• Non ci sono risultati.

Search for heavy resonances decaying to a top quark and a bottom quark in the lepton+jets final state in proton-proton collisions at 13 TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Search for heavy resonances decaying to a top quark and a bottom quark in the lepton+jets final state in proton-proton collisions at 13 TeV"

Copied!
25
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Search

for

heavy

resonances

decaying

to

a

top

quark

and

a

bottom

quark

in

the

lepton

+

jets

final

state

in

proton–proton

collisions

at

13 TeV

.TheCMS Collaboration CERN,Switzerland a r t i c l e i n f o a b s t ra c t Articlehistory: Received28August2017

Receivedinrevisedform14November2017 Accepted2December2017

Availableonline6December2017 Editor:M.Doser Keywords: CMS Physics B2G Exotica W

Asearchispresentedfornarrowheavyresonancesdecayingtoatopquark andabottomquark using data collectedby theCMS experiment at√s=13 TeV in 2016. Thedata set analyzed correspondsto anintegratedluminosityof35.9 fb−1.Finalstatesthatincludeasinglelepton(e,μ),multiplejets,and missingtransversemomentumareanalyzed.NoevidenceisfoundfortheproductionofaWboson,and theproductionofright-handedWbosonsisexcludedat95%confidencelevelformassesupto3.6 TeV dependingonthescenario considered.Exclusionlimits forW bosonsare alsopresentedas afunction oftheircouplingstrengthtoleft- andright-handedfermions.TheselimitsonaWbosondecayingviaa topandabottomquarkarethemoststringentpublishedtodate.

©2017TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Despitethebroadsuccessofthestandardmodel(SM),the ab-senceofanswerstothehierarchyproblem,amongother shortcom-ings,hasledtothedevelopmentofmanytheoriesfornewphysics that liesbeyondthe SM.A commonprediction ofmanyofthese theoriesistheexistenceofnewheavy gaugebosons [1–5].These particles typically arise from additional symmetries in the theo-ries, and it is common to generically refer to charged instances oftheseresonancesasWbosons. InscenarioswheretheW bo-son issufficiently heavy, thedecay W→tb hasseveral features thatmakeitanappealingsearchchannel.Searchesinthischannel directlyprobe theW boson couplingto third generationquarks, which,insomemodels[6,7],canbeenhancedwithrespecttothe couplingtolighter quarks.Additionally, thelargecontinuum mul-tijet backgroundhas less impact on searches for W→tb decay than on searches for the decay to light quarks (W→qq). The W→tb search is complementary to searches forW→ ν and W→WZ,wheredenotesachargedleptonand νdenotesa neu-trino.UnlikesearchesforW→ ν,thesearchforW→tb→bb decayallowstheWbosonmasstobefullyreconstructed,uptoa quadraticambiguity.

 E-mailaddress:cms-publication-committee-chair@cern.ch.

SearchesforWbosonsinthetopandbottomquark(tb)decay channelhavebeenperformedattheFermilabTevatron[8–10]and attheCERNLHCbybothCMS[11–13]andATLAS[14,15] Collabo-rations.ThemoststringentlimitstodateontheproductionofW bosonscomefromtheCMSsearchperformedat√s=13 TeV[13], using2.2 fb−1 ofdatacollectedin2015.

This Letter presents a search for W bosons decaying via the tbchannelusingproton–protoncollisiondataat√s=13 TeV, col-lected by theCMS experimentin2016. The analyzed data corre-spondtoanintegratedluminosityof35.9 fb−1.Eventswithexactly one electron ormuon, significant missingtransverse momentum, and multiple jets in the final state are selected. This search fo-cusesonWbosonswithwidthsthatarenarrowcomparedtotheir masses.Inaddition tosearchingforW bosonswithpurely right-orleft-handedcouplings,wealsosearchforW bosonswith vary-ing combinations of thesecouplings. This analysisis sensitive to Wbosonswithmassesbetween1and4 TeV.

2. TheCMSdetector

The central feature of the CMS apparatus [16] is a supercon-ducting solenoid of 6 m internal diameter, providing a magnetic field of3.8 T. Withinthesolenoid volumeare a siliconpixel and strip tracker, a lead tungstatecrystalelectromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL),

https://doi.org/10.1016/j.physletb.2017.12.006

0370-2693/©2017TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

each composed of a barrel and two endcap sections. Forward calorimeters extendthe pseudorapidity (η) coverage provided by the barrel and endcap detectors. Muons are measured in gas-ionization detectors embedded in the steelflux-return yoke out-sidethesolenoid.

The particle-flow (PF) algorithm [17] reconstructs and iden-tifies individual particle candidates with an optimized combina-tion of information from relevant elements of the CMS detec-tor. The energyof photonsis measured using the ECALand cor-rectedforzero-suppressioneffects.The energyofelectrons is de-termined from a combination of the electron momentum at the primary interaction vertex asdetermined by thetracker, the en-ergy of the corresponding ECAL cluster, and the energy sum of all bremsstrahlung photons spatially compatible with originating fromtheelectrontrack.Theprimary interactionvertexisdefined asthevertexwiththelargestsumofp2

T ofassociatedtracks.The energies of muons are obtained from the curvature of the cor-responding tracks. The energy of chargedhadrons is determined froma combinationoftheir momentum measured inthe tracker andthematchingECALandHCALenergydeposits.This measure-ment is then corrected for zero-suppression effects and for the responsefunctionofthecalorimeterstohadronicshowers.Finally, theenergyofneutralhadronsisobtainedfromthecorresponding correctedECALandHCALenergy.

InthebarrelsectionoftheECAL,anenergyresolutionofabout 1% isachieved forunconverted orlate-converting photonsinthe tensof GeV energyrange.Theresolutionforphotonsnot belong-ing to thiscategory is about 1.3% up to |η|=1, rising to about 2.5%at|η|=1.4.Intheendcaps,theresolutionofunconvertedor late-convertingphotonsisabout2.5%,whiletheremainingphotons havearesolutionbetween3and4%[18].Themomentum resolu-tion for electrons withtransverse momentum pT≈45 GeV from Z→ee decaysrangesfrom1.7%fornonshoweringelectronsinthe barrelregionto4.5%forshoweringelectronsintheendcaps[19]. Whencombininginformationfromtheentiredetector,thejet en-ergyresolutionamountstypicallyto15%at10 GeV,8%at100 GeV, and4%at1 TeV,tobecomparedtoabout40,12,and5%obtained whentheECALandHCALcalorimetersaloneareused[20].

Muons are measured in the range |η|<2.4, with detection planes made using three technologies: drift tubes, cathode strip chambers,andresistive-platechambers.Matchingmuonstotracks measuredinthesilicontrackerresultsinarelativetransverse mo-mentumresolutionformuonswith20<pT<100 GeV of1.3–2.0% inthebarrel,andbetterthan6%intheendcaps.The pTresolution inthebarrelisbetterthan10%formuonswithpTupto1 TeV[21]. The missingtransverse momentum vector pTmiss isdefined as theprojectionontheplaneperpendiculartothebeamsofthe neg-ativevectorsumofthemomentaofall reconstructedparticles in anevent.

AmoredetaileddescriptionoftheCMSdetector,togetherwith adefinitionofthecoordinatesystemused andthe relevant kine-maticvariables,canbefoundinRef.[16].

3. Signalandbackgroundmodeling

3.1. Signalmodeling

Simulated signal samples are generated at leading order and their crosssections arescaled to next-to-leadingorder witha K-factor of 1.25 [22,23] appropriate for our signal mass range of interest.Allsignalsamplesaregeneratedusingthe CompHEP[24] 4.5.2packageaccordingtothefollowinglowest-ordereffective La-grangian[22]: L= Vfifj 2√2gW ¯fiγμaR(1+γ5)+aL(1−γ5)  Wμfj+h.c., (1)

where Vfifj is the Cabibbo–Kobayashi–Maskawa matrix if f is a

quarkandVfifj= δi j if f isalepton,gW istheSMweakcoupling

constant, andaR and aL are thecoupling strengths of the W to right- and left-handedfermions, respectively. Weconsider values of aL and aR that range from0 to 1,andany signal withaL>0 takesinto accountinterference withtheSM W boson.The signal simulationincludesdecaysinvolvinga τ lepton,andnodistinction is madeintheanalysisselectionorstrategy betweenan electron ormuonproduceddirectlyfromtheW bosondecay,andan elec-tronormuonfromasubsequent τ leptondecay.WeuseWboson widthvaluescomputedin CompHEP foreachmasspoint,andusea narrow-widthapproximationforthegenerationofWbosons that have both left- and right-handed couplings. The typical width is approximately3% ofthesignal resonancemass.Thewidthsofall generatedsamples aresignificantly smallerthanthedetectorand reconstruction resolutions,andthereforetheprecisevaluesofthe widthdonotaffectourresults.

ForWRbosons we considertwoscenarios forthemassofthe hypotheticalright-handedneutrinos.Iftheright-handedneutrinos arelighterthantheWRboson(MνR<MWR),thenbothWR→ νR and WR→qq decays are allowed. However, ifthe right-handed neutrinos areheavierthan theWR boson(MνR>MWR),then the WR→ νR decay is forbidden, resulting in an enhancement of thebranching fractionforW→tb.Thisbranching fractionvaries slightlywithmassandrangesfrom0.32to0.33ifR>MWR and from0.24to0.25if R<MWR forWR bosonmassesbetween1 and4 TeV.Forthepurposes ofsignalgeneration allneutrinos are assumedtobemassless.Whencalculatingthenumberofexpected signalevents(inTable 1),showingexpectedsignaldistributions(in Figs. 1 and 2), or presentingresults forarbitrary left- and right-handedcouplings(inFig. 5),itisalwaysassumedthatthemasses ofhypotheticalright-handedneutrinosaremuchlighterthanthat ofthe WR boson. Both scenariosare considered whenpresenting resultsforWR(inFigs. 3 and 4).

