ContentslistsavailableatSciVerseScienceDirect
Structural
Change
and
Economic
Dynamics
j o ur n a l ho m e p age :w w w . e l s e v i e r . c o m / l o c a t e / s c e d
The
distribution
of
household
consumption-expenditure
budget
shares
Matteo
Barigozzi
a,
Lucia
Alessi
b,
Marco
Capasso
c,
Giorgio
Fagiolo
d,∗aLondonSchoolofEconomics,London,UK
bEuropeanCentralBank,FrankfurtamMain,Germany
cUNU-MERITandSchoolofBusinessandEconomics,MaastrichtUniversity,TheNetherlands
dSant’AnnaSchoolofAdvancedStudies,LaboratoryofEconomicsandManagement,Pisa,Italy
a
r
t
i
c
l
e
i
n
f
o
Articlehistory:
Received11February2011
Receivedinrevisedform
26September2011 Accepted27September2011 Available online xxx JELclassification: D3 D12 C12 Keywords:
Householdconsumptionexpenditure
Budgetshares
Sumoflog-normaldistributions
a
b
s
t
r
a
c
t
Thispaperexploresthestatisticalpropertiesofhouseholdconsumption-expenditure
bud-getsharedistributions– definedastheshareofhouseholdtotalexpenditurespentfor
purchasing aspecificcategory ofcommodities – foralargesample ofItalian
house-holdsintheperiod1989–2004.Wefindthathouseholdbudgetsharedistributionsare
fairlystableovertimeforeachspecificcategory,butprofoundlyheterogeneousacross
commoditycategories.Wethenderiveaparametricdensitythatisableto
satisfacto-rily characterize(fromaunivariateperspective)householdbudgetshare distributions
and:(i)isconsistentwiththeobservedstatisticalpropertiesoftheunderlyinglevelsof
householdconsumption-expendituredistributions;(ii)canaccommodatetheobserved
across-categoryheterogeneityinhouseholdbudget-sharedistributions.Finally,we
taxono-mizecommoditycategoriesaccordingtotheestimatedparametersoftheproposeddensity.
Weshowthattheresultingclassificationisconsistentwiththetraditionaleconomicscheme
thatlabelscommoditiesasnecessary,luxuryorinferior.
© 2011 Elsevier B.V. All rights reserved.
1. Introduction
Thestudy ofhouseholdbudgetallocation –i.e., how
the budgetof a household is allocated tobuy different
commodities–isoneofthemosttraditionaltopicsin
eco-nomics(PraisandHouthakker,1955).Householdbudget
shares contain useful information to shed light onthis
issue.Indeed,thehouseholdbudgetshareforagiven
com-modity category g is defined as the ratio between the
expenditureforthecommoditycategorygandtotal
house-holdresources,asmeasuredby,e.g.,totalexpenditureor
totalincome.
Inthelastdecades,thistopichasreceivedalotof
atten-tionbyappliedeconomists.Inparticular,manyeffortshave
beendevotedtodevelopstatisticaldemandfunctionsfor
homogeneousgroupsofcommodities,e.g.,byrelatingthe
∗ Correspondingauthor.
E-mailaddress:[email protected](G.Fagiolo).
expenditureofconsumersorhouseholdsforagiven
com-moditycategorytopricesandindividual-specificvariables
astotalexpenditureorincome,householdsize,
head-of-householdage,andsoon(Deaton,1992;Blundell,1988).A
paradigmaticexampleinthislineofresearchisthe
analy-sisofEngelcurves(Engel,1857;Deaton,1992;Blundell,
1988;Chai andMoneta,2010), whichdescribehow the
expenditureforagivencommoditycategoryvarieswith
household’stotalresources(Lewbel,2008).
Sucha researchprogram hasbeenmostly
character-izedbyatheory-drivenapproach(Attanasio,1999).Infact,
the parametric specifications that are employed in the
estimationofeach specificdemandfunctionarein
gen-eraltakentobe consistent(albeitina weakway)with
someunderlyingtheoryofhouseholdexpenditure
behav-ior, which very often is the standard model based on
utilitymaximization undertakenbyfullyrationalagents
(Banks et al., 1997; Blundellet al., 2007). Furthermore,
nomatter whetherparametric or non-parametric
tech-niquesareemployed,theestimationofdemandsystems
0954-349X/$–seefrontmatter © 2011 Elsevier B.V. All rights reserved.
or Engel curves compresses household heterogeneity –
foranygivenincomeortotal expenditurelevel– tothe
knowledgeofthefirsttwo moments(atbest)of
house-holdexpenditurelevelorbudgetsharedistributionforthe
commoditycategoryunderstudy.
This of course is fully legitimate if the aim of the
researcher is to empirically validate a given
theoreti-cal model, or if there are good reasonsto believe that
thedistributionunderanalysiscanbefullycharacterized
byits first two moments. However, froma more
data-drivenperspective,constraininginthiswaytheexploration
of the statistical properties of the observed household
expenditurepatternsmaybeproblematicforanumberof
reasons.
First, heterogeneity of household
consumption-expenditure patterns is widely considered as a crucial
featurebecause,asPasinetti(1981)notices:“Atanygiven
levelofpercapitaincomeandatanygivenpricestructure,
the proportion of income spent by each consumer on
anyspecificcommoditymaybeverydifferentfromone
commodityto another”. This suggests that, in order to
fullycharacterizesuchheterogeneity,oneshouldperform
distributionalanalysesthatcarefullyinvestigatehowthe
shape–andnotonlythefirsttwomoments–ofhousehold
consumption expenditure and household budget share
distributions change over time and between different
commoditycategories.
Second,understandingheterogeneity maybe
impor-tant to build sound micro-founded, macroeconomic,
consumption models that go beyond the often
dis-putablerepresentative-agentassumption(Kirman,1992;
Hartley,1997;GallegatiandKirman,1999).Forexample,
Caselli and Ventura(2000) showthat models based on
therepresentative-agent assumption impose almost no
restrictionsonhouseholdconsumptionexpenditureand
budgetsharedistributions.Onthecontrary,ForniandLippi
(1997) demonstrate that heterogeneity is crucial when
aggregatingindividualbehaviorinmacromodels.
Further-more,Ibragimov(2005)providessupporttotheinsightthat
higher-than-twomomentscanhavearelevantimpacton
thedynamicsofmacromodels(ontheseandrelatedpoints,
seeHildenbrand,1994,amongothers).
Third,adoptingamoretheory-freeapproachfocusedon
distributionalanalysismayhelptodiscoverfreshstylized
factsrelatedtohowhouseholdsallocatetheir
consump-tionexpendituresacrossdifferentcommoditycategories.
In fact, theory-free approaches aimed at searching for
stylizedfactsarenot newineconomics and
economet-rics (see inter alia Kaldor, 1961; Hendry, 2000). More
recently,this perspective has been revived in the field
ofeconophysics,wherethestatisticalpropertiesofmany
interestingmicroandmacroeconomicvariables(e.g.,firm
sizeandgrowthrates,industryandcountrygrowthrates,
wealthandpersonalincome)havebeensuccessfully
char-acterizedbyusingparametrictechniques(Chatterjeeetal.,
2005;ClementiandGallegati,2005;Axtell,2001;Bottazzi and Secchi, 2006; Fagiolo et al., 2008). These studies
showthat,despitetheturbulencetypicallydetectedatthe
microeconomiclevel(e.g.,entryandexitoffirms;positive
andnegativepersistentshockstopersonalincome),there
existsanincredible highlevelofregularityintheshape
ofmicroeconomiccross-sectiondistributions,bothacross
yearsandcountries.
Notwithstandingsuchsuccessfulresults,similar
distri-butionalanalyseshave not beenextensivelyperformed,
sofar,onconsumption-relatedmicroeconomicvariables
suchashouseholdconsumptionexpendituresandbudget
shares,forwhichreliableanddetailedcross-sectiondata
arealsoavailable.Thisissomewhatsurprisingbecause– as
Attanasio(1999)notices–understandingconsumptionis
crucialtobothmicro-andmacro-economists,asitaccounts
forabouttwo-thirdsofGDPanditdecisivelydetermines
(andmeasures)socialwelfare.
Thereare onlythree exceptions–to thebestofour
knowledge–tothislackofdistributionalstudieson
house-hold consumption indicators. Chronologically, the first
instanceisthepioneeringworkofAitchison(1986)on
com-positionaldataanalysis.There,budget-sharedataareonly
toillustrateapplicationsofamultivariateapproachthat
aimsatparametricallymodelingdatadefinedby
construc-tiononthesimplex(seealsoMcLarenetal.,1995;Fryetal.,
1996,foranapplicationofcompositional-dataanalysisto
consumptionbudgetshareswithinthecontextofmodified
almost-idealdemandsystems).Nothingissaid,however,
ontheeconomicimplicationsofsuchanapproach,neither
themethodisappliedtootherdatabases.Weshallgoback
tothesepointsbelow.
More recently, Battistin et al.(2007) employ
expen-diture and incomedata fromU.K. and U.S.surveys and
showthattotalhouseholdconsumptionexpenditure
dis-tributionsarewell-approximatedbylog-normaldensities
(or,astheyputit,are“morelog-normalthanincome”).
