Physics Letters B 748 (2015) 86–88
Contents lists available atScienceDirect
Physics
Letters
B
www.elsevier.com/locate/physletb
Determination
of
non-mesonic
weak
decay
widths
of
!
5
He
and
11
!
B
Hypernuclei
E. Botta
a,
b,
T. Bressani
a,
b,
S. Bufalino
a,
b,
A. Feliciello
b,
∗
aDipartimentodiFisica,UniversitàdiTorino,viaP.Giuria1,Torino,Italy bINFNSezionediTorino,viaP.Giuria1,Torino,Italy
a
r
t
i
c
l
e
i
n
f
o
a
b
s
t
r
a
c
t
Articlehistory:
Received21April2015 Accepted29June2015 Availableonline2July2015 Editor:D.F.Geesaman
Keywords:
!-Hypernuclei
Non-mesonicweakdecaywidths
Therecent determinationofthepartialdecaywidthsfortheone-protonandthetwo-nucleoninduced Non-Mesonic Weak Decay of!-Hypernuclei inthe A =5–16 rangepermitted toreconstruct thefull patternofdecaywidthsfor 5
!Heand 11!B.Aconsistencycheckon12!Cdecaywidthsconfirmsthevalidity
oftheadoptedmethod.
©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.
1. Introduction
WeakInteraction mediates the
!-Hypernuclei
(Hypernuclei in thefollowing) decayto non-strangenuclear systemsthrough dif-ferentchannels(WeakDecays,WD).The simplest process is the so-called Mesonic Weak Decay (MWD),which iscloselyrelatedto thetwo maindecay channels into N
π
ofthe constituent!
hyperoninfree space. The associ-ated decay widths are labeled#
π− and#
π0 and their sum#
M. The MWDis themostimportantdecay modeforthe s-shell Hy-pernuclei,itremains quitesignificant,atthe levelof∼
15–20% of thetotaldecaywidth, inthecaseof p-shellHypernuclei,whileit becomesnegligibleformedium- tohigh-A Hypernuclei.Theso-calledNon-Mesonic WeakDecay (NMWD)channelsare insteadlinked to theoccurrenceof WeakInteractionsamongthe constituent
!
hyperonandone or morenucleons ofthe nuclear core of a Hypernucleus. The process!
N→
N N is the simplest one:usuallyitisreferredtoasproton-stimulateddecay,inthecase ofthe!
p→
np elementaryreaction, witha decaywidth#
p, or neutron-stimulateddecayinthecaseofthe!
n→
nninteraction, withacorresponding#
n.Theimportanceoftheone-nucleon(1N) inducedNMWD wasimmediatelyrecognizedsince theearlydays ofHypernuclearPhysics[1]asauniquetooltoachievequantitative informationonthe!
N→
N N WeakInteraction,veryhardly acces-sibleinfreespace.Suchastatementstillholdstoday,despitemore thansixdecadesofremarkableprogressinthetechnologyofaccel-*
Correspondingauthor.E-mailaddress:[email protected](A. Feliciello).
erators,ofparticledetectorsandofcomputingdevices.Quitelater, afurtherNMWDchannelwaspredicted,associatedtothe elemen-tary
!(
N N)
→
n(
N N)
interactiononapairofcorrelatednucleons inthe nuclearcoreoftheHypernucleus(2N induced)[2],witha correspondingdecaywidth#
2N.#
2N maybefurthersplitintothethreebranchescorrespondingtothethreeprojectionsofthetotal IsospinoftheN Npair.Howeverthedominantconfigurationisthe one correspondingto the I3
=
0 component(np)predictedto ac-count for∼
83%ofthetotal#
2N width[3].#
N M is thenthesum of#
p,#
nand#
2N.TheNMWDchannelsarethedominantonesinallbutthes-shellHypernuclei.
We do not report here the specific decayschemes for all the abovefive(orseven)channels,whicharestraightforward.Actually, a lot of different configurations for the residual nuclear system produced in the different decay processes are possible (a single nucleusin the groundorlow-lying excited state or two ormore fragments,. . . ).Thetotaldecaywidth
#
T foragivenHypernucleus isfinallygivenby:#
T= #
M+ #
N M= #
π−+ #
π0+ #
p+ #
n+ #
2N.
