• Non ci sono risultati.

Search for top squarks in r-parity-violating supersymmetry using three or more leptons and b-tagged jets

N/A
N/A
Protected

Academic year: 2021

Condividi "Search for top squarks in r-parity-violating supersymmetry using three or more leptons and b-tagged jets"

Copied!
16
0
0

Testo completo

(1)

Search for Top Squarks in

R-Parity-Violating Supersymmetry Using Three

or More Leptons and

b-Tagged Jets

S. Chatrchyan et al.* (CMS Collaboration)

(Received 27 June 2013; published 25 November 2013)

A search for anomalous production of events with three or more isolated leptons and bottom-quark jets produced in pp collisions at pffiffiffis¼ 8 TeV is presented. The analysis is based on a data sample corresponding to an integrated luminosity of19:5 fb1 collected by the CMS experiment at the LHC in 2012. No excess above the standard model expectations is observed. The results are interpreted in the context of supersymmetric models with signatures that have low missing transverse energy arising from light top-squark pair production withR-parity-violating decays of the lightest supersymmetric particle. In two models with different R-parity-violating couplings, top squarks are excluded below masses of 1020 GeV and 820 GeV when the lightest supersymmetric particle has a mass of 200 GeV.

DOI:10.1103/PhysRevLett.111.221801 PACS numbers: 13.85.Rm, 12.60.Jv, 13.85.Qk, 14.80.Ly

Supersymmetric (SUSY) extensions of the standard model (SM) solve the hierarchy problem while unifying particle interactions [1,2]. Among SUSY models, ‘‘natu-ral’’ supersymmetry refers to those characterized by small fine-tuning needed to describe particle spectra. It requires top squarks (stops), the top-quark superpartners, to be ligh-ter than about 1 TeV . These models have received substan-tial interest in light of the discovery of a Higgs boson with mass near 125 GeV [3,4] because the stop should be the superpartner most strongly coupled to the Higgs boson.

Natural models feature pair production of stops that decay to a number of final states. To fully test supersym-metric naturalness, searches for all possible decay chains should be carried out. These can be broadly categorized as R-parity conserving (RPC) or violating (RPV) [5], where R-parity is defined by R ¼ ð1Þ3BþLþ2s, withB and L the

baryon and lepton numbers, ands the particle spin. All SM particle fields have R ¼ þ1 while all superpartner fields haveR ¼ 1. When R-parity is conserved, superpartners are produced in pairs, the lightest superpartner (LSP) is stable and a dark-matter candidate, and proton stability is ensured. Most recent searches for naturalness have focused on RPC models [6–8].

Supersymmetric models with RPV interactions violate eitherB or L but can avoid proton decay limits [9,10]. The superpotentialWRPVincludes three trilinear terms parame-trized by the Yukawa couplingsijk,0ijk, and00ijk:

WRPV¼12ijkLiLjEkþ0ijkLiQjDkþ1200ijk UiDjDk; (1)

where i, j, and k are generation indices; L and Q are the SUð2ÞL doublet superfields of the lepton and quark; and

the E, D, and U are the SUð2ÞL singlet superfields of the charged lepton, downlike quark, and uplike quark. The third term violates baryon number conservation, while the first two terms violate lepton number conservation. These terms do not preclude a natural hierarchy [11].

The RPV interactions allow for single production of SUSY particles (sparticles) and for sparticle decay into SM only particles. The latter is explored in this Letter. Prior searches for RPV interactions in multilepton final states include those at LEP [12–14], the Tevatron [15,16], at HERA [17,18], and at the Large Hadron Collider (LHC) [19–21].

Because the LSP is unstable in RPV models, a common experimental strategy of SUSY searches—selecting events with large missing transverse energy (EmissT )—is not effec-tive [9]. Instead, we useST, the scalar sum ofEmissT and the transverse energy of jets and charged leptons, to differ-entiate between signal and standard model backgrounds.

In this Letter we present the result of a search for pair production of top squarks with RPV decays of the lightest sparticle, using multilepton events and bottom-tagged (b-tagged) jets. The data set used here corresponds to an integrated luminosity of19:5 fb1, recorded in 2012 with the CMS detector at the LHC in proton-proton collisions at a center-of-mass energy of 8 TeV.

