Sistema ad anello chiuso PI
tau:=12 Ao:=1 t:=0 0.1, ..100 Gf s( ) Ao 1+s tau⋅ := E s( ) 1 s := (Gradino) Kp1:=1 Ti1 1 10 := Gc1 s( ) Kp1 1 1 Ti1 s⋅ +
⋅ := G1 s( ) Gc1 s( ) Gf s⋅ ( ) 1+Gc1 s( ) Gf s⋅ ( ) simplify s+10 2 6 s⋅(
⋅ 2+s+5)
→ := U1 s( ):=E s( ) G1 s⋅ ( ) U1 t( ) U1 s( ) invlaplace 1 e t 12 − cos 119 t⋅ 12
⋅ − → := Kp2:=1 Ti2:=3 Gc2 s( ) Kp2 1 1 Ti2 s⋅ +
⋅ := G2 s( ) Gc2 s( ) Gf s⋅ ( ) 1+Gc2 s( ) Gf s⋅ ( ) simplify 3 s⋅ +1 36 s⋅ 2+6 s⋅ +1 → := U2 s( ):=E s( ) G2 s⋅ ( ) U2 t( ) U2 s( ) invlaplace 1 e t 12 − cos 3 t⋅ 12
⋅ − → := Kp3:=1 Ti3:=10 Gc3 s( ) Kp3 1 1 Ti3 s⋅ +
⋅ := G3 s( ) Gc3 s( ) Gf s⋅ ( ) 1+Gc3 s( ) Gf s⋅ ( ) simplify 10 s⋅ +1 120 s⋅ 2+20 s⋅ +1 → := U3 s( ):=E s( ) G3 s⋅ ( ) U3 t( ) U3 s( ) invlaplace 1 e t 12 − cos 5 t⋅ 60
⋅ − → := Kp4:=1 Ti4:=1000 Gc4 s( ) Kp4 1 1 Ti4 s⋅ +
⋅ := G4 s( ) Gc4 s( ) Gf s⋅ ( ) 1+Gc4 s( ) Gf s⋅ ( ) simplify 1000 s⋅ +1 12000 s⋅ 2+2000 s⋅ +1 → := U4 s( ):=E s( ) G4 s⋅ ( ) U4 t( ) U4 s( ) invlaplace 1 e t 12 − cosh 10⋅ 247⋅t 600
⋅ − → := 0 20 40 60 80 100 0 0.5 1 1.5 2 U1 t( ) U2 t( ) U3 t( ) U4 t( ) tL'offset è presente quando si opera solo con il controllore proporzionale (Ti --> infinito) sparisce attivando il termine integrale.