• Non ci sono risultati.

In vivo interactions between tungsten microneedles and peripheral nerves.

N/A
N/A
Protected

Academic year: 2021

Condividi "In vivo interactions between tungsten microneedles and peripheral nerves."

Copied!
9
0
0

Testo completo

(1)

ContentslistsavailableatSciVerseScienceDirect

Medical

Engineering

&

Physics

j o ur n a l ho m e p age : w w w . e l s e v i e r . c o m / l o c a t e / m e d e n g p h y

In

vivo

interactions

between

tungsten

microneedles

and

peripheral

nerves

Pier

Nicola

Sergi

a,∗

, Winnie

Jensen

b

, Silvestro

Micera

a,c

, Ken

Yoshida

d

aBioRoboticsInstitute,ScuolaSuperioreSant’Anna,Italy

bDepartmentofHealthScienceandTechnology,AalborgUniversity,Denmark cInstituteforAutomation,SwissFederalInstituteofTechnology,CH,Switzerland

dBiomedicalEngineeringDepartment,IndianaUniversity-PurdueUniversityIndianapolis,USA

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received13December2010 Receivedinrevisedform28July2011 Accepted19September2011 Keywords:

Biomechanics

Peripheralnervoustissue Neuralinterfaces Indentation

Microneedle/livingnervedynamical frictioncoefficient

a

b

s

t

r

a

c

t

Tungstenmicroneedlesarecurrentlyusedtoinsertneuralelectrodesintolivingperipheralnerves. How-ever,thebiomechanicsunderlyingtheseproceduresisnotyetwellcharacterized.Forthisreason,the aimofthisworkwastomodeltheinteractionsbetweenthesemicroneedlesandlivingperipheralnerves. Asimplemathematicalframeworkwasespeciallyprovidedtomodelbothcompressionoftheexternal layerofthenerve(epineurium)andtheinteractionsresultingfrompenetrationofthemainshaftof themicroneedleinsidethelivingnerves.TheinstantaneousYoung’smodulus,compressionforce,the workneededtopiercethetissue,puncturingpressure,andthedynamicfrictioncoefficientbetweenthe tungstenmicroneedlesandlivingnerveswerequantifiedstartingfromacuteexperiments,aimingto reproducethephysicalenvironmentofrealimplantations.Indeed,abetterknowledgeofthe interac-tionsbetweenmicroneedlesandperipheralnervesmaybeusefultoimprovetheeffectivenessofthese insertiontechniques,andcouldrepresentakeyfactorfordesigningrobot-assistedprocedurestailored forperipheralnerveinsertion.

© 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Thereareseveralmedicalproceduresthatinvolvetheinsertion ofneedlesintobiologicaltissues:needlesareusedtoplace radioac-tiveseedsclosetoclustersoftumourcells(brachytherapy)[1],to reachlessaccessiblesitesandextractbiologicalspecimens(biopsy) [2,3],andtoinoculatedrugswithhighaccuracyinsidethebody (severaltypesofinjections)[4].Theyarealsocommonlyusedin microneurography[5,6].

Since thesekinds of procedures canbe intrinsically difficult andcansometimescausecomplications,alsoafterintense train-ingbysurgeons,severalstudieswereconductedtoinvestigatethe behaviourofneedlesduringinsertioninsofttissues.Inthese stud-ies,theneedlesweremodelledas linearelasticwithgeometric nonlinearities[7–9],andsimulationswerevalidatedusing numer-icalmodelsor phantomtissues.Theworknot onlycontributed tounderstandingtheseinsertionprocedures,butalsoprovideda generalizationtoautomatethem. Aparticularclass ofinsertion involvestheuseofmicroneedleswhichareusedforplacingneural interfacesintoperipheralnerves.Inparticular,exvivoinsertionof

∗ Correspondingauthorat:ScuolaSuperioreSant’Anna,piazzaMartiridella Libertà,33,56127Pisa,Italy.Tel.:+39050883135;fax:+39050883101.

E-mailaddress:[email protected](P.N.Sergi).

theseneedleshavebeenexperimentallydescribedinporcine[10] andrabbit[11]nerves.

Althoughthebehaviourofperipheralnerveshasalreadybeen studiedinradialcompressionexperimentsaimingtosimulatethe applicationofcuffelectrodes[12],thebiomechanicsofinteraction betweentungstenmicroneedlesandlivingperipheralnerveshas notbeensufficientlycharacterizedyet.

Indeed,thisknowledgecouldbeusefultoimprovethequality ofstandardinsertionprocedures,andcouldrepresentakeyfactor forphysicallybasedfeedbackaimedatmonitoringrobot-assisted procedures[4,13]inperipheralnervepunctureandinsertion tech-niques.

Therefore,theaimoftheworkwastoprovideasimple theo-reticalframeworkforanalysingtheexperimentalresultsachieved duringinvivoinsertionoftungstenmicroneedles.Theframework wasabletoaccountforthemainstepsoftheinsertion process, consideringontheonehandboththematerialofthemicroneedles andtheirtipgeometry,andontheotherthebiomechanical-based responseofthelivingnerves.Inparticular,themodelwasableto quantify notonlypiercingpressures,forces, andwork,but also physical parameters,suchas theinstantaneousYoungmodulus of livingperipheralnervesand thedynamic frictioncoefficient, characterizingtissueresponseandinteractionwiththetungsten microneedles.

Thiskindofdatacouldbeusefultoimproveinteractionmodels accountingforcomplexanddissipativeeffects.