3.2. Backgroundmodeling

The most significant contributions to the background come fromW+jetsandtt production.Smallercontributions,froms- and t-channel single top quark production, associated production of a top quark anda W boson, Z∗+jets, anddiboson production (VV), are also included in the total backgroundestimate. Predic-tions forallbackgroundprocessesaretakenfromsimulationwith corrections applied in cases where initial modeling is found to be inaccurate.Furtherdetails onthebackgroundmodelingcanbe foundinSection5.Thecontributiontothetotalbackgroundfrom themultijetbackgroundisfoundtobenegligibleafterthefull se-lectionandisthereforenotincluded.

Simulated samples for Z∗+jets, s- and t-channel single-top quark, and W+jets events are produced using MadGraph5_ amc@nlo [25–27] v2.2.2, tt and associated production of a top quarkandaWbosonareproducedusing powheg v2[28–32],and all other background processes are produced using pythia 8.212 [33]. The tt process contribution is then assigned a correction based on the top quark pT, which is known to be improperly modeled [34]. A correction for the relative fraction of W+light quark/gluon jets and W+charm/bottom jets in W+jets events is derived andthencheckedinacontrolregion.Moredetailsonthe backgroundestimationmethodscanbefoundinSection5.

All simulated signal and background samples are processed through pythia for parton fragmentationand hadronization. The simulation ofthe CMSdetectoris performedby geant 4[35,36]. The NNPDF 3.0partondistribution function (PDF)set is usedfor sample generation [37]. All simulated samplesinclude additional

(3)

proton–protoninteractions(pileup)andareweightedsuchthatthe distribution of the number of interactions in each event agrees withthatinthedata.

4. Eventselection

All leptons, jets, and pmiss

T used in this search are recon-structedusingtheparticle-flowalgorithm.Jetsareclusteredusing theanti-kT algorithm [38,39] withasize parameter of0.4(AK4), anddedicatedjetenergycorrections[20,40]arethenapplied.Any chargedhadrons that are not associated with the leading vertex areremovedfromtheevent,usingthechargedhadronsubtraction method[41]. Theleading vertexisdefinedasthe primary vertex withthelargestsquaredsumofthetransversemomentaofits as-sociatedtracks.Theneutral-hadroncontributiontojetsfrompileup isalsosubtracted,usingthejetareamethod[42].Chargedhadron subtractionis applied beforeany jet clustering, while area-based subtractionsareapplied afterclustering butbeforethefinal level ofjetenergycorrections.

Jetmomentumisdeterminedasthevectorialsumofall parti-clemomentainthejet,andisfoundfromsimulationtobewithin 5 to 10% of the true momentum over the whole pT spectrum anddetectoracceptance[16].Anoffsetcorrectionisappliedtojet energiestotakeintoaccountthecontributionfrompileup.Jet en-ergy corrections are derived fromsimulation, and are confirmed withinsitumeasurementsoftheenergybalanceindijet,multijet, photon+jet, and leptonically decaying Z+jets events. Additional selection criteria are applied to each event to remove spurious jet-likefeaturesoriginatingfromisolatednoisepatternsincertain HCALregions.

Thecombinedsecondary vertexversion 2algorithm [43,44]is usedtoidentifyjetsthat haveoriginatedfromabquark. The al-gorithmcombinessecondaryvertexandtrackbasedlifetime infor-mationtodiscriminatebjetsfromlightquarkandgluon jets.The operatingpointusedhasabjetidentification(btagging)efficiency of80%andalight-flavor jet misidentification(mistag)probability of10%.Oursignalselectionrequiresatleastoneofthetwoleading

pTjetstobeb-tagged.Thisrequirementiscriticalinreducingthe contributions from some SM background processes like W+jets. Scalefactorstoaccountforobserveddifferencesbetweendataand simulationareappliedasafunctionofpT.

Theeventselection,whichisoptimizedseparatelyforthe elec-tron and muon channels, results in different requirements for thetwochannels. Mostnotably, themultijetbackground,through misidentificationofshowers, issignificantly largerintheelectron channelthanin themuonchannel. Forelectron eventswe there-forerequirehigher |pTmiss| andcorrespondingly lower leading jet

pTthanformuonevents,inordertokeepacceptancehighfor sig-nalevents.

EventsarerequiredtohaveatleasttwojetswithpT>30 GeV and|η|<2.4,andtheleadingpTjetmusthavepT>350(450)GeV intheelectron(muon)channel.

One lepton in each event is required to have fired a single-lepton trigger that has no isolation requirement, be within the detectoracceptance (|η|<2.5 for electrons, excluding the barrel endcap transition region, 1.444<|η|<1.566, and |η|<2.4 for muons) and be associated with a reconstructed primary vertex. Forheavy W resonancemasses, the top quark from the W de-cayishighly boosted, causingtheb-jet andlepton tobe closeto eachother.Forthisreason,leptonsarenotrequiredtobeisolated. ElectronsandmuonsarerequiredtohavepT>180 GeV andto ful-fillseveralidentification criteria. Electroncandidates are selected using a boosted decision tree based on the shower shape infor-mation,thequalityofthetrack,thematchbetweenthetrackand electromagneticcluster,the fractionoftotalcluster energyinthe

hadroniccalorimeter,theamountofactivityinthesurrounding re-gions of the tracker andcalorimeters, andthe probability of the electronoriginatingfromaconvertedphoton.Thetrackassociated witha muon candidate is requiredto have hitsinthe pixel and muon detectors, a good-quality fit, andbe consistent with origi-natingfromtheprimaryvertex.Toreducethemultijetbackground, thecandidateleptonisrequiredtosatisfyeither R (lepton, near-est jet)>0.4 or prelT (lepton, nearest jet) >60(50)GeV for elec-trons(muons), where R=√( η)2+ ( φ)2 and prel

T is defined asthe magnitudeofthelepton momentum orthogonalto thejet axis.EventswithadditionalchargedleptonswithpT>35 GeV and

|η|<2.5 forelectronsand|η|<2.4 formuonsarevetoed. The four-vectors of identified lepton candidate particles are subtracted from those of jets containing them. This procedure helps to ensure the reconstructed jets are not contaminated by nearby high-energy leptons as is common in the characteristic boostedsignal topology. Scalefactors resulting fromsmall differ-encesbetweenleptonidentificationandtriggerefficienciesindata andsimulationarederivedinaZ→ sampleasafunctionof|η|

andpT andappliedasacorrectiontosimulatedevents. Events are requiredto have at least |pmiss

T |>120(50)GeV in the electron (muon) channel. Additionally, events in theelectron channelmusthave| φ(e,pTmiss)|<2 radians.Theserequirements areresponsiblefordifferencesbetweenthetwochannelsinyields from some background processes. This selection, along withthe otherrequirements,alsohelpsrejectnearlyallmultijetbackground events.

4.1. Massreconstruction

The tb invariant mass is reconstructed from the momenta of the charged lepton andtwo jetsin the event, together with the



pTmiss.Thetransversecomponentsoftheneutrinomomentumare setto the pTmiss andthe longitudinalcomponent z is calculated by constraining the invariant massof thelepton andneutrinoto the W boson mass. This method leads to a quadratic equation in pνz.In thecase that thetwo solutions are real numbers,both solutionsare usedtoreconstructW bosoncandidates.Ifboth so-lutions contain imaginary parts, then z is set to the real part of the solutions, and then recompute T, which yields another quadratic ambiguity. In this case, we use only the solution with themassclosestto80.4 GeV.Onceallthecomponentsofthe neu-trinomomentum havebeenassigned, theviablesolutions forthe neutrino are combinedwiththe charged lepton todefine W bo-son candidate(s). The top quark candidate is then reconstructed bycombiningthefour-momentaofeach Wbosoncandidatewith eachjet withpT>25 GeV and|η|<2.4.Thejetthat yieldsatop quark massclosest to thenominaltop quark massis usedto re-constructthetopquarkcandidate.InthecaseoftwoWcandidates, onlythecandidatethatyieldsthebesttopquarkmassisused. Fi-nally,thetopquarkcandidateiscombinedwiththehighest pTjet remaining in the event, yielding the reconstructed W candidate. ThemassoftheW candidateisreferredtoasMtb.

Additional requirements that improve the rejection of back-groundeventsareplacedonthecombinationsofobjectsinvolved inthemassreconstruction.Thetopquarkcandidateisrequiredto haveptT>250 GeV and100<mt<250 GeV,andpjT1+j2>350 GeV, where pj1+j2

T isthe pT ofthefour-vector sumofthetwo leading

pT jets.

Two eventcategories based on ptT and pj1+j2

T are used when setting cross section limits. All events satisfying the above crite-ria are classified as Type A except for those with ptT>650 GeV and pj1+j2

(4)

cate-Table 1

ObservedandexpectedeventyieldsfromallthebackgroundprocessesandWRbosonswiththreedifferentmasses.HFandLFindicateheavyflavorandlightflavorevents, respectively.Yieldsareseparatedintoeighteventcategoriesbytheleptontype(e orμ),numberofbtags(1or2),andpt

Tandp j1+j2

T (TypeAorB).Theuncertaintyinthe totalexpectedbackgroundincludesboththesystematicandstatisticalsources.

Process Electron channel Muon channel

Type A Type B Type A Type B

1 b tag 2 b tags 1 b tag 2 b tags 1 b tag 2 b tags 1 b tag 2 b tags Background tt 760 249 69 22 731 263 75 30 tqb 14 6 1 0 14 6 1 0 tW 117 50 15 5 116 44 22 5 tb 2 2 0 0 3 1 0 0 W(→ ν)+jets (LF) 189 17 16 2 177 16 15 1 W(→ ν)+jets (HF) 581 98 52 7 631 107 51 8 Z(→ )+jets 19 11 0 0 64 1 20 0 VV 35 9 2 0 33 1 5 4 Total background 1717±62 442±34 155±23 36±7 1769±70 439±30 189±22 48±9 Data 1750 437 133 40 1754 482 164 44 Signal MWR=2000 GeV 53 43 41 25 79 75 57 35 MWR=2600 GeV 8 6 16 10 14 12 24 15 MWR=3200 GeV 2 1 4 3 3 2 8 5

gorizationimproves thesensitivityto highsignalmasseswithout sacrificingtheperformanceforlowermasses.