In a complementary paper, Fagiolo et al. (2010) argue
that log-normalityisvalidonlyasa firstapproximation
forItaliantotalhouseholdconsumptionexpenditure
dis-tributions, while a refined analysis reveals asymmetric
departures from log-normality in the tails of the
dis-tributions. Both contributions focus on characterizing,
from a univariate perspective, the dynamics of
house-hold consumption-expenditure aggregate distributions
only. Theissue ofexploring thestatisticalproperties of
householdconsumptionexpenditureorbudgetshare
dis-tributionsdisaggregatedamongcommoditycategoriesis
notaddressed.
Thispaperisapreliminaryattempttofillthesegaps.
Todoso,weemploydatafromthe“SurveyofHousehold
IncomeandWealth”(SHIW)providedbytheBankofItaly
tostudyhouseholdconsumptionexpenditureandbudget
sharedistributionsforasequenceof8wavesbetween1989
and2004.Tofullyexploitthedatabase,wefocusonfour
commodity categories:nondurable goods,food,durable
goods,and insurancepremia. Notethat foodis actually
a subcategory of nondurable goods,but for its intrinsic
importanceweconsideritasaseparatecommodity
cat-egorythroughout thepaper.Sinceinsurancepremiaare
rarelystudiedintheconsumptionliteratureasacategory
onitsown,weexplicitlyconsidertheminthis studyto
understandwhethertheyexhibit differentdistributional
propertiesascomparedtomoretraditionalconsumption
categories.
We aim at empirically investigating the
distributions(andconsumptionexpendituredistributions)
of thesefourcommoditycategories and theirdynamics
withaparametricapproach,wherebyunconditional
distri-butionswemeanherenotconditionedtototalhousehold
resources,i.e.,incomeortotalexpenditures.More
specif-ically, we look for a unique, parsimonious, closed-form
univariate density family that: (i) is able to
satisfacto-rily fit observed unconditional household budget share
distributions, so as to accommodate the existing
het-erogeneityemergingacrosshouseholds,amongdifferent
commodity categories and over time; (ii) is consistent
withthestatisticalpropertiesofthe(observed)household
consumptionexpendituresdistributionsemployedto
com-putebudgetsharedistributions;(iii)featureseconomically
interpretable parameters that,once estimated,can help
onetobuildeconomicallymeaningfultaxonomiesof
com-moditycategories.
Webeginwithadescriptiveanalysisaimedat
empir-ically exploring thestability of householdbudget share
distributionsovertime.Estimatedsamplemomentsshow
thattheshapeofthehouseholdbudgetsharedistribution
ofeachgivencommoditycategorydoesnotdramatically
change over thetime interval considered.However, for
anygivenwave,thereemergesalotofacross-commodity
heterogeneityintheobservedshapesofhousehold
bud-getsharedistributions.Moreprecisely,weshowthatthe
underlyinghousehold-consumptionexpenditures
univari-ate distributions – for any given wave and commodity
category –are well-proxiedbylog-normal distributions
(withverydifferentparameters).
Yet,apreliminarymultivariateinvestigationindicates
that existing multivariate parametric density families
definedonthesimplex(i.e.,describingsharesthatsumto
one;seeAitchisonandEgozcue,2005,forareview)arenot
abletosatisfactorilymodelourdata.Therefore,weturnto
aunivariateapproachandwederiveanoriginalfamilyof
densities,definedovertheunitinterval,whichisconsistent
withthedetectedlog-normalityofhousehold
consump-tionexpendituresdistributions.Thepreciseformulationof
theclosed-formdensitycanbeshowntodependonthe
chosenapproximationfortherandomvariabledefinedas
thesumof(possiblycorrelated)log-normaldistributions.
Intheliteraturethereexisttwopossibleapproximations,
namelythelog-normalandtheinverse-Gamma,whichwe
bothfittoourdata.Tobenchmarkourresults,wealsofit
householdbudgetsharedistributionswithunivariateBeta
distributions,whichareinprincipleveryflexibledensities
definedovertheunitintervalbutlackanyconsistencywith
theshapeoftherandomvariableswhichhouseholdbudget
sharesstemfrom.
Wefindthat,inthecaseofItaly,forallthewavesunder
studyandforallthecommoditycategories,theproposed
density family – using either approximation –
outper-formstheBetainfittingobservedhouseholdbudgetshare
distributionsforthemajorityofcases.Indeed,according
tosimple measures ofgoodness-of-fit (e.g.,theaverage
absolutedeviation), theproposeddensity familyis able
tobetteraccommodatetheexistingshape-heterogeneity
that characterizes householdbudget share distributions
acrossdifferentcommoditycategories.Furthermore,the
estimated parameters of the proposeddensity allowto
reproduceaneconomicallymeaningfultaxonomyof
com-modity categories, which interestingly maps into the
traditionalclassificationofcommoditiesamongnecessary,
luxuryorinferiorgoods.
The paper is structured as follows. In Section 2 we
describethedatabasethatweemployintheanalysisand
wediscusssomemethodologicalissues.Section3presents
apreliminarydescriptiveanalysisofhousehold
consump-tionexpenditureandbudgetsharedistributions,whereas
Section 4 discusses multivariate analyses. In Section 5
we derivetheproposedfamily of univariate theoretical
densities.Section6presentsfittingresultsobtainedwith
thatdensity family,andcomparesthemwithBeta
vari-ates.Section7brieflyreportsonsomeinterpretationsof
ourexercisesintermsofcommoditycategorytaxonomies.
Finally,Section8concludes.
2. Dataandmethodology
Theempiricalanalysisbelowisbasedonthe“Survey
ofHouseholdIncomeandWealth”(SHIW)providedbythe
BankofItaly.TheSHIWisoneofthemainsourcesof
infor-mationonhouseholdincome and consumption inItaly.
Indeed,thequalityoftheSHIWisnowadaysverysimilarto
thatofsurveysinothercountrieslikeFrance,Germanyand
theU.K.SHIWdataareregularlypublishedintheBank’s
supplementstotheStatisticalBulletinandmadepublicly
availableonline1(seeBrandolini,1999;Battistinetal.,2003
foradditionaldetails).
TheSHIWwasfirstlycarriedoutinthe1960swiththe
goalof gatheringdataonincome and savings ofItalian
households.Overtheyears,thesurveyhasbeenwidening
itsscope.Householdsarenowaskedtoprovide,in
addi-tiontoincomeandwealthinformation,alsodetailsontheir
consumptionbehaviorandeventheirpreferredpayment
methods.Sincethen,theSHIWwasconductedyearlyuntil
1987(exceptfor1985)andeverytwoyearsthereafter(the
surveyfor1997wasshiftedto1998).
Thepresentanalysisfocusesontheperiod1989–2004.
Wethereforehave8waves.Thesampleusedinthemost
recentsurveyscomprisesabout8000households(about
24,000 individuals distributed across about 300 Italian
municipalities).Thesampleisrepresentativeofthe
Ital-ianpopulationandisbasedonarotatingpaneltargetedat
4000units.Availableinformationincludesdataon
house-holddemographics(e.g.,ageofhouseholdhead,numberof
householdcomponentsandgeographicalarea),disposable
income,consumptionexpenditures,savings,andwealth.2
In this study, we employ yearly data on (nominal)
aggregate,householdconsumption expendituresand on
thefollowingdisaggregatedcommoditycategories:
non-durablegoods(N),durablegoods(D),andinsurancepremia
(I). Nondurable goods include also food (F), which we
1 http://www.bancaditalia.it/statistiche/indcamp/bilfait.
2 Moreprecisely,thesampleunitisthehouseholddefinedinabroad
senseasagroupofindividualsrelatedtoeachotherbylinksofblood,
marriageoraffection,livingtogetherandpooling(partof)theirincomes.
Thesurveywasrestrictedtohouseholdswithatleasttwomembers.Data
werenotaggregatedacrossfamilysizes.Formoredetails,seeBrandolini
consider as a separate (sub-)category of commodities.
Accordingtothedefinition of theBank ofItaly,
expen-dituresfornondurablegoodscorrespondtoallspending
onbothfoodandnon-fooditems,excludingexpensesfor
durablegoodsandinsurance,maintenance,mortgageand
rentpayments.Theexpendituresforfoodincludespending
onfoodproductsinshopsandsupermarkets,andspending
onmealseatenregularlyoutsidehome.Household
expen-dituresfordurablegoodscorrespondtoitemsbelongingto
thefollowingcategories:preciousobjects,meansof
trans-port, furniture, furnishings, household appliances, and
sundryarticles.Finally,thecommoditycategorylabeledas
“insurances”includesthefollowingformsofinsurance:life
insurance,privateorsupplementarypensions,annuities
andotherformsofinsurance-basedsaving,casualty
insur-ance,and healthinsurancepolicies.Notethat insurance
expenditure,strictusensu,mightbeconsideredasaform
ofsaving.However,weconsiderinsurancesasa
commod-itycategoryforbasicallytworeasons:(i)insuranceforms
mightalsobeseen asconsumption goods,insomuchas
theycoveractualexpenseswhicharebornebythe
house-hold(e.g.,forpharmaceuticalproducts);(ii)theinsurance
itselfmightbeconsidered–andindeedappearsin
theo-reticalmodels–asagood,whichanagentmightormight
notpurchase:theonlydifferencewithrespecttoa
tradi-tionalconsumptiongoodstandsinthefactthatthedegree
ofriskaversioninfluencestheamountofinsurance
pur-chased.ThemajordrawbackoftheSHIWdatabaseisthat
itdoesnotallowforfurtherdisaggregationof
consump-tioncategories intomore detailed groups. Furthermore,
thedisaggregationlevelofcategoriesasdurablegoodsand
insurancepremiaisnottotallycomparable,astheformer
certainlycomprisesmuchmoreitemsthanthelatter.As
alreadydiscussedabove,however,insurancepremiaare
notfrequently studiedin theconsumption literatureas
acategoryonitsown.Therefore,itseemsinterestingto
explicitlyaddresshereitsstudytobetterunderstandthe
extenttowhichitsstatisticalpropertiesdifferfromthose
ofmoretraditionalconsumptioncategories.