1350-4533/$–seefrontmatter © 2011 IPEM. Published by Elsevier Ltd. All rights reserved. doi:10.1016/j.medengphy.2011.09.019

(2)

748 P.N.Sergietal./MedicalEngineering&Physics34 (2012) 747–755 2. Materialsandmethods

2.1. Animalpreparation

Insitu acuteexperimentswereperformedontheperipheral nervesofthreeDanishLandracepigs(∼8–9monthsold weigh-ingabout45kg).Allexperimentalprocedureswereapprovedby theAnimalExperimentsInspectorateundertheDanishMinistryof Justice.

The pigs were anesthetized using a mixture of Xylazine (Rompun®, 20ml/l), Ketamine (Ketaminol®, 50mg/ml),

Butor-phanol Tartrate (Turbugesic®, 10mg/ml) and a combination of

Tiletamin and Zolazepam (combined in Zoletil, 50mg/ml). The animalswereintubatedand placedona veterinaryanaesthesia ventilator(model2000,HallowellEMC,USA) at15breaths/min. Anaesthesiawasmaintainedusinga50–50%air/oxygenmixture with 1–1.2% Isoflurane. The animals received 0.9% NaCl saline bycontinuousIVinfusionthroughearveintoprevent dehydra-tion,androcuroniumbromide(Esmeron®,10mg/ml)andFentanyl

(“Hameln”50␮g/ml)toprovideanalgesiathroughouttheentire experiment.Theanimals’heartrateandoxygensaturationwere monitoredthroughouttheexperiment(Fig.1a).

2.2. Experimentalmethodsanddataacquisition

Surgical access was created in the upper forelimb to the ulnar and mediannerves, and thesite of insertion waschosen approximately50mmabovetheelbow.Preciseimplantationswere performedataconstantvelocity[14]of2mm/s,intheulnarnerves. Thecompressiveforcewasmeasuredusingaloadcell(Sensotec Inc.,Model31/1435-02,maxload0.1kg,resolution1.31mV/g).A malefittingontheloadcellwasusedtoacceptafemaleLuerlock ontowhichtheneedlesweremounted(Fig.1b).

The nerves were elevated using a plastic platform with a 4mmdiameterhole(seeFig.1b)centeredunderneaththem.The microneedletipswereperpendicularlyplacedslightlyabovethe externalsurfaceofthenerves,andwerethenadvancedintothem byamotor-controlled(MaxonDCMotor22-60-881,JVLIndustri ElektronikA/S,DK)hydraulicmicromanipulator(Narishige MMO-220)witharesultingmovementresolutionof0.25␮m.Aftereach insertion,theneedlewasrepositionedina differentpartofthe nervetoavoidmultipleinsertionpointsinthesamelocation.

Twogroupsofelectro-sharpenedtungstenmicroneedles,with differentshaftdiameters(∅)andconicaltipswereusedtoperform 32insertions:19and 13trialswereconductedusing micronee-dleswith∅=75␮mand∅=100␮m,respectively.Moreover,allof themwereassumedtohaveYoungmodulusandPoissonratioof En=411GPa,andn=0.28,respectively.

Round tungstenrods (no insulation, 75 and 100␮m diame-ters,A-MSystems)werecutinto2cmlengthsandthenmanually electro-sharpenedtocreateasharptip.Thetipsweresharpened byloweringoneendintoa2NKNO3 solution,placinga∼8VAC

potentialacrossit,andusingalargecarboncounterelectrodefor 20–40stoetchthem.Thetipswerevisuallyinspectedthrougha microscopeduringandaftertheelectrolysesprocedure.Finally,the openingangleofthetipwasmeasuredfollowingoptical photomi-crography(Fig.1c).Allelectrodeswerecleanedinde-ionizedwater beforeimplantationtoremoveanyresiduefrometchant.

The microneedles were inserted according to a ramp–hold–ramp profile (Fig. 1d), and the force and position signals(Fig.1e)werefilteredbeforesampling(1storderlowpass filter, sampling frequency=2.5kHz, NI DAQ card-6204E). The sampleddatawerealsofilteredoffline,tominimizesuperimposed physiologicalandinstrumentalnoise.Inparticular,therelaxation phase wasfilteredusinga 3rdorderButterworthlowpassfilter

(F3dB=0.325Hz),whilethecompressionandinsertionphaseswere

filteredwitha3rdorderButterworthlowpassfilter(F3dB=12.5Hz).

2.3. Modellingofcompressionandpuncture

Whenthetipof a microneedlecomesintocontact withthe outermostlayerofthenerve(epineurium),thepressureincreases (Fig.1e,phaseA)andthelayerdeforms:therelationbetweenthese setsofquantitiesisgovernedbyconstitutiveequations.

SinceanonlinearKelvinmodel[15]wasusedtoapproximate the generalbehaviour of the living nerves,and thevelocity of microneedleswasconstantforallphases(Fig.1e,phasesA–B–D), theinteractionforceswerewrittenas:

F(z,

v

s)=fs(z)+k(z)

v

s



1−exp



v

z s



(1) wherezisthedimplingofthetissue(which,inthiscase,equals themicroneedletipdisplacement),

v

=dz/dtisthevelocityofthe needletip,fs(z)isanonlinearforce–displacementfunctionandk(z)

anonlinearspringconnectedwithanonlineardamperb(z),witha characteristicrelaxationtimes=b(z)/k(z).Theexponentialtermof

Eq.(1)dependsonthedimplingofthetissuebeforethepuncture (z),aswellasonthecharacteristicrelaxationtimeofnerve(s)

andpiercingvelocity(

v

).Sinceinthisstudyvsz,theasymptotic

expansionofEq.(1)withrespecttovswasused:

F(z,

v

s)=fs(z)+k(z)

v

s



1−exp



v

z s



=fs(z)+k(z)



z+O



1

v

s



(1.1) andEq.(1)wasapproximatedwithEq.(1.2):

F(z) ∼= fs(z)+k(z)z (1.2)

Eq.(1.2)showsthatthetotalforceisindependentoftheviscous characteristicsofthetissueforanychoiceoffs(z)andk(z).

