstem cells,includingEMT,invasion,metastasis,

recur-rence, resistance to chemotherapy and resistance to radiation

therapy[82–85],whichclearlyindicatesthatCD44isapotential

targetofcancertherapy.Humanizedanti-CD44v6monoclonal

anti-body BIWA-4 (bivatuzumab), paclitaxel-conjugated hyaluronan

prodrugHYTAD1-p20(ONCOFID-P),SN-38-conjugatedhyaluronan

prodrug ONCOFID-S, hyaluronan–irinotecan complex and other

hyaluronan-conjugateddrugsorsiRNAshavebeendevelopedas

cancer therapeutics [86]. Therapeutics targeted to cell–matrix

adhesionmayrepresentausefulstrategytoblockcancercellsfrom

settlingonandsubsequentlypenetratingvascularorcavitylining

andhencenegativelyimpactingtheirabilitytoestablishsecondary

tumorsinthenewsite.

2.3. Cellularmigration

Whileessentialtonormaldevelopmentandhomeostasis,the

processofcellularmigrationisalsoatraitessentialfor

metasta-sis.Enhancedmigrationiskeyacrossthemetastaticcascadeand

isinvolvedintheinitialscatteringofcellsandmigrationfromthe

primarytumor,thepenetrationofthebasementmembraneand

ECMandintravasationandextravasationofvessels.Themigration

ofcellsrequiresanumberofintra-andextra-cellulareventssuch

asthedetectionofextracellularsignalsbythecells,synthesisofcell

surfaceproteinsandthecoordinationofintracellularsignalingand

cytoskeletonproteins.Throughouttheliterature,cellmigrationhas

beentightlylinkedtocancerprogressionandmetastasis.

Numer-ousproteinsandpathwayshavebeenimplicatedinalteringthe

migratorypotentialsofcancercellsandthereforetheiraggressive

nature[87,88].Hence,givenitsessentialroleincancerprogression,

treatmentsthatinhibitcellmigrationorsuchproteins/pathways

involved in enhancing cellular motility represent an attractive

strategy forcontrollingmetastatic dissemination.While in

nor-malphysiologycellularmigrationislessactive,thereareprocesses

whereitisessential,suchaswoundhealing,andhencemustbe

takenintoconsideration.Currentlytherearemanycompoundsthat

inhibitcellularmigration,althoughveryfewhavebeentestedina

clinicalsetting.

2.4. EMT

The process through which epithelial cells undergo a series

of morphological and biochemical changes to take on a more

mesenchymal phenotype is known as epithelial–mesenchymal

transition.EMT is widespreadthroughout normal development

buthasalsobeenlinkedtotheestablishmentofamoreinvasive,

motilecancercellphenotypefacilitatingdetachmentand

dissem-inationawayfromtheprimarytumor[89–92].EMTinvolvesthe

lossofcell–celladhesionandthepolarizedepithelialmorphology

through thecharacteristic loss of epithelialcell junctional

pro-teins suchas E-cadherin, claudinsand ZO-1, and a subsequent

increaseinmesenchymalmarkerssuchasN-cadherin,vimentin

andfibronectinandcytoskeletalreorganization[91,93].Indeed,the

lossofE-cadherinandsubsequentreplacementwithN-cadherin

(‘cadherinswitching’)isacharacteristicofEMT,seeninmany

can-certypesandisthoughttoaccountsomewhatfortheenhanced

invasiveandmotilepropertiesofcancercells[8].Unsurprisingly,

alterationsincelladhesionmolecules(CAM)suchasE-cadherin,

impacttheprocessesofcell–celladhesionandcell–matrix

adhe-sionandsubsequentlytheirmetastaticpotential.E-cadherinplays

anessentialroleintheadhesionofcellsandtissuesandtogether

withothermembersoftheadhesivecomplex,suchas␤-catenin,

regulatescelladhesion,signalingandtranscriptionincancersand

controlmetastaticprogression[94].Indeed,studieshave

demon-stratedanassociationbetweenlossofE-cadherinand␣-catenin

expression with enhanced tumor cell invasiveness [95]. Other

workhasdemonstratedaninversecorrelationbetweenE-cadherin

expressionandtumorcellinvasionandmotilityandsimilarlywith

metastaticdiseaseincancerpatients[96].Thetranslocationof

␤-cateninfromtheadhesivestructuretothenucleus,aneventleading

totranscriptionalactivationofanumberoftargetgeneshasalso

beendemonstratedtocorrelatewithdevelopmentofa

mesenchy-malphenotype[97,98].

Initiationsignals,suchasHGF,EGFandtransforminggrowth

factor ␤(TGF-␤) arebelieved toonsettheEMTprocess,

result-inginupregulationofEMT-inducingtranscriptionalfactorssuch

asSnail,SlugandTwist[99–102].Slug,SnailandTwisthavebeen

implicatedininfluencingtheexpressionofEMTproteinsandare

hencelinkedtometastasis[103–105].ForexampleSlugandSnail

areinvolvedinthedown-regulationofE-cadherin[99,106]andthe

expressionbetweenSnailandE-cadherin isinverselycorrelated

ina numberof cancersincludingbreastcancer[107].Similarly,

asdiscussedinSection2.1.1,Snailexertsregulatoryeffectsover

membersoftheTJsuchastheclaudins.Theseinitiationfactorsalso

actonothereffectormoleculestobringaboutEMT, suchasthe

MMPfamily.Membersofthisfamilyofproteinasesplaykeyroles

inmatrix-degradation,invasion,motilityandadhesionandare

fre-quentlydysregulatedincancerprogression.SlugandSnailhave

bothbeenimplicatedintheupregulationofMMP-2andMMP-9

andsubsequentEMTinitiation[108].

