• Non ci sono risultati.

A restriction theorem for stable rank two vector bundles on P-3

N/A
N/A
Protected

Academic year: 2021

Condividi "A restriction theorem for stable rank two vector bundles on P-3"

Copied!
5
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Journal

of

Algebra

www.elsevier.com/locate/jalgebra

A

restriction

theorem

for

stable

rank

two

vector

bundles

on

P

3

Philippe Elliaa,∗, Laurent Grusonb

aDipartimentodiMatematica,35viaMachiavelli,44100Ferrara,Italy bL.M.V.,UniversitédeVersailles-StQuentin,45Av.desEtats-Unis,

78035 Versailles,France

a r t i c l e i n f o a b s t r a c t

Articlehistory:

Received4September2014 Availableonline19May2015 CommunicatedbyStevenDale Cutkosky

MSC:

14J60

Keywords:

Ranktwovectorbundles Projectivespace Restriction Plane

LetE beanormalized,ranktwovectorbundleonP3.LetH

beageneralplane.If E isstablewithc2 ≥ 4,weshowthat

h0(E

H(1))≤ 2+ c1.Itfollowsthath0(E(1))≤ 2+ c1.Wealso

showthat if E isproperlysemi-stable andindecomposable,

h0(E

H(1))= 3.

© 2015ElsevierInc.All rights reserved.

1. Introduction

Weworkoveranalgebraicallyclosedfieldofcharacteristiczero.LetE denoteastable, normalized (−1 ≤ c1(E) ≤ 0) rank two vector bundle on P3. By Barth’s restriction

theorem [1]if H is ageneralplane, then EH is stable (i.e.h0(EH)= 0) except ifE is a null-correlationbundle(c1= 0, c2= 1). Inthis noteweprove:

* Correspondingauthor.

E-mailaddresses:phe@unife.it(Ph. Ellia),Laurent.Gruson@uvsq.fr(L. Gruson).

http://dx.doi.org/10.1016/j.jalgebra.2015.05.009

(2)

Theorem 1. Let E be a stable, normalized, rank two vector bundle on P3. Assume c2(E)≥ 4. LetH beageneral plane,then:

(a) h0(E

H(1))≤ 1 ifc1=−1 and

(b) h0(E

H(1))≤ 2 ifc1= 0.

In particular itfollowsthat h0(E(1))≤ 2+ c 1.

Theideaoftheproofisasfollows:ifthetheoremisnottruetheneverygeneralplane contains auniqueline,L, such thatEL hassplitting type (r,−r + c1),r≥ c2− 1. We

call such a line a“super-jumping line”. Then we show that these super jumping lines areallcontainedinasameplane, H.TheplaneH isveryunstableforE.Performinga reductionstepwithH,wegetacontradiction.

We observe (Remark 6) that the assumptions (and conclusions) of the theorem are sharp.

For sakeof completeness we show (Proposition 7)that ifE is properly semi-stable, indecomposable, thenh0(E

H(1))= 3 forH ageneralplane.

2. Proofofthe theorem Weneedsomedefinitions:

Definition 2.LetE beastable,normalizedranktwovectorbundleonP3.AplaneH is

stable if EH isstable; itis semi-stable if h0(EH)= 0 but h0(EH(−1))= 0. A planeis

special if h0(EH(−m))= 0 withm> 1.

A lineisgeneralifthesplittingtypeofELis(0,c1).A lineL isasuper jumping line

(s.j.l.)ifthesplittingtypeofEL is(r,−r + c1),with r≥ c2− 1.

Lemma3.LetE beastable,normalizedranktwovectorbundleonP3.Assumec2(E)≥ 4

and h0(EH(1))> 2+ c

1 ifH isageneral plane. Then:

(i) Every stable plane contains a unique s.j.l., all the other lines are general or, if c1= 0,of type(1,−1).

(ii) Asemi-stableplane containsatmost ones.j.l.

(iii) Thereis atmostonespecial plane.

Proof. (i) IfH isastableplaneeverysectionofEH(1) vanishesincodimension two:

0→ OH→ EH(1)→ IZ,H(2 + c1)→ 0 (∗)

Wehaveh0(I

Z,H(2+ c1))≥ 2+ c1 bytheassumption.Ifc1=−1,Z hasdegreec2 and

(3)

theconicshaveafixedline,LH,andthereisleftapenciloflinestocontaintheresidual scheme of Z with respect to LH. It follows thatthe residual scheme is onepoint and thatlength(Z∩ LH)= c2. Soinboth casesthereis aline,LH,containingasubscheme ofZ oflengthc2.Restricting(∗)toLH wegetELH → OLH(1+ c1− c2).Itfollowsthat

thesplittingtypeofELH is(c2− 1,c1− c2+ 1),henceLH isas.j.l.IfL= LH isanother

lineinH,lets be thelengthofL∩ Z.Restricting(∗)toL we get 0→ OL(s− 1) → EL→ OL(c1− s + 1) → 0