The SHIW database includes a variable recording
householdtotal(aggregate)expenditure.Thisquantityis
reportedby households in the SHIWindependently on
theirexpenditurefordisaggregatedcommoditycategories.
Therefore,itdoesnotnecessarilycorrespondtothesumof
expendituresofthethreemacroconsumptioncategories
consideredhere(N,DandI),thesummakingupon
aver-age80%oftotal expenditures.Inwhat follows,weshall
employtotal householdexpenditureasaproxyfortotal
householdresources(moreonthatbelow).Household
bud-getsharesareaccordinglycomputedasratiosofnominal
yearlyquantities.Moreformally,ourdatastructure
con-sistsofthedistributionofyearlyhouseholdbudgetshares
definedas: Bh,ti =C h,t i Ch,t, (1) wheret∈T={1989,1991,1993,1995,1998,2000,2002,
2004} are survey waves, i∈{N, F, D, I} are the four
commoditycategories,Cih,t isthe(nominal)consumption
expenditureofhouseholdh=1,...,Ht forthe
commod-itycategoryi,andCh,tisthe(nominal)totalconsumption
expenditureofhouseholdh,asreportedintheSHIW.All
household consumption expenditure observations have
been preliminary weighted using appropriate sample
weightsprovidedbytheBankofItaly.Weightingensures
thatsocio-demographicmarginaldistributionsareinline
withthecorrespondingdistributionsfoundinItalian
Sta-tisticalOffice(ISTAT)populationstatisticsandlaborforce
surveys.3Outliers–definedasobservationsgreaterthan10
standarddeviationsfromthemean–havebeenremoved.4
Sinceineachwavethereweresomecasesofunrealistic
(e.g.,zeroor negative) aggregateconsumption
expendi-turefigures,wedroppedsuchobservationsandwekept
onlystrictly positiveones.Wealsodropped households
forwhich yearlyexpendituresforatleastone
commod-itywaslargerorequaltototalexpenditure(asreportedin
theSHIW).Sinceweruleoutborrowing,Bh,ti ∈(0,1).
Finally,weexcludedzeroobservationsfromthe
anal-ysis,forthefollowingreasons:(i)itisnotclearwhether
zeroentriesfornondurablegoodsmeananull
consump-tion expenditure or rather theyare due to mistakes in
datacollection;(ii)thedecisionwhethertobuyadurable
goodor aninsuranceornot (dependingforexampleon
whetherhouseholdincomeexceedssomethreshold)is
dif-ferentfromandprecedesthedecisiononthebudgetshare
possiblyallocated tothis good;wefocusonthesecond
stepofthedecisionalprocess;(iii)thedegreeofbunching
atzeroonetypicallyfindsinthedistributionsofdurable
goodsandinsuranceexpendituresisinfluencedbyfactors
whicharelikelytovaryoverthebusinesscycle;(iv)
sam-plemomentscomputedincludingzeroeswouldbepoorly
informative,giventherelativelylargeproportionofzero
observations.Therefore,weendedupwithachanging(but
stillverylarge)numberofhouseholdsineachwaveHt(see
Table3).
Inwhatfollows,weshallalsomakeuseofan
alterna-tiverepresentationofourdatathatallowsonetolookat
budget-share vectorsaspointsin thesimplex. For each
householdhandwavet,considerthevector
Bh,t=(Bh,t
N ,Bh,tD ,Bh,tI ,BOh,t), (2)
whereBh,tO isthebudgetsharesforallothercommodity
categoriesdefinedas:
Bh,tO =1−(Bh,tN +Bh,tD +Bh,tI ), (3)
ObviouslythisimpliesthatBh,tliesinthesimplex,whichin
ourcasehasa3-dimensionalEuclideanspacestructure.In
otherwords,weshalldefinethehouseholdconsumption
expenditurecategory“Others”(O)asCOh,t=Ch,t−(CNh,t+
CDh,t+CIh,t)andcomputebudgetsharesasin(1)fori∈{N,
D,I,O}.
3Aninterestingandopenissueconcernstheimpactthatweighting,
throughpopulationtrends,mayhaveonthedistributionalpropertiesof
budgetshares.Additionaldataonphenomenasuchaspopulation
age-ing,increasingshareofforeignpopulation,loweringfertilityrateand
intra-countrymigrationflowsmayshedsomelightontheimplications
ofdemographictrendsforourresults.
4Thechoiceof10standarddeviationswasdoneinordertomaximize
thenumberofobservationstoberetainedinthesample.Ourexercises
showthatchoosingasmallernumberofstandarddeviationsdoesnot
0 0.5 1 1.5 2 2.5 x 105 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5x 10 5
Total Consumption Quantiles
Income Quantiles
Fig.1.Quantile–quantileplotcomparingincomeandtotalconsumption
expendituredistributions.Wave,2004;Y-axis,incomequantiles;X-axis,
consumptionquantiles.
Twoimportantpointsdeservetobediscussed.First,we
usetotalexpendituresinsteadofincometoproxy
house-holdtotalresourcesand computebudgetshares.Thisis
primarilydoneinordertoseparatetheproblemof
allo-catingtotalconsumptiontovariouscommoditiesfromthe
decisionofhowmuchtosaveoutofcurrentincome.Notice
that this is commonpractice in the relevant literature.
Indeed,duetotherelativelyhigherreliabilityof
expendi-turedata(ascomparedtoincomeones),mostofempirical
studiestypicallyusehouseholdconsumptionexpenditures
eveniftheoreticalmodelsareoriginallydevelopedinterms
oftotalincome(see,e.g.,Banksetal.,1997).Sinceincome
isavailableintheSHIWdatabase,wereplicatedour
exer-cises by defining household budget shares in terms of
household-incomeratioswithoutanyappreciable
differ-ences in theresultsas faras descriptive analyseswere
concerned.Quantile–quantileplotscomparinghousehold
incomeandtotalconsumptionexpendituredistributions,
reported in Fig.1 for wave 2004,show that as income
increasestheproportionofincomedevotedtototal
con-sumptionalsoincreases.
Second,asalreadymentioned,thisstudyisnot
explic-itlyconcernedwiththeestimationofEngelcurves,either
withparametricornon-parametricapproaches(Engeland
Kneip,1996;ChaiandMoneta,2008).Conversely,wetreat
householdbudgetsharesasagnosticvariables thathave
aneconomicmeaning‘perse’.Moreover,notethatEngel
curvesdescribetherelationshipbetweenconditional
aver-agesofhouseholdconsumption expenditures(orbudget
shares) for a particular commoditycategory and levels
ofincomeortotalconsumptionexpenditure,where
aver-agesarecomputedconditionaltolevelsofincomeortotal
consumptionexpenditure,andpossiblyotherexplanatory
variables. In this paper, we begin instead to study the
statistical propertiesof unconditionalhouseholdbudget
sharedistributions,thatis–foranycommoditycategory
andwave–wepooltogetherhouseholdsirrespectiveof
theirincomeor total consumptionexpenditure,and we
consequentlystudytheshapeoftheensuingdistributions
andtheirdynamics.Inotherwords,wedonotcompress
the overall across-household heterogeneity existing for
each commodity category and wave, as done in
Engel-curve studies. This is because the goal of the paper is
simplytocharacterizethedistributionalshapeof
uncon-ditional household budget share distributions and not
how they change with household total budget. As we
brieflyrecallintheconcludingsection,thismight
envis-ageapossibleextensionofthepresentwork.Onemight
indeed condition household budget share distributions,
foreach commoditycategoryand wave, tototal
house-holdresourcesandinvestigatehowconditionalhousehold
budgetsharedistributionschangeasincomeortotal
con-sumptionexpenditureincreases.
3. Apreliminarystatisticalanalysis
In this section,we beginwith a preliminary,mainly
descriptive,statistical analysisofItalian household
con-sumption expenditure and budget share distributions,
mainlyfocused oninvestigating whethersuch
distribu-tions–andtheircorrelationstructure–exhibitstructural
changesovertime.