(1)In order to compare dataabout differentHypernuclei, partial
#s
are usually given in units of#
!, the total decay width of thefree
!;
equation(1)isthenrewrittenas:#
T#
!=
#
M+ #
N M#
!=
#
π−#
!+
#
π0#
!+
#
p#
!+
#
n#
!+
#
2N#
!.
(2)It appearsthat inprincipleit isnecessarytomeasure six quanti-tiestofullydescribethedecayfeaturesofaHypernucleus(thefive
http://dx.doi.org/10.1016/j.physletb.2015.06.072
0370-2693/©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.
E. Botta et al. / Physics Letters B 748 (2015) 86–88 87
#s
anditslifetime).Severalexperimentsreportedpartial measure-ments ofthe differentWD widths.A recentreview on Hypernu-clearWeakDecaysmaybefoundinRef.[4].Moreover,inadditiontotheexperimental hardnessintrinsicto theNMWDobservation,onehastofacetheeffectsofintranuclear cascadeprocesses (Final State Interaction, FSI), already quite sig-nificantforlighthypernuclearsystemslikethe 5
!HeHypernucleus.
Asystematicsummary ofthe measurementsofallthe
#s
for 12!C
performedattheKEKPSisreportedinRef.[5]:itistheonly com-plete determination carried out so far. The main breakthroughs withrespect to previous experiments were the determination of
#
2N/ #
!, which was found to be equalto (0.27±
0.13), and anupdatedestimationoftheFSIeffects.
#
2N was determinedbytheFINUDACollaboration forthe Hypernuclei inthe A
=
5–16 range thankstoastudyoftheprotonspectraandoftheneutron–proton coincidence spectrain suitable kinematical configurations,as de-scribedinRefs.[6–8].Aconstantvalueof#
2N/ #
p=
0.
36±
0.
14stat+−00..0504syssys (3)wasobtained,whichwillbeusedinthefollowing.From(3)avalue of
#
2N/ #
N M=
!
0.20
±
0.08stat+−00..0403syssys"
was calculated.Moreover, inthemostrecentpaper[8],adeterminationof
#
p/ #
! foreightHypernucleiwasgivenaswell.Then,theavailabilityof
#
p/ #
!and#
2N/ #
! inthe A=
5–16 rangeoffersthepossibilityofconstruct-ingfullWDpatternsforsomeHypernucleiintheabovementioned
A range, by merging the information on
#
T/ #
!,#
π−/ #
! and#
π0/ #
! provided byother experiments.Theprocesseswithneu-tral particles in the final state are obviously the hardest to be measured.However, goodquality data samples exist on
#
π0/ #
!for 5
!He and
11
!B. Then, by exploiting equation (2) it was
possi-bletoderive by difference
#
n/ #
!,even though withlargeerror,andfinally to obtain the full pattern ofthe WD widths for 5
!He
and11
!B.
2. TheNMWDwidthsof 5
!He
Thefirst experimentwhich produced a full setof WDwidths for 5
!Heand12!Candwhichpioneeredallthefollowingeffortswas
performedattheBNLAGS[9].Avaluefor
#
n/ #
! of(0.20±
0.11)was deduced from (7.7
±
3.3) neutron events, background sub-tracted.Apossible contributionofthe 2N induceddecaywas not takenintoaccountsince atthattime itwas not evenanticipated theoretically. The value#
n/ #
p= (
0.93±
0.55) whichwas finally published is then unavoidably biasedby this omission. Both the#
n/ #
! and#
p/ #
!= (
0.21±
0.07)valueswere correctedforFSI.Further measurements of
#
π−/ #
!, of#
π0/ #
! and of#
T/ #
!were reported in Refs. [10,11], in Ref. [12] and in Ref. [10], re-spectively.A very recentdetermination of
#
p/ #
! was publishedinRef.[8];onthebasisofsucharesultandbyexploitingequation
(3)anevaluationof
#
2N/ #
!wasobtainedaswell.A compilation of the above WD widths values is reported in thefirst fourrowsof thesecond columnof Table 1.When more thanonemeasurementisavailableintheliterature,wequotedthe weighted average(w.a.). The
#
n/ #
! value was calculated bydif-ferenceaccordingtoequation(2).Consequently,itisaffectedbya quitelargeerror,whichcharacterizesalsothe
#
n/ #
p ratio,shown intheseventhrowofTable 1.Itturnsouttobeconsistentwiththe value#
n/ #
p= (
0.45±
0.11stat.±
0.03syst.)