The coordinate system in CMS is right handed, with the origin at the nominal interaction point. Pseudorapidity is given by    ln½tanð=2Þ, where the polar angle  is defined with respect to the counterclockwise beam direc-tion. The azimuthal angle  is measured relative to the direction to the center of the LHC ring.

The CMS detector [22] has cylindrical symmetry around thepp beam axis with tracking and muon detectors cover-ing the pseudorapidity rangejj < 2:4. The tracking sys-tem measures the trajectory and momentum of charged

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

particles and consists of multilayered silicon pixel and strip detectors in a 3.8 T solenoidal magnetic field. Particle energies are measured with concentric electromagnetic and hadron calorimeters, which coverjj < 3:0 and jj < 5:0, respectively. Muon detectors consisting of wire cham-bers are embedded in the steel return yoke outside the solenoid. The trigger thresholds in a two-level trigger system are tuned to accept a few hundred data events per second from thepp interactions.

We select events with three or more leptons (including tau leptons) that are accepted by a trigger requiring two light leptons, which may be electrons or muons. Any opposite-sign, same-flavor pair of electrons or muons must have an invariant mass m‘‘> 12 GeV, removing low-mass bound states and! ‘þ‘ production.

Electrons and muons are reconstructed using the tracker, calorimeter, and muon systems. Details of reconstruction and identification can be found in Ref. [23] for electrons and in Ref. [24] for muons. We require that at least one electron or muon in each event have transverse momentum of pT> 20 GeV. Additional electrons and muons must have pT> 10 GeV and all of them must be within jj < 2:4.

The majority of hadronic decays of tau leptons (h) yield

either a single charged track (one-prong) or three charged tracks (three-prong), occasionally with additional electro-magnetic energy from neutral pion decays. We use one-and three-prong h candidates that have pT> 20 GeV, reconstructed with the ‘‘hadron plus strips’’ method [25]. Leptonically decaying taus are included with other elec-trons and muons.

To ensure that electrons, muons, andh candidates are isolated, we use a particle-flow algorithm [26,27] to iden-tify the source of transverse energy deposits in the trackers and calorimeters. We then sum the energy deposits in a cone of radius 0.3 inR ¼pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðÞ2þ ðÞ2 around the candidate and subtract the lepton pT to calculateET;cone. We remove energy from additional proton-proton colli-sions that occur simultaneously by subtracting a per-event correction [23,28]. For electrons and muons, we divide ET;coneby the leptonpTto find the relative isolationIrel¼

ET;cone=pT, which has to be less than 0.15. We require

Econe< 2 GeV for h candidates.

We use jets reconstructed from particle-flow candidates [28] using the anti-kT algorithm [29] with a distance pa-rameter of 0.5, that havejj < 2:5 and pT> 30 GeV. Jets are required to be a distance R > 0:3 away from any isolated electron, muon, orh candidate. To determine if the jet originated from a bottom quark, we use the com-bined secondary-vertex algorithm, which calculates a like-lihood discriminant using the track impact parameter and secondary-vertex information. This discrimination selects heavy-flavor jets with an efficiency of 70% and suppresses light-flavor jets with a misidentification probability of 1.5% [30].

Monte Carlo (MC) simulations are used to estimate some of the SM backgrounds and to understand the effi-ciency and acceptance of the signal models. The SM background samples are generated usingMADGRAPH [31] with parton showering and fragmentation modeled using

PYTHIA(version 6.420) [32] and passed through aGEANT4 -based [33] representation of the CMS detector. Signal samples [11] are generated with MADGRAPH and PYTHIA

and passed through the CMS fast-simulation package [34]. Next-to-leading and next-to-leading-log cross sections and their uncertainties for the SUSY signal processes are from the LHC SUSY cross sections working group [35–39].