Finally,eventsarealsoseparatedintotwocategoriesbasedon whetherboth(2 btags)oronlyone (1btag) ofthetwo leading

pTjetsisb-tagged.

Eventyieldsinallthesecategoriesaftertheeventselectionare showninTable 1.

5. Backgrounds

5.1. TheW+jetsbackground

FortheW+jetsbackground,therelativefractionsoftheheavy andlightflavorcomponentsinsimulationareknowntodifferfrom thoseindata[45].Thevalidityofthemodelingoftheflavor con-tentistestedandtwoscalefactorsare derivedforW+jetsheavy andlightflavoreventsusingtwosamplesthatdifferfromthe sig-nalselection onlyinbtagging.Thepretag sampledoesnot have anybtaggingrequirements,whiletheeventsinthe0tag sample

mustnothaveanyb-taggedjets.Inthesetworegionstherelative fractionsoftheW+jetsheavyandlightflavoreventsaredistinctly different.Theyieldsfromdataandsimulationinthesetworegions areusedtosolveasystemofequationsfortherelativefractionsof W+jets heavy and light flavor components, while requiring that theoverallW+jetsyieldremainsunchanged.Uncertaintiesare de-terminedfromrepeatingthecalculationaftervaryingthebtagging efficiencies andmistag rateswithin their uncertainties. The scale factorsarefoundtobe2.10±0.21

0.18 and0.49±00..0810forW+jetsheavy andlightflavorevents,respectively.Thecorrespondingscalefactor isthenappliedtoallsimulatedW+jetsevents.

5.2. Thetopquarkpairproductionbackground

Forthe tt background, we verifynormalizationaswell asthe modeling of the top quark pT. This check is performed in two signal-depletedtt-enrichedregions:onethatrequires450<Mtb< 750 GeV and at least two b tags, and another that removes the second-leptonvetoandinsteadrequiresan additionalelectron or muonwitha pTofatleast35 GeV.Thesecomparisonsmotivatea reweightingofthett backgroundusingacorrectionfactorobtained frommeasurements ofthe differential top quark pT distribution. Thiscorrectionfactorisappliedtothett simulation,asafunction

Table 2

Listofsystematicuncertaintiestakenintoaccountintheanalysis.Forsourcesthat affecttheshapeoftheMtbdistributionthegivenrateuncertaintyisapproximate. Thepileup,topquarkpTreweighting,andW+jetsheavy/lightflavorsystematic un-certaintiesaredescribedinmoredetailinthetext.Acheckmarkinthe“Signal” columnindicatesthattheuncertaintyisalsoappliedtothesignalsamples.Forthe PDFuncertainty,onlyitsshapecomponentisincludedforsignalsamples.

Source Rate uncertainty Signal

Normalization

Integrated luminosity 2.5% 

tt cross section 8% –

W+jets cross section 10% –

Trigger eff. (e) 2%/2% 

Lepton id. eff. (e) 2%/2% 

Shape and normalization

Jet energy scale 3% 

Jet energy resolution 1% 

b/c tagging 2% 

Light quark mistagging 2% 

Pileup 1% 

PDF 6% 

Top quark pTreweighting 15% –

W+jets heavy/light flavor 1% –

μRandμFscales 15% –

ofthegenerator-leveltopquark pT.Thett simulationwithoutthe correction factorappliedisused asanestimate ofthesystematic uncertaintyinthereweightingprocedure.

6. Systematicuncertainties

The systematic uncertainties in this analysis can be grouped intotwocategories:uncertaintiesintheoverallnormalizationand intheshapeoftheMtb distribution.

The normalizationuncertaintiesincludethe uncertaintyinthe integratedluminosity(2.5%)[46],thett andW+jetscrosssections (8 and 10%, respectively), the lepton identification (2%), and the triggerefficiencies(2%).

The uncertainty due to variations in the renormalization and factorization scales (μR and μF, respectively) is evaluated at the matrixelement levelusingeventweightsfromvaryingthescales by0.5and2whilerestrictingto0.5≤μRF≤2[47,48].

Uncertaintiesresultingfrom±1 standarddeviation(s.d.) varia-tions inthebtaggingefficiencyandmistaggingratescalefactors, jetenergyscale,andjetenergyresolutionarealsoincluded.

(5)

Fig. 1. ThereconstructedMtbdistributionsinthe1btag(upper)and2btags(lower)categories,for theelectron(left)andmuon(right)channels,forTypeAevents. DistributionsforWRbosonswithmassesof2,2.5,and3 TeV areshown.Thedistributionisshownaftertheapplicationofallselections.Thebackgrounduncertaintyincludes bothstatisticalandsystematiccomponents,while“Tot.unc.”inthelowerpanelscorrespondstothecombineduncertaintyofthebackgroundpredictionanddata.(For interpretationofthecolorsinthisfigure,thereaderisreferredtothewebversionofthisarticle.)

Acorrectionisappliedtoallsimulatedsamplestobettermatch thedistributionofpileup interactions observedindata.This pro-cedureuses a totalinelasticcross sectionof 69.2 mb,andan un-certaintyiscalculatedbyvaryingthecrosssectionby±5%[49].

ToestimatetheuncertaintyarisingfromthechoiceofPDF, we evaluate the root-mean-squareof the distribution of 100 NNPDF 3.0replicas as the ±1 s.d. uncertainties according to the guide-linesinRef.[50].Whenconsideringsignalsamplesonlytheshape componentoftheuncertaintyduetoPDFsisincluded.

TheuncertaintyintheW+jetsheavyandlightflavorscale fac-tors is included as a variation in the W+jets background. The tt background withan uncorrected top quark pT spectrum is in-cludedasaone-sided+1 s.d.variation.

AlluncertaintiesarelistedinTable 2.Theuncertaintieswiththe largest effect on the overall background normalizationare those associatedwiththe topquark pT reweighting, μR and μF scales, andPDFs,whichhaveeffectsofapproximately15,15,and6%, re-spectively.

7. Results

Distributions of Mtb are shown in Figs. 1 and 2. The binning is chosen to reduce uncertainties due to the size of the simu-latedeventsamplesandisone binfrom0 to500 GeV,eight bins of 200 GeV width from 500 to 2100 GeV, one bin from 2100 to 2400 GeV, one bin from 2400 to 3000 GeV, and one bin above 3000 GeV.HavingobservedthatdataagreewiththepredictedSM backgroundprocesses,weset95%confidencelevel(CL)upper lim-its ontheW bosonproductioncrosssection formassesbetween 1and4 TeV.

Theanalysisseparateseventsintoeightindependentcategories inordertoimprovethesignalsensitivity.Categoriesarecreated ac-cordingtoleptontype(electronormuon),thenumberofb-tagged jetsamongthefirsttwoleadingpTjets(1or2),andptT andpjT1+j2 (TypeAorB).Categorizationaccordingtothenumberofbtags al-lowsthe analysistomaintain acceptanceforsignal events where oneofthejetsisnotcorrectlybtagged,andcategorization

(6)

accord-Fig. 2. ThereconstructedMtbdistributionsinthe1btag(upper)and2btags(lower)categories,fortheelectron(left)andmuon(right)channels,forTypeBevents. DistributionsforWRbosonswithmassesof2,2.5,and3 TeV areshown.Thedistributionisshownaftertheapplicationofallselections.Thebackgrounduncertaintyincludes bothstatisticalandsystematiccomponents,while“Tot.unc.”inthelowerpanelscorrespondstothecombineduncertaintyofthebackgroundpredictionanddata.(For interpretationofthecolorsinthisfigure,thereaderisreferredtothewebversionofthisarticle.)

ingtothept T andp

j1+j2

T allowstheanalysistoperformwellovera largerangeofpossiblesignalmasses.

Limitson the crosssection of W bosons are calculated using a Bayesian methodwith a prior uniform inthe signal cross sec-tion, asimplemented withthe theta package [51]. The Bayesian approach uses a binned likelihood in order to calculate the 95% CL upperlimits onthe product of thesignal production andthe branching fraction σ(pp→W)B(W→tb). Statistical uncertain-ties related to the background prediction are treated using the “Barlow–Beestonlite”method[52].Alluncertainties givenin Sec-tion 6 are included as nuisance parameters. Uncertaintiesin the shapeoftheMtbdistributionaretreatedusingtemplate interpola-tionandallrateuncertaintiesareincludedwithlog-normalpriors. Resultsforright-handedWbosonsareshowninFigs. 3 and 4. WRbosonswithmassesbelow3.4 TeV areexcludedat95%CL.

Althoughmodels witha W boson that couples exclusivelyto right-handed fermions are simpler because of the lack of inter-ference, the effective Lagrangian in Eq. (1) allows us to analyze modelswitharbitrarycombinationsofleft- andright-handed cou-plings. In order to accomplish this the interference betweenthe

SM s-channel tb production andthe tb production via an inter-mediateleft-handedW bosonmustbeaccountedforsincethese processesinitialandfinalstatesareidentical.

The crosssection for single top quark production givena W boson can be written for any set of aL and aR coupling values in terms of the cross sections of four simulated signal samples. It is assumed that the couplings to fermions are independent of generation, such that each signal can be described by a single value of aL and a single value of aR. The four simulated sig-nals arethen σL forpurelyleft-handedcouplings(aL,aR)= (1,0), σR for purely right-handed couplings (aL,aR)= (0,1), σLR for mixed couplings (aL,aR)= (1/

2,1/√2), and σSM for SM cou-plings (aL,aR)= (0,0),andthecross section forsingle topquark productionis σ = (1−a2LSM+ 1 a2L+a2R  a2L(a2La2RL +a2R(a2Ra2LR+4a2La2RσLR−2a2La2RσSM  . (2)

(7)

Fig. 3. Upperlimitat95%CLontheWRbosonproductioncrosssectionseparatelyin theelectron(top)andmuon(bottom)channels.Signalmassesforwhichthe theo-reticalcrosssection(inredandblueforR MWRandR>MWR,respectively) exceedstheobservedupperlimit(insolidblack)areexcludedat95%CL.Thegreen andyellowbandsrepresentthe±1and2s.d.uncertaintiesintheexpectedlimit, respectively.(Forinterpretationofthereferencestocolorinthisfigurelegend,the readerisreferredtothewebversionofthisarticle.)

