• Non ci sono risultati.

A Hybrid Approach to the Synthesis of Sub-Arrayed Monopulse Linear Arrays

N/A
N/A
Protected

Academic year: 2021

Condividi "A Hybrid Approach to the Synthesis of Sub-Arrayed Monopulse Linear Arrays"

Copied!
22
0
0

Testo completo

(1)

UNIVERSITY

OF TRENTO

DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’INFORMAZIONE

38123 Povo – Trento (Italy), Via Sommarive 14

http://www.disi.unitn.it

A HYBRID APPROACH FOR THE SYNTHESIS OF SUB-ARRAYED

MONOPULSE LINEAR ARRAYS

P. Rocca, L. Manica, R. Azaro, and A. Massa

January 2011

(2)
(3)

Linear Arrays

P.Ro a, L.Mani a, R. Azaro, and A. Massa

ELEDIA Resear h Group

Department of Information Engineeringand ComputerS ien e,

University of Trento,Via Sommarive 14,38050 Trento - Italy

Tel. +39 0461 882057,Fax +39 0461 882093

E-mail: andrea.massaing.unitn.it,

{paolo.ro a,lu a.mani a,renzo.azaro}disi.unitn.it

(4)

Linear Arrays

P.Ro a, L.Mani a, R. Azaro, and A. Massa

Abstra t

In this letter, a hybrid approa h for the synthesis of theoptimal ompromise

be-tween sumanddieren epatternsforsub-arrayed monopulseantennasispresented.

Firstly, the sub-array onguration is determined by exploiting the knowledge of

the optimum dieren e mode oe ients to redu e the dimension of the sear hing

spa e. In the se ond step, the sub-array weights are omputed bymeans of a

on-vexprogrammingpro edure, whi htakesadvantages fromthe onvexity,for axed

lustering, of the problem at hand. A set of representative results are reported to

assesstheee tivenessoftheproposedapproa h. Comparisonswithstate-of-the-art

te hniques arealso presented.

Key words: Sum and dieren e patterns synthesis, ontiguous partition, onvex

(5)

In the re ent literature, the use of a hybrid approa h, namely, the Simulated

Anneal-ing Convex Programming (

Hybrid − SA

) method [1℄, for the synthesis of sub-arrayed

monopulse linear antennas has improved the performan es in shaping ompromise

pat-terns with respe t toreferen eapproa hes [2℄-[4℄. By onsidering asub-arraying strategy

[5℄,the pro edureproposedin[1℄ isaimedatndingthe sub-array onguration and the

oe ientsof the sub-array sumsignals su hthat the orrespondingradiation pattern has

a nullwith themaximumpossibleslopein a givendire tion,whilebeingbounded byan

ar-bitraryfun tionelsewhere. Su hasolutionallowsonetheuseofsimplerfeedingnetworks

that guarantee both a redu ed ir uit omplexity and low ele tromagneti interferen es

aswellastoobtainpatterns withuser-dened hara teristi s. It isbasedonthe

exploita-tion of the onvexity of the fun tionalwith respe t to asubset of the unknowns (i.e., the

sub-array gains) and it is arried out by means of a Convex Programming (

CP

) method

[1℄. However, sin e the sub-array memberships of the array elements are determined by

means of a Simulated Annealing (

SA

) algorithm, the pro edure involves non-negligible

omputational osts to a hieve the global minimum or there is the possibility that the

solution is trapped in a lo al minimum (whether the riterion for the

SA

onvergen e

has not been veried [6℄). In order to save omputational resour es, an innovative

ap-proa h has been presented in [7℄. It is an optimal pattern mat hing te hnique, namely

the Contiguous Partition Method (

CP M

) [8℄, whi h has been integrated in an iterative

pro edure onsidering dierent referen e patterns to deal with onstraints on the level

of the sidelobes (

SLL

), as well. The

CP M

takes advantage from the knowledge of the

optimalex itationsofthe dieren epattern[9℄[10℄[11℄andfromthe on eptof ontiguous

partitions [12℄ to redu e the sear hing spa e and, thus, ee tively handlingthe problem

of the optimal lustering. As a matter of fa t, the arising omputational burden turns

out tobe signi antlyredu ed ompared tothat of previous optimization s hemes.