Multilepton signals have two main sources of back-grounds, the first arising from processes that produce genuine multilepton events. The most significant examples are WZ and ZZ production, but rare processes such as tt W andtt Z also contribute. We assess the contribution

from these processes using samples simulated by

MADGRAPH. Samples simulating WZ and ZZ have been validated in control regions in data. For the rarer back-ground processes, we rely solely on simulation.

The second source originates from objects that are mis-classified as prompt, isolated leptons, but are actually hadrons, leptons from a hadron decay, etc. Misidentified leptons are classified in three categories: misidentified light leptons (electrons and muons), misidentified h leptons, and light leptons originating from asymmetric internal conversions. The methods used in this paper are described in more detail in Ref. [20]

We estimate the contribution of misidentified light lep-tons by measuring the number of isolated tracks and apply-ing a scale factor between isolated leptons and isolated tracks. These scale factors are measured in control regions that contain leptonically decaying Z-bosons and a third, isolated track, as well as in control regions with opposite-sign, opposite-flavor leptons, which arett dominated. The scale factor is then the probability for the third track to pass the lepton identification criteria. We find the scale factors to be ð0:9  0:2Þ% for electrons and ð0:7  0:2Þ% for muons. The scale factors are applied to the sideband region with two light leptons and an isolated track. The scale factors depend on the heavy-flavor content in the different signal regions. We parametrize this dependence as a func-tion of the impact parameter distribufunc-tion of nonisolated tracks. The tt contribution is taken from simulation.

The h misidentification rate is measured in jet-dominated data by comparing the number ofhcandidates in the signal region defined byEcone< 2 GeV to the num-ber of nonisolatedh candidates, which have6 < Econe< 15 GeV. We measure the average misidentification rate as 15% with a systematic uncertainty of 30% based on the variation in different control samples. We apply this scale factor to the sideband region with two light leptons and one nonisolatedhcandidate.

(3)

Another source of background leptons is internal con-versions, where a virtual photon decays to a dilepton pair. These conversions produce muons almost as often as elec-trons, and have been discussed in detail elsewhere [20]. We measure the conversion factors of photons to light leptons in a control region (lowEmissT and low hadronic activity). The ratio of the number of ‘þ‘‘ candidates to the number of ‘þ‘ candidates in the Z boson decays defines the conversion factor, which is 2:1%1:0% (0:5%0:3%) for electrons (muons).

A systematic uncertainty of 4.4% in the normalization of the simulated samples accounts for imperfect knowledge of the integrated luminosity of the data sample [40]. Signal cross sections have uncertainties from 15% to 51% in stop masses between 250 GeV and 1.5 TeV, which come from the parton distribution function uncertainties and the re-normalization and factorization scale uncertainties [41]. We scale the WZ and ZZ simulation samples to match data in control regions. The overall systematic uncertainty onWZ and ZZ contributions to the signal regions varies between 15% and 30% depending on the kinematics, and is the combination of the normalization uncertainties with resolution uncertainties. Muon identification efficiency un-certainty is 11% at muon pT of 10 GeV and 0.2% at 100 GeV. For electrons the uncertainties are 14% at 10 GeV and 0.6% at 100 GeV. The uncertainty on the efficiency of the bottom-quark tagger is 6%. The uncer-tainty on theEmissT resolution contributes a 4% uncertainty and the jet energy scale uncertainty contributes 0.5% [42]. An uncertainty of 50% for thett background contribution is due to the low event counts in the isolation distributions in high-STbins, which are used to validate the misidenti-fication rate. We apply a 50% uncertainty to the normal-ization of all rare processes.

We define eight mutually exclusive signal regions (SRs) depending on the total number of leptons and the number ofh candidates in the event, which are defined in TableI. Since our signal does not contain anyZ bosons and does

contain two to four bottom quarks, in SR1–SR4, we veto events in which any opposite-sign, same-flavor dilepton pairs have an invariant mass consistent with that of theZ boson (75–105 GeV) and require at least one b-tagged jet. Each of these eight SRs is divided into five bins in ST: [0–300], [300–600], [600–1000], [1000–1500], and

½>1500 GeV. We gain additional sensitivity in regions with ST> 600 GeV by removing the b-tag and Z-veto requirements for events, so the SR5–SR8 contain the events that fail one or both of these requirements.