Aboveall,duetothesmallsizeoftheneedletip(100␮m) withrespecttothenervediameter(3–5mm),thisproblemwas treatedasanindentationofanincompressibleelastictissue(i.e.the livingnerve)performedwithaconicalindenter(i.e.the micronee-dletip).Consequently,Eq.(1.2),whichimplicitlyrelatesforcesand dimpling,wasmadeexplicitbymergingthetwotermsandusing Sneddon’sapproach[16,17]togetherwiththechangesduetothe realgeometryoftheconicaltip[18].Furthermore,theliving periph-eralnerveswereconsideredanonlinearelasticmaterial,andthe measuredloadF(z)waswrittenas:

F(z)=8tg(˛)3 M(E,z)z[z+ ¯ ()] (2) where E is the instantaneous Young’s modulus of the nerve, M(E,z)=Eexp(bz)modelsthenonlinearelasticityofthenerve[12] undergoingafinitedeformation(indentation)andassumed incom-pressible[19],˛isthehalfangleoftheneedletip,zisthedimpling ofthenerve(ortipdisplacement),and ¯ ()isafunctionofthe cur-vatureradiusofthetip,withthedimensionofalength.According to[18],forbothgroupsofmicroneedles,Eq.(2.1)canbewrittenas:

¯

()=c12+c2 (2.1)

wherec1=1.5×10−4m−1andc2=1.17×10−1.

Thehalfangles(˛)andthetipradii()ofthemicroneedletips weremeasuredfromdigitalpictures,andEq.(2)wasusedtofit experimentaldata(phaseA)throughnonlinearoptimizationwith parameteridentificationbasedonmeasuredcompressionforces (quasiNewtonianalgorithm,Scilab©INRIA).

Allexperimentsperformedwithmicroneedleswith∅=75␮m and∅=100␮mwereseparatelygroupedtoextractthemean val-uesofthequantities(E,b)characterizingthetissueresponse.

(3)

Fig.1.(a)Generalviewofexperimentalsetup.(b)Magnificationoftungstenmicroneedleandperipheralnervewithsupport.(c)Microneedletipgeometry,themeasures areindegreesandmicrometres.(d)Theramp-old-rampprofileofinsertion-rest-extractionofthemicroneedle.(e)Acharacteristiccurve(forcevs.time),inwhichdifferent phasesareunderlined.A:Compressionphase(frombeginningtopoint˛).˛:Pointofpuncture,wherecharacteristicdiscontinuityinthecompressionforcecanbeseen.B: Insertionphase.ˇ:Endoftheinsertionphase,wherethemovementofthemicroneedlecomestoastopinsidethetissue.C:Relaxationphase.:Retractionpoint,where theneedlebeginstoberetractedfromthetissue.D:Retractionphase.ı:Extractionofthemicroneedlefromthetissue.Thenegativevaluesoftheforces(traction)aredue tobindingofthetissueontheexternalsurfaceofthemicroneedle.

(4)

750 P.N.Sergietal./MedicalEngineering&Physics34 (2012) 747–755

Fig.2.Force–displacementcurvesduringthephaseofpiercing.Thisphasecanbe theoreticallydescribedasanindentation.(a)Experimental(lightgrey)indentations witha∅=75␮mtungstenmicroneedle,theoreticalfittingcurve(solidblack).(b) Experimental(lightgrey)indentationswitha∅=100␮mtungstenmicroneedle, theoreticalfittingcurve(solidblack).

Tointegratethisdirectbiomechanicalapproach,anindirect sen-sitivityanalysiswasperformedtofurtherinvestigatethedegreeof nonlinearityofthecompressionforce.Letq(z,n)beapolynomial functionofnorder,asshowninEq.(2.2):

q(z,n)=

n



j=1

nzn (2.2)

wherenaretheconstantcoefficientsofeachn-orderterm(the

0-ordertermissetidenticallytozerobecausetheforceof com-pressioniszeroforz=0).Thesetofexperimentalcurveswasfitted withthesephenomenologicalfunctionsbyvaryingthemaximum orderofpolynomialapproximation(n-index)inordertoevaluate boththeresidualsandR2 index(R2isthesquareofthe

correla-tionbetweentheresponsevaluesandthepredictedvalues).The orderofnforwhichtheimprovementofindicesstopsistheorder ofnonlinearityofEq.(2.2).

RecallingEq.(2),theglobalworkappliedtothenerveduring compressionuptothepuncturewaswrittenas:

W=



z0

0

F(z)dz (3)

where z0 is the coordinate where the tissue was pierced.The

nervewaspuncturedwhenacharacteristicmaximumpressurewas exceeded,thesurfaceofthenerveyieldedandacrackopenedin thetissue.Atthisstage,thecentralradiusofthecrackwasassessed withtheradiusofthemicroneedletip.Duringinsertion,thesizeof thecrackincreaseduptotheexternaldiameterofthemainshaftof themicroneedle:intheeventofyielding,thetheoreticalpressure atthemicroneedle-nerveinterfacewasroughlyassessedbyusing thefollowingequation[20]:

p(r)= 1−rt/r

(1−n) /En+3/[2Ets(εr)]

(4) where En and n are the Young and Poisson modules of the

needle, r and rt are the radii of the needle shaft and of the

needle tip, and Ets is the instantaneousYoung modulus of the

tissue.