In this letter, a hybrid approa h ( alled

Hybrid − CP M

method), whi h integrates the

CP M

[8℄ with a gradient-based

CP

pro edure [1℄ to protably benet of the positive

(6)

des ribed in [8℄ by exploiting the relationship between the ex itation oe ients of the

optimalsum[14℄[15℄[16℄[17℄anddieren e[9℄[10℄[11℄modes. On ethe lusteringhasbeen

determined, the sub-array gains are omputed as in[1℄.

2 Mathemati al Formulation

Let us onsider a linear array of

N = 2M

equally-spa ed isotropi elements

a

n

, n =

−M, . . . , −1, 1, . . . , M

and the orresponding spa e fa tor given by:

f (θ) =

M

X

n=−M

a

n

e

j(n−sgn(n)/2)kd cos(θ)

(1) where

k

and

d =

λ

2

are thewavenumberofthe ba kgroundmediumandthe inter-element

spa ing, respe tively. Moreover,

θ

indi ates the angular rotation with respe t to the

dire tion orthogonal to the array. It is well known that optimal sum [14℄[15℄[16℄[17℄

and dieren e [9℄[10℄[11℄ patterns are aorded by independent sets of symmetri

A

s

=

{a

s

n

; n = ±1, ..., ±M}

andanti-symmetri

A

d

=

n

a

d

n

; n = ±1, ..., ±M

o

ex itations,

there-fore the orresponding array spa e fa tors (1) turns out to be even [

f

s

(θ) = f

s

(−θ)

and odd [

f

d

(θ) = −f

d

(−θ)

℄ fun tions [1℄. Consequently, only half of the array

ele-ments are des riptive of the whole array. In order to yield at the same time optimal

sum and dieren e patterns, two independent and omplete feeding networksare usually

needed. However, su h a solution is generally very expensive and impra ti al due tothe

ir uit omplexity, the physi al spa e limitations,and the ele tromagneti interferen es.

Therefore, the sub-arrayingstrategyisusually adopted sin eitallows asuitabletrade-o

between the antenna feasibility and the synthesized patternfeatures.

The

Hybrid−CP M

approa hbelongstosub-arrayingte hniques,butunlikethe

Hybrid−

SA

, it onsiders a two-stage-iterative pro edure instead of an iterative one step pro ess

wherein ea h step involves in turn the solution of a onvex optimization problem. The

rststep isbasedonthe

CP M

(i.e.,amat hingmethodlikewisetheEx itationMat hing

(7)

onguration

C

CP M

that minimizesthe following ost fun tion

Ψ

CP M

(C) =

M

X

m=1

a

s

m

a

d

m

a

s

m

Q

X

q=1

δ

c

m

q

P

M

j=1

δ

qc

j



a

s

j

a

d

j



P

M

j=1

δ

qc

j



a

s

j



2

2

(2)

obtained after simple algebra from the fun tional used in [5℄ and aimed at quantifying

the distan e in the mean square norm of the synthesized solution to the independently

referen e dieren e set

A

d

. In Eq. (2),

C = {c

m

; m = 1, . . . , M}

is a ve tor of integer

values (i.e.,

c

m

∈ [1, Q]

) that identies the sub-array membership of ea h element of

the array [4℄,

q

is the sub-array index and

δ

qc

m

is the Krone ker delta (i.e.,

δ

qc

m

= 1

if

q = c

m

,

δ

qc

m

= 0

otherwise). The solution of su h a problem is a ontiguous partition

of

M

ompletely ordered elementsinto

Q

subsetsthat mayberepresentedby

Q − 1

points

of division lying in any of the

M − 1

intervals between adja ent elements [12℄. This

solutionrepresents the best step-wise approximationof the onsidered partitionandthe

number of possible ontiguous partitions is equal to the number of ways of hoosing the

division points, whi h is the number of ombinations of

M − 1

dierent things taken

Q − 1

at a time [i.e.,

U

CP M

=

M − 1

Q − 1

, U

CP M

being the number of ontiguous

partition℄. A ordingly,

C

CP M

is determined by generating a sequen e of ontiguous

partitions

n

C

(k)

; k = 0, ..., K

o

starting from a guess aggregation

C

(0)

and updating the

solution [

C

(k)

← C

(k+1)

℄ just modifying the membership of the border elements [7℄ of

the array by meansof the lo alsear hstrategy presented in[7℄.