The process of EMT and subsequent acquisition of an

inva-sive,motilephenotypewithenhancedlikelihoodofinvasionand

disseminationrepresentsakeyinterestincancerresearch.

Thera-peuticstrategiesthatcanspecificallytargetthisprocessincancer

cellsarelikelytobeeffectiveinreducingthemetastaticpotential

oftumorcells.

2.5. Molecularnetworksinthetumormicroenvironment

It is now well established that solid tumors are not

sim-plyaggregates of replicatingneoplasticcells but arealsoliving

entities, composed of numerous cell types, whose complexity

approaches,andmayevenexceed,thatofnormalhealthytissues.

Manynon-malignantcelltypes,referredtoasthestroma,populate,

atmajority,thesolidtumors.Thesenon-malignantcellsinclude

fibroblasts,residentepithelialcells,pericytes,myofibroblasts,

vas-cularandlymphovascularendothelialcellsandinfiltratingcellsof

theimmunesystem.Duringmalignantprogression,neoplasticcells

acquiretheabilitytorecruit,incorporateandreprogramthe

biol-ogyandthefunctionofthesehealthyhostcells, thusproviding

themwithsupport,essentialnutrientsand weaponstohamper

antitumorimmuneactivity.Inturn,therecruitednon-malignant

cellsrespondbyenhancingtheneoplasticphenotypeofthenearby

cancercells,whichagainfeedsignalingbacktothestromato

con-tinueitsreprogramming.Thus,thepreviousideathatthemalignant

phenotype of tumor cells was exclusively determined by

cell-autonomousgeneticandepigeneticalterationsisnowreplacedby

thehypothesisthatthemalignantprogressionofcancernotonly

dependsontumorcells’geneticaberrationsbutalsoonthe

(7)

Fig.2.Cellularinteractionswithinthetumormicroenvironment.Numerousinteractionsbetweencelltypesareinvolvedthroughouttumorprogressionandmetastasis.

Communicationbetweenmaincomponentsofthesurroundingmicroenvironmentplayvitalrolesinenhancingmetastaticpotential,epithelialtomesenchymaltransition

(8)

thecellsofthestromaandcancercellswithinthetumor

microen-vironment[109,110](Fig.2).

Among the non-malignant cells that inhabit the tumor

microenvironment,cancer-associatedfibroblasts(CAFs)andtumor

infiltrating-immuneinflammatory cells arenoteworthybecause

oftherolestheyplayintumordevelopmentandmalignant

pro-gression. CAFs secrete factors that act on tumor cells in both

paracrineandautocrinefashions,thusresultinginamore

aggres-sivecancerphenotype.Acrossmostcancers,activatedCAFssecrete

a wide variety of growth factors, chemokines, collagens, and

ECM-modifyingenzymes,whichcollectivelysupplya

communica-tionnetworkandanalteredthree-dimensionalECMscaffoldthat

togethergovernproliferationofcancercellsandtumorinvasion

andmetastasisacrosstissuetypes.Theyalsocontributetotumor

progressionbyrecruitingtumor-promotingimmunecellsand

sup-portingangiogenesis.Thetumorinfiltrating-immunecellsinclude

thetumor-associatedmacrophages(TAMs),myeloid-derived

sup-pressorcells (MDSCs),dendritic cells(DCs), tumorinfiltratingT

cells,regulatoryTcells(Tregs)andmastcells[109].Tumorcells

secretechemokinesandcytokinesthatareabletorecruitmastcells,

DCs,TAMsandMDSCs.Tumorcellsalsoactivatemastcells,promote

theexpansionoftheMDSCsandthepolarizationofTAMs.

Further-moretumorsbothinhibitDCmaturationthroughIL-10secretion,

thusleadingtoantigen-specificanergy,andreprogramtheDCs,

inducingthemtoexertimmunosuppressive orangiogenic

func-tions,thusresultinginanimmunosuppressiveandinflammatory

tumormicroenvironment.Oncerecruitedtothetumor

microen-vironment,theseimmune cellscancontributetothemalignant

progression of the cancer-cell phenotypeby supporting tumor

proliferation,survival,invasion,metastasis,angiogenesisandECM

remodeling.