Fig. 4. Upperlimitat95%CLontheWRbosonproductioncrosssectionforthe com-binedelectronandmuonchannels.Signalmassesforwhichthetheoreticalcross section(inredandblueforR MWR andR>MWR,respectively)exceedsthe observedupperlimit(insolidblack)areexcludedat95%CL.Thegreenandyellow bandsrepresentthe±1and2s.d.uncertaintiesintheexpectedlimit,respectively. (Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderis re-ferredtothewebversionofthisarticle.)

Fig. 5. Expected(top)andobserved(bottom)limitsontheWbosonmassas func-tionoftheleft-handed(aL)andright-handed(aR)couplings.Blacklinesrepresent contoursofequalWbosonmassseparatedby200 GeV.(Forinterpretationofthe colorsinthisfigure,thereaderisreferredtothewebversionofthisarticle.)

By combiningfour signal samplesaccording to this equation we are able to produce invariant mass distributions for a W boson witharbitraryaL andaR couplings.Anotable adjustmentforthis paperwithrespect toprevious CMSpublicationsis inthe defini-tionofthemixedcouplingsample,which waspreviously defined as(aL,aR)= (1,1).Thischangeresultsinslightlydifferent expres-sions forthe totalcrosssection, andis chosento ensurethat the widthsofallthreesimulatedsignalsamplesareidentical.

It should be noted that in the case that the W boson cou-ples exclusively to right-handed fermions, this equation reduces to the sum of SM s-channel tb production and WR production, asexpected. Forpure WL orWLR bosonproduction,theequation reduces to the cross section of the respective sample, which is generated already including SM s-channel tb production and in-terferencewithWproduction.

Ascan isperformedovertheaLandaRplanein0.1stepsfrom 0to1toproducecrosssectionlimitsforarbitrarycombinationsof

aL andaR.Foreach point inthescan theexpected andobserved 95% CLupperlimitsonthecrosssection arecalculated usingthe samemethoddescribedabove.Fig. 5showstheexcludedWboson mass for each (aL,aR) point, in addition to an interpolation

(8)

be-tweenpoints tocreatesmooth contoursofequivalent signalmass limits.

8. Summary

AsearchforanarrowheavyWbosonresonancedecayingtoa topquarkandabottomquark hasbeenperformedinlepton+jets finalstatesusingdatacollected at√s=13 TeV bytheCMS detec-torin2016,correspondingtoanintegratedluminosityof35.9 fb−1. No evidence is observed for the production of a W boson, and 95% CLupperlimitsonthe productoftheright-handedW(WR) bosonproductioncrosssectionanditsbranchingfractiontoatop anda bottomquarkarecalculatedasafunctionoftheWRboson mass.Theobserved(expected)95% CLupperlimitis3.4(3.3) TeV ifMWRR and3.6(3.5) TeV if MWR<MνR,where R isthe massof theright-handed neutrino. Exclusion limitsare also pre-sentedforWbosonswithvariedleft- andright-handedcouplings tofermions,forthefirsttimeat√s=13 TeV.Theseresultsarethe moststringentlimitstodateontheproductionofW bosonsthat decaytoatopandabottomquark.

Acknowledgments

WecongratulateourcolleaguesintheCERNaccelerator depart-ments for the excellent performance of the LHC and thank the technicalandadministrativestaffs atCERN andatother CMS in-stitutes for their contributions to the success of the CMS effort. Inaddition,wegratefullyacknowledgethecomputingcentresand personneloftheWorldwideLHCComputingGridfordeliveringso effectivelythe computinginfrastructureessential to ouranalyses. Finally, we acknowledge the enduring support for the construc-tionandoperation oftheLHCandthe CMSdetectorprovidedby thefollowingfundingagencies:BMWFWandFWF(Austria);FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); COLCIEN-CIAS(Colombia);MSESandCSF(Croatia);RPF(Cyprus);SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Fin-land,MEC,andHIP(Finland);CEAandCNRS/IN2P3(France);BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hun-gary);DAEandDST(India);IPM(Iran);SFI(Ireland);INFN(Italy); MSIPandNRF(RepublicofKorea);LAS (Lithuania);MOE andUM (Malaysia); BUAP, CINVESTAV,CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland);FCT(Portugal);JINR(Dubna);MON,RosAtom,RAS,RFBR andRAEP(Russia);MESTD (Serbia);SEIDI,CPAN,PCTI andFEDER (Spain);SwissFundingAgencies(Switzerland);MST(Taipei); ThEP-Center, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey);NASUandSFFR(Ukraine); STFC(United Kingdom);DOE andNSF(USA).

Individuals have received support from the Marie-Curie pro-gramme and the European Research Council and Horizon 2020 Grant,contractNo.675440(EuropeanUnion);theLeventis Founda-tion;theAlfredP.SloanFoundation;theAlexandervonHumboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pourlaFormationàlaRecherchedansl’Industrieetdans l’Agricul-ture (FRIA-Belgium); the Agentschapvoor Innovatie door Weten-schap en Technologie (IWT-Belgium); the Ministry of Education, YouthandSports(MEYS)oftheCzechRepublic;theCouncilof Sci-enceandIndustrialResearch,India;theHOMINGPLUSprogramme of the Foundation for Polish Science, cofinanced from European Union,Regional DevelopmentFund,the MobilityPlusprogramme oftheMinistryofScienceandHigherEducation,theNational Sci-ence Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus2014/13/B/ST2/02543,2014/15/B/ST2/03998,and2015/19/B/

ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priori-tiesResearch Programby Qatar NationalResearchFund;the Pro-grama Clarín-COFUND del Principado de Asturias; the Thalisand Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; theRachadapisekSompotFundforPostdoctoralFellowship, Chula-longkornUniversityandtheChulalongkornAcademic intoIts2nd Century Project Advancement Project (Thailand); and the Welch Foundation,contractC-1845.

References

[1] M.Schmaltz,D.Tucker-Smith,LittleHiggsreview,Annu.Rev.Nucl.Part.Sci.55 (2005)229,https://doi.org/10.1146/annurev.nucl.55.090704.151502, arXiv:hep-ph/0502182.

[2] T.Appelquist,H.-C.Cheng,B.A.Dobrescu,Boundsonuniversalextra dimen-sions, Phys. Rev. D 64 (2001) 035002, https://doi.org/10.1103/PhysRevD.64. 035002,arXiv:hep-ph/0012100.

[3] H.-C. Cheng, C.T. Hill, S. Pokorski, J. Wang, Standard model in the latti-cizedbulk,Phys.Rev.D64(2001)065007,https://doi.org/10.1103/PhysRevD.64. 065007,arXiv:hep-th/0104179.

[4] R.S.Chivukula,E.H.Simmons,J. Terning,Limitsonnoncommutingextended technicolor,Phys.Rev.D53(1996)5258,https://doi.org/10.1103/PhysRevD.53. 5258,arXiv:hep-ph/9506427.

[5] R.N. Mohapatra, J.C. Pati, Left–right gaugesymmetry and an ‘isoconjugate’ modelofCP violation, Phys.Rev.D 11(1975) 566,https://doi.org/10.1103/ PhysRevD.11.566.

[6] D.J.Muller,S.Nandi,Topflavor:aseparateSU(2)forthethirdfamily,Phys.Lett. B383(1996)345, https://doi.org/10.1016/0370-2693(96)00745-9, arXiv:hep-ph/9607328.

[7] E. Malkawi, T. Tait, C.-P. Yuan, A model of strong flavor dynamics for the top quark, Phys. Lett. B 385 (1996) 304, https://doi.org/10.1016/0370-2693(96)00859-3,arXiv:hep-ph/9603349.

[8] V.M.Abazov,D0,SearchforWbosonresonancesdecayingtoatopquarkand abottomquark,Phys. Rev.Lett.100(2008)211803,https://doi.org/10.1103/ PhysRevLett.100.211803,arXiv:0803.3256.

[9] V.M.Abazov,D0,SearchforW→tb resonanceswithleft- andright-handed couplingstofermions,Phys. Lett.B699(2011)145,https://doi.org/10.1016/ j.physletb.2011.03.066,arXiv:1101.0806.

[10] T.A.Aaltonen,CDF,Searchforresonancesdecayingtotopandbottomquarks withtheCDFexperiment,Phys.Rev.Lett.115(2015)061801,https://doi.org/ 10.1103/PhysRevLett.115.061801,arXiv:1504.01536.

[11] CMSCollaboration,SearchforW→tb decaysinthelepton+jetsfinalstatein ppcollisionsat√s=8 TeV,J.HighEnergyPhys.05(2014)108,https://doi.org/ 10.1007/JHEP05(2014)108,arXiv:1402.2176.

[12] CMS Collaboration, Search for W→tb decaysin proton–proton collisions at √s=8 TeV,J. HighEnergyPhys. 02(2016)122,https://doi.org/10.1007/ JHEP02(2016)122,arXiv:1509.06051.

[13] CMSCollaboration,SearchesforWbosonsdecayingtoatopquarkanda bot-tomquarkinproton–protoncollisionsat13TeV,J.HighEnergyPhys.08(2017) 029,https://doi.org/10.1007/JHEP08(2017)029,arXiv:1706.04260.

[14] ATLAS Collaboration, SearchforW→tb→qqbb decaysinppcollisionsat s=8 TeVwith theATLASdetector,Eur.Phys.J.C75(2015)165,https:// doi.org/10.1140/epjc/s10052-015-3372-2,arXiv:1408.0886.

[15] ATLASCollaboration, Searchfor W→tb in¯ the leptonplusjetsfinalstate inproton–protoncollisionsat acentre-of-mass energyof√s=8 TeV with the ATLAS detector, Phys. Lett. B 743 (2015) 235, https://doi.org/10.1016/ j.physletb.2015.02.051,arXiv:1410.4103.

[16] CMSCollaboration,TheCMSexperimentattheCERNLHC,J.Instrum.3(2008) S08004,https://doi.org/10.1088/1748-0221/3/08/S08004.

[17] CMS Collaboration,Particle-flowreconstruction andglobalevent description withtheCMSdetector,https://doi.org/10.1088/1748-0221/12/10/P10003,arXiv: 1706.04965,2017.