The se ond step exploits the following property [1℄: the optimal ompromise between

sum and dieren e patterns is a onvex problem with respe t to the sub-array weights

for a xed sub-array onguration

C

. A ordingly, on e the element membership has

been determined [i.e.,

C

(opt)

= C

CP M

℄, the optimal weight ve tor

W

(opt)

is omputed by

minimizingthe following ost fun tion

Ψ

CP

(W ) =

dℜ

n

f

d

(θ)

o

θ=θ

0

(3)

(8)

subje t to

dℑ

{

f

d

(θ)

}

θ=θ

0

= 0

and

f

d

(θ)

2

≤ ℵ (θ)

, where

θ

0

indi ates the boresight

dire tionand

ℵ (θ)

is anon-negativefun tion thatdenes the upperbounds forthe

side-lobes. Moreover,

W = {w

q

; q = 1, . . . , Q}

is the sub-array weight ve tor and

and

denote the real part and the imaginary one, respe tively. Towards this end, a

stan-dardgradient-basedoptimizationisperformedbygeneratingasu essionoftrialsolutions

n

W

(h)

; h = 0, ..., H

o

startingfromtheinitialguessgivenby

W

(0)

=

n

w

CP M

q

; q = 1, . . . , Q

o

being

w

CP M

q

=

"

P

M

j=1

δ

qcj

(

a

s

j

a

d

j

)

P

M

j=1

δ

qcj

(

a

s

j)

2

#

. 3 Numeri al Assessment

In this se tion, the ee tiveness and potentialities of the proposed hybrid method will

beassessed dealingwith three ben hmarks of the related literature in order to omplete

the preliminary validationpresented in[13℄ and to further onrm, in amore exhaustive

fashion,theunderlyingproof-of- on ept. Asamatteroffa t,thetest asesunderanalysis

are on erned with linear arrays and, for the sake of ompleteness, with both a small

(

M = 10

) and a large (

M = 100

) number of elements. Whatever the experiment, the

synthesisisaimedatminimizingthe

SLL

ofthe ompromisedieren epatternforaxed

beamwidthor,analogously,atmaximizingthe slopealongtheboresightdire tion[1℄xed

at

θ

0

= 0

o

.

The rst test ase deals with a linear array of

N = 20

elements. As far as the sum

mode is on erned, it has been xed to a Villeneuve sum pattern [16℄, with

n = 4

¯

and

SLL = −25 dB

, in the rst experiment, whereas a Dolph-Chebyshev [14℄ pattern with

SLL = −20 dB

has been hosen forthe se ondone. In the rst experiment, a

ongura-tionwith

Q = 5

sub-arraysanduniform lusteringis onsidered. Moreover,asregardsthe

optimal/referen e dieren e pattern of the approa hes that exploit the on ept of

on-tiguouspartitions,theex itations

A

d

havebeenxedtoamodiedZolotarevdistribution

(

n = 4

,

ε = 3

)whose pattern is hara terized by

SLL

ref

= −25 dB

. Figure1 pi torially

omparesthepatternsobtainedwiththe

EMM

[5℄,the

CMP

[8℄,andthe

Hybrid−CP M

approa h, whose nal sub-array ongurationand weights are

C

(9)

and

W

(opt)

= {0.3352, 1.1299, 1.3708, 1.8309, 1.8699}

, respe tively. It is worth noting

that the

Hybrid − CP M

approa h outperforms other methods with a redu tion of over

5 dB

and more than

1 dB

of the the

SLL

with respe t to the

EMM

and the

CP M

,

respe tively (Tab. I).