3.1. Householdexpendituredistributions
Let us start with household consumption
expendi-turedistributions.Fig.2 showskerneldensityestimates
of thelogs of household consumption expenditure
dis-tributions for waves 1989, 1993, 1998, and 2002 (for
thesake ofexposition).5 Apreliminaryvisualinspection
of thefourpanels indicatesthat, withtheexception of
insurancepremia,theshapeofanygivenhousehold
con-sumptionexpendituredistributiondoesnotdramatically
changeovertime. Thisevidenceseemstobeconfirmed
byTable1,wherewereportestimatedsamplemoments
forloggedhouseholdconsumptionexpenditure
distribu-tions, and by Fig. 3, which shows theirevolution over
time. We will go backtothis questionin more details
in the next section. For the moment, notice that
sam-ple means show a positive trend in time because we
are considering nominalquantities, but we expect also
real values to display a rightward average shiftdue to
economic growth. However,insurance expenditure
dis-tributions display a more pronounced trend, which is
probablyduetotheobservedstructuralincreasein
expen-ditureforinsurancepremiafromthelate90salsoinreal
terms. Furthermore, Table 2 shows sample correlations
and p-values for the null hypothesis of no correlation
5 Allkerneldensityplotsinthepaperhavebeenobtainedusingdensity
estimatescomputedwiththefunctionkdensfromtheStatasoftware
pack-age(http://ideas.repec.org/c/boc/bocode/s456410.html).Densitieshave
beenestimatedon100pointsforthelogconsumptionlevels,and50points
forthebudgetshares.AGaussiankernelhasbeenused.Thebandwidth
hasbeenselectedaccordingtothe“ruleofthumb”suggestedbySilverman
(1986).Althoughseveralrefinementsofthe“ruleofthumb”havebeen
presentedintheliterature(see,e.g.,SheatherandJones,1991),weopted
fortheoriginalmethodby(Silverman,1986)becauseitwastheonlyone
Fig.2.Kernel-densityestimatesofloggedhouseholdconsumptionexpendituredistributions:evolutionovertime.Solidline,year1989;dashed-dotted
line,year1993;dottedline,year1998;dashedline,year2002.
between household consumption expenditure
distribu-tionsfordifferentcommoditiesin2004,wherecorrelation
coefficientsarecomputed(hereandinwhatfollows)only
for households with non-zero expenditure for all
com-modity categories.As expected, thecorrelations among
householdconsumptionexpendituredistributionsareall
stronglypositiveandsignificant.
Theparabolicshapeofloggedhouseholdconsumption
expenditurekernelsinFig.2hintstothepossibilitythatthe
(disaggregated)distributionsmightbewell-proxiedby
log-normaldensities.Noticethattheexistingliteratureshows
thataggregate householdconsumption expenditure
dis-tributionsaretypicallylog-normallydistributed(Battistin
etal.,2007).InFagioloetal.(2010)weshowthat,asafirst
approximation,similarevidenceistruealsofortheItalian
totalhouseholdconsumptionexpenditure.Itisthen
worth-whiletocheckifalsocommodity-disaggregatedhousehold
consumptionexpenditures behavethe sameway.Fig.4
indicatesthata log-normal densityprovidesreasonable
fitsalsoforourhouseholdconsumptionexpenditure
dis-tributionsdisaggregatedacrossourcommoditycategories.
Table1confirmsthisfinding,asthelogsofdisaggregated
householdconsumptionexpendituredistributionsexhibit
skewnessandkurtosisvaluesveryclosetowhatwouldbe
expectediftheoriginaldistributionswerelog-normal(i.e.,
0and3respectively).
As discussed in Battistin et al. (2007), consumption
and income data generally suffer from under reporting
(especiallyinthetails)andoutliers,andItaliandataare
not an exception (Brandolini, 1999). In order to
min-imize the effect of gross errors and outliers, we have
employed robust statistics toestimate themoments of
householdconsumptionexpendituredistributions(Huber,
1981). More specifically, we have estimated the third
momentwithquartileskewness(GroeneveldandMeeden,
1984)andkurtosisusingMoors’soctile-basedrobust
esti-mator(Moors,1988).Robust-estimatoranalysissupports
log-normalityofhouseholdconsumptionexpenditure
dis-tributions.Infact,accordingtostandardbootstraptests,
robust skewnessand kurtosisof loggedhousehold
con-sumptionexpendituredistributionsareoftenclosetotheir
expectedvaluesinnormalsamples(0and1.233,
respec-tively).Sincelog-normalityseemstobeagoodproxyalso
for COh,t distributions, it is temptingtocheck for
multi-variatelog-normalityofthe4-dimensionalvectorCh,t=
(CNh,t,CDh,t,CIh,t,COh,t). Unfortunately, a standard
Energy-testformultivariatenormality(SzekelyandRizzo,2005)
stronglyrejectsthenullhypothesiswithp-valuecloseto
zero(weshallgobacktothispointinSection4).
3.2. Householdbudget-sharedistributions
We turn now toa descriptive analysisof household
budgetsharedistributions.Fig.5showstheplotsof
Table1
Momentsofloggedhouseholdconsumptionexpendituredistributionsvs.waves.Avg,averagevaluesoverthewholeperiod;TC,totalconsumption;N,
nondurables;D,durables;I,insurances;F,food.ThefigureslabeledasN+D+Ionlyrefertohouseholdswithnon-zeroexpenditureforeachcommodity
category.
Stats Waves Avg
1989 1991 1993 1995 1998 2000 2002 2004 N Nobs. 7409 7209 6223 6258 5588 6277 6361 6281 6451 Mean 8.551 8.518 8.715 8.876 8.863 8.949 8.942 9.073 8.811 Std.dev. 1.014 1.064 0.962 0.918 0.939 0.939 0.982 0.909 0.966 Skewness 0.201 0.111 0.281 0.108 0.007 0.102 0.174 0.143 0.141 Kurtosis 2.844 2.893 2.927 2.703 2.710 2.727 2.647 2.810 2.783 D Nobs. 2534 2352 2082 1856 2091 1920 1833 1961 2079 Mean 6.554 6.713 6.529 6.900 6.902 7.078 6.881 6.879 6.805 Std.dev. 1.626 1.656 1.615 1.593 1.560 1.588 1.635 1.568 1.605 Skewness −0.041 0.033 0.028 0.017 0.123 0.047 0.158 0.296 0.083 Kurtosis 2.698 2.678 2.561 2.509 2.503 2.454 2.560 2.683 2.581 I Nobs. 1780 1928 2257 2961 2652 2575 2175 2164 2312 Mean 5.501 5.604 5.737 5.853 6.198 6.359 6.358 6.551 6.020 Std.dev. 1.500 1.599 1.557 1.567 1.476 1.398 1.408 1.408 1.489 Skewness −0.069 −0.216 −0.269 −0.284 −0.504 −0.166 −0.228 −0.279 −0.252 Kurtosis 2.555 2.788 2.689 2.649 3.218 2.641 2.965 3.592 2.887 F Nobs. 7409 7228 6235 6261 5596 6281 6366 6281 6457 Mean 7.738 7.808 8.014 8.108 8.089 8.119 8.133 8.241 8.031 Std.dev. 0.978 1.059 0.969 0.913 0.930 0.947 0.975 0.919 0.961 Skewness 0.214 0.109 0.253 0.099 0.017 0.108 0.138 0.116 0.132 Kurtosis 2.753 2.844 3.029 2.744 2.770 2.805 2.635 2.853 2.804 N+D+I Nobs. 896 904 1099 1225 1310 1162 930 1016 1068 Mean 9.148 9.156 9.269 9.484 9.435 9.607 9.640 9.716 9.432 Std.dev. 0.932 1.030 0.904 0.830 0.909 0.877 0.945 0.861 0.911 Skewness 0.326 0.078 0.335 0.186 0.011 0.174 0.232 0.109 0.182 Kurtosis 2.848 3.131 2.818 2.534 2.718 2.420 2.558 2.721 2.718 TC Nobs. 7416 7237 6245 6274 5598 6282 6370 6285 6463 Mean 8.907 8.905 9.093 9.256 9.300 9.369 9.377 9.510 9.215 Std.dev. 1.028 1.095 0.978 0.925 0.934 0.939 0.975 0.908 0.973 Skewness 0.230 0.150 0.240 0.120 0.077 0.132 0.262 0.236 0.181 Kurtosis 2.828 2.865 2.855 2.690 2.659 2.704 2.659 2.866 2.766
firstvisualinspectiondoesnotseemtodetectstrongtime
dependence in theshape of budget-share distributions.
Conversely,as expected,theirshapes differsignificantly
acrosscommoditycategories.Householdbudgetshare
dis-tributionsfornondurablegoodsandfoodarerelativelybell
shapedandalargemassofobservationsisshiftedtowards
the rightof the unit interval. Kernels of durable goods
andinsurancepremiaareinsteadmuchmoreright-skewed
andmonotonicallydecreasing.Notealsothat
insurance-premiakernelsexhibitarelevantirregularityintheright
tail,duetoasmallsample-sizeproblem.Thestrong
across-commodityheterogeneitythatclearlyemergesintheshape
ofhouseholdbudgetsharedistributionssuggeststhatin
ordertofindaunique,parsimonious,parametricstatistical
modelabletosatisfactorilyfitthedata,onewouldrequire
averyflexibledensityfamily.
Estimatedsamplemomentsofhouseholdbudgetshare
distributions are reported in Table 3. On average, 68%
oftotalhouseholdexpendituresisrelatedtonondurable
goods, while food accounts for 33% of the total. Much
lessisspentondurablegoodsandinsurancepremia,as
theyrespectively represent– onaverage– 13% and 5%
oftotalhouseholdconsumptionexpenditures.No
appre-ciabledifferencesarefoundbyreplacingthedenominator
Table2
Correlationsamonghouseholdconsumptionexpendituredistributionsandp-values(inbrackets)forthenullhypothesisofnocorrelation.Wave2004.TC,
totalconsumption;N,nondurables;D,durables;I,insurances;F,food.