Incancercells,theconstitutiveactivationofvarioussignaling

pathways (including MAPK, signal transducer and activator of

transcription 3 (STAT3)and ␤-catenin pathways) resultsinthe

secretion of cytokines which modulate the recruitment and

function of the stromal cells. In particular, the tumor-derived

regulated on activation, normal T cell expressed and secreted

(RANTES)/Chemokine(C–Cmotif)ligand5(CCL5)cytokine

stimu-latesCAFs toexternalizethe S100A4 protein,which stimulates

tumor-cell survival and migration, up-regulation of theMMPs,

down-regulationofTIMPs,activationofthenuclearfactorofkappa

lightpolypeptidegeneenhancerinBcells(NF-␬B)andMAPK

path-ways,infiltrationofTcellsandfinally,up-regulationofRANTES,

thusgeneratinga signalamplificationloop.RANTESalsoinduce

angiogenesisand actaschemoattractantsforadditionaleffector

immunecells.Tumor-derivedstemcellfactor(SCF)promotesthe

recruitmentand activation of mastcells and theMDSC

expan-sion.Tumorsalsosecretethethymicstromallymphopoietin(TSLP)

and bone marrow stromal cell antigen 2 (BST2). TSLP induces

DCstoexpressOX40ligand, whichdirectsCD4+ Tcellsto

gen-erateTH2cellssecretingIL-4andIL-13.Thesecytokinesprevent

tumorcellapoptosisandindirectlypromotetheproliferationof

tumorcellsbystimulatingTAMstosecreteEGF.BST2isaligand

ofimmunoglobulin-liketranscript7(ILT7),whichisexpressedon

DCssurface.TheinteractionofILT7onDCswithBST2ontumor

cellsresultsininhibitionofIFN-␣andpro-inflammatorycytokines

productionbyDCswithimmunosuppressiveeffects.

Oncogeneactivationandsubsequentsignalactivationin

can-cercellstriggermultiplecascadesthusresultinginthesecretion

ofseveralimmunosuppressivemolecules,includingTGF-␤,IL-10,

IL-6, vascularendothelial growthfactor(VEGF), CCL2/monocyte

chemoattractantprotein1(MCP1),cyclooxygenase-2(COX2),that

induce the immunosuppressive immune cells. Production and

secretionofthese factorsbyboth cancerand surroundingcells

enhancetumorcellproliferation,migrationandinvasion.

Further-moreitenhancestheproductionofimmunosuppressivecytokines

and chemokines, including TGF-␤ itself, IL-10 and CCL2/MCP1.

TGF-␤and thepotentialfortargetingthis signalingpathwayin

canceris discussed in Section4.2. A plethora of recent reports

haspaintedaconsistentpictureofhowstromalcells(CAFsand

inflammatorycells)canpromotemalignantprogression.Indeed,

within theprimary tumormicroenvironment, thestromal cells

providepotentoncogenicsignals,suchasTGF-␤,HGF,EGF,Wnt,

andbasicfibroblastgrowthfactor(bFGF),whichstimulate

cancer-cellproliferation,survivalandinvasion,thusfacilitatingmetastasis.

Moreover, thesecells produce severalangiogenesis-modulating

enzymes,suchasVEGF,thymidinephosphorylase,MMP-2,

MMP-7,MMP-9,MMP-12,COX2,urokinaseplasminogenactivator(uPA)

andcathepsinsBandD,whichtogetherdegradetheECM,again

promotingmetastasis.TAMspromotecarcinoma-cellmotilityand

invasion throughaparacrine signalingloopbetweenthetumor

cells and the TAMs. Withinthis loop the macrophages express

EGF,whichpromotesformationofelongatedprotrusionsandcell

invasionbycarcinomacells.Inaddition,EGFpromotesthe

expres-sionofcolonystimulatingfactor1(CSF-1)bythecarcinomacells,

which further promote the expression of EGF by macrophages

generating a positive-feedback loop. The secretion of

stromal-cell-derived factor 1 (SDF1), alsoknown as chemokine (C–X–C

motif) ligand12 (CXCL12), by TAMs and CAFsat a tumor site

canenhancetheinvasion,intravasation,metastasisformationand

recruitmentofMDSCs,TAMsandendothelialcellstotheprimary

tumor.Thisenhancementofinvasionandintravasationdepends

uponchemokine(C–X–Cmotif)receptor4(CXCR4)signaling,andit

ismostlikelytooccurthroughactivationofCXCR4onmacrophages,

whichresultsinincreasedparacrineinteractionswithtumorcells

inthetumormicroenvironment.IncreasedCXCL12/SDF1secretion

alsogivesrisetoanincreasedmicrovesseldensity,whichmight

alsobemediatedbyTAMsandmightcontributetoanalteredtumor

architecture,thusresultinginincreasedintravasationthroughthe

presenceofahigherdensityofentrancesitesintotheblood,with

acorrespondingincreaseintheformationofmetastases.The

sig-nificanceofCXCL12/CXCR4signalinginbreastcancerinvasionand

metastasisiswidelyappreciated.CXCR4expressioninbreast

can-cercellshasbeenshowntoincreasemetastasisthroughthehoming

oftumorcellstositesofincreasedCXCL12expression,suchasthe

lymphnodes.Similarly,theinteractionofCXCL12/SDF1andCXCR4

expressedonmammaryadenocarcinomaMTLn3cellsincreasesthe

chemotacticandinvasivebehaviorofthesecellstoCXCL12/SDF1,

aswellastheirmotilebehaviorwithintheprimarytumorandtheir

abilitytointravasate.TAM-derivedCCL17andCCL22chemokines

preferentiallyattract Tcellsubsets that aredevoidof cytotoxic

functions,suchasTregsandTh2lymphocytes.TAM-derivedCCL18

recruitsnaïveTcells,whichinduceTcellanergy.Withinthetumor

microenvironmentIL-10,secretednotonlybyimmunecells,but

alsoby CAFsand tumorcells, is themain cytokineresponsible

fortheestablishmentoftheimmunosuppressivemilieu.