The se ond experiment is devoted to omplete the omparison by onsidering the

state-of-the-art methods based onsto hasti optimizations. In parti ular,the results fromthe

Hybrid − SA

[1℄ and the Dierential Evolution (

DE

) optimization algorithm [4℄ have

beentaken intoa ount. Thearray ongurationisthat with

Q = 8

. The array patterns

obtained fromthe appli ation of the

CP M

-based methodsa ording tothe guidelines in

[8℄ and by assuminga referen eZolotarev pattern[10℄ with

SLL

ref

= −39 dB

are shown

in Fig. 2(a) together with those from the other approa hes. Withreferen e to Fig. 2(a)

and as quantitatively estimated in Tab. I, the

Hybrid − CP M

plot presents a

SLL

of

−37.5 dB

(i.e.,almost

1 dB

belowthe

SLL

of the

Hybrid − SA

[1℄and more than

15 dB

when ompared to the patternin [4℄with the same number of sub-arrays),with

C

(opt)

=

{2 3 5 7 8 8 6 4 3 1}

and

W

(opt)

= {1.1836, 1.8818, 4.9795, 6.9286, 7.3462, 8.5109, 9.1480, 9.7003}

.

Furthermore,itisworthanalyzingthebeamwidths(

BW

s)(or,similarly,therstnull

posi-tions)oftheresultsinFig. 2(a). Asamatteroffa t,the

Hybrid−CP M

solutionpresents

not only the lowest

SLL

value, but also the narrower

BW

(i.e.,

BW

Hybrid−CP M

= 0.097

vs.

BW

Hybrid−SA

= 0.102

and

BW

DE

= 0.113

). Su h a result further onrms the

ee -tiveness of the

Hybrid − CP M

in dealing with the non- onvex part of the problem at

hand, thus allowingthe synthesis of ompromisepatterns with better hara teristi s. As

expe ted, the improvements in terms of

SLL

are even larger by setting the same

BW

onstraint used with

Hybrid − SA

[1℄. Towards this aim, the referen e ex itations

A

d

have been hosen to aord a Zolotarev dieren e pattern [10℄ with

SLL

ref

= −41 dB

.

In su h a ase, the a hieved solution has a

SLL = −38.0 dB

with an improvement of

about

0.5 dB

[Tab. I℄ ompared to that in Fig. 2(a). For ompleteness, the values of

the obtained lusteringand sub-arrayweightsare equalto

C

(opt)

= {2 4 6 8 8 8 7 5 3 1}

and

W

(opt)

= {0.7461, 2.0518, 4.0934, 5.4616, 6.5563, 8.2545, 8.5060, 10.0768}

,respe tively.

(10)

to get the nal lustering starting froma uniform one at the initialization, is

K

CP M

= 4

and

K

CP M

= 3

, for the two

CP M

-based syntheses, respe tively, and the total

CP U

-time is shorter than

10 [µsec]

in both ases. Moreover, the whole synthesis time of the

Hybrid − CP M

amounts to

3.078 [sec]

and

3.781 [sec]

, respe tively. As regards to the

higher burden of the

Hybrid − CP M

ompared to the

CP M

, this isdue to the solution

of the

CP

problem, whi h ends in

K

CP

= 18

iterations. For omparative purposes, let

us noti e that agreater omputational burden ae ts the

Hybrid − SA

[1℄ method sin e

K

Hybrid−SA

= 25

have been hosen and

CP

problem is solved at ea h iteration. Similar

on lusions hold true also for the

DE

approa h [4℄ where the number of iterations has

been set to

K

DE

= 10

.

Thelast omparativeexampledealswiththesynthesisofalargearray(

N = 200

). Thanks

to the omputational saving[18℄, the

CP M

-based pro edures are able to ee tively fa e

with su h a problem dimensionality. The sum oe ients have been hosen to generate

a Dolph-Chebyshev [14℄ pattern with

SLL = −25 dB

, while the values of the referen e

dieren e ex itations have been xed to those of the Zolotarev dieren e pattern with

SLL

ref

= −30 dB

. The behaviors of the patterns in Fig. 3 learly point out that the

integration of the

CP

optimization with the

CP M

allows a non-negligible enhan ement

ofthe

SLL

performan es. Asamatteroffa t,the

SLL

omputedin orresponden ewith

the lusteringdeterminedbythe

Hybrid − CP M

method(Tab. II)isofabout

3 dB

lower

than that of the standard version of the

CP M

(see Tab. I).