N D I F D 0.40 – – – (0.00) – – – I 0.49 0.39 - – (0.00) (0.00) – – F 0.87 0.29 0.44 – (0.00) (0.00) (0.00) – TC 0.92 0.58 0.51 0.80 (0.00) (0.00) (0.00) (0.00)
1989 1991 1993 1995 1998 2000 2002 2004 6 6.5 7 7.5 8 8.5 9 9.5 Sample Mean
Nondurables Durables Insurances Food Total
1989 1991 1993 1995 1998 2000 2002 2004 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Sample Std Dev
Nondurables Durables Insurances Food Total
1989 1991 1993 1995 1998 2000 2002 2004 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 Sample Skewness
Nondurables Durables Insurances Food Total
1989 1991 1993 1995 1998 2000 2002 2004 2.6 2.8 3 3.2 3.4 3.6 Sample Kurtosis
Nondurables Durables Insurances Food Total
Fig.3. Samplemomentsofloggedhouseholdconsumptionexpendituredistributionsandtheirevolutionovertime.
ofhouseholdbudgetshareswiththesumofnondurables,
durablesandinsuranceexpenditure(i.e.,byreplacingthe
variabletotalexpenditureprovidedbytheBank ofItaly
withthesumofthecommoditycategoriesofexpenditure
employedinthisstudy).
Fig.6plotsthetimeevolutionofthefirstfoursample
momentsofhouseholdbudgetsharedistributions.In
gen-eral,momentsarerelativelystableovertime.Theexception
isrepresentedagainbyinsurancepremia,whichdisplay
highlyincreasingmoments from1989 on.Inparticular,
skewnessandkurtosisexhibitbigjumpsin1995,andthen
movetohigherlevels.Instead,standarddeviationsteadily
increasesfrom1989on.Noticealsothatskewnesssignsdo
notchangeovertime:theyarealwaysnegativefor
non-durablegoodsandalwayspositiveforallothercategories
(seeTable3).
Themainmessage comingfromtheforegoingvisual
analysisisthathouseholdconsumptionandbudgetshare
distributionsdidnotdramaticallychangetheirstructural
propertiesovertime.However,allpreviouskernelplots
werenotcomplementedbytheirconfidenceintervals.This
prevents one to correctly compare kernel density
esti-matesandtoassesswhetherkernelsforsuccessiveyears
arereallydifferent.Tobetterexplorethispoint,weplot
kernel-estimates95%confidencebandsforboth
consump-tionlevelsandbudgetsharesinthefirst(1989)andfinal
(2002)wave.6Ifconfidenceintervalsdonotoverlap,wecan
concludethatthereissomestatisticalevidencefor
non-constantkerneldensitiesovertime,atleastasfarasthe
changebetween1989(firstwave)and2002(lastwave)is
concerned.
Fig.7showssomeexamplesofconfidencebandsplots
for both household consumption log-levels and budget
shares.Due tospace constraints,we onlyplot durables
andnon-durables,butourmainresultsholdalsoforthe
othertwocategories.Thisexerciseshowsthatindeed
con-fidence intervalsoverlap only for someintervalsof the
domain,i.e.,thedensityestimatesarenotstatistically
con-stantovertimeovertheentireranges.Nevertheless,the
densityestimatesseemtopreserveovertimesome
prop-ertiesrelatedtotheshapeofthedistribution,properties
thatareidiosyncratictothetypeofcommodityconsidered.
6Confidenceintervalshavebeenestimatedwiththeoptionciofthe
Statafunctionkdens,with100bootstrapreplications.Somepartsofthe
lowerboundoftheconfidenceintervaldonotshowupintheplotsbecause
5 6 7 8 9 10 11 12 100
101 102 103
Log Nondurables Expenditure
density (log−scale) Data Normal fit 2 4 6 8 10 12 100 101 102 103
Log Durables Expenditure
density (log−scale) Data Normal fit 2 4 6 8 10 12 100 101 102 103
Log Insurances Expenditure
density (log−scale) Data Normal fit 4 5 6 7 8 9 10 11 12 100 101 102 103
Log Food Expenditure
density (log−scale)
Data Normal fit
Fig.4. Anexampleofnormalfitstologgedhouseholdconsumptionexpendituredistributions.Wave,2000.
Inotherwords,mostofthecharacteristicsoftheempirical
distributions(relativepositionofthemode,etc.)seemto
dependmoreonthecommoditycategoryunderanalysis
andnotontheparticularcross-sectionalwave.Therefore,
wecanconcludethatourcross-wavecomparisonsbring
evidenceinfavoroftheneedforfindingatheoretical
dis-tributionthatcanaccommodatedifferentbudgetshares,
which areheterogeneousacrossgoodsmuch morethan
overtime.
Therelativeconstancyoftheshapeofhousehold
expen-diture and budget-share distributions is a strongresult
alsoinlightoftheintroductionoftheEuroin2001and
theincreaseinaveragenominal(andreal)individual
con-sumptionlevelsexperiencedintheobservedperiodand
alreadynoticedabove.Ourresultsthat,despiteacommon
trendduetoeconomicgrowththatpushedupaverage
con-sumptionlevels,therewasabalancedturbulencewithin
eachdistributions,withsomehouseholdsmovingtowards
theuppertailandothersmovingtowardsthelowertail,
withouthowever changing verymuch the shape ofthe
distribution.Inotherwords,theoverallimpactof
macroe-conomicdynamicsontheshapeofthemicrodistribution
wasrelativelyweak.
We now turn to study the correlation structure of
householdbudgetsharedistributions.Table4reportsthe
correlationmatrixfor2004,togetherwiththep-valuesfor
thenullhypothesisofnocorrelation.Fig.8plotsinstead
thetimeevolutionofthecorrelationsbetweenthe
distri-butionsofnondurablegoods,durablegoodsandinsurance
premia.Note that all correlations are fairly stable over
timeandexhibitsignsconsistentwiththeeconomic
intu-ition.Indeed,nondurablesarenegativelycorrelatedwith
durables–theaveragecorrelationbeing−0.54%–which
in turn are negatively correlated with food (here the
averagecorrelationcoefficientis−0.3%).Negative
correla-tionsindicatethatwhenhouseholdsincreasetheirrelative
expenditurefordurablegoods,theytendtoreducetheir
relativeexpenditurefornondurablegoods,includingfood.
Noticealsothatthecorrelationbetweeninsuranceandall
othercategoriesisstatisticallynonsignificant.
Aremarkisinorder.Correlationanalysisisknownto
besubjecttomanydifficultiesinthecaseofcompositional
data(Aitchison,1986,chapter3.3),mainlyduetothe
pres-enceof the linear constraint imposing that the sumof
budgetsharesmustbeone.Notice,however,thatinour
Fig.5.Kernel-densityestimatesofhouseholdbudgetsharedistributions:evolutionovertime.Solidline,year1989;dashed-dottedline,year1993;dotted
line,year1998;dashedline,year2002.
B’sisnotobtainedasthesumofhouseholdconsumption
expenditureforN,D,andI(seeabove).
We have also performed a robust-moment analysis,
usingmedianandmeanabsolutedeviationasrobust
esti-matorsforlocationand scaleparameters,in additionto
therobust-skewnessestimatoralreadyintroducedabove.
Results confirm, overall, our previous findings: robust
momentsfor (logged) householdconsumption
expendi-tureandbudgetsharedistributionsarestableovertime,
withthesameexceptionsfoundbefore.
4. Amultivariateparametricapproach
The most direct strategy to determine a parametric
modelthat is abletosatisfactorily fit budget-share
dis-tributionswouldbetoemploytherepresentation in(2)
and(3),andfollowamultivariateapproach.SinceBh,t,h=
1,...,Hliesinthesimplexforeachwave,itis
straight-forward toapply standard techniques of compositional
dataanalysis. Unfortunately, this lineof attack facesin
ourcaseanumberofdifficulties.First,asnotedin
Mateu-Figuerasetal.(2007a),“thereisadearthofsuitablemodels
withwhichtoadequatelymodelcompositionaldatasets”
(p.217),and someofthem(i.e.,theDirichletclass)are
straightforwardlyrejectedbythedata.Indeed,theDirichlet
class(Connor,1969)requiresonetoassumethatoriginal
householdconsumptionexpendituredataareindependent
andalltheoff-diagonalelementsofthecorrelationmatrix
arenegative(seeAitchison,1986,Chapter3).Second,and
mostimportanthere,almostallviablealternativesrelyon
mathematicaltransformationsoftheoriginalbudget-share
vector Bthat, albeit veryuseful forstatistical purposes,
arenotabletopreservetheoriginaleconomicmeaningof
budget-sharesasfractionsofhouseholdtotalexpenditure
devotedtoaparticularclassofcommodities.Indeed,the
basicideaofcompositionalanalysisistotransform
com-positionaldata(i.e.,sharevectorslyingonthesimplex)in
suchawaytoobtainvectorsofquantitiesdefinedonreal
spaces.
Thisinthecasealsoofthemostsimpleofsuch
trans-formations,namelytheadditivelogisticratio(ALR),which
inourcasewouldmapthevectorB=(BN,BD,BI,BO)lying
inthesimplex,intothevector:
ALR(B)=log(B−V/BV)∈R3, (4)
whereVisoneofthe4originalcomponents{N,D,I,O}and
Table3
Momentsofhouseholdbudgetsharedistributionsvs.waves.Avg,averagevaluesoverthewholeperiod;N,nondurables;D,durables;I,insurances;F,food.
ThefigureslabeledasN+D+Ionlyrefertohouseholdswithnon-zeroexpenditureforeachcommoditycategory.