Whentheinitialmicrocrackexpanded intoa hole,the non-linear behaviour of the tissue wasmodelled with thefunction Ets(r)=Eexp(ˇεr),whereεr=(rn−rt)/rt andˇ>0representan

exponentialconstantmodellingtheradialstrainhardeningofthe tissue[12].Eq.(4)isstrictlyvalidforapairofperfectlyelastic mate-rialsandusuallyprovideshighpressurevalueswhenther/rtratio

ishigh,asinthiscase.

Nevertheless,themaximumpressurethatcanbeobtainedat theinterfaceisyieldingpressure;viscousflowsarisebeyondthis thresholdwhichlowerthelocalfieldofcontactstresses.Eq.(4) showstheneedforyieldingattheinterfacebetweenthenerveand themicroneedlesbutisnotabletoquantifyit.Tothisaim,itcould beusefultorecallthebehaviourofthenerveunderthe micronee-dletip,beforeopeningofthehole:thetissueyieldsandviscous flowsarisebeforefracturingoftheoutermostlayer(viscoelastic fracture).

Asaconsequence,thesuperficialyieldingpressurewas reason-ablyapproximatedwiththepiercingpressure:

p(r)= ¯py=F(z0)

A (5)

whereA=[22+(r+)



(r)2

+L12]andistheradiusof

curvatureofthemicroneedletip,risthenominaldiameterofthe mainshaft,andL1istheheightoftheconicalregionattheendofthe

needle[15,21].Toachieveameanvalueofthisparameter,digital picturesofmicroneedleswereanalysedandmeasured.Itshouldbe notedthatEq.(5)providesthesuperficialyieldingpressure,which differsfromthemeanpressureoverthemicroneedlecrosssectional areagivenby:

¯pc=

4F(z0)

d2 (5.1)

wheredisthenominaldiameterofthemicroneedle.

Atotalforceisappliedonthemicroneedlesafterpuncturingof thetissue,whichderivesfromthesumoffrictionandaconstant cuttingforce[14].Aboveall,thetotalinteractionforceincreases almostlinearlyduringinsertiontogetherwiththecontactsurface ofthemicroneedle.

Forthesakeofsimplicity,thefrictionwasmodelledas Coulom-bian,thenthemeandynamiccoefficientwaswrittenas:

¯ d= ¯

¯py

sgn(

v

) (6)

where ¯=m/2risthemeanshearstressonthelateralsurfaceof theinsertedmicroneedle,misthederivativewithrespecttozof

(5)

Fig.3. (aandb)Polynomialfunctionsfittingexperimentalcurvesofcompressionwitha∅=75␮m(a)anda∅=100␮m(b)microneedle.Allfunctionswithn≥2perform thesamefitandareshownsuperimposedtothesolidblackcurve.(candd)Residualsofpolynomialfitsofexperimentaldataachievedwitha∅=75␮m(c)and∅=100␮m. (d)Forn≥2residualsareexactlysuperimposedtotheblackarea.(e)ChangesofR2indexvaryingthen-index(maxdegreeofpolynomialfunctionandorderofnonlinearity

ofthecompression)forbothsetsofexperiments.Forn≥2R2indexremainsconstant,anddoesnotallowdirectassessmentofthen-orderofcompression.(f)Relevance

analysisofconstantcoefficientsofallfittingfunctions:forbothsetsofexperimentsonlythelinear(1)andquadratic(2)termsaredifferentfromzero(lightgrey=0,dark

grey>grey>0,white=notallowed),revealingaquadraticcoreofthecompressionphenomenon.Forsakeofsimplicityonlyfourpowersareshown.

thestraightlinefittingthetotalforce,andsgn(

v

)isthesign func-tionofthemicroneedlevelocity

v

.Thepiercingpressureandthe slopeoftheinsertionforceareunivocallyrelatedforeachcurve. Asaconsequence,eachcurvewasseparatelyanalysed to quan-tifythefrictioncoefficientavoidingerrorscomingfromtheuseof meanvalues.Additionally,thisapproachallowedustoinvestigate thenatureofthedistributionofthedynamicalfrictioncoefficient amongexperiments.

3. Results

3.1. Anelasticframeworktodescribeinteractionbetweennerve andmicroneedles

For insertion experimentsperformedwiththe firstgroupof tungstenmicroneedles(∅=75␮m)meancharacteristicrelaxation timeand meandimplingwererespectively ¯s75=28.9558sand

(6)

752 P.N.Sergietal./MedicalEngineering&Physics34 (2012) 747–755 ¯z075=2.6456mm,whileforexperimentsperformedwiththe

sec-ondgrouptheywere(∅=100␮m), ¯s100=28.8158sand ¯z0100=

3.6369mm.Inbothcases,

v

¯s75 ¯z075and

v

¯s100>> ¯z0100,then

Eqs.(1.2)and(2)wereusedandtheelasticframeworkwasableto correctlydescribetheexperimentalresults.

3.2. Geometryofmicroneedlestipsandinstantaneousresponseof thenerve

Thehalf angles(˛) and thetip radii ()of the microneedle tipsforthefirstgroupwere˛=10.25±0.5◦and=1.7±0.577␮m, while for the second group they were ˛=7.875±0.478◦ and =2.48±0.349␮m:thesevalueswereinsertedinEqs.(2)and(2.1) tofitdataresultingfromexperimentalindentations(phaseA).