Finally, in order to assess the reliabilityof the synthesized solutions, let us evaluate the

radiated power patterns when mutual oupling (

MC

) ee ts are in luded into the array

model. Towards this purpose, the

MC

models proposed in [19℄ and [20℄ havebeen taken

intoa ount and omparedasin[21℄. The ase-of-studyexampledeals witha

20

-element

uniformlineararrayofthin

λ/2

dipolesorientedalongthe

z

axis[22℄. Asarepresentative

example,theee tsofthe

MC

onthesolutionobtainedwiththe

Hybrid−CP M

approa h

and shown in Fig. 1 are analyzed. Figure 4 shows the pi torial representations of the

relative power patterns for dierent situations. As it an be observed, the radiation

(11)

onsidered

MC

model. More in detail, the null positions are equal to those of the ideal

pattern, whilesomeperturbationsonlyae tthebehaviorofthe se ondarylobeswithout

ompromising the performan e of the dieren e beam.

4 Con lusions and Dis ussions

In this letter, a hybrid approa h devoted to the synthesis of the optimal ompromise

between sum and dieren e patterns for sub-arrayed monopulse antennas has been

pre-sented. In su h a method, the element memberships are dened through the

CP M

that

exploits the knowledge of the optimal dieren e mode oe ients to redu e the set of

admissible sub-array ongurations and to speed up the onvergen e of the ompromise

synthesis. The sub-array gains are then omputed by means of a onvex programming

pro edure that takes advantage from the onvexity of the arising ost fun tion in

orre-sponden e with a xed lustering. Representative results have been reported in order to

assess the potentialities of the proposed

Hybrid − CP M

te hnique in dealing with the

synthesis of both small and large monopulse arrays, where mutual oupling ee ts have

been taken intoa ount, aswell.

Con erning theoptimizationproblemathand,the proposed

CP M

-basedpro eduredoes

not guaranteethat the retrieved sub-array ongurationis the best hoi e for optimizing

the

SLL

. Asamatteroffa t,su ha onguration an be(theoreti ally)obtainedonlyby

meansof globaloptimizationpro edures. However, the proposedpro edurehas shown to

outperformstate-of-the-artglobaloptimizationstrategies. Furthermore,startingfromthe

assumption that

CP M

-based strategies are mat hingte hniques, the proposed approa h

an be easily extended to arbitrary sidelobe masks or patternshapes (for both sum and

dieren e patterns) by protably using the state-of-the-art approa hes (e.g., [17℄[11℄) to

set the referen e patterns. Future resear h works will be aimed at implementing su h

(12)

The authorswould liketothank the anonymous reviewers for theirveryuseful omments

(13)

[1℄ M. D'Urso, T. Isernia, and E. F. Meliado', An ee tive hybrid approa h for the

optimal synthesis of monopulse antennas, IEEE Trans. Antennas Propagat., vol.

55, no. 4,pp. 1059-1066,Apr. 2007.

[2℄ F. Ares, S. R. Rengarajan, J. A. Rodriguez, and E. Moreno, Optimal ompromise

among sum and dieren e patterns through sub-arraying, Pro . IEEE Antennas

Propagat. Symp., pp. 1142-1145, Jul.1996.

[3℄ P.Lopez,J.A.Rodriguez,F.Ares,andE.Moreno,Subarrayweightingfordieren e

patterns of monopulse antennas: joint optimization of subarray ongurations and

weights, IEEETrans.AntennasPropagat.,vol.49,no.11,pp.1606-1608,Nov.2001.

[4℄ S.Caorsi,A.Massa, M.Pastorino,and A.Randazzo, Optimizationofthe dieren e

patterns formonopulseantennasbyahybridreal/integer- odeddierentialevolution

method, IEEE Trans. Antennas Propagat., vol.53, no. 1, pp. 372-376,Jan. 2005.

[5℄ D. A.M Namara,Synthesis ofsub-arrayed monopulselineararrays through

mat h-ing of independently optimum sum and dieren e ex itations, IEE Pro . H

Mi- rowave AntennasPropagat., vol. 135, no. 5, pp. 293-296,O t. 1988.

[6℄ B. Hajek, Cooling s hedules for optimal annealing, Math. Op. Resear h, vol. 13,

pp. 311-329,1988.