[18] CMS Collaboration, Performanceofphoton reconstructionand identification withtheCMSdetectorinproton–protoncollisionsat√s=8 TeV,J.Instrum. 10 (2015) P08010, https://doi.org/10.1088/1748-0221/10/08/P08010, arXiv: 1502.02702.

[19] CMSCollaboration,Performanceofelectronreconstructionandselectionwith the CMS detector in proton–proton collisions at √s=8 TeV, J. Instrum. 10 (2015) P06005, https://doi.org/10.1088/1748-0221/10/06/P06005, arXiv: 1502.02701.

[20] CMS Collaboration, Determination of jet energy calibration and transverse momentumresolutioninCMS,J. Instrum.6(2011) P11002,https://doi.org/ 10.1088/1748-0221/6/11/P11002,arXiv:1107.4277.

[21] CMSCollaboration,PerformanceofCMSmuonreconstructioninppcollision eventsat √s=7 TeV,J. Instrum. 7(2012) P10002, https://doi.org/10.1088/ 1748-0221/7/10/P10002,arXiv:1206.4071.

(9)

[22] Z.Sullivan,FullydifferentialW productionanddecayatnext-to-leading or-derinQCD,Phys.Rev.D66(2002)075011,https://doi.org/10.1103/PhysRevD. 66.075011,arXiv:hep-ph/0207290.

[23] D.Duffty,Z.Sullivan,ModelindependentreachforW-primebosonsattheLHC, Phys. Rev.D86 (2012) 075018, https://doi.org/10.1103/PhysRevD.86.075018, arXiv:1208.4858.

[24] E.Boos,V.Bunichev,M.Dubinin,L.Dudko,V.Ilyin,A.Kryukov,V.Edneral,V. Savrin,A.Semenov,A.Sherstnev,CompHEP,CompHEP4.4:automatic compu-tationsfromLagrangianstoevents,Nucl.Instrum.MethodsA534(2004)250,

https://doi.org/10.1016/j.nima.2004.07.096,arXiv:hep-ph/0403113.

[25] J.Alwall,R.Frederix,S.Frixione,V.Hirschi,F.Maltoni,O.Mattelaer,H.S.Shao, T.Stelzer,P.Torrielli,M.Zaro,Theautomatedcomputationoftree-leveland next-to-leading orderdifferentialcrosssections, andtheir matchingto par-tonshower simulations,J.HighEnergyPhys. 07(2014)079,https://doi.org/ 10.1007/JHEP07(2014)079,arXiv:1405.0301.

[26] R.Frederix,S. Frixione,Merging meets matching inMC@NLO, J. High En-ergy Phys. 12 (2012) 061, https://doi.org/10.1007/JHEP12(2012)061, arXiv: 1209.6215.

[27] J.Alwall,S.Höche,F.Krauss,N.Lavesson,L.Lönnblad,F.Maltoni,M.L.Mangano, M.Moretti,C.G.Papadopoulos,F.Piccinini,S.Schumann,M.Treccani,J.Winter, M.Worek,Comparativestudyofvariousalgorithmsforthemergingofparton showersandmatrixelementsinhadroniccollisions,Eur.Phys.J.C53(2008) 473,https://doi.org/10.1140/epjc/s10052-007-0490-5,arXiv:0706.2569. [28] P.Nason,AnewmethodforcombiningNLOQCDwithshowerMonteCarlo

algorithms,J.HighEnergyPhys.11(2004)040, https://doi.org/10.1088/1126-6708/2004/11/040,arXiv:hep-ph/0409146.

[29] S.Frixione,P.Nason,C.Oleari,MatchingNLOQCDcomputationswithparton showersimulations:thePOWHEGmethod,J.HighEnergyPhys.11(2007)070,

https://doi.org/10.1088/1126-6708/2007/11/070.

[30] S.Alioli, P.Nason, C. Oleari,E.Re, Ageneral framework for implementing NLOcalculationsinshowerMonteCarloprograms:thePOWHEGBOX,J.High Energy Phys.06 (2010)043,https://doi.org/10.1007/JHEP06(2010)043, arXiv: 1002.2581.

[31] S.Frixione,P.Nason,G.Ridolfi,Apositive-weightnext-to-leading-orderMonte Carloforheavyflavourhadroproduction,J.HighEnergyPhys.09(2007)126,

https://doi.org/10.1088/1126-6708/2007/09/126,arXiv:0707.3088.

[32] E.Re,Single-topW t-channel productionmatchedwithpartonshowersusing thePOWHEGmethod,Eur.Phys.J.C71(2011)1547,https://doi.org/10.1140/ epjc/s10052-011-1547-z,arXiv:1009.2450.

[33] T.Sjöstrand,S. Ask,J.R.Christiansen,R.Corke,N. Desai,P.Ilten, S.Mrenna, S.Prestel,C.O.Rasmussen,P.Z.Skands,AnintroductiontoPYTHIA8.2, Com-put.Phys.Commun.191(2015)159,https://doi.org/10.1016/j.cpc.2015.01.024, arXiv:1410.3012.

[34] CMSCollaboration,Measurementofdifferentialcross sectionsfor topquark pairproductionusingthelepton+jetsfinalstateinproton–protoncollisions at 13TeV,Phys.Rev.D95(2017)092001,https://doi.org/10.1103/PhysRevD. 95.092001,arXiv:1610.04191.

[35] S.Agostinelli, et al., GEANT4, GEANT4:a simulationtoolkit, Nucl. Instrum. MethodsA506(2003)250,https://doi.org/10.1016/S0168-9002(03)01368-8.

[36] J.Allison,etal.,GEANT4developmentsandapplications,IEEETrans.Nucl.Sci. 53(2006)270,https://doi.org/10.1109/TNS.2006.869826.

[37] R.D. Ball, et al., NNPDF, Parton distributions for the LHC run II, J. High Energy Phys. 04(2015) 040,https://doi.org/10.1007/JHEP04(2015)040,arXiv: 1410.8849.

[38] M.Cacciari,G.P.Salam,G.Soyez,Theanti-ktjetclusteringalgorithm,J.High

Energy Phys. 04 (2008)063, https://doi.org/10.1088/1126-6708/2008/04/063, arXiv:0802.1189.

[39] M.Cacciari,G.P.Salam,G.Soyez,FastJetusermanual,Eur.Phys.J.C72(2012) 1896,https://doi.org/10.1140/epjc/s10052-012-1896-2,arXiv:1111.6097. [40] CMSCollaboration,JetenergyscaleandresolutionintheCMSexperimentin

pp collisionsat 8TeV,J.Instrum.12(2017)P02014,https://doi.org/10.1088/ 1748-0221/12/02/P02014,arXiv:1607.03663.

[41] D. Krohn,M.D. Schwartz,M.Low,L.-T. Wang,Jet cleansing:pileupremoval at highluminosity,Phys. Rev.D 90(2014) 065020, https://doi.org/10.1103/ PhysRevD.90.065020,arXiv:1309.4777.

[42] M.Cacciari,G.P.Salam,Pileupsubtractionusingjet areas,Phys.Lett.B659 (2008)119,https://doi.org/10.1016/j.physletb.2007.09.077,arXiv:0707.1378. [43] CMS Collaboration,Identificationofb-quarkjetswith the CMSexperiment,

J. Instrum. 8(2013)P04013, https://doi.org/10.1088/1748-0221/8/04/P04013, arXiv:1211.4462.

[44] CMSCollaboration, IdentificationofbQuarkJetsat theCMSExperimentin the LHCRun2,CMSPhysicsAnalysisSummaryCMS-PAS-BTV-15-001,2016,

http://cdsweb.cern.ch/record/2138504.

[45] CMSCollaboration,Measurementofthett productioncrosssectioninpp col-lisions at7TeVinlepton+jetseventsusingb-quarkjet identification,Phys. Rev.D84(2011)092004,https://doi.org/10.1103/PhysRevD.84.092004,arXiv: 1108.3773.

[46] CMSCollaboration,CMSLuminosityMeasurementsfor the2016DataTaking Period, CMSPhysics Analysis SummaryCMS-PAS-LUM-17-001, 2017, http:// cds.cern.ch/record/2257069.

[47] M. Cacciari, S. Frixione, M.L. Mangano, P. Nason, G. Ridolfi, The tt cross-¯ section at 1.8 TeVand 1.96TeV: astudy ofthesystematics dueto parton densitiesandscaledependence,J.HighEnergyPhys.04(2004)068,https:// doi.org/10.1088/1126-6708/2004/04/068,arXiv:hep-ph/0303085.

[48] S.Catani, D.deFlorian,M. Grazzini,P.Nason, Soft gluonresummationfor Higgsboson productionat hadroncolliders,J.HighEnergy Phys.07 (2003) 028,https://doi.org/10.1088/1126-6708/2003/07/028,arXiv:hep-ph/0306211. [49] ATLASCollaboration,Measurementoftheinelasticproton–protoncrosssection

at√s=13 TeVwiththeATLASdetectorattheLHC,Phys.Rev.Lett.117(2016) 182002,https://doi.org/10.1103/PhysRevLett.117.182002,arXiv:1606.02625. [50] J. Butterworth, et al., PDF4LHC recommendations for LHC run II, J. Phys.

G 43 (2016) 023001, https://doi.org/10.1088/0954-3899/43/2/023001, arXiv: 1510.03865.

[51] T.Müller,J.Ott,J.Wagner-Kuhr,theta—aframeworkfortemplate-based mod-elingandinference,http://www-ekp.physik.uni-karlsruhe.de/~ott/theta/testing/ html/theta__auto__intro.html,2010.

[52] R.Barlow,C.Beeston,FittingusingfiniteMonteCarlosamples,Comput.Phys. Commun.77(1993)219,https://doi.org/10.1016/0010-4655(93)90005-W.