obtainedinthedirectmeasurementinwhichtheneutronandtheprotonwere detected intightback-to-backtopologyandby applyingfurtherconstraints onthenucleonenergywhichpermittedtheselectionofeventsfor whichtheFSIeffectwerenotsoimportant[13].
Table 1
WDwidthsfor 5
!He,11!Band12!CHypernuclei.Theexistingexperimentaldatafor
#T/ #!,#π−/ #!,#π0/ #!and#p/ #!havebeenintegratedwiththe determina-tionof#2N/ #!,#n/ #!and#n/ #p.Thislatterresultiscomparedwiththeoretical predictionsfromRef.[20],shownin thelastrow.Thevaluesobtainedfor12
!Care comparedwithmeasurementsdescribedinRef.[5],listedinthelastcolumn.
5 !He 11!B 12!C 12!C [5] #T/ #! 0.962±0.034 [9,10] 1.274±0.072 [18,19] 1.241±0.041 [5] 1.241±0.041 #π−/ #! 0.342±0.015 [9–11] 0.228[11,14–16]±0.027 0.120[5,9,15]±0.014 0.123±0.015 #π0/ #! 0.201±0.011 [12] 0.192±0.056 [17] 0.1656±0.0080 [12,17] 0.165±0.008 #p/ #! 0.217±0.041 [8,9] 0.47±0.11 [8] 0.493±0.088 [5,8] 0.45±0.10 #2N/ #! 0.078±0.034
[thiswork] 0.169[thiswork]±0.077 0.178[thiswork]±0.076 0.27±0.13
#n/ #! 0.125±0.066 [thiswork] 0.21±0.16 [thiswork] 0.28±0.12 [thiswork] 0.23±0.08 #n/ #p 0.58±0.32 [thiswork] 0.46±0.37 [thiswork] 0.58±0.27 [thiswork] 0.51±0.14 #n/ #p [20] 0.508 0.502 0.418 – 3. TheNMWDwidthsof11 !B
ThereisaconsiderableamountofmeasurementsofpartialWD forthisHypernucleus,duetothecircumstancesthatitisproduced together with 12
!C that is the moststudiedHypernuclear system.
Asamatteroffact,inallHypernuclearmassspectraobtainedwith (K−
,
π
−) and(π
+,
K+) production reaction on a 12C target twoprominent peaks appear, one corresponding to the formation of thegroundstateof12
!C,describedastheparticle–holeshell-model
configuration
(
s(!),
p−1(
n)),
theother,separatedby∼
11 MeV in excitation energy, corresponding tothe(
p(!),
p−1(
n))
configura-tionanddecayingviaStrongInteractionto 11!Bplus alow-energy
proton (undetected).Measurements of
#
π−/ #
!, of#
π0/ #
! andof
#
T/ #
! can be found in Refs. [11,14–16], in Ref. [17] and inRefs. [18,19], respectively. Values for
#
p/ #
! were reported inRef. [15] and, more recently, in Ref. [8]. As far as the result de-scribedinRef.[15]isconcerned,itisnotclearwhetherthevalue for
#
p/ #
! was correctedforFSI effect,whichcanamount up to100%asshowninRef.[8].Then,wedidnotconsidersuchavalue homogeneous withthe one reported in Ref. [8] and we did not use it to evaluate a w.a. for
#
p/ #
!. By entering the value fromRef. [8] in the formula(3),
#
2N/ #
! was determined along with#
n/ #
! and#
n/ #
p.Allthesevaluesarereportedfromthefifthto theseventhrowofthethirdcolumnofTable 1.4. Theconsistencycheckfrom12
!C
Tohavea consistencycheck oftheabove described procedure adoptedfor!5Heand11!B,wecalculatedtheNMWDwidthsof12!C byusingthesamemethodandwecomparedthemwiththeseries ofresultsfromRef. [5],listedinthelast columnofTable 1. Mea-surementsof
#
π−/ #
! andof#