[7℄ L. Mani a, P. Ro a, A. Martini, and A. Massa, An innovative approa h based

on a tree-sear hing algorithm for the optimal mat hing of independently optimum

sum anddieren eex itations, IEEE Trans.Antennas Propagat.,vol.56,no.1,pp.

58-66, Jan. 2008.

[8℄ P.Ro a,L.Mani a,andA. Massa,Synthesisofmonopulseantennasthrough

itera-tive ontiguouspartitionmethod, Ele tron. Lett.,vol.43,no. 16,pp. 854-856,Aug.

(14)

Bell System Te h. Journal, vol.47,pp. 623-640,1968.

[10℄ D. A.M Namara,Dire tsynthesisof optimumdieren epatternsfordis retelinear

arrays using Zolotarev distribution, IEE Pro . H Mi rowaves Antennas Propagat.,

vol. 140, no. 6,pp 445-450,De . 1993.

[11℄ O. M. Bu i, M. D'Urso, and T. Isernia, Optimal synthesis of dieren e patterns

subje t to arbitrary sidelobe bounds by using arbitrary array antennas, IEE Pro .

Mi rowaves Antennas Propagat., vol.152, no. 3,pp. 129 -137, Jun. 2005.

[12℄ W. D. Fisher, On grouping for maximum homogeneity, Ameri an Statisti al

Jour-nal,789-798,1958.

[13℄ P. Ro a, L.Mani a, and A. Massa, Hybrid approa h for sub-arrayed monopulse

antenna synthesis, Ele tron. Lett.,vol. 44,no. 2, pp. 75-76,Jan. 2008.

[14℄ C. L. Dolph, A urrent distribution for broadside arrays whi h optimizesthe

rela-tionship between beam width and sidelobe level, Pro . IRE, vol. 34, pp. 335-348,

1946.

[15℄ T. T. Taylor, Design of line-sour e antennas for narrow beam-width and low side

lobes, Trans.IRE, vol. AP-3,pp. 16-28,1955.

[16℄ A. T. Villeneuve,Taylorpatterns fordis retearrays,IEEE Trans.Antennas

Prop-agat., vol. 32,pp. 1089-1093, 1984.

[17℄ T. Isernia, P. Di Iorio, and F. Soldovieri, An ee tive approa h for the optimal

fo using of array elds subje t to arbitrary upper bounds, IEEE Trans. Antennas

Propagat., vol.48,no. 12,pp. 1837 - 1847, De .2000.

[18℄ P.Ro a, L.Mani a,A.Martini, andA. Massa,Synthesis oflargemonopulse linear

arraysthrough atree-basedoptimalex itationsmat hing, IEEEAntennasWireless

(15)

ofdipoles, IEEE Int.Conf.A oust.,Spee h, SignalPro ess.,Phoenix,AZ,1999,pp.

2961-2964.

[20℄ I. J. Gupta and A. K. Ksienski, Ee ts of mutual oupling on the performan e of

adaptivearrays, IEEE Trans.Antennas Propagat., vol. 31,no. 5, pp. 785-791,May

1983.

[21℄ Z. Huang, C. A. Balanis, C. R. Birt her, Mutual oupling ompensation in UCAs:

simulations and experiment, IEEE Trans. Antennas Propagat., vol. 54, no. 11, pp.

3082-3086, Nov. 2006.

(16)

Figure 1. Uniform Sub-arraying (

M = 10

,

Q = 5

) - Normalized ompromise

dieren e patterns obtained by means of the

Hybrid − CP M

method, the

CP M

[8℄, and the

EMM

[5℄.

Figure 2. Non-Uniform Sub-arraying (

M = 10

,

Q = 8

) -Normalized ompromise

dieren e patterns obtained by means of the

Hybrid − CP M

method, the

CP M

[8℄, the

SA − CP

approa h [1℄, and the

DE

optimization [4℄.

Figure 3. Large Arrays (

M = 100

,

Q = 6

) - Normalized ompromise dieren e

patterns obtained with the

Hybrid − CP M

methodand the

CP M

[8℄.

Figure 4. Mutual Coupling (

M = 10

,

Q = 5

) - Normalized ompromise dieren e

patterns obtained with the

Hybrid − CP M

in orresponden e with ideal sour es

and dipoles without and with mutual ouplingee ts.