TheCMSCollaboration

A.M. Sirunyan,A. Tumasyan

YerevanPhysicsInstitute,Yerevan,Armenia

W. Adam, F. Ambrogi, E. Asilar,T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö,M. Flechl, M. Friedl,R. Frühwirth1,V.M. Ghete, J. Grossmann, J. Hrubec, M. Jeitler1, A. König,N. Krammer,

I. Krätschmer,D. Liko,T. Madlener, I. Mikulec, E. Pree,D. Rabady, N. Rad, H. Rohringer, J. Schieck1, R. Schöfbeck, M. Spanring, D. Spitzbart,W. Waltenberger, J. Wittmann, C.-E. Wulz1, M. Zarucki

InstitutfürHochenergiephysik,Wien,Austria

V. Chekhovsky, V. Mossolov,J. Suarez Gonzalez

InstituteforNuclearProblems,Minsk,Belarus

E.A. De Wolf,D. Di Croce, X. Janssen,J. Lauwers, H. Van Haevermaet,P. Van Mechelen, N. Van Remortel

(10)

S. Abu Zeid,F. Blekman, J. D’Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette,S. Moortgat, L. Moreels, Q. Python, K. Skovpen,S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs

VrijeUniversiteitBrussel,Brussel,Belgium

H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella,L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli,T. Lenzi, J. Luetic,T. Maerschalk, A. Marinov, A. Randle-conde,T. Seva, C. Vander Velde, P. Vanlaer,D. Vannerom, R. Yonamine,F. Zenoni, F. Zhang2

UniversitéLibredeBruxelles,Bruxelles,Belgium

A. Cimmino, T. Cornelis,D. Dobur, A. Fagot,M. Gul, I. Khvastunov, D. Poyraz, C. Roskas, S. Salva, M. Tytgat, W. Verbeke,N. Zaganidis

GhentUniversity,Ghent,Belgium

H. Bakhshiansohi,O. Bondu, S. Brochet,G. Bruno, C. Caputo, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois,A. Giammanco, A. Jafari,M. Komm, G. Krintiras, V. Lemaitre,A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski,L. Quertenmont, M. Vidal Marono, S. Wertz

UniversitéCatholiquedeLouvain,Louvain-la-Neuve,Belgium

N. Beliy

UniversitédeMons,Mons,Belgium

W.L. Aldá Júnior, F.L. Alves,G.A. Alves, L. Brito,M. Correa Martins Junior,C. Hensel, A. Moraes,M.E. Pol, P. Rebello Teles

CentroBrasileirodePesquisasFisicas,RiodeJaneiro,Brazil

E. Belchior Batista Das Chagas, W. Carvalho,J. Chinellato3,A. Custódio, E.M. Da Costa, G.G. Da Silveira4, D. De Jesus Damiao,S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson,M. Melo De Almeida, C. Mora Herrera,L. Mundim, H. Nogima,A. Santoro, A. Sznajder,E.J. Tonelli Manganote3,

F. Torres Da Silva De Araujo,A. Vilela Pereira

UniversidadedoEstadodoRiodeJaneiro,RiodeJaneiro,Brazil

S. Ahujaa, C.A. Bernardesa, T.R. Fernandez Perez Tomeia, E.M. Gregoresb,P.G. Mercadanteb, S.F. Novaesa, Sandra S. Padulaa, D. Romero Abadb,J.C. Ruiz Vargasa

aUniversidadeEstadualPaulista,SãoPaulo,Brazil bUniversidadeFederaldoABC,SãoPaulo,Brazil

A. Aleksandrov, R. Hadjiiska, P. Iaydjiev,M. Misheva, M. Rodozov, M. Shopova,S. Stoykova, G. Sultanov

InstituteforNuclearResearchandNuclearEnergyofBulgariaAcademyofSciences,Bulgaria

A. Dimitrov, I. Glushkov,L. Litov, B. Pavlov,P. Petkov

UniversityofSofia,Sofia,Bulgaria

W. Fang5, X. Gao5

BeihangUniversity,Beijing,China

M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen,M. Chen, Y. Chen, C.H. Jiang, D. Leggat, H. Liao, Z. Liu, F. Romeo,S.M. Shaheen, A. Spiezia, J. Tao, C. Wang,Z. Wang, E. Yazgan, H. Zhang, S. Zhang, J. Zhao

(11)

Y. Ban, G. Chen, Q. Li, S. Liu,Y. Mao, S.J. Qian,D. Wang, Z. Xu

StateKeyLaboratoryofNuclearPhysicsandTechnology,PekingUniversity,Beijing,China

C. Avila,A. Cabrera, L.F. Chaparro Sierra, C. Florez,C.F. González Hernández, J.D. Ruiz Alvarez

UniversidaddeLosAndes,Bogota,Colombia

B. Courbon,N. Godinovic, D. Lelas,I. Puljak, P.M. Ribeiro Cipriano, T. Sculac

UniversityofSplit,FacultyofElectricalEngineering,MechanicalEngineeringandNavalArchitecture,Split,Croatia

Z. Antunovic,M. Kovac

UniversityofSplit,FacultyofScience,Split,Croatia

V. Brigljevic,D. Ferencek, K. Kadija,B. Mesic, A. Starodumov6, T. Susa

InstituteRudjerBoskovic,Zagreb,Croatia

M.W. Ather,A. Attikis, G. Mavromanolakis, J. Mousa,C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski

UniversityofCyprus,Nicosia,Cyprus

M. Finger7,M. Finger Jr.7

CharlesUniversity,Prague,CzechRepublic

E. Carrera Jarrin

UniversidadSanFranciscodeQuito,Quito,Ecuador

Y. Assran8,9, S. Elgammal9,A. Mahrous10

AcademyofScientificResearchandTechnologyoftheArabRepublicofEgypt,EgyptianNetworkofHighEnergyPhysics,Cairo,Egypt

R.K. Dewanjee,M. Kadastik, L. Perrini, M. Raidal, A. Tiko,C. Veelken

NationalInstituteofChemicalPhysicsandBiophysics,Tallinn,Estonia

P. Eerola,J. Pekkanen, M. Voutilainen

DepartmentofPhysics,UniversityofHelsinki,Helsinki,Finland

J. Härkönen,T. Järvinen, V. Karimäki,R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti,T. Lindén, P. Luukka, E. Tuominen, J. Tuominiemi,E. Tuovinen

HelsinkiInstituteofPhysics,Helsinki,Finland

J. Talvitie,T. Tuuva

LappeenrantaUniversityofTechnology,Lappeenranta,Finland

M. Besancon,F. Couderc, M. Dejardin, D. Denegri,J.L. Faure, F. Ferri, S. Ganjour, S. Ghosh,A. Givernaud, P. Gras, G. Hamel de Monchenault,P. Jarry, I. Kucher, E. Locci,M. Machet, J. Malcles, G. Negro,J. Rander, A. Rosowsky,M.Ö. Sahin, M. Titov

IRFU,CEA,UniversitéParis-Saclay,Gif-sur-Yvette,France

A. Abdulsalam,I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, C. Charlot,

R. Granier de Cassagnac,M. Jo, S. Lisniak,A. Lobanov, J. Martin Blanco, M. Nguyen, C. Ochando,

G. Ortona,P. Paganini, P. Pigard,S. Regnard, R. Salerno, J.B. Sauvan, Y. Sirois, A.G. Stahl Leiton, T. Strebler, Y. Yilmaz,A. Zabi, A. Zghiche

(12)

J.-L. Agram11, J. Andrea, D. Bloch,J.-M. Brom, M. Buttignol,E.C. Chabert, N. Chanon, C. Collard, E. Conte11, X. Coubez, J.-C. Fontaine11,D. Gelé, U. Goerlach,M. Jansová, A.-C. Le Bihan, N. Tonon, P. Van Hove

UniversitédeStrasbourg,CNRS,IPHCUMR7178,F-67000Strasbourg,France

S. Gadrat

CentredeCalculdel’InstitutNationaldePhysiqueNucleaireetdePhysiquedesParticules,CNRS/IN2P3,Villeurbanne,France

S. Beauceron,C. Bernet, G. Boudoul, R. Chierici,D. Contardo, P. Depasse, H. El Mamouni,J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh,M. Lethuillier, L. Mirabito,

A.L. Pequegnot, S. Perries, A. Popov12,V. Sordini, M. Vander Donckt, S. Viret

UniversitédeLyon,UniversitéClaudeBernardLyon1,CNRS-IN2P3,InstitutdePhysiqueNucléairedeLyon,Villeurbanne,France

T. Toriashvili13

GeorgianTechnicalUniversity,Tbilisi,Georgia

D. Lomidze

TbilisiStateUniversity,Tbilisi,Georgia

C. Autermann, S. Beranek,L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten, C. Schomakers, J. Schulz, T. Verlage,V. Zhukov12

RWTHAachenUniversity,I.PhysikalischesInstitut,Aachen,Germany

A. Albert, E. Dietz-Laursonn, D. Duchardt, M. Endres,M. Erdmann, S. Erdweg, T. Esch,R. Fischer, A. Güth, M. Hamer,T. Hebbeker,C. Heidemann, K. Hoepfner,S. Knutzen, M. Merschmeyer,A. Meyer, P. Millet, S. Mukherjee,M. Olschewski, K. Padeken, T. Pook,M. Radziej, H. Reithler, M. Rieger,F. Scheuch, D. Teyssier,S. Thüer

RWTHAachenUniversity,III.PhysikalischesInstitutA,Aachen,Germany

G. Flügge, B. Kargoll, T. Kress, A. Künsken, J. Lingemann, T. Müller,A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth,A. Stahl14

RWTHAachenUniversity,III.PhysikalischesInstitutB,Aachen,Germany

M. Aldaya Martin,T. Arndt, C. Asawatangtrakuldee, K. Beernaert,O. Behnke, U. Behrens, A. Bermúdez Martínez, A.A. Bin Anuar, K. Borras15,V. Botta, A. Campbell, P. Connor,

C. Contreras-Campana, F. Costanza, C. Diez Pardos,G. Eckerlin, D. Eckstein, T. Eichhorn, E. Eren, E. Gallo16,J. Garay Garcia, A. Geiser, A. Gizhko, J.M. Grados Luyando, A. Grohsjean, P. Gunnellini, M. Guthoff,A. Harb, J. Hauk, M. Hempel17, H. Jung,A. Kalogeropoulos, M. Kasemann,J. Keaveney, C. Kleinwort,I. Korol, D. Krücker,W. Lange, A. Lelek, T. Lenz, J. Leonard,K. Lipka, W. Lohmann17, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari,D. Pitzl, A. Raspereza,B. Roland, M. Savitskyi, P. Saxena,R. Shevchenko, S. Spannagel, N. Stefaniuk,