Fig.2shows bothexperimentsandfittingcurves:Eq.(2) fit-tedexperimentaldataof thefirst group(R2=0.8591) totheset

{¯E75=22.2265kPa, b75=0, ¯ ()75=1.99×10−4mm}, and also

fittedexperimentaldataofthesecondgroup(R2=0.9649)tothe

set{¯E100=32.9663kPa,b100=0, ¯ ()100=3×10−4mm}.

Furthermore,theindirectanalysisofthecompressionclearly showedaquadraticnatureofthephenomenon(seeFig.3a–f).The analysisofbothresidualsandR2indexesdidnotsupportthis

con-clusion.Indeed,inbothcasesforn≥2therewasasuperimposition ofresidualsandaconstancyofR2asshowninFig.3c–e.

However,therelevance analysisof thecoefficients offitting functions(Fig.3f)showedthatonlythelinearandquadraticterms weredifferentfromzeroforallpolynomialswithn≥2andforboth groupsofmicroneedles.

3.3. Piercingandinsertionfeatures

TissuedimplingandpiercingwasestimatedwithEq. (3).To this aim, thecontact areasfor both groups were calculated as A75=0.03304±0.0038mm2 andA100=0.0663±0.0130mm2,and

Eq.(3)ledto ¯W75=28.4912␮Jand ¯W100=60.8844␮J.Moreover,

Fig.4a showstheboxplotsofbothquantitiesW75andW100.In

particular,thelinesinsidethecentralboxesrepresentthe medi-ans ˜W75=22.9210␮Jand ˜W100=54.0432␮J,theupperandthe

lowerlinesoftheboxesshowtheupperandlowerquartiles,and the error bars include outliers. Fig. 4b shows thebox plots of thepiercingforces:themeanvalueswere ¯Fp75=27.4301mNand

¯Fp100=54.1736mN,whilethemediansofthesamequantitieswere

˜Fp75=24.094mNand ˜Fp100=51.4703mN.

Eq.(4)providesamuchlargertheoreticalinterfacialpressure thantheyieldingpressureofanysofttissue.Indeed,forˇ=0.145 and ¯E75or ¯E100,thepressureswerefoundtobe ¯p75≈110MPaand

¯p100≈162MPa,whilethetractionyieldstressfora 1002Asteel

was131MPa.Itshouldbenoticed,accordingto[12],thatavalue of ¯ˇ=4.03wasfoundforacircularcompressionofrabbitsciatic nerves.Therefore,Eqs.(5)and(6)wereusedtoapproximatethe yieldingpressureandthedynamicfrictioncoefficient.

Indeed, Fig. 5 shows the box plots of the piercing pres-sures and dynamic friction coefficients for each specimen and for each kind of microneedle. The mean and median values of yield contact pressure, pressure on the cross sectional area anddynamicfrictioncoefficientformicroneedleswith∅=75␮m were: ¯py75=0.8302MPa, ¯pc75=6.2121MPa,¯d75=0.1626,and

˜py75=0.7292MPa, ˜pc75=5.4565MPa, ˜d75=0.1748. Similarly,

for the ∅=100␮m group, the same quantities were ¯py100=

0.8171MPa, ¯pc100=6.9010MPa, ¯d100=0.1900 and ˜py100=

0.7763MPa, ˜pc100=6.5567MPa,˜d100=0.1726.

Finally,Fig.6showsthequantile–quantileplotsofdistribution ofthedynamicfrictioncoefficientamongexperimentaltrialsfor bothgroupsofmicroneedles.Inparticular,theShapiro–Wilktest wasperformedto assessthe degreeof “normality” of distribu-tion(R:Alanguageandenvironmentforstatisticalcomputing.R

Fig.4.(a)Boxplotsofworktoreachthenervepunctureforbothgroupsof exper-iments:thelinesinsidethecentralboxesrepresentthemedians ˜W75=22.9210␮J

and ˜W100=54.0432␮J,theupperandthelowerlinesofboxesshowtheupperand

thelowerquartiles,theerrorbarsincludeoutliers.(b)Boxplotsofforceforpiercing thenervesusingdifferentdiametersofmicroneedles:centrallinesrepresentthe medians ˜Fp75=24.094mNand ˜Fp100=51.4703mN.

FoundationforStatisticalComputing,UniversityofVienna).Forthe firstgroup,thistestresultedinW=0.9311,p-value=0.1623,while forthesecondgroup,W=0.9452,p-value=0.5278,whereWisthe squareofthecorrelationbetweenexperimentaldataandnormal distribution,whilethep-valueistheprobabilityofobtainingatest statisticatleastasextremeastheonethatwasactuallyobserved, assumingthat thenullhypothesis is true.Inthis case, thenull hypothesiswasthatexperimentaldata(d)camefromanormally

distributedpopulation. 4. Discussion

4.1. Asimpleframeworktomodelsuperficialinteractions

In this manuscript, the interactions between tungsten microneedles and the nerve were described using a simple mathematical framework. Specifically, the first phase of com-pression was modelled with an elastic indentation. The more theviscous effects were negligiblein a standard Kelvin model, the more this simplificationapproached theexact solution. As previously shown, the viscous effects slightly influenced the responseoftheperipheralnervesaccordingtothechosenvelocity of punctureand insertion, whichapproximated thatof surgical implants. In particular, viscous effects mainlyaffected the end

(7)

Fig.5.(a)Boxplotsofpiercingpressureatpuncturefordifferentdiameterof microneedles:centrallinesrepresentthemedians ˜py75=0.7292MPaand ˜py100=

0.7763MPa.(b)Dynamiccoefficientoffrictionduringinsertionintolivingnervesfor bothdiameterofmicroneedles:centrallinesrepresentthemedians˜d75=0.1748

and˜d100=0.1726.

part of indentation; furthermore, maximum difference with a fully elastic description was approximately 2% at the end of compression,whileatthebeginningitwasnegligible.