Stats Waves Avg
1989 1991 1993 1995 1998 2000 2002 2004 N Nobs. 7409 7208 6223 6258 5588 6277 6361 6281 6451 Mean 0.717 0.702 0.703 0.699 0.667 0.675 0.668 0.666 0.687 Std.dev. 0.141 0.154 0.151 0.142 0.149 0.143 0.147 0.146 0.147 Skewness −0.873 −0.736 −0.797 −0.686 −0.698 −0.726 −0.652 −0.610 −0.722 Kurtosis 3.674 3.199 3.583 3.425 3.317 3.508 3.500 3.339 3.443 D Nobs. 2534 2352 2082 1856 2091 1920 1833 1961 2079 Mean 0.130 0.148 0.118 0.127 0.137 0.136 0.118 0.105 0.127 Std.dev. 0.138 0.150 0.143 0.144 0.151 0.149 0.144 0.137 0.144 Skewness 1.640 1.591 1.967 1.752 1.755 1.648 1.994 2.233 1.822 Kurtosis 5.767 5.663 7.182 6.139 6.146 5.610 7.072 8.207 6.473 I Nobs. 1780 1928 2257 2961 2652 2575 2175 2164 2312 Mean 0.039 0.043 0.048 0.049 0.062 0.062 0.060 0.066 0.054 Std.dev. 0.040 0.042 0.051 0.057 0.063 0.066 0.067 0.079 0.058 Skewness 2.116 1.799 2.609 3.954 2.544 3.270 3.700 4.281 3.034 Kurtosis 9.798 7.403 14.980 39.336 14.909 23.049 27.494 33.127 21.262 F Nobs. 7409 7228 6235 6261 5596 6281 6366 6281 6457 Mean 0.335 0.364 0.369 0.343 0.323 0.310 0.314 0.305 0.333 Std.dev. 0.122 0.139 0.138 0.127 0.124 0.117 0.124 0.117 0.126 Skewness 0.405 0.402 0.285 0.389 0.557 0.457 0.530 0.586 0.452 Kurtosis 3.051 2.938 2.863 3.018 3.563 3.373 3.218 3.423 3.181 N+D+I Nobs. 896 904 1099 1225 1310 1162 930 1016 1069 Mean 0.805 0.790 0.794 0.809 0.815 0.817 0.803 0.798 0.804 Std.dev. 0.153 0.159 0.175 0.150 0.151 0.158 0.142 0.172 0.157 Skewness −0.423 −0.129 −0.083 0.125 0.220 0.258 0.129 0.741 0.105 Kurtosis 4.790 5.211 5.079 5.173 4.884 6.287 4.888 6.382 5.337
NotethatthechoiceofVamong{N,D,I,O}doesnot
affect,froma statisticalpoint ofview,the
goodness-of-fit oftheparametricmodel chosenfor representingthe
data (see Aitchison, 1986, Chapter 7), but introduces a
stringenttrade-offasfaraseconomicinterpretationis
con-cerned.Ontheonehand,afirstobviouschoicewouldbe
tosetV=Oandstudythelog-ratiovectorlog(BN/BO,BD/BO,
BI/BO)=log(CN/CO,CD/CO,CI/CO).Thiswouldkeepthefocus
onthethreemostimportantcommoditycategories, but
theinterpretabilityoftheresultsintermsofthe“O”
cat-egorydefinedex-postwouldbestronglyreduced.Onthe
otherhand,lettingV∈{N, D,I}wouldimprove the
eco-nomicinterpretation,aslog-ratioswouldrepresentexcess
of expenditureforone commoditycategoryin terms of
anothermeaningful categoryonthe(−∞,+∞)support
(with0standingforequalexpenditure).However,setting
V∈{N,D,I}wouldimplytoloseoneimportantdimension
oftheanalysis–i.e.,thestudyoftheshapeofone
impor-tantexpenditurecategoryforwhichwehavereliabledata
–whichwouldbeinsteadpreservedwiththechoiceV=O.
Forthisreason,wehavechosenheretopresentallresults
withV=O.Inbothcases,theoriginalsetupintermsof
well-definedeconomicbudget-sharevariablesislost.
Despitethislackofinterpretabilityofresults,wehave
attempted to fit our data with the two most-widely
employed multivariate distributions that employ ALR
transformations(AitchisonandEgozcue,2005),namelythe
additive-logistic multivariate normal (ALN) distribution
(Aitchison,1986,Chapter6)andtheadditive-logistic
multi-variateskew-normal(ALSN)distribution(Mateu-Figueras
etal.,2007a;Mateu-FiguerasandPawlowsky-Glahn,2007).
Formally,BisALN-distributedifALR(B)ismultivariate
nor-mallydistributed.Noticethatthisnecessarilyappliesif(CN,
CD,CI,CO)ismultivariatelog-normallydistributed,which
doesnotseemtobethecaseforourdataaccordingtoa
multivariatenormalityEnergy-test(seeSection3.1).
Simi-larly,BisALSN-distributedifALR(B)isamultivariateskew
normal(seeAzzaliniandDallaValle,1996;Azzaliniand
Capitanio,1999,foraformaldefinition).Inotherwords,the
multivariateskew-normaldistributionisanextensionof
themultivariatenormalallowingforamoderate(positive
ornegative)skewness.
Table5summarizesourresultsforwave2004(but
find-ingsareverysimilarinallthewaves).Asthefirstthreelines
ofthetableshow,normalityofBisrejectedbothjointly
–accordingtotheEnergytest–andseparatelyforeach
marginalaccordingtobothJarque–Bera(BeraandJarque,
1980,1981)and Lilliefors (Lilliefors, 1967).Thisimplies
thatALNdoesnot seemtoprovide agood multivariate
descriptionofourALN-transformeddata.Notice,however,
Table4
Correlationsamonghouseholdbudgetsharedistributionsandp-values
(inbrackets)forthenullhypothesisofnocorrelation.Wave2004.N,
nondurables;D,durables;I,insurances;F,food.
N D I D −0.55 – – (0.00) – – I 0.02 0.05 – (0.44) (0.08) – F 0.48 −0.31 0.04 (0.00) (0.00) (0.17)
1989 1991 1993 1995 1998 2000 2002 2004 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Sample Mean
Nondurables Durables Insurances Food
1989 1991 1993 1995 1998 2000 2002 2004 0.04 0.06 0.08 0.1 0.12 0.14 Sample Std Dev
Nondurables Durables Insurances Food
1989 1991 1993 1995 1998 2000 2002 2004 −1 0 1 2 3 4 Sample Skewness
Nondurables Durables Insurances Food
1989 1991 1993 1995 1998 2000 2002 2004 0.5 1 1.5 2 2.5 3 3.5
Log − Sample Kurtosis
Nondurables Durables Insurances Food
Fig.6.Samplemomentsofhouseholdbudgetsharedistributionsandtheirevolutionovertime.
thatinadditiontothethirdstandardizedmoment(i.e.,3rd
momentaboutthemeandividedbythestandarddeviation
),alsothe1coefficient(definedas1=0.5(4−)m3/3,
wherem3isthethirdmoment),theD’Agostinoskewness
test(D’Agostino,1970),andtherobust-skewnessestimator
ofGroeneveldandMeeden(1984)allsuggestsome
(mod-erate) positive skewness.Asmentioned, a skew-normal
distributioncanonlyaccommodatemoderateskewness,
i.e.,valuesof1intheinterval[−0.995,0.995](Azzaliniand
DallaValle,1996).Itisthusnaturaltocheckwhetherthe
Table5
Multivariateanalysisforthelog-ratiovectorlog(BN/BO,BD/BO,BI/BO),whereN,nondurables;D,durables;I,insurances;F,food;Wave,2004.Sample
Skewness:3rdmomentaboutthemeandividedbythestandarddeviation.1indexdefinedas0.5(4−)m3/3,wherem3isthe3rdmoment.Thed-test
(Mateu-Figuerasetal.,2007b)formultivariateskewnormalityisdistributedasa2
3.
Statistic Standardizedlog-ratios
log(BN/BO) log(BD/BO) log(BI/BO)
Multivariatenormality Energytest 4.9518(0.0000) Univariatenormality Lilliefors 0.0529(0.0010) 0.0725(0.0010) 0.0305(0.0514) Jarque-Bera 627.2247(0.0000) 56.0317(0.0000) 65.5013(0.0000) Skewness Sampleskewness 0.8702 0.5843 0.0408 1index 0.3728 0.2504 0.0175 D’Agostinotest 6.0741(0.0000) 4.3550(0.0000) 0.3267(0.0741) Robustskewness 0.0574(0.1049) 0.2138(0.0000) −0.0689(0.0697) Multivariateskew-normality d-Test 35.2373(0.0000) Univariateskew-normality QuadraticAD 16.2662(0.0010) 10.1291(0.0175) 15.8801(0.0012)
4 6 8 10 12 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 Log Non−Durables 1989 2002 0 2 4 6 8 10 12 14 0 0.05 0.1 0.15 0.2 0.25 Log Durables Density Density 1989 2002 0 0.2 0.4 0.6 0.8 1 0 0.5 1 1.5 2 2.5 3 3.5 Non−Durables BS Density 1989 2002 0 0.2 0.4 0.6 0.8 1 0 1 2 3 4 5 6 7 8 9 Durables BS Density 1989 2002
Fig.7.95%Confidencebandsforkernelestimates.Comparisonbetweenfirst(1989)andfinal(2002)wave.Toptwopanels:householdexpenditure distributions.Bottomtwopanels:householdbudget-sharedistributions.
jointBdistributioncanbesatisfactorilyproxiedbya
mul-tivariateALSNdistribution.Thisamountstotestif,jointly,
ALR(B)ismultivariateskew-normal.Weemployherethe
dtestdiscussedin Mateu-Figuerasetal. (2007b),which
underthenullofmultivariateskew-normalityshouldbe
distributed here as a 2
3. AsTable 5 shows, the null is
rejected,asalsohappensforthenullhypothesesof
skew-normality of the three marginal log-ratio distributions,
1989 1991 1993 1995 1998 2000 2002 2004 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 Sample Correlations N vs D N vs I N vs F D vs I D vs F I vs F
accordingtostandard quadratic Anderson–Darlingtests (seeD’AgostinoandStephens,1986).Ofcourse,rejection
byAnderson–DarlingEDF-basedtestsmaysimplybedueto
asizeeffect,asoursamplesarealwaysverylarge(see,e.g.,
BentlerandBonett,1980).Tocontrolforsuchaproblem,we
haverunGoFtestsonbinneddataandonrandomlydrawn
smaller-sizedsub-sampleswithoutnoticinganymajor
dif-ferencesinourresults.Weshallgobacktothispointin
Section6.