TABLE CAPTIONS

Table I. Values of the

SLL

ofthe array fa tors inFigs. 1-3.

Table II. Large Arrays (

M = 100

,

Q = 6

) - Sub-array onguration and weights

determined by the

Hybrid − CP M

method (see Fig. 3 for the orresponding

(17)

-40

-35

-30

-25

-20

-15

-10

-5

0

0

0.2

0.4

0.6

0.8

1

Relative Power Pattern [dB]

u = sin

θ

Hybrid-CPM

CPM

EMM

(18)

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0

0.2

0.4

0.6

0.8

1

Relative Power Pattern [dB]

u = sinθ

Hybrid-CPM

CPM

Hybrid-SA

DE

(a)

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0

0.2

0.4

0.6

0.8

1

Relative Power Pattern [dB]

u = sinθ

Hybrid-CPM - SLL

ref

=-41[dB]

Hybrid-CPM - SLL

ref

=-39[dB]

Hybrid-SA

(b)

(19)

-40

-35

-30

-25

-20

-15

-10

-5

0

0

0.2

0.4

0.6

0.8

1

Relative Power Pattern [dB]

u = sin

θ

Hybrid-CPM

CPM

(20)

-40

-35

-30

-25

-20

-15

-10

-5

0

0

0.2

0.4

0.6

0.8

1

Relative Power Pattern [dB]

u = sin

θ

array factor

dipoles

dipoles with MC [18]

dipoles with MC [19]

(21)

[dB]

Ref erence Hybrid − CP M

CP M

EMM

Hybrid − SA

DE

M = 10

Q = 5

−25.0

−22.4

−21.0

−17.0

M = 10

Q = 8

−39.0

−37.5

−35.2

−36.5

−21.6

M = 10

Q = 8

−41.0

−38.0

−32.7

−36.5

−21.6

M = 100 Q = 6

−30.0

−28.3

−25.7

ab. I -P . Ro a et al., A Hybrid Approa h for the Syn thesis ... 19

(22)

M = 100

C

11111111111111222222223333333344444444555555555666

66666666666666666666666666666555555555444444433331

Q = 6

W

0.2133 0.7235 0.9417 1.0909 1.2752

1.4294

ab. I I -P . Ro a et al., A Hybrid Approa h for the Syn thesis ... 20

Figura

Fig. 1 - P. Ro

a et al., A Hybrid Approa
h for the Synthesis ...
Fig. 2 - P. Ro

a et al., A Hybrid Approa
h for the Synthesis ...
Fig. 3 - P. Ro

a et al., A Hybrid Approa
h for the Synthesis ...
Fig. 4 - P. Ro

a et al., A Hybrid Approa
h for the Synthesis ...

Riferimenti

Documenti correlati

O gráfico acima permite compreender a específica dimensão genocida do encarceramento de mulheres, em que o sistema penal funciona como meio não de defesa social, mas de

La tía Julia y el escribidor no es, probablemente, la novela más citada ni la mejor conocida por los estudiosos de la obra narrativa de Mario Vargas Llosa, pero frente

Este dato va muy de la mano con los últimos informes de la Organización Internacional del Trabajo, la cual en el 2017 señalaba que 1 de cada 5 jóvenes latinoamericanos estaba

Conforme desciende la edad, aumenta el porcentaje de personas que utilizan el euskera (tanto el de quienes lo utilizan menos que el castellano como el de quienes lo utilizan tanto

Negli anni novanta i diritti etnici sorgono come l’aspirazione di protezione dei diritti speciali delle minoranze, con l’obbiettivo – a livello del rapporto stato- nazione e a

latinoamericane: la sua legittimazione a proporre ricorso di incostituzionalità e ricorso di amparo, come pure l’incidenza del suo potere sull’annullabilità delle

1) Como elemento contextual, un protagonismo clave de las asociaciones civiles, ONG’s, voluntariado, o incluso determinadas comunidades indígenas – como formas sociales

Consapevoli della debolezza e della fragilità in cui versa tanto il mondo indigeno che l’intera istituzione rispetto alle possibilità del governo, tanto militari che