The observed and expected yields for SR1–SR8 are shown in Table I. We also show the ST distribution for SR1 in Fig. 1 with the background expectations from different sources shown separately. Data are in good agree-ment with the SM predictions everywhere. See the Supplemental Material [43] for additionalSTdistributions. We demonstrate natural SUSY with RPV couplings in a stop RPV model where the light stop decays to a top quark and intermediate on- or off-shell bino,~t1 ! ~01 þ t. The bino decays to two leptons and a neutrino through the leptonic RPV interactions, ~01 ! ‘iþ jþ ‘k and iþ ‘jþ ‘k, or through the semileptonic RPV interactions, TABLE I. Observed yields for three- and four-lepton events from19:5 fb1 recorded in 2012. The channels are split by the total number of leptons (NL), the number ofhcandidates (N), and theST. Expected yields are the sum of simulation and estimates of

backgrounds from data in each channel. SR1–SR4 require ab-tagged jet and veto events containing Z bosons. SR5–SR8 contain events that either contain aZ boson or have no b-tagged jet. The channels are mutually exclusive. The uncertainties include statistical and systematic uncertainties. TheSTvalues are given in GeV.

SR NL N 0 < ST< 300 300 < ST< 600 600 < ST< 1000 1000 < ST< 1500 ST> 1500

obs exp obs exp obs exp obs exp obs exp

SR1 3 0 116 123  50 130 127  54 13 18:9  6:7 1 1:43  0:51 0 0:208  0:096 SR2 3  1 710 698  287 746 837  423 83 97  48 3 6:9  3:9 0 0:73  0:49 SR3 4 0 0 0:186  0:074 1 0:43  0:22 0 0:19  0:12 0 0:037  0:039 0 0:000  0:03 SR4 4  1 1 0:89  0:42 0 1:31  0:48 0 0:39  0:19 0 0:019  0:026 0 0:000  0:03 SR5 3 0             152 161  51 15 21:0  8:6 10 3:45  1:77 SR6 3 1             193 150  37 14 12:8  3:5 0 2:04  0:79 SR7 4 0             5 8:2  2:6 2 0:93  0:36 0 0:18  0:08 SR8 4 1             2 3:2  0:9 0 0:28  0:13 0 0:08  0:05 (GeV) T S 0-300 300-600 600-1000 1000-1500 >1500 Events -1 10 1 10 2 10 Observed Bkg Uncertainties Misid. leptons t t WZ ZZ W t t Z t t CMS L dt = 19.5 fb-1 = 8 TeV, s Search Region: SR1

FIG. 1 (color online). TheSTdistributions for SR1 including observed yields and background contributions.

(4)

~0

1 ! ‘iþ qjþ qkandiþ qjþ qk, where the indicesi,

j, k refer to those appearing in Eq. (1). The stop is assumed to be right handed and RPV couplings are large enough that all decays are prompt.

We generate samples to evaluate models with simplified mass spectra and leptonic RPV couplings122or233. The stop masses in these samples range from 700–1250 GeV in 50 GeV steps, and bino masses range from 100–1300 GeV

in 100 GeV steps. In a model with only the semileptonic RPV coupling0233, we use stop masses 300–1000 GeV and bino masses 200–850 GeV, both in 50 GeV steps. In both cases, slepton and sneutrino masses are 200 GeV above the bino mass. Other particles are irrelevant in these models. Efficiency times acceptance figures for these models can be found in the Supplemental Material [43].

To determine which regions of phase space are excluded, we divide the channels shown in Table Iby lepton flavor and perform a counting experiment using the observed event yields, the background expectations, and the signal expectations as inputs to an LHC-typeCLs limit calcula-tion [44–46]. A table with the finer binning is available in the Supplemental Material [46].