Further-more,IL-10,togetherwithIL-4,IL-6andIL-13,inducesmonocyte

differentiationtowardamatureM2-polarizedphenotypethatis

characteristic of TAMs. At the tumor site, the IL-1␤ and IL-6

cytokines,S100A8andS100A9pro-inflammatoryproteinsandthe

chemoattractantmoleculesCCL2/MCP1,CXCL12/SDF1andCXCL5

arethemainfactorsthatareresponsiblefortherecruitmentand

theinductionofMDSCs.VEGFisoneofthemainfactors

responsi-blefortheexpansionofMDSCs,whileIL-4,IL-13,IFN-␥,IL-1␤and

TGF-␤turnontheirsuppressivefunctions.MDSCsproducehigh

levelsofIL-17,whichfurtherexacerbatestheinflammatorytumor

microenvironment.

Thegrowingbodyof evidenceregardingtherolesplayedby

non-malignantcells ofthetumormicroenvironmentin

promot-ingtumor progressionindicatethat it isconceivable that these

cellscanserveasnoveltherapeutictargetsinthecancertreatment.

(9)

Table1

Effectsofapprovedandexperimentaltargetedagentsontumorcellsandtumormicroenvironmentstromalcells.

Drug Drugclass Target Effectontumor Effectontheimmunesystem References

STI571(Gleevecor imatinibmesylate) Smallmolecule inhibitor PDGFRand c-Kit

Reducesmicrovesseldensity Preventsmastcellproliferation andsurvival

[283,284]

Bevacizumab Monoclonal

antibody

VEGF Blocksangiogenesis IncreasesDCmaturation,shiftsDC

differentiationtowardmatureDCs

insteadofMDSCsandincreasesDC

primingofTcells

[285,286]

IM-2C6 Antibody VEGFR Blocksangiogenesis NA [287]

SU5416 Smallmolecule

inhibitor

VEGFR Reducesvasculardensity NA [288]

MMI-166 Smallmolecule

inhibitor

MMP-2and

MMP-9

SuppressesMMP-2andMMP-9

activities;inhibitsangiogenesis

andtumorgrowth

NA [289] S-3304 Smallmolecule inhibitor MMP-2and MMP-9 InhibitsMMP-2andMMP-9 NA [290]

Dasatinib Smallmolecule

inhibitor

c-Kit,ABL,SRC,

PDGFR

Inducesapoptosisinleukemiccell Inducesapoptosisinmastcell [117]

Dipyridamole Smallmolecule Wnt,MAPK

andNF-␬B

pathways

Decreasestumorgrowthand

metastasis

DecreasesTAMandMDSC

infiltration

[118]

Bindarit Smallmolecule CCL2/MCP1 Decreasestumorgrowthand

metastasis

DecreasesTAMandMDSC

infiltration

[119]

Upanap-126 RNAaptamer uPA Delaystheproteoliticconversion

ofpro-uPAtoactiveuPA;inhibits

tumorcellinvasion;reducesthe

tumorcellintravasationand

dissemination NA [111] ATN-658 Monoclonal antibody uPAreceptor (uPAR)

Decreasestumorcellinvasionand

migrationandtumorvolume

NA [112]

L2G7/Rilotumumab Monoclonal

antibody

HGF Inhibitsthetumorgrowth NA [113,291,292]

Trastuzumab Monoclonal

antibody

HER2 Blocksgrowthsignals PrimesantitumorCTLs,boostsNK

secretionofIFN-␥andmediates

potentantibody-dependent cellularcytotoxicity [293] Cetuximab Monoclonal antibody EGFreceptor (EGFR)

Blocksgrowthsignals Immuneactivating:increasesMHC

classIandMHCclassIIexpression;

augmentsDCprimingof tumor-specificCTLs. [294] MGA271 Monoclonal antibody B7-H3 NA Mediatespotent antibody-dependentcellular cytotoxicity [295]

AMD3100 Smallmolecule CXCR4/CXCL12

(SDF1) signaling

Sensitizescancercellsto

chemotherapy:inhibitstumor

growth

Reducestherecruitmentof

bone-marrowderivedcells

[114–116]

Celecoxib Smallmolecule

inhibitor

COX2 NA DecreasesbothMDSCnumbers

andfunction

[296]

5-Fluorouracil Smallmolecule Thymidylate

synthase

Promotesthecytotoxicityoftumor

cells

InducesMDSCapoptoticcelldeath [297]

All-trans-retinoicacid

(ATRA)

VitaminA

derivative

NA NA ReducesMDSCs [298]

Sclareol Phytochemical NA Decreasesthetumorsize DecreasesthenumberofTregs [120]

Temozolomide Smallmolecule DNA Promotesthecytotoxicityoftumor

cells

ReducesthenumberofTregs [121]

moleculeinhibitors,antibodiesorphytochemicalsthatspecifically

targetmoleculesandsignalingpathwaysinvolvedinthe

recruit-ment,activationandfunctionoftumorinfiltratingnon-malignant

cellshavebeentestedinbothanimalmodelsandhuman.Table1

summarizesthemost up-to-datedrugsavailablewithpotential

useincancertherapy,knowneffectsontumorcellsandactivity

againsttumor-stromalmicroenvironmentcommunications.