Moreover,theclassicalSneddon’s approach wasnot directly used,sincethisapproachisstrictlyvalidforaninfinitelysharp con-icalindenter,whiletherealneedleshadtipswithafiniteradiusof curvature.Therefore,amodificationoftheclassicaltheorywasused accordingto[12]toextracttheinstantaneousYoung’smodulusof thelivingperipheralnervoustissue.

In particular, the mean values of this parameter (22.2265–32.9663kPa) were comparable with mean data from othercompressionexperimentsonrabbitnerves.Indeed,aYoung modulus of41.6±5kPa [22] wasfoundfor in vitro unconfined compressions,andavalueof66.9±8kPa[12]wasfoundforinvivo circularcompressions.

Furthermore,theachievedvalueswerecomparablewith physi-calpropertiesofotherbiologicaltissuesandshowedthattheliving peripheralnervesofpigswereasstiffasdermis(35kPa).Again, theirstiffnesshadthesameorderofmagnitudeofmusclestiffness (80kPa)[23],andtheyweremorecompliantthanarticularcartilage [24].

In addition, although peripheral nerves were consid-ered as nonlinear elastic (Eq. (2)), the achieved values of b (1×10−2<b<1×10−3) showed a practically linear behaviour

Fig. 6.Quantile–quantile plotsof dynamicfriction coefficients achievedwith microneedlesof∅=75mm(a)and∅=100mm(b).Inbothcasesthenormal dis-tribution(straightboldline)ishighlyconsistentwithexperimentalvalues(dotted linesshow95%confidencebounds).

duringlocalizedcompressions(M(E75,100,z)≈ ¯E75,100)with

lim-itedvalues ofz.Asaconsequence,theYoungmodulusofliving nerves waspracticallyconstant and equal totheinstantaneous Young modulus,andforsakeofsimplicitytheparameterbwas settozero.Thisapproachledtoapolynomial(2◦order) indenta-tionlawconsistentwiththeindirectphenomenologicalanalysis (Fig.3a–f)andwiththeapproachgivenin[14].

Finally,thissimpleframeworkwasconsideredcorrectsincethe characteristicrelaxationtimeofthenervemultipliedbythe veloc-ityofindentationwasgreaterthanthecharacteristicdeflectionof thenervesurface.Sinceperipheralnervesmayexperiencealimited dimplingunderthemicroneedletip,thistheoreticalframeworkis still validandusableforalltissueshavingsimilarcharacteristic relaxationtimeandequalorhigherinsertionvelocities. Neverthe-less, viscoelasticeffects havetobeconsideredfor lowinsertion velocitiesorforshortercharacteristicrelaxationtime.

(8)

754 P.N.Sergietal./MedicalEngineering&Physics34 (2012) 747–755 4.2. Piercingandinsertionofmicroneedlesintoperipheral

nerves:interactionfeatures

Compressionforceswereusedtogaugeinteractionsbetween livingnervesandmicroneedles.Inparticular,theachieved pierc-ingforcesweregreaterthanthosefoundinsimilarexperiments withexvivoporcine[10]andrabbit[11]nerves.Thiscouldbedue todifferencesinexperimentalsetup.In[10],indeed,thenervewas keptunderaxialtensioninasalinebath,whereasinthese experi-mentsthenerveswerekeptintheair,andaperforatedsupportwas placedunderthemtoeasepiercingandtheinsertionof micronee-dles.However,inbothcases,thepartsofthenerveinteractingwith themicroneedleswerefreetodimpleunderthetipforces.

Anotherreasonforthiswasthegreaterstiffnessoftheliving nerveswithrespecttosimilarexvivospecimens.Indeed,adense microcirculationsysteminsidetheliving nervesprovides nour-ishmenttoallinternalsubstructures,andpressurizedbloodflows insmallveinsandcapillaries.Moreover,thenervousfasciclesare filledwithaphysiologicalfluidunderpressure.Asaconsequence, theglobaltissueresponsetolocalizedindentationisaffectedby thisinternalpressurization.Furthermore,inexvivospecimens,the lackofinternalpressureinfascicles,smallveinsandcapillaries, andpost-mortemautolysis,whichsoftenstheconnectivetissues, worktogethertolowertheglobalresponseofthenervesto exter-nalmechanicalstimuli.Thedifferencebetweeninvivoandexvivo piercingforceswasmostlikelyduetothecomplexinteractionof thesetwocauses,whichgenerallyseemstobevalidforothertissues also[25–27].

Again,itcouldbeworthpointingoutthedifferencesbetween themeanyieldingpressuresandthemeancross sectional pres-sures.Indeed,fortheanalysedgroupsofmicroneedlesthemean crosssectionalpressureswere∼7.4825and∼8.4458timesgreater thanthesuperficialyieldingpressure.Inparticular,since micronee-dleshavetobearthemaximumpiercingforcewithoutanybuckling effect[10,11,28],thecrosssectionalpressureisrelevantfor design-ingbothgeometryandmaterials.

Thepreviousdifferencewasduetotheprocedureusedfor esti-matingthecontactarea.Inthiscase,theareawastheconicalarea ofthetipincontactwiththedimpledtissue,accordingto[21].This choiceledtoamorecloseassessmentoftheforceforthesurface unitofthedimpledtissue.Sincethetipofthemicroneedlesank intothesurrounding(soft)tissuebeforecompression,thecontact areawasassumedtobeconstantforthewholecompression.