Thissequence splitsexcept maybeifc1 = s= 0 (in thiscasethe splittingtypeis(0,0)

or (1,−1)). If L is as.j.l. then s≥ c2, henceL = LH. This shows thata stable plane containsauniques.j.l.Sinces≤ 1 (resp.s≤ 2)ifc1=−1 (resp.c1= 0),alinedifferent

fromLH isgeneralorhassplittingtype(1,−1). (ii)IfH issemi-stablethenwehave

0→ OH → EH → IT ,H(c1)→ 0 (∗∗)

Heredeg(T )= c2.IfL isalineinH lets denotethelengthofL∩ T .From(∗∗)weget

0→ OL(s)→ EL → OL(c1− s) → 0.Thissequence splits, so thesplitting typeof EL is(s,−s+ c1). IfL is as.j.l. thens≥ c2− 1 andL contains asubschemeof lengthat

leastdeg(T )− 1 ofT .Since c2≥ 4,suchas.j.l.isuniquelydefined.Thisshows thatan

unstableplanecontainsatmostones.j.l.

(iii)Wemayassumeh0(EH(−m− 1))= 0.Wehave

0→ OH→ EH(−m) → IX,H(c1− 2m) → 0 (∗∗∗)

IfL is ageneralline ofH (L∩ X = ∅) then EL hassplitting type(m,−m+ c1), with

m> 1.

Let’sshow thatsuch aspecial plane, ifit exists,is unique.Assume H1, H2 aretwo

special planes. Let H be ageneral stable plane. If Li = H ∩ Hi, then L1, L2 are two

linesofH withsplittingtype(ki,−ki+ c1),ki> 1.By(i)thisisimpossible. 2 Remark4.Therefereepointsoutthatpart(ii)ofLemma 3followsalsofrom Lemma4 of[3].

Wearereadyfortheproofofthetheorem.

Proofof Theorem 1. Let U ⊂ P∗3 be the dense open subset of stable planes. Wehave amap ϕ: U → G(1,3) definedbyϕ(H)= LH where LH isthe uniques.j.l. contained in H.Soϕ givesarationalmapϕ:P3 −−−> G(1,3).Weclaimthatϕ doesn’textend as amorphism to P3. Indeedinthe contrary casewe wouldhaveasection of the inci-dence variety I ={(H,L) | L ⊂ H} → P∗3. Since I Proj(ΩP

3(1)) (indeed the fiber

at H of ΩP

(4)

an injectivemorphismofvectorbundlesOP

3 → TP3(k),forsomek.Butthereisnotwist

of TP

3 withanon-vanishingsection. This canbe seenbylookingat c3(TP3(k)) orwith

the following argument: thequotient wouldbe aranktwo vectorbundle with H1

= 0, hence,byHorrocks’theorem,adirectsumofline bundleswhichisabsurd.

IfH isasingularpointofthe“true”rationalmapϕ,then,byZariski’sMainTheorem,

H contains infinitely many s.j.l. This implies thatH is the unique special plane (and thatϕ hasasinglesingularpoint).Weclaimthateverys.j.l.iscontainedinH.Indeed letR beas.j.l.notcontainedinH.Letz = R∩H.Thereexistsas.j.l.L⊂ H through z.

Theplane R,L containstwo s.j.l.henceitisspecial:acontradiction.

Since there are 2 s.j.l. we conclude that the general splitting type on the special planeH is(c2− 1,−c2+ c1+ 1).Som= c2− 1 i.e.h0(EH(−c2+ 1))= 0 (andthisisthe

leasttwisthavingasection).Nowweperformareductionstep(see[8,Proposition 9.1]). Ifc1= 0 weget

0→ E→ E → IW,H(−c2+ 1)→ 0

whereEisaranktworeflexivesheafwithChernclassesc1=−1,c2= 1,c3= c2

2−c2+1.

Since E isstable,E isstable too. By[8,Theorem8.2]we getacontradiction. Ifc1=−1,sinceEH∗ = EH(1) weget

0→ E(−1) → E → IR,H(−c2)→ 0

where the Chern classes of E are c1 = 0, c2 = 0, c3 = c2

2. Since E is stable E is

semi-stable.By[8,Theorem8.2]weget, again,acontradiction. 2

Remark5.Theargumenttoshowthatϕ doesn’textendtoamorphismistakenfrom[6]. Anotherwayto provethisistoconsider thesurfaces SLdefinedinthefollowingway:if

L is agenerallineeveryplanethroughL is (semi-)stable, thegeneralonebeing stable. So almost everyplane of the pencil containsa unique s.j.l. taking the closure yields a ruled surfaceSL.Then oneshowsthatSL= SDifL,D aregeneralandthenconcludes bylookingatSL∩ SD (see[5]).

Remark6.Theassumptionc2≥ 4 cannotbe weakenedinTheorem 1. Ifc1=−1 every

stable rankvector bundle, E, with c1 =−1, c2 = 2 issuch that h0(EH(1)) = 2 for a

general planeH (see [9]). IfE(1) is associated to four skewlines, then h0(EH(1))= 3

forH general andci(E)= (0,3).