Sev-eral strategies to inhibit either CAF activation or CAF-derived

factors(e.g.HGF,uPA,CXCL12/SDF1)have beenappliedin

pre-clinicalstudiesof cancertherapies and theresultshave shown

efficacyintheinhibitionoftumorgrowthandinvasion[111–116].

Similarly,severalimmunotherapeuticapproacheshavebeen

devel-oped to target immune cells that infiltrate the tumor. Some

anti-angiogenicagentsimpairproliferationandsurvival ofmast

cellsandinduceDCmaturationandtheirantitumoractivity(e.g.

STI571andbevacizumab).Theimpairmentofthestemcellfactor

(SCF)/c-Kit signalingpathwaybydasatinibinduces apoptosisof

bothtumorcellsandmastcells[117].Severalimmuno-therapeutic

strategiesthattargetMDSCsandthatcanneutralizetheir

immuno-suppressiveeffectshavebeenreportedinbothanimalmodelsand

human.Thesestrategiesincludeapproachesthatareaimedatthe

inductionofdifferentiationoftheseimmaturecells[e.g.

all-trans-retinoicacid(ATRA)],orofadecreaseintheirnumberandtumor

infiltration(e.g.dipyridamoleandbindarit),oratinterferingwith

theirimmunosuppressivefunctions(celocoxib),orkillingMDSCs(5

fluorouracil-or5FU).Interestingly,dipyridamole[118]andbindarit

[119]decreasetheinfiltrationnotonlyofMDSCsbutalsoofTAMsin

breastandprostatecancerproofofconceptanimalmodelstudies.

Finallysclareolandtemozolomidereducetumorgrowthandthe

numberoftumorinfiltratingTregs[120,121].Therefore,although

furtherstudieswillbeneededtodeterminewhichcell(s)is/arethe

(10)

andselective,thereisnodoubtthatthetherapeutictargetingof

tumormicroenvironmentcells representsa valuablestrategyto

complementconventionalanticancerstrategies.

2.6. Cancerstemcells(CSC)

Cancerstemcells(CSC)presentanexcitingyetsomewhat

con-troversialfieldincancerresearch.Inthecancerstemcellmodelof

carcinogenesisthereisahierarchicalorganizationofcancercells.

TheCSCrepresentahighlytumorigenicsub-populationofcancer

cellsthatcanbeisolatedfromothercancercellsinthesametumor.

Thesehighlytumorigeniccellshavebeenproposedascrucialto

thegrowthanddevelopmentofprimarytumorsandarebelieved

toberesistanttoconventionaltherapyandthereforelikelytobe

responsiblefordiseaserecurrenceandtreatmentfailures.CSCwere

firstisolatedinacutemyelogenousleukemia(AML)andsubsequent

investigationsofsolidtumorshaverevealedthepresenceofhighly

tumorigeniccancercells(CSC)inessentiallyeverysolidcancertype

includingbreast,lung,colon,pancreas,headandneck[122–127].

ThecriticalcharacteristicsofaCSCrequirethesecancercells

to be: tumorigenic, able to reproduce the original tumor

het-erogeneityincludingboth thetumorigenicandnon-tumorigenic

subpopulationsofcancercells,self-renewing,andseparablefrom

theothercancercells. CSCtypicallyrepresentonlyasmall

sub-population(<10%)oftheentirecancercellpopulation.Avariety

ofcellssurfacemarkersandbiologicalmarkershavebeenusedto

isolatetheCSCpopulationfromothercancercells,includingCD24,

CD44,CD26,CD133,epithelialspecificantigen(ESA),andaldehyde

dehydrogenaseactivity(ALDH)[128].Sofar,nosinglemarkeror

combinationofmarkershasprovenusefulforisolatingCSCfrom

everytumorsite.TheexpressionofCSCmarkersinprimarytumors

hasbeenfoundinsomestudiestobeassociatedwithtumorstage,

prognosisandresponsetotherapy.Itisalogicalextensionofthe

CSCtheorytohypothesizethat,asCSCaretheonlycancercells

thatcanproduceaprimarytumor,CSCmustalsobeessentialfor

thedevelopmentofmetastaticdisease.

Inbreastcancer,cellscharacterizedbyhighCD44expression

andlowlevelsofCD24expression(CD44+CD24−/low)havebeen

showntoencompasstheCSCsubpopulationofcancercells[125].