5. Towardsaunivariateparametricmodelfor budgetsharedistributions
Theforegoinganalysissuggeststhat–fromapurely
sta-tisticalperspective–ourdatacannotbeeasilyproxiedby
themostlyemployedparametricmultivariatedistributions
definedonthesimplex.Moreimportantly,such
represen-tationsoftenrequiremathematicaltransformationsofthe
datathatwouldstronglyreducethepossibilityof
econom-ically interpreting theresults, let asidethe difficultyof
treatingsub-categoriesasfood.Inwhatfollows,wewill
thereforeturntoaunivariateanalysisaimingat
determin-ingaparsimonious,parametric,modelabletosatisfactorily
fithouseholdbudgetshare(marginal)distributions,
with-out using mathematical transformations of theoriginal
variablesthat mayundermine theeconomic
interpreta-tionsoftheresults.
We lookfora family of univariate densities,defined
ontheunit interval,holdingatleastthefollowingthree
desirable features. First, the family of densities fitting
householdbudget sharesshouldbeconsistent withthe
statistical properties of the underlying household
con-sumptionexpenditureunivariatedistributionsemployed
tocomputebudgetshares.Second,it shouldbeflexible
enoughtoaccommodate–foreachwave–theobserved
across-commodityheterogeneityin theshape of
house-holdbudgetsharedistributions.Third,theparametersof
thedensityshouldembodysomeeconomicmeaningand
allowonetotaxonomizecommoditycategoriesaccording
totheir(highandlow)level.
LetC1,...,CKbetheexpenditurelevelsofagiven
house-holdinarepresentativetimeperiod,whereKisthenumber
ofcommoditycategoriesconsidered.Thehousehold
bud-getshareofcommoditycategoryiisdefinedas
Bi=CCi =1+(
1 j/=iCj)/Ci = 1 1+j/=iZj(i)= 1 1+Si (5)whereSi is thesumoftheK−1 randomvariables Zj(i),
eachbeingequaltotheratiobetweenCjandCi,withj=1,
...,i−1,i+1,...,K.Obviously,Bi∈(0,1)asrequired.From
Eq.(5),itfollowsthatthecumulativedistributionfunction
(cdf)ofBireads: FBi(x)=Prob{Bi<x}=Prob
1+Si>1x =1−FSi 1 x−1 , (6)wherex∈(0,1)andFSiisthecdfofSi.Therefore,the
prob-abilitydensityfunction(pdf)ofBiisgivenby:
fBi(x)dx= 1 x2fSi
1 x −1 dx, (7)wherefSi isthepdfofSi.Thismeansthatcharacterizing
thedistributionofBirequiresstudyingthedistributionof
Si=
j/=iCj/Ci=
j/=iZj(i).Given theempiricalevidence
above,therearegoodreasonstoassumethatexpenditure
levelsCiarealllog-normallydistributed,atleastasafirst
approximation.ThisimpliesthattheratiosZj(i)arealso
log-normallydistributed,as:
Prob{Zj(i)<z}=Prob{log(Cj)−log(Ci)<log(z)}
=Prob{Dj(i)<log(z)}. (8)
Sincelog(Cj)andlog(Ci)arenormallydistributed(and
possiblycorrelated),theirdifferenceDj(i)willalsobe
nor-mal.Henceexp(Dj(i))willbelog-normallydistributed.
Asaresult,theshape ofhouseholdbudgetshare
dis-tributionBifullydependsontheshapeofthesumofthe
K−1log-normalvariatesZj(i)s.NoticethatingeneralZj(i)
willnotbeuncorrelated.Indeed,theCismaybecorrelated
becauseofhouseholdpreferences.Thisseemstobethecase
fromourempiricalevidence,aswehavealreadynoticed
statistically significant correlations between household
consumptionexpendituredistributions(seeTable2).The
significant correlation between household consumption
expendituredistributionsthusimpliesthatZj(i)–aswell
ashouseholdbudgetsharedistributions–willnotbe
inde-pendent.
Accordingtotheliterature,theredoesnotexistaclosed
form for thepdf of a sumof log-normal (correlated or
uncorrelated)randomvariablesandonlyapproximations
areavailable,seeBeaulieuetal.(1995)forthecaseof
inde-pendentsummandsandMehtaetal.(2006)forthecaseof
correlatedsummands.Thebaselineresultisthatthe
dis-tributionofSicanbewellapproximatedbyalog-normal
distribution,whoseparametersdependinanon-trivialway
ontheparametersofthelog-normalstobesummedup
andtheircovariancematrix.Manymethodsareavailable
tofindapproximationstotheparametersoftheresulting
log-normaldistribution,see,e.g.,Fenton(1960),Schwartz
and Yeh(1982)andSafak andSafak (1994).We arenot
interestedhereinthisissuebecausewecandirectly
esti-matetheparametersoftheresultingdistributionforBivia
maximumlikelihood.
The log-normal proxy to the sum of log-normals is
not, however, theonly approximation available. Indeed
MilevskiandPosner(1998)showthatwhenK→∞thenSi
convergesindistributiontoananinverse-Gamma(Inv)
density,which performswellinapproximatingthesum
alsoforverysmallK.Moreformally,theInvrandom
vari-ableisdefinedastheinverseofa randomvariable,i.e.,
ifX∼ (,p−1)thenX−1∼Inv(,p).Thereforetheremay
besomegainsinconsideringanInv proxytoSiinstead
ofalog-normalone.Ofcourse,theextenttowhicheither
approximationistobepreferredisanempiricalissue.For
thisreason,weshallconsiderbothproxiesinourempirical
0 0.5 1 1.5 2.5 x Density m = 0 m = −1 m = 1 s = 1 0 0.5 1 2 4 x Density s = 1.3 s = 1.8 s = 2 s = 2.5 m = 0 0 0.5 1 3 6 x Density s = 1.3 s = 1.8 s = 2 s = 2.5 m = −1 0 0.5 1 3 6 x Density s = 1.3 s = 1.8 s = 2 s = 2.5 m = 1
Fig.9.TheLN-Bapproximationtohouseholdbudgetsharedistributions.DifferentshapesoffBiasparametersmandschange.
In thecase Si hasa log-normalpdf withparameters
(m,s),then: fSi(x;m,s)= 1 xs√2exp
−(log(x)−m) 2 2s2 . (9) Using(7),weget: fBi(x;m,s)= 1 x(1−x)s√2 exp−(log(1−x)−log(x)−log(m))
2
2s2
(10)
Inwhatfollowsweshallrefertodensity(10)asthe
LN-Bdensity.NotethattheLN-Bisalreadyapdfgiventhat
itsintegral over [0,1]isone.In Fig.9 weshowa
vari-etyofshapesderivedfrom(10)forselectedvaluesofthe
parametersmands.Ifm>0(m<0)thedistributionis
right-skewed(left-skewed),ifm=0itissymmetric.If0<s≤1.5
thedistributionisbell-shaped,if1.5<s≤2.5itisbimodal,
whileifs>2.5itisU-shaped.Thisseemstoconfirmthat
despiteitsparsimony,thedensity(10)issufficiently
flexi-bletoaccommodatedifferentshapesforhouseholdbudget
sharedistributions.
Ontheotherhand,ifweassumeanInv
approxima-tionforthedistributionofasumoflog-normals,thenthe
distributionofSidependsontwoparameters(,p)andits
pdfreads: fSi(x;,p)= p (p)x−p−1exp
− x (11)Onceagain,using(7)weobtainthepdfofBi(henceforth,
Inv-B),whichreads:
fBi(x;,p)= p x2(p)
1 x−1 −p−1 exp− x 1−x . (12)
Fig.10showstheshapeofthedensity(12)forselected
val-uesofandp.Weimmediatelyseethat(12)isalwaysan
asymmetricdistribution,asfBi(1;,p)=0foranyvalues
oftheparameters,whileifp>1fBi(0;,p)=0butifp≤1
fBi(0;,p)>0.Theinterpretationofthetwoparametersis
lessstraightforwardthaninthepreviouscase.Noticethat
forsmallvaluesofpthefunctionismonotonically
decreas-ing,whileaspincreasesarightward-shiftingmaximum
emerges.Whenp<(p>)themaximumisattainedfor
x<0.5(x>0.5),whileifp=themaximumisaroundx=0.5:
thisisthemostsymmetriccasewecanmodelwiththis
0 0.5 1 3 6 x Density p = 1 θ = 0.5 p = 2 θ = 1 p = 0.5 θ = 0.1 p = 3 θ = 1 p > θ 0 0.5 1 3 6 x Density p = 1 θ = 2 p = 2 θ = 3 p = 0.5 θ = 1 p = 1 θ = 3 p < θ 0 0.5 1 3 6 x Density p = 1 θ = 1 p = 2 θ = 2 p = 0.5 θ = 0.5 p = 3 θ = 3 p = θ
Fig.10. TheInv-Bapproximationtohouseholdbudgetsharedistributions.DifferentshapesoffBiasparameterspandchange.
than(10),weshallretainitinourfittingexercisesforthe
sakeofcomparison.