π0/ #
! were reportedinRefs. [5, 9,15] andin Refs. [12,17], respectively. For#
T/ #
! we took intoaccountthelast,precisevaluefromRef.[5].For
#
p/ #
!weconsid-eredthevaluesfromRefs.[5,8]onlyandweexcludedtheonefrom Ref.[15]forthesamereasonsexplainedabove(seeSection3).This way,we obtainedthe valuesfor
#
2N/ #
!,#
n/ #
p and#
n/ #
p, re-ported from the fifth to the seventh row of the fourth column of Table 1. An overall agreement within the errors between the present determination and the previous measurement is evident88 E. Botta et al. / Physics Letters B 748 (2015) 86–88 andit provides argumentssupporting the validityof themethod
adoptedfor 5
!Heand11!B. 5. Conclusions
Inconclusion,wehavepresentedforthe firsttimethefullset ofWDwidthsfor 5
!Heand11!BHypernuclei.Thevaluesfor
#
n/ #
!,determinedbysubtractingthepartialwidths
#
M/ #
!,#
p/ #
!and#
2N/ #
! from#
T/ #
!, are affected by large errors andconse-quently also the ones for the
#
n/ #
p ratio. They are compatible withtheoutcomeofaccuratetheoreticalcalculations[20]reported in thelast rowof Table 1, which predictednuclear structure ef-fectsaslargeas10%in1NinducedNMWDofp-shellHypernuclei. Strongnuclearstructureeffectswereexpected(andtheywere ac-tually observed [11]) for MWD and at a much lower extent for1N induced NMWD, due to the damping caused by the larger
momentum of the final state particles (
∼
400 MeV/c instead of∼
100 MeV/c). It could be interesting to verify these predictions byapplyingthemethoddescribedinthisLettertoseveralp-shell Hypernuclei to be observedin a dedicatedexperimentaiming to measure all the values of the WD widths with errors ofthe or-der of5%.Such a setofresultscould be well exploitedtoderivethe physical quantities describing the four-baryon, weak interac-tion
!
N→
N N,notaccessibleinfreespace.References
[1]W.Cheston,H.Primakoff,Phys.Rev.92(1953)1537.
[2]W.M.Alberico,A.DePace,M.Ericson,A.Molinari,Phys.Lett.B256(1991)134.
[3]E.Bauer,G.Garbarino,Nucl.Phys.A828(2009)29.
[4]E.Botta,T.Bressani,G.Garbarino,Eur.Phys.J.A48(2012)41.
[5]H.Bhang,etal.,J.KoreanPhys.Soc.59(2011)1461.
[6]FINUDACollaboration,M.Agnello,etal.,G.Garbarino,Phys.Lett.B685(2010) 247.
[7]FINUDACollaboration,M.Agnello,etal.,G.Garbarino,Phys.Lett.B701(2011) 556.
[8]FINUDACollaboration,M.Agnello,etal.,Phys.Lett.B738(2014)499.
[9]J.J.Szymanski,etal.,Phys.Rev.C43(1991)849.
[10]S.Kameoka,etal.,Nucl.Phys.A754(2005)173c.
[11]FINUDACollaboration,M.Agnello,etal.,A.Gal,Phys.Lett.B681(2009)139.
[12]S.Okada,etal.,Nucl.Phys.A754(2005)178c.
[13]B.H.Kang,etal.,Phys.Rev.Lett.96(2006)062301.
[14]A.Montwill,etal.,Nucl.Phys.A234(1974)413.
[15]H.Noumi,etal.,Phys.Rev.C52(1995)2936.
[16]Y.Sato,etal.,Phys.Rev.C71(2005)025203.
[17]A.Sakaguchi,etal.,Phys.Rev.C43(1991)73.
[18]R.Grace,etal.,Phys.Rev.Lett.55(1985)1055.
[19]H.Park,etal.,Phys.Rev.C61(2000)054004.