AnothermarkerfortheidentificationofCSCinbreastcancerishigh

levelsALDHexpression,alsoamarkerformanynormalstemcell

populations[123].Bycomparinggeneexpressionprofilesbetween

ALDH+andALDH−breastcancercells,a413-genebreastCSC

sig-naturewasdetermined.Amongthedifferentiallyexpressedgenes,

thegeneencodingfortheIL-8receptorCXCR1/IL-8RA,previously

describedtobeinvolvedintheregulationofcancergrowthand

metastasis,wasfound.TheALDH+CSCderivedfrombreast

can-cercelllineswereshowntobesignificantlymoremetastaticthan

ALDH−cellsbyintracardiacinjectioninNonobesediabetic/severe

combinedimmunodeficiency(NOD-SCID)miceindicatinga

pos-sibleroleforCXCR1/IL8-RAinthemetastaticpotentialofbreast

CSC.AdditionallythesameCSC-enrichedpopulationsgaveriseto

extra-pulmonarymetastasesinthepancreas,liver,spleenand

kid-ney[129].Similarresultshavebeenshowninheadandneckcancer

wheretheCSCcollectedbasedonCD44expressionwereshown

tobeessentialformetastaticformationinatailveinmodeland

inanorthotopicheadandneckcancermodel[130,131].Thisdata

supportstheconceptthatCSCarecriticaltothedevelopmentof

metastasis.

There is accumulating evidence of cellular heterogeneity

within the CSC compartment with some CSC exhibiting an

enhancedpotentialforthedevelopmentofmetastasis.Evidence

formetastaticandnon-metastaticCSCwasfirstraisedincancerof

thepancreas.ThepancreaticCSCpopulationisdefinedbyCD133

expression.InvivostudiesoftheCD133+CSCrevealeda

subpopu-lationofmigratingCSCdefinedbysurfaceexpressionofCXCR4.

CXCR4 isa proteinthat haspreviouslybeenimplicated in

can-cercellmetastaticpotential[132].Usinganorthotopicmodelof

pancreaticcanceronlythemigratingCSCpopulation,expressing

CD133+CXCR4+,wereabletoestablishlivermetastasis.Inhibition

ofCXCR4significantlyreducedtheCSCmetastaticpotential[133].

Theseresultsaresignificantasthefirstobservationofthe

impor-tanceoftheCSCphenotypetotheirmetastaticpotentialaswellas

theroleofCXCR4inregulatingthisbehaviorinCSC[134].

AdditionalevidenceoftheexistenceofdifferentCSCsubtypes

responsible for specific behaviorsexists in colon cancer. It has

beenreportedthatcolonCSChavethreedistinctphenotypes;

self-renewing long-term (LT-TICs), tumortransient amplifying cells

(T-TAC),anddelayedcontributing(DC-TICs).Interestinglythe

self-renewing LT-TICs were the only subpopulation of CSCable to

contributetometastasisformation[135].Morerecently,CD26was

confirmedasamarkerformetastaticCSCincoloncancer[136].

NoneofthepatientswithoutCD26-expressingcancercellsintheir

primarytumorsdevelopedmetastases,whilethemajorityofthose

whosetumorscontainedCD26+cellsdid.Inanimalmodels,both

CD26+and CD26− cells werecapableof giving risetoprimary

tumors,however, onlyCD26+cells hadthecapacity toproduce

metastasis[137].These reportsconfirm theimportanceof CSC,

andmorespecificallythemigratorysubpopulationsofCSC,tothe

developmentofmetastasisincoloncancer.

EMThasbeenimplicatedasanimportantmechanismbywhich

cancercellsgainmetastaticpotential.Manycancertypeshavebeen

showntoexhibitEMT.EMTisbelievedtorepresentacrucialstep

towardcancercellsacquiringinvasivenessandthepotentialto

pro-duce metastasis[138].Thereis accumulatingevidencethatCSC

undergoEMTandthisabilityhasimportantregulatoryfunctions

relatedtoCSCbehavior.StudieshaverevealedthatEMTcaninduce

apparentlydifferentiatedcancercellstogainaCSC-likephenotype

increasingtheirtumorgenicityandtheirabilitytomigratetoand

invadetissuesdistantfromtheprimarytumor.Additionally,

can-cercellsundergoingEMThavebeenshowntobeenrichedforCSC

[139].CSCexpressmanyEMTregulatingfactorsincludingTWIST,

SnailandSlugsuggestingthesegenesplayanimportantregulatory

roleinCSCbehavior[140].

ThepreferentiallocationofEMTcellsalongtheinvasivefrontof

tumorsandtheassociationofEMTwithhighWntsignalinglevels

havebeendemonstrated.Thisincludesthenuclearaccumulationof

␤-catenin,evidenceofWntactivation,observedincellsundergoing

EMTattheinvasivefront[134].Signalsfromthetumor

microenvi-ronmenthavebeendemonstratedtoelicitWntsignalingincolon

cancercells,inducingEMTandallowingfortheirdetachmentand

spreadfromtheprimarytumorsite.ObservationsregardingEMT

andWntexpressioninlocationswithinprimarytumorswhereCSC

typicallyresideledtotheconceptofmigratingCSCasproposedby

Brabletzetal.in2005[134].