6. Measuringthegoodnessoffit
Intheprevioussection,wehavederivedtwoalternative,
parsimonious,approximationsofunivariatebudget-share
distributions, which appear – at least in principle –
flexibleenoughtoaccommodatetheobservedshape
het-erogeneityandareconsistentwiththeempiricallydetected
log-normalityofhouseholdconsumptionexpenditure
dis-tributions.
Tocheck how well theforegoing approximationsfit
thedata,wefirstlyestimatetheparametersof(10)and
(12) via maximum likelihood. Results are reported in
Table 6, together with asymptotic standard deviations
forthe parameters ofLN-B and Inv-B.We shall
com-mentparameterestimatesinSection7,wheretheywill
beemployedtoclassifythecommoditycategoriesunder
study. In the rest of this section, we focus instead on
goodness-of-fitconsiderations.
To evaluate the performance of the two proposed
proxies in fitting household budget share distributions
ascomparedtoalternativedistributions,wechooseasa
benchmarktheunivariateBetadensity(Evansetal.,2000),
whosepdfreads:
b(x;˛,ˇ)= x˛−1(1−x)ˇ−1
BE(˛,ˇ) , (13)
where x∈[0,1]and BEistheBetafunction.Notice that
theBetaalsodependsononlytwoparametersand
typi-callyisflexibleenoughtoaccommodatemanyalternative
shapes. However,it lacksanyconsistencyrequirements
withrespecttotheunderlyingshapeofhousehold
con-sumption expenditure distributions, because in general
itcannotbederivedasthedensityofhouseholdbudget
sharesstemmingfromlog-normallydistributed
expendi-turelevels.
We firstly employ a goodness-of-fit tests based on
empiricaldistributionfunctionstatistics.Morespecifically,
werunthreewidelyusedtests:Kuiper(KUI;Kuiper,1962),
Cramér-vonMises(CvM;PearsonandStephens,1962)and
quadraticAnderson–Darling(AD2;AndersonandDarling,
1954).We areinterested inunderstandingwhetherthe
theoreticaldistributionswesuggestareabletoproxythe
empiricaldatabetterthanplausiblealternatives,because
of their consistencywith thefindings above on
Table6
Estimatedparametersandasymptoticstandarddeviations(inparentheses)ofLN-BandInv-Bvs.waves.N,nondurables;D,durables;I,insurances;
F,food. LN-B Waves 1989 1991 1993 1995 1998 2000 2002 2004 N m −1.04(0.009) −0.98(0.010) −0.98(0.010) −0.95(0.010) −0.77(0.010) −0.81(0.009) −0.78(0.009) −0.77(0.009) s 0.76(0.006) 0.83(0.007) 0.83(0.007) 0.77(0.007) 0.74(0.007) 0.72(0.006) 0.75(0.007) 0.74(0.007) D ms 2.471.33(0.019)(0.026) 2.281.33(0.019)(0.027) 2.691.42(0.031)(0.022) 2.571.40(0.023)(0.033) 1.372.43(0.021)(0.030) 1.372.45(0.022)(0.031) 1.352.64(0.022)(0.032) 1.342.80(0.030)(0.021) I ms 3.741.18(0.020)(0.028) 3.661.24(0.020)(0.028) 3.611.31(0.028)(0.020) 3.611.31(0.024)(0.017) 1.253.25(0.017)(0.024) 1.183.22(0.016)(0.023) 1.173.26(0.018)(0.025) 1.203.17(0.026)(0.018) F m 0.74(0.007) 0.61(0.008) 0.59(0.008) 0.71(0.008) 0.80(0.008) 0.86(0.008) 0.85(0.008) 0.89(0.008) s 0.59(0.005) 0.66(0.005) 0.66(0.006) 0.61(0.005) 0.62(0.006) 0.60(0.005) 0.62(0.006) 0.60(0.005) Inv-B Waves 1989 1991 1993 1995 1998 2000 2002 2004 N p 1.790.47(0.008)(0.027) 1.450.37(0.007)(0.022) 1.380.34(0.022)(0.007) 1.520.41(0.025)(0.008) 0.671.93(0.013)(0.034) 0.661.96(0.012)(0.032) 0.581.74(0.011)(0.028) 0.621.81(0.030)(0.012) D p 0.663.09(0.106)(0.016) 0.682.70(0.095)(0.017) 0.572.78(0.015)(0.108) 0.633.08(0.017)(0.124) 2.810.64(0.106)(0.017) 2.830.64(0.112)(0.017) 3.120.61(0.127)(0.017) 3.260.58(0.015)(0.130) I p 0.99(0.029) 0.95(0.027) 0.86(0.022) 0.78(0.017) 0.92(0.022) 0.93(0.023) 0.91(0.024) 0.71(0.018) 23.14(0.877) 20.14(0.738) 15.95(0.549) 13.37(0.409) 12.69(0.398) 12.50(0.398) 12.46(0.433) 7.30(0.265) F p 3.075.41(0.092)(0.048) 2.383.51(0.061)(0.037) 2.523.68(0.043)(0.069) 2.864.82(0.048)(0.089) 5.002.73(0.098)(0.049) 6.023.02(0.111)(0.051) 5.342.77(0.098)(0.046) 6.093.00(0.051)(0.112)
asoursamplesarealwaysverylarge,thenullassumption
that empirical data are drawn from any given
theoret-ical distribution would bring the traditional EDF-based
goodness-of-fittests,whichevaluatethedeviationofthe
empiricalCDFfromthetheoreticaloneateachsingle
obser-vation,torejectthenullhypothesisatanyprobabilitylevel,
despiteonlyminordiscrepancies(seeBentlerandBonett,
1980).Therefore, weshall evaluateinwhat followsthe
goodness of fit of our competing densities afterhaving
groupedloggedobservationsamongequallyspacedbins
andcomputedteststatisticsoversuchbins.Inthisway,
theeffectofadiscrepancybetweentheoreticaland
empiri-calprobabilitydensitywillstronglyaffectthestatisticonly
ifthesamediscrepancyis recurringfrequentlywithina
particularinterval (bin),whiletheexistenceofsporadic
outlierswillonlyhaveaminoreffectontheteststatistic.
Thisprocedurealsoalleviatesthedifficultiescomingfrom
thegenerationofpseudo-randomnumbersdistributedas
in(10)or(12).Thisisnotatrivialtaskandtheissueisone
ofthemainpointsofourresearchagenda.
Table7reportsthegoodness-of-fitstatisticsonlyforthe
AD2test,asingeneralallthreetestsagreeonwhetherthe
benchmarkisoutperformedorunderperformedbyeither
specification of the proposeddensity. Accordingto test
statistics,theBetafitisneverthebestone.Withrespect
totheLN-BandtheInv-Bdensities,thelatterseemsto
deliverabetterfitinthecaseofnondurableanddurable
goods(andaccordingtoKUIandCvMtests,alsointhecase
offood).However,thelevelsofthestatisticsdonottake
intoaccountthedifferentinfluencesexertedbythe
sam-plesizeontheresultsofthebinningprocedurefordifferent
distributions.Moreover,adensitymayperformrelatively
betterthananotheroneeventhoughbothprovideavery
baddescriptionoftheempiricalsample.Inordertoperform
amorestatisticallysoundcomparison,wehavetherefore
proxiedviasimulationthedistributionsofthetest
statis-ticswhenusingourprocedureofgroupingtheobservations
intobins,andwehavecomputedtherelevantp-valuesof
theempiricalvaluesobtainedbefore,i.e.,theprobability
masstotherightoftheobservedstatistics.
More specifically,to proxy thedistribution of a test
statisticfor a given theoretical density and a
commod-itycategoryofhouseholdbudgetsharesofsizen,weuse
thefollowingprocedure:(i)generateviaa
bootstrap-with-replacementmethodarandomsampleofobservationsof
thesamesizenastheobservedsample,thengroupthe
observationsintoLbins; (ii)ontherandomlyextracted
sample,re-estimatetheparametersofthetheoretical
fre-quency by maximum likelihood and compute the test
statistic;(iii)repeatthisprocedurealargenumberoftimes
mtogettheproxyforthedistributionoftheteststatistic.
Ofcoursetheforegoingstepsshouldberepeatedforany
givenempiricalsample,i.e.,foranywave and
commod-itycategoryconsidered,andforanyofthethreedensities
studied.Inwhatfollows,wehavesetm=1000andwehave
consideredL=100bins.
Thepicturegivenbythep-valuesisgenerallyconsistent
withthatgivenbythestatistics,howeverinadozencases
thep-values fortheBetadensityareatleastasgood as
thosefortheLN-BortheInv-Bdensities,notwithstanding
lowervaluesofthestatistics.Still,intermsofp-values,the
LN-BortheInv-BdensitiesoutperformtheBetadensity
inthe78%,59%and78%ofthecasesaccordingtoKUI,CvM
andAD2,respectively.
Together with standard goodness-of-fit tests, we
employalsothe averageabsolutedeviationasa simple
measure of goodness-of-fit. The average absolute