G.P. Van Onsem,R. Walsh, Y. Wen, K. Wichmann,C. Wissing, O. Zenaiev

DeutschesElektronen-Synchrotron,Hamburg,Germany

S. Bein,V. Blobel, M. Centis Vignali, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, A. Hinzmann, M. Hoffmann,A. Karavdina, R. Klanner, R. Kogler, N. Kovalchuk,S. Kurz, T. Lapsien, I. Marchesini, D. Marconi,M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo14, T. Peiffer, A. Perieanu,C. Scharf, P. Schleper, A. Schmidt, S. Schumann,J. Schwandt, J. Sonneveld,H. Stadie,G. Steinbrück, F.M. Stober, M. Stöver, H. Tholen, D. Troendle,E. Usai, L. Vanelderen,A. Vanhoefer, B. Vormwald

(13)

M. Akbiyik, C. Barth,S. Baur, E. Butz, R. Caspart,T. Chwalek, F. Colombo, W. De Boer,A. Dierlamm, B. Freund,R. Friese,M. Giffels, A. Gilbert,D. Haitz, F. Hartmann14,S.M. Heindl, U. Husemann,

F. Kassel14, S. Kudella, H. Mildner,M.U. Mozer, Th. Müller, M. Plagge,G. Quast, K. Rabbertz, M. Schröder, I. Shvetsov,G. Sieber, H.J. Simonis,R. Ulrich, S. Wayand, M. Weber, T. Weiler, S. Williamson,

C. Wöhrmann, R. Wolf

InstitutfürExperimentelleKernphysik,Karlsruhe,Germany

G. Anagnostou,G. Daskalakis, T. Geralis,V.A. Giakoumopoulou, A. Kyriakis, D. Loukas,I. Topsis-Giotis

InstituteofNuclearandParticlePhysics(INPP),NCSRDemokritos,AghiaParaskevi,Greece

G. Karathanasis,S. Kesisoglou, A. Panagiotou, N. Saoulidou

NationalandKapodistrianUniversityofAthens,Athens,Greece

K. Kousouris

NationalTechnicalUniversityofAthens,Athens,Greece

I. Evangelou,C. Foudas, P. Kokkas, S. Mallios,N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas, F.A. Triantis

UniversityofIoánnina,Ioánnina,Greece

M. Csanad,N. Filipovic, G. Pasztor,G.I. Veres18

MTA-ELTELendületCMSParticleandNuclearPhysicsGroup,EötvösLorándUniversity,Budapest,Hungary

G. Bencze,C. Hajdu, D. Horvath19, Á. Hunyadi, F. Sikler,V. Veszpremi, A.J. Zsigmond

WignerResearchCentreforPhysics,Budapest,Hungary

N. Beni,S. Czellar, J. Karancsi20,A. Makovec,J. Molnar, Z. Szillasi

InstituteofNuclearResearchATOMKI,Debrecen,Hungary

M. Bartók18,P. Raics, Z.L. Trocsanyi, B. Ujvari

InstituteofPhysics,UniversityofDebrecen,Debrecen,Hungary

S. Choudhury,J.R. Komaragiri

IndianInstituteofScience(IISc),Bangalore,India

S. Bahinipati21,S. Bhowmik, P. Mal, K. Mandal, A. Nayak22, D.K. Sahoo21, N. Sahoo,S.K. Swain

NationalInstituteofScienceEducationandResearch,Bhubaneswar,India

S. Bansal,S.B. Beri, V. Bhatnagar,R. Chawla, N. Dhingra, A.K. Kalsi,A. Kaur, M. Kaur, R. Kumar, P. Kumari, A. Mehta,J.B. Singh, G. Walia

PanjabUniversity,Chandigarh,India

Ashok Kumar,Aashaq Shah, A. Bhardwaj, S. Chauhan,B.C. Choudhary, R.B. Garg,S. Keshri, A. Kumar, S. Malhotra,M. Naimuddin, K. Ranjan,R. Sharma

UniversityofDelhi,Delhi,India

R. Bhardwaj,R. Bhattacharya, S. Bhattacharya, U. Bhawandeep, S. Dey,S. Dutt, S. Dutta, S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan,A. Purohit, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar,M. Sharan, S. Thakur

(14)

P.K. Behera

IndianInstituteofTechnologyMadras,Madras,India

R. Chudasama, D. Dutta, V. Jha,V. Kumar, A.K. Mohanty14,P.K. Netrakanti,L.M. Pant, P. Shukla,A. Topkar

BhabhaAtomicResearchCentre,Mumbai,India

T. Aziz, S. Dugad,B. Mahakud, S. Mitra, G.B. Mohanty, N. Sur, B. Sutar

TataInstituteofFundamentalResearch-A,Mumbai,India

S. Banerjee, S. Bhattacharya, S. Chatterjee,P. Das, M. Guchait, Sa. Jain, S. Kumar, M. Maity23, G. Majumder, K. Mazumdar,T. Sarkar23, N. Wickramage24

TataInstituteofFundamentalResearch-B,Mumbai,India

S. Chauhan,S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma

IndianInstituteofScienceEducationandResearch(IISER),Pune,India

S. Chenarani25, E. Eskandari Tadavani,S.M. Etesami25,M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi26,F. Rezaei Hosseinabadi, B. Safarzadeh27,M. Zeinali

InstituteforResearchinFundamentalSciences(IPM),Tehran,Iran

M. Felcini,M. Grunewald

UniversityCollegeDublin,Dublin,Ireland

M. Abbresciaa,b, C. Calabriaa,b,A. Colaleoa,D. Creanzaa,c, L. Cristellaa,b,N. De Filippisa,c,

M. De Palmaa,b, F. Erricoa,b, L. Fiorea, G. Iasellia,c, S. Lezkia,b, G. Maggia,c,M. Maggia, G. Minielloa,b, S. Mya,b, S. Nuzzoa,b,A. Pompilia,b,G. Pugliesea,c, R. Radognaa,A. Ranieria, G. Selvaggia,b, A. Sharmaa, L. Silvestrisa,14,R. Vendittia,P. Verwilligena

aINFNSezionediBari,Bari,Italy bUniversitàdiBari,Bari,Italy cPolitecnicodiBari,Bari,Italy

G. Abbiendia,C. Battilanaa,b,D. Bonacorsia,b,S. Braibant-Giacomellia,b, R. Campaninia,b, P. Capiluppia,b, A. Castroa,b, F.R. Cavalloa,S.S. Chhibraa, G. Codispotia,b, M. Cuffiania,b,G.M. Dallavallea,F. Fabbria, A. Fanfania,b, D. Fasanellaa,b,P. Giacomellia,C. Grandia,L. Guiduccia,b, S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarriaa,b, A. Perrottaa, A.M. Rossia,b, T. Rovellia,b, G.P. Sirolia,b,N. Tosia

aINFNSezionediBologna,Bologna,Italy bUniversitàdiBologna,Bologna,Italy

S. Albergoa,b,S. Costaa,b,A. Di Mattiaa,F. Giordanoa,b,R. Potenzaa,b,A. Tricomia,b,C. Tuvea,b

aINFNSezionediCatania,Catania,Italy bUniversitàdiCatania,Catania,Italy

G. Barbaglia, K. Chatterjeea,b,V. Ciullia,b,C. Civininia, R. D’Alessandroa,b, E. Focardia,b,P. Lenzia,b, M. Meschinia, S. Paolettia,L. Russoa,28, G. Sguazzonia, D. Stroma, L. Viliania,b,14

aINFNSezionediFirenze,Firenze,Italy bUniversitàdiFirenze,Firenze,Italy

L. Benussi, S. Bianco, F. Fabbri,D. Piccolo, F. Primavera14

INFNLaboratoriNazionalidiFrascati,Frascati,Italy

V. Calvellia,b, F. Ferroa, E. Robuttia,S. Tosia,b

aINFNSezionediGenova,Genova,Italy bUniversitàdiGenova,Genova,Italy

(15)

A. Benagliaa,L. Brianzaa,b,F. Brivioa,b,V. Cirioloa,b,M.E. Dinardoa,b, S. Fiorendia,b,S. Gennaia, A. Ghezzia,b,P. Govonia,b,M. Malbertia,b,S. Malvezzia,R.A. Manzonia,b, D. Menascea, L. Moronia, M. Paganonia,b,K. Pauwelsa,b,D. Pedrinia,S. Pigazzinia,b,29,S. Ragazzia,b,T. Tabarelli de Fatisa,b

aINFNSezionediMilano-Bicocca,Milano,Italy bUniversitàdiMilano-Bicocca,Milano,Italy

S. Buontempoa, N. Cavalloa,c,S. Di Guidaa,d,14, F. Fabozzia,c,F. Fiengaa,b, A.O.M. Iorioa,b,W.A. Khana, L. Listaa,S. Meolaa,d,14,P. Paoluccia,14,C. Sciaccaa,b,F. Thyssena

aINFNSezionediNapoli,Napoli,Italy bUniversitàdiNapoli‘FedericoII’,Napoli,Italy cUniversitàdellaBasilicata,Potenza,Italy dUniversitàG.Marconi,Roma,Italy

P. Azzia,14,N. Bacchettaa,L. Benatoa,b, D. Biselloa,b, A. Bolettia,b, R. Carlina,b,

A. Carvalho Antunes De Oliveiraa,b,M. Dall’Ossoa,b, P. De Castro Manzanoa,T. Dorigoa,F. Gasparinia,b, U. Gasparinia,b,A. Gozzelinoa,S. Lacapraraa, M. Margonia,b, A.T. Meneguzzoa,b,F. Montecassianoa, M. Passaseoa, N. Pozzobona,b,P. Ronchesea,b, R. Rossina,b, F. Simonettoa,b,E. Torassaa,M. Zanettia,b, P. Zottoa,b, G. Zumerlea,b

aINFNSezionediPadova,Padova,Italy bUniversitàdiPadova,Padova,Italy cUniversitàdiTrento,Trento,Italy