EMT has been shown to be a reversible process in that

mesenchymal-to-epithelialtransition(MET)cantransform

mes-enchymalcellsbacktotheirepithelialstate.Similarlymetastatic

CSCmayrespond tolocalcuesto revertfromtheir

mesenchy-malstatebacktotheiroriginalepithelialstate.OncetheCSChave

returnedtotheiroriginalepithelialconditiontheycanform

grow-ing metastatic deposits.It is highly likely that CSClead to the

developmentofmetastasesbyacquiringmesenchymalproperties

thatenhancetheirabilitytomigrateandinvadeandthentransition

backtotheirepithelialphenotypetoformametastasis.The

fac-torsthatregulateEMTincancercellsarebeingstudiedinmultiple

cancertypesbutarenotyetfullyunderstood.Thetumor

microen-vironmenthasbeenproposedasanimportantregulatorofEMTin

CSCincludinglocalfactorssuchashypoxia,cytokinesincludingIL-6

andcancerassociatedcellsincludingtumorassociatedfibroblasts,

mesenchymalstemcells,andlymphocytesabletosecretediffusible

(11)

Althoughattractiveandinagreementwithmanygenetic

anal-ysesandwiththeevaluationofCSCinprimarytumorsandanimal

models,todatethecausativeroleofCSCinmetastasisformationhas

notbeenformallyproven.Metastasesrepresentoneofthekey

fac-torsintreatmentfailuresinpatientswithcancer.Recognitionthat

CSCplayacriticalroleinthedevelopmentofmetastasisisan

impor-tantsteptowardincreasingourunderstandingofhowmetastasis

develop.ThefactorsthatmodulatetheCSCmetastaticphenotype

havenotyetbeenfullyelucidatedandrequiremoreintensive

inves-tigation.Thisworkwillleadtomoreeffectiveanticancertherapy

andimprovedoutcomeforpatients.

3. Cancercelldisseminationandthemetastaticcascade

3.1. Organspecificmetastasis

The predisposition of certain body sites or organs to house

metastaticcellsandestablishsecondarytumorshasbeen

appar-entforcenturiesandhasbeenfamouslyexplainedinPaget’s‘seed

andsoil’theoryofmetastasis[143].Thistheorydictatesthata

spe-cifictumorcell(theseed)willonlyestablishinaparticularsuitable

organorlocation(thesoil).Indeed,manycancershaveanincreased

propensitytoestablishsecondarymetastasisatcertainsites.For

example,breastandprostatecancersappeartobepredisposedto

metastasizingtotheboneenvironmentwhereasgastrointestinal

cancersfrequentlymetastasizetothelungandliver[2,144].Indeed

afeworgansrepresentthemainsecondarydestinationformost

cancers,namely,theliver,lung,boneandbrain,whileorganssuch

asthespleenandheartrarelyhostmetastasis.Thefactors

underly-ingthisorganspecificpredispositionformetastaticdissemination

bymanycancertypesarelargelyunknownandarewidelybeing

studiedwithinthescientificcommunity.Establishmentofsuch

fac-torsmayagainyieldintuitivestrategiestolimitmetastaticdisease.

3.1.1. Targetingbonemetastasis

Bonemetastasesareacommoncomplicationofseveraltypes

ofcancers,includingbreast,prostateandlungcancer.The

occur-renceofthesebonemetastasesdeeplyimpacttheprognosisand

thequalityof lifeofpatientsandareresponsibleforsignificant

morbidity.Bonemetastases are oftenosteolytic(due to

signifi-cantbonedestruction),sometimessclerotic(duetoanexcessof

boneformation)ormixed.Numerousmechanismsandfactorsare

involvedintheinvasion,colonizationandestablishmentoftumor

cells in the bone microenvironment. The complex sequence of

eventsthatleadtotheonsetofbonemetastasesnotonlyinvolves

processescommontoanyothermetastasisbutalsoprocessesthat

aremorespecifictothebone tissue(tumor cellinvasioninthe

boneenvironment,implantationoftumorcellsinbonemarrow,

osteomimicry,deregulationofosteoblast\osteoclastactivity)[145].

Thecurrentsectionillustratesprogressmadetowardthe

under-standing,treatmentsandmanagementofthisparticularformof

metastaticdisease.

Thespreadofmetastaticcellsfromthebloodstreamtothebone

marrow involves factors that are produced by osteoblasts and

stromalcellsinthebonemarrow.Amongthesefactors,akeyrole

is played bychemokines (CXCL12, CXCL13, chemokine (C-X3-C

motif)ligand1(CX3CL1),CCL22)thatstimulatecancercell

migra-tiontothebonemarrow,sincetheyexpressmembranereceptors

correspondingtothesechemokines[145].For example,CXCL12

anditsreceptor CXCR4play animportantrole inbone tropism

of cancer cells and treatment with inhibitors of CXCR4 (AMD

3100,T140)orCXCL12(OTP-9908)hasdemonstratedefficacyin

decreasingtheformationofbonemetastasesinexperimental

mod-elsofbreastcancerorprostatecancer[145,146].Inaddition,some

proteins (bone sialoprotein, osteonectin, osteopontin, collagen)

canstimulatebonematrixinvasionbybindingthesurfaceoftumor

cellsthroughspecificmembranereceptorssuchasintegrins␣V␤3

and␣2␤1[145]andithasbeendemonstratedthatbreastcancer

cells expressing␣V␤3 integrin and prostate cancer expressing

the␣V␤2,havehigherincidenceofbonemetastases[147].There

is preclinical evidence that ␣V␤3 integrin inhibition is ableto

prevent bone colonization by ␣V␤3 expressing human breast

cancercells[148].Severalongoingclinicaltrialsareevaluatingthe

anticancereffectofintegrinantagonistsinadvancedrefractoryand

metastaticcancers,butonlyonephaseIclinicaltrialisevaluating

integrin antagonists (GLPG0187) in cancer patients with bone

metastasis(NCT01313598)[149,150].