Eq.(4)wasusedtoassesstheinterfacialpressurebetweenthe mainshaftofthemicroneedlesandthelivingperipheralnerves. Since this approach exactly assesses the interference pressure betweentwo elasticmaterials,Young’smoduliof tungstenand nerveswereusedinthiswork.Aboveall,aspreviouslydiscussed, amicrocirculationsystemnourishestheinnerpartofthenerve and thefasciclesare filledwithendoneural fluid:sincethe tis-sueissoakedinbiologicalfluids,theincompressibility(≈0.5) [19]ofthewholenerve isacceptableandEqs.(2) and(4)were usedinthesesimplifiedforms.Furthermore,thestiffness ofthe microneedleswasassumedtobemagnitudeshigherthanthatof thelivingperipheralnerves:experimentsconfirmedthis assump-tion(En>> ¯E75,100)allowingEqs.(2)and(4)tobeindependent

fromthemicroneedlematerial.Inaddition,Eq.(4)onlyshowedthe needfortissueyieldingaroundthemainshaftofthemicroneedle. Asaconsequence,Eq.(5)wasusedtoassessthispressurebecause compressionandyieldingoccursimultaneouslyjustbefore pierc-ing.Therefore,thisprocedureallowedustoassessaquantitywhich isdifficulttoexplicitlyachieveinexperiments.

Finally, the interaction between peripheral nerves and microneedleswasroughlymodelledusingaCoulombiandynamic frictionmodel.Thiswasasimplificationofmorecomplex phenom-enathatarosebetweentheneedleshaftandthesurroundingtissue.

Nevertheless,thissimplemodelwasabletocatchthemain macro-scopicfeaturesofthisphenomenon,givingphysicallyreasonable valuesforthedynamicfrictioncoefficientbetweenbiologicaland conventionalmaterials,accordingto[29].Inaddition,astatistical analysisofdatawasprovidedtoinvestigatethecourseofthe dis-tributionofthedynamicfrictioncoefficients.First,aroughanalysis oftheabsolutedifferencesbetweenmeanandmedianvalueswas performedresultingin1.22×10−2(∼7.5%)forthefirstgroupand 1.74×10−2(∼10%)forthesecond.Althoughthesevaluesrevealed asimilarity,thiskindofanalysiswasnotabletoinvestigatethe globalcourseofthedistribution.Therefore,quantile–quantileplots werecreatedandtheShapiro–Wilksnormalitytestwasperformed. Theplotsshowedanalmostnormaldistribution,whilethetest pro-videdhighcorrelationindexes(W>0.9)andp-values>0.05forboth groups.Indeed,experimentaldatawereclosetothestraightline (normaldistribution)andthenullhypothesiswasacceptedinthe standardcaseof5%ofsignificancelevel.

5. Conclusionsandfutureworks

Insertion experiments together with a simple mathemati-cal framework wereprovided toinvestigate in vivo interaction between tungstenmicroneedles and ulnar porcine nerves. This approach allowedustoquantitatively assess themainphysical quantitiesfromwhichtheexperimentalcurvesdepend:the instan-taneousYoung’smodulus,compressionforce,theworkneededto piercethetissue,puncturingpressure,and thedynamic friction coefficientbetweentungstenmicroneedlesandlivingnerveswere quantified. Specifically,thedistribution of thedynamic friction coefficientwasfoundtobeapproximatelynormal.Thisstudycould provide usefulquantitiesfor modellingand automating [13,30] peripheralnerve insertion tasks. Aboveall,this framework can beextendedtoallcasesinwhichtissuedimplingissmallerthan theproductbetweencharacteristicrelaxationtimeand piercing velocity:forlongrelaxationtime coupledwithquitelow inser-tionvelocity,orshortrelaxationtimecoupledwithhighinsertion velocity.

Futureworkwillextendtheexperimentaltrialstootherliving nervesfeaturingdifferentkindsofneedlesanddiverse combina-tionsofrelaxationtimeandpiercingvelocity,toexplicitlyaccount forviscoelasticeffects.

Acknowledgements

TheauthorsthankDr.JacopoCarpanetoforhisvaluablehelp. ThisworkwassupportedinpartbytheEuropeanUnion(EU)within theTIMEProject(FP7-ICT–2007-224012,Transverse, Intrafascicu-larMultichannelElectrodesystemforinductionofsensationand treatmentofphantomlimbpaininamputees).

Conflictofinterest None.

References

[1]NathS,ChenZ,YueN,TrumporeS,PeschelR.Dosimetriceffectsofneedle diver-genceinprostateseedimplantusing[sup125]Iand[sup103]Pdradioactive seeds.MedPhys2000;27:1058–66.

[2]GuptaS,MadoffDC.Image-guidedpercutaneousneedlebiopsyincancer diag-nosisandstaging.TechVascIntervRadiol2007;10:88–101.

[3]GokselO,DehghanE,SalcudeanSE.MissedbreastcancersatUS-guidedcore needlebiopsy:howtoreducethem.MedEngPhys2009;31:1069–78. [4]AbolhassaniN,PatelR,MoallemM.Needleinsertionintosofttissue:asurvey.

MedEngPhys2007;29:413–31.

[5] GandeviaSC,HalesJP.Themethodologyandscopeofhuman microneurogra-phy.JNeurosciMeth1997;74:123–36.

(9)

[6]VallboAB,HagbarthKE,WallinBG.Microneurography:howthetechnique developedanditsroleintheinvestigationofthesympatheticnervoussystem. JApplPhysiol2004;96:1262–9.

[7]DiMaioSP,SalcudeanSE.Needlesteeringandmotionplanninginsofttissues. IEEETransBiomedEng2005;52:965–74.