A. Braghieria, A. Magnania,b, P. Montagnaa,b,S.P. Rattia,b,V. Rea, M. Ressegotti,C. Riccardia,b, P. Salvinia, I. Vaia,b,P. Vituloa,b

aINFNSezionediPavia,Pavia,Italy bUniversitàdiPavia,Pavia,Italy

L. Alunni Solestizia,b, M. Biasinia,b, G.M. Bileia,C. Cecchia,b,D. Ciangottinia,b, L. Fanòa,b,P. Laricciaa,b, R. Leonardia,b,E. Manonia, G. Mantovania,b,V. Mariania,b, M. Menichellia,A. Rossia,b, A. Santocchiaa,b, D. Spigaa

aINFNSezionediPerugia,Perugia,Italy bUniversitàdiPerugia,Perugia,Italy

K. Androsova, P. Azzurria,14,G. Bagliesia,J. Bernardinia,T. Boccalia,L. Borrello, R. Castaldia, M.A. Cioccia,b,R. Dell’Orsoa, G. Fedia,L. Gianninia,c, A. Giassia,M.T. Grippoa,28,F. Ligabuea,c, T. Lomtadzea, E. Mancaa,c, G. Mandorlia,c, L. Martinia,b, A. Messineoa,b, F. Pallaa,A. Rizzia,b, A. Savoy-Navarroa,30,P. Spagnoloa,R. Tenchinia,G. Tonellia,b,A. Venturia,P.G. Verdinia

aINFNSezionediPisa,Pisa,Italy bUniversitàdiPisa,Pisa,Italy

cScuolaNormaleSuperiorediPisa,Pisa,Italy

L. Baronea,b, F. Cavallaria,M. Cipriania,b, D. Del Rea,b,14, E. Di Marcoa,b, M. Diemoza,S. Gellia,b,

E. Longoa,b, F. Margarolia,b, B. Marzocchia,b,P. Meridiania, G. Organtinia,b,R. Paramattia,b,F. Preiatoa,b, S. Rahatloua,b,C. Rovellia, F. Santanastasioa,b

aINFNSezionediRoma,Rome,Italy bSapienzaUniversitàdiRoma,Rome,Italy

N. Amapanea,b,R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c,N. Bartosika,R. Bellana,b,C. Biinoa, N. Cartigliaa,F. Cennaa,b, M. Costaa,b,R. Covarellia,b,A. Deganoa,b,N. Demariaa, B. Kiania,b,

C. Mariottia, S. Masellia,E. Migliorea,b, V. Monacoa,b, E. Monteila,b, M. Montenoa,M.M. Obertinoa,b, L. Pachera,b,N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia,b,F. Raveraa,b,A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, K. Shchelinaa,b, V. Solaa,A. Solanoa,b,A. Staianoa,P. Traczyka,b

aINFNSezionediTorino,Torino,Italy bUniversitàdiTorino,Torino,Italy

(16)

S. Belfortea,M. Casarsaa, F. Cossuttia, G. Della Riccaa,b,A. Zanettia

aINFNSezionediTrieste,Trieste,Italy bUniversitàdiTrieste,Trieste,Italy

D.H. Kim,G.N. Kim, M.S. Kim,J. Lee, S. Lee,S.W. Lee, C.S. Moon, Y.D. Oh, S. Sekmen,D.C. Son, Y.C. Yang

KyungpookNationalUniversity,Daegu,RepublicofKorea

A. Lee

ChonbukNationalUniversity,Jeonju,RepublicofKorea

H. Kim,D.H. Moon, G. Oh

ChonnamNationalUniversity,InstituteforUniverseandElementaryParticles,Kwangju,RepublicofKorea

J.A. Brochero Cifuentes, J. Goh,T.J. Kim

HanyangUniversity,Seoul,RepublicofKorea

S. Cho, S. Choi,Y. Go,D. Gyun, S. Ha, B. Hong, Y. Jo,Y. Kim, K. Lee,K.S. Lee, S. Lee,J. Lim,S.K. Park, Y. Roh

KoreaUniversity,Seoul,RepublicofKorea

J. Almond, J. Kim,J.S. Kim, H. Lee,K. Lee, K. Nam,S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang, H.D. Yoo,G.B. Yu

SeoulNationalUniversity,Seoul,RepublicofKorea

M. Choi,H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park

UniversityofSeoul,Seoul,RepublicofKorea

Y. Choi,C. Hwang, J. Lee, I. Yu

SungkyunkwanUniversity,Suwon,RepublicofKorea

V. Dudenas, A. Juodagalvis,J. Vaitkus

VilniusUniversity,Vilnius,Lithuania

I. Ahmed,Z.A. Ibrahim, M.A.B. Md Ali31,F. Mohamad Idris32,W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli

NationalCentreforParticlePhysics,UniversitiMalaya,KualaLumpur,Malaysia

R. Reyes-Almanza,G. Ramirez-Sanchez, M.C. Duran-Osuna, H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz33, R.I. Rabadan-Trejo, R. Lopez-Fernandez,J. Mejia Guisao, A. Sanchez-Hernandez

CentrodeInvestigacionydeEstudiosAvanzadosdelIPN,MexicoCity,Mexico

S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia

UniversidadIberoamericana,MexicoCity,Mexico

I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

BenemeritaUniversidadAutonomadePuebla,Puebla,Mexico

A. Morelos Pineda

UniversidadAutónomadeSanLuisPotosí,SanLuisPotosí,Mexico

D. Krofcheck

(17)

P.H. Butler

UniversityofCanterbury,Christchurch,NewZealand

A. Ahmad, M. Ahmad, Q. Hassan,H.R. Hoorani, A. Saddique, M.A. Shah,M. Shoaib, M. Waqas

NationalCentreforPhysics,Quaid-I-AzamUniversity,Islamabad,Pakistan

H. Bialkowska,M. Bluj, B. Boimska,T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, M. Szleper, P. Zalewski

NationalCentreforNuclearResearch,Swierk,Poland

K. Bunkowski, A. Byszuk34,K. Doroba, A. Kalinowski, M. Konecki,J. Krolikowski, M. Misiura, M. Olszewski,A. Pyskir, M. Walczak

InstituteofExperimentalPhysics,FacultyofPhysics,UniversityofWarsaw,Warsaw,Poland

P. Bargassa,C. Beirão Da Cruz E Silva, A. Di Francesco, P. Faccioli,B. Galinhas, M. Gallinaro, J. Hollar, N. Leonardo,L. Lloret Iglesias, M.V. Nemallapudi, J. Seixas,G. Strong,O. Toldaiev, D. Vadruccio, J. Varela

LaboratóriodeInstrumentaçãoeFísicaExperimentaldePartículas,Lisboa,Portugal

S. Afanasiev,P. Bunin, M. Gavrilenko,I. Golutvin, I. Gorbunov, A. Kamenev,V. Karjavin, A. Lanev,

A. Malakhov,V. Matveev35,36, V. Palichik,V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov,V. Smirnov, N. Voytishin, A. Zarubin

JointInstituteforNuclearResearch,Dubna,Russia

Y. Ivanov,V. Kim37,E. Kuznetsova38, P. Levchenko,V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev

PetersburgNuclearPhysicsInstitute,Gatchina(St.Petersburg),Russia

Yu. Andreev,A. Dermenev,S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov,N. Krasnikov, A. Pashenkov,D. Tlisov, A. Toropin

InstituteforNuclearResearch,Moscow,Russia

V. Epshteyn,V. Gavrilov, N. Lychkovskaya,V. Popov, I. Pozdnyakov,G. Safronov, A. Spiridonov, A. Stepennov, M. Toms,E. Vlasov, A. Zhokin

InstituteforTheoreticalandExperimentalPhysics,Moscow,Russia

T. Aushev,A. Bylinkin36

MoscowInstituteofPhysicsandTechnology,Moscow,Russia

R. Chistov39, M. Danilov39,P. Parygin,D. Philippov, S. Polikarpov,E. Tarkovskii

NationalResearchNuclearUniversity‘MoscowEngineeringPhysicsInstitute’(MEPhI),Moscow,Russia

V. Andreev,M. Azarkin36,I. Dremin36, M. Kirakosyan36,A. Terkulov

P.N.LebedevPhysicalInstitute,Moscow,Russia

A. Baskakov,A. Belyaev, E. Boos,V. Bunichev, M. Dubinin40, L. Dudko, V. Klyukhin, N. Korneeva, I. Lokhtin,I. Miagkov, S. Obraztsov,M. Perfilov, V. Savrin, A. Snigirev, P. Volkov

SkobeltsynInstituteofNuclearPhysics,LomonosovMoscowStateUniversity,Moscow,Russia

V. Blinov41, Y. Skovpen41,D. Shtol41

Riferimenti

Documenti correlati

tali quelle del Governo di Madrid, dove il ministro degli Esteri, Carlos Manuel O’Donnell, meglio noto come duca di Tetuán, sfruttando l’onda emozionale favorita dal rinnovo

(2010) Uneventful pregnancy outcome after enzyme replacement therapy with agalsidase beta in a heterozygous female with Fabry disease: A case report. Senocak Tasci E, Bicik Z

The limitations of solid angle acceptance and beam rejection factor of PISOLO prevent investigations at even lower cross sections, but the regular behavior of the sub-barrier

This new information could be channeled to address what seem to be the three major hallmarks for the immune control of cancer progression: effective procedures to activate

In an Australian study regarding seven children with eosinophilic esophagitis and celiac disease [23], no patients with food allergy were reported; the prevalence

evaluated using CellTox green assay (Promega), a fluorimetric assay that measures changes in membrane integrity as a result of cell death. IC 50 values were determined

*; Jean Ferrieres (Toulouse University School of Medicine, France)*; Joseph D Finn (University of Manchester, UK)*; Krista Fischer (University of Tartu, Estonia)*; Eric

The original standard was in terms of two Fortran commonblocks where information could be stored, while the actual usage has tended to be mainly in terms of files with