It has been demonstrated that the tyrosine kinase c-MET

promotes stemness phenotype, tumor growth, invasion, and

metastasisin severalmalignancies. Inparticular,c-METis

over-expressedin prostatecancercells andisassociated withtumor

progression and metastatic invasion to bone [151].

Cabozan-tinib (XL184) is an oral small molecule inhibitor of multiple

kinasesignalingpathwaysincludingc-METandvascular

endothe-lial growth factor receptor 2 (VEGFR2). A recent phase II

“randomizeddiscontinuation”trialinpatientswithmetastatic

cas-trationresistantprostatecancer(mCRPC)included171menwith

castration-resistantprostatecancer(CRPCfromalargerphaseII

randomized discontinuation trial that included multiple tumor

typestreatedwithcabozantinib).Therandomizationwasstopped

after122patientsbecauseofimprovementsinbonescansanda

decreaseinpain.Atthetimethestudywashalted,agroupof31

patientshadbeenrandomlyassigned.Inthisgroup,therewasa

markedimprovementintheprimaryendpointofprogression-free

survival(PFS)inthepatientsreceivingcabozantinibcomparedwith

placebo(p<0.001)[152].PhaseIIItrialsarecurrentlyonongoing.

Cathepsins are a class of globular lysosomal proteases that

belongtothepapain-likecysteineprotease familyexpressedin

awidevarietyoftissuesincludingthebone,wheretheyappears

tobeakeyenzymeinbone matrixdegradation[153].Different

cancersexpresscathepsinK,includingprostateandbreastcancers

[154].Untilrecently,aroleforcathepsinKinbonemetastasishad

beenmainlyattributedtoitsabilitytodegradenativecollagenI,a

processnecessaryfortheexpansionofthetumorwithinthebone.

Forexample,thehumanbreast,boneseeking,cancercellline

MDA-MB-231/B02secretedcathepsinKandtreatmentofthesecellswith

acathepsinKantagonistcaninhibittumorinvasion[155].Duetoits

selectivity,odanacatibistheonlycathepsinKinhibitorinclinical

development.AphaseIIcontrolledstudyonwomenwithbreast

cancerand established bone metastasis,randomized toreceive

dailyadministrationofodanacatiborasingledoseofzoledronic

acid,showedreducedboneremodelingmarkers(urinaryNTx)after

4weekstreatment,demonstratingthatodanacatibisaseffectiveas

zoledronatetoreduceboneresorptionmarkers[156].

ReceptorActivator ofNuclearFactor-␬B Ligand(RANKL),the

Receptor Activator of Nuclear Factor-␬B (RANK) and thedecoy

receptor osteoprotegerin (OPG) are members of the TNF and

TNF-receptorsuperfamily,whichareabletoinduceproliferation,

differentiation,activationandapoptosisofosteoclasticcells.Bone

remodelingis mediated bythe interactionof RANKL expressed

ontheosteoblasts,RANKexpressedontheosteoclastsurfaceand

OPGwhichpreventsosteoclast activation[157].Murinemodels

haveshownthatRANKLisabletoactaschemoattractantandasa

pro-migratoryfactorinRANK-expressingbreastandprostate

can-cercelllines and thatRANKL inhibition is abletoreduce bone

lesionsandtumorburdeninamelanomamodelofbone

metasta-sis[158].IthasalsobeendemonstratedthatRANKprimarytumor

expressionlevelscorrelatewiththeoccurrenceofbonemetastases

andthatRANK-expressingcancercouldbefoundinupto80%of

bonemetastasesoriginatedfromsolidtumor[159,160],suggesting

Riferimenti

Documenti correlati

The aim of the present study was to evaluate the features, risk factors and clinical outcome of “very late” recurrences observed in a single-center large cohort followed for a mini-

Abbiamo ritenuto opportuno concentrare le attenzioni del presente intervento di analisi su una singola opera nello specifico anziché proporre un lavoro di natura

The Faraday depth is assumed to be positive when the line-of- sight average component of the magnetic field points toward the observer, otherwise it is negative for a field with

Alternative lengthening of telomeres and loss of DAXX/ ATRX expression predicts metastatic disease and poor survival in patients with pancreatic neuroendocrine tumors. Clin

Su questo punto Regione Lombardia intende avviare un’iniziativa con il Governo per ottenere alcune modifiche legislative: le dighe non siano beni dei concessionari, bensì beni

Rspo1 withdrawal (2Rspo1) versus control organoids (1Rspo1) for the 220 downregulated genes in Lgr4 fl/fl Lgr5 fl/fl organoids (1 day after deletion)..

Direttore del Dipartimento di Diritto Privato e Storia del Diritto (Università degli Studi di Milano) Prof.ssa Albina Candian (Università degli Studi di