[8]DiMaioSP,SalcudeanSE.Interactivesimulationofneedleinsertionmodels. IEEETransBiomedEng2005;52:1167–79.

[9] GokselO,DehghanE,SalcudeanSE.Modelingandsimulationofflexibleneedles. MedEngPhys2009;31:1069–78.

[10] YoshidaK,LewinskyI,NielsenM,HyllebergM.Implantationmechanicsof tungstenmicroneedlesintoperipheralnervetrunks.MedBiolEngComput 2007;45:413–20.

[11]JensenW,YoshidaK,HofmannUG.Invivoimplantmechanicsofsingle-shaft microelectrodesinperipheralnervoustissue.In:Proceedingsofthe3rd inter-nationalIEEE/EMBSconferenceonneuralengineering.2007.p.1–4. [12] JuM-S,LinC-CK,FanJ-L,ChenR-J.Transverseelasticityandbloodperfusionof

sciaticnervesunderinsitucircularcompression.JBiomech2006;39:97–102. [13] ReedKB,OkamuraAM,CowanNJ.Modelingandcontrolofneedleswith

tor-sionalfriction.IEEETransBiomedEng2009;56:2905–16.

[14] OkamuraAM,SimoneC,O’LearyMD.Forcemodelingforneedleinsertioninto softtissue.IEEETransBiomedEng2004;51:1707–16.

[15]MahvashM,DupontPE.Mechanicsofdynamicneedleinsertionintoabiological material.IEEETransBiomedEng2010;57:934–43.

[16]SneddonIN.Boussinesq’sproblemforarigidcone.ProcCambridgePhilosSoc 1948:492–507.

[17]SneddonIN.Therelationbetweenloadandpenetrationintheaxisymmetric Boussinesqproblemforapunchofarbitraryprofile.IntJEngSci1965;3:47–57. [18]PoonB,RittelD,RavichandranG.Ananalysisofnanoindentationinlinearly

elasticsolids.IntJSolidsStruct2008;45:6018–33.

[19]MillesiH,ZochG,ReihsnerR.Mechanicalpropertiesofperipheralnerves.Clin OrthopRelatRes1995:76–83.

[20]TimoshenkoS.Strengthofmaterials.D.VanNostrandCompanyInc;1941. [21]DavisSP,LandisBJ,AdamsZH,AllenMG,PrausnitzMR.Insertionof

micronee-dlesintoskin:measurementandpredictionofinsertionforceandneedle fractureforce.JBiomech2004;37:1155–63.

[22]JuMS,LinCCK,LinCW.Transverseelasticityofrabbitsciaticnervesunderin vitro.compression.JChinInstEng2004;7:965–71.

[23]Pailler-MatteiC, BecS,ZahouaniH.Invivo measurementsoftheelastic mechanicalpropertiesofhuman skinbyindentationtests.MedEngPhys 2008;30:599–606.

[24] TöyräsJ,Lyyra-LaitinenT,NiinimäkiM,LindgrenR,NieminenMT,KivirantaI, etal.EstimationoftheYoung’smodulusofarticularcartilageusingan arthro-scopicindentationinstrumentandultrasonicmeasurementoftissuethickness. JBiomech2001;34:251–6.

[25] Gottsauner-WolfF,GrabowskiJJ,ChaoEY,AnKN.Effectsoffreeze/thaw con-ditioningonthetensilepropertiesandfailuremodeofbone-muscle-bone units:abiomechanicalandhistologicalstudyindogs.JOrthopRes1995;13: 90–5.

[26] WellsSM,LangilleBL,AdamsonSL.Invivoandinvitromechanicalproperties ofthesheepthoracicaortaintheperinatalperiodandadulthood.AmJPhysiol 1998;274(5Pt2):H1749–60.

[27] StidhamDB,StagerDR,KammKE,GrangeRW.Stiffnessoftheinferioroblique neurofibrovascularbundle.InvestOphthalmolVisSci1997;38:1314–20. [28]SergiPN,CarrozzaMC,DarioP,MiceraS.Biomechanicalcharacterization

ofneedlepiercingintoperipheralnervoustissue.IEEETransBiomedEng 2006;53:2373–86.

[29]WuJZ,DongRG,SchopperAW.Analysisofeffectsoffrictiononthe defor-mationbehaviorofsofttissuesinunconfinedcompressiontests.JBiomech 2004;37:147–55.

[30]FamaeyN,VerbekenE,VinckierS,WillaertB,HerijgersP,VanderSlotenJ. Invivosofttissuedamageassessmentforapplicationsinsurgery.MedEng Phys2010;32:437–43.

Riferimenti

Documenti correlati

From the loadings plot (Fig. 2c) the signals corresponding to the bands used to detect epoxy resin (●), varnishes (*) and proteins (▲) appear the ones mostly influencing the spectra

In un progetto finanziato dal Ministero delle Politiche Agricole, Alimentari e Forestali e denominato VALORBIO Valorizzazione della tipicità orticola attraverso l’agricoltura

The ability of endothelial differentiated clones to generate epithe- lial tumours in vivo may suggest that in the endothelial differentiated breast cancer stem cells

This study aimed to (1) qualitatively analyse the axial and appendicular skeleton of the chick following early ethanol exposure and (2) quantitatively measure the effects of ethanol

(2015), this testing method leads to ”a more realistic drop-in replacement analysis” since, in any heat pump system, given the compressor shaft rotational frequency, the evaporating

2.0 up to 4.0.. In general, the vane thermal protection is highly non uniform along the span, especially along the pressure side and at high injection rates. Indeed, the hub section