Ontheotherhandaspecialt’Hooftbundle (E(1) associatedtoc2+ 1 disjointlineson

aquadric)isstablewithc1(E)= 0 and,ifc2≥ 4,satisfiesh0(EH(1))= 2 forH general.

Bytheway,Theorem 1givesbackh0(E(1))≤ 2 foraninstanton,aresultfirstproved

byBoehmerandTrautmann(see[2]andalso[10]).

FinallyletE(1) beassociated tothedisjointunionofc2/2 doublelinesofarithmetic

(5)

Concerningproperly semi-stablebundles (c1(E)= 0,h0(E)= 0, h0(E(−1))= 0)we

have:

Proposition7.LetE beaproperlysemi-stableranktwovectorbundleonP3.AssumeE

isindecomposable.If H isageneralplane then h0(EH(1))= 3.

Proof. We have 0 → O → E → IC → 0, where C is a curve (E doesn’t split) with

ωC(4) OC. Twisting and restricting to a general plane: 0 → OH(1) → EH(1)

IC∩H,H(1)→ 0.Ifh0(IC∩H,H(1))= 0 it followsfromatheoremofStrano [11,4]thatC isaplanecurve, butthisisimpossible (ωC(4) OC foraplanecurve). 2

Remark8.ToapplyStrano’stheoremweneedch(k)= 0 (see[7]).Thepreviousargument givesaquickproofofTheorem 1incasec1=−1,h0(E(1))= 0.Infactthisremarkhas

beenthestartingpointofthis note.

Remark9. Let C be aplane curve of degreed. A non-zero section of ωC(3) OC(d) yields 0→ O → F(1)→ IC(1)→ 0, whereF is astable ranktwo reflexivesheaf with Chern classes (−1,d,d2). If H is a general plane, h0(FH(1)) = 2 if d > 1 (resp. 3 if

d= 1). Similarly,consideringthe disjoint union of aplane curve and of aline,we get stablereflexivesheafwithc1(F)= 0 andh0(FH(1))= 3.SoTheorem 1doesn’tholdfor

stablereflexivesheaves.Theinterestedreadercantrytoclassifytheexceptions. References

[1]W.Barth,Somepropertiesofstablerank-2vectorbundlesonPn,Math.Ann.226(1977)125–150.

[2]W.Boehmer,G.Trautmann,SpecialinstantonbundlesandPonceletcurves,in:LectureNotesin Math.,vol. 1273,Springer,Berlin,1987,pp. 325–336.

[3]I.Coanda,OnBarth’srestrictiontheorem,J.ReineAngew.Math.428(1992)97–110.

[4]Ph.Ellia,Surleslacunesd’Halphen,in:LectureNotesinMath.,vol. 1389,Springer,1989,pp. 43–65. [5]Ph. Ellia,Somevanishing forthecohomology ofstablerank twovectorbundleson P3,J.Reine

Angew.Math.451(1981)1–14.

[6]D.Franco,Somevanishingsforthecohomologyofrank2stablereflexivesheavesonP3andfortheir

restrictiontoageneralplane,Comm.Algebra23 (6)(1995)2281–2289.

[7]R.Hartshorne,Thegenusofspacecurves,Ann.Univ.FerraraSez.VIISci.Mat.XL(1994)207–223. [8]R.Hartshorne,Stablereflexivesheaves,Math.Ann.254(1980)121–176.

[9]R.Hartshorne,I.Sols,StableranktwovectorbundlesonP3withc

1=−1,c2= 2,J.ReineAngew.

Math.325(1981)145–152.

[10]T.Nuessler,G.Trautmann,MultipleKoszulstructuresandinstantonbundles,Internat.J.Math. 5 (3)(1994)373–388.

[11]R.Strano, Acharacterizationof completeintersectioncurvesinP3,Proc.Amer. Math.Soc. 104

Riferimenti

Documenti correlati

In this paper we study the Brill Noether locus of rank 2, (semi)stable vector bundles with at least two sections and of suitable degrees on a general ν-gonal curve. We classify

In this note we give an easy proof of the existence of generically smooth components of the expected dimension of certain Brill–Noether loci of stable rank 2 vector bundles on a

The two appendices contain some further results on the theory of push-forwards through multiple valued functions: in particular, in Appendix A we present a slightly simplified

While in the first testing session the users were asked to move the virtual object on the display one time for each of the three target points, in the second testing session the

Da convento a Ministero a Tribunale, è importante che il complesso torni oggi alla città e alla comunità internazionale con attività dedicate alla cultura, all’arte e alla ricerca.

Again, the “axial force” loading condition (Figures 7.17, 7.18 and 7.19) shows some anomalies that could be justified by the hypotheses made on the centreline of the beam.

HD 164492A, the O7.5 star responsible for providing most of the ionizing UV photons to the whole nebula. The warm-dust millimetre and far-IR Herschel emission is nearly

While the addition of triamcinolone to threshold grid laser did not seem to help with vision improvement, the medication’s addition to both anti-VEGF therapy and vitrectomy with