In the models with leptonic couplings, the limits are mostly independent of the bino mass, and, using the con-servative minus-one standard deviation of the theoretical cross section with the observed result where the bino mass is 200 GeV, we exclude models with the stop mass below 1020 GeV when122is nonzero, and below 820 GeV when 233is nonzero. These limits are shown in Fig.2. There is a

change in kinematics at the line m~0

1 ¼ m~t1 mt, below

which the stop decay is two body, while above it is a four-body decay. Near this line, the ~01 and top are produced almost at rest, which results in soft leptons, reducing our acceptance. This loss of acceptance is more pronounced in the233Þ 0 case and causes the loss of sensitivity near the line at m~0

1 ¼ 800 GeV. This feature is enhanced in the

observed limit because the observed data have a larger statistical uncertainty in the relevant signal regions than the simulated signal samples.

In the semileptonic RPV model with 0233, there are several different kinematic regions, which are described in TableII. The most significant effect is when the decay

~0

1! þ t þ b is disfavored, reducing the number of

leptons. The different regions where this effect is pro-nounced drive the shape of the exclusion for 0233. The area inside the curve is excluded. The observed limit is stronger than the expected one, which allows the observed exclusion region to reach into the regime where the bino decouples.

We have performed a search for RPV supersymmetry in models with top-squark pair production using a variety of

(GeV) t ~ m 700 800 900 1000 1100 1200 (GeV)0* 1 χ~ m 200 400 600 800 1000 1200 CMS s = 8 TeV, L dt = 19.5 fb-1 122 λ Stop RPV observed 95% CLs Limits Theory uncertainty (NLO+NLL) expected 95% CLs Limits experimental σ 1 ± expected (GeV) t ~ m 700 800 900 1000 1100 1200 (GeV) 0* χ~1 m 200 400 600 800 1000 1200 CMS s = 8 TeV, L dt = 19.5 fb-1 233 λ Stop RPV observed 95% CLs Limits Theory uncertainty (NLO+NLL) expected 95% CLs Limits experimental σ 1 ± expected (GeV) t ~ m 300 400 500 600 700 800 900 (GeV) 0* χ~1 m 200 300 400 500 600 700 800 CMS s = 8 TeV, L dt = 19.5 fb-1 A B C D E excluded 233 ' λ Stop RPV observed 95% CLs Limits NLO+NLL σ ± observed expected 95% CLs Limits experimental σ ± expected

FIG. 2 (color online). The 95% confidence level limits in the stop and bino mass plane for models with RPV couplings122, 233, and0233. For the couplings122and233, the region to the

left of the curve is excluded. For0233, the region inside the curve is excluded. The different kinematic regions, A, B, C, D, and E, for the0233exclusion are explained in TableII.

TABLE II. Kinematically allowed stop decay modes with RPV coupling 0233. The allowed neutralino decay modes formt< m~0

1< m~t1 are ~01! t b and b b.

Label Kinematic region Decay mode

A mt< m~t1< 2mt,m~0 1 ~t1! tb b B 2mt< m~t1< m~0 1 ~t1! t t b or tb b C m~0 1< m~t1< mWþ m~01 ~t1! ‘b~ 0 1orjjb~01 D mWþ m~0 1< m~t1< mtþ m~01 ~t1! bW ~0 1 E mtþ m~0 1< m~t1 ~t1! t~01

(5)

multilepton final states. Good agreement between obser-vations and SM expectations allows us to set stringent limits on the top-squark mass in models with leptonic RPV couplings 122 and 233. For a bino mass of 200 GeV, these limits are 1020 GeV and 820 GeV, respec-tively. We also set limits in a model with the semileptonic RPV coupling0233.

We thank Jared Evans and Yevgeny Kats for providing guidance on the signal models examined in this Letter. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effec-tively the computing infrastructure essential to our analy-ses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and

CNRS/IN2P3 (France); BMBF, DFG, and HGF

(Germany); GSRT (Greece); OTKA and NKTH

(Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

[1] H. P. Nilles,Phys. Rep. 110, 1 (1984).

[2] H. E. Haber and G. L. Kane,Phys. Rep. 117, 75 (1985). [3] CMS Collaboration,Phys. Lett. B 716, 30 (2012). [4] ATLAS Collaboration,Phys. Lett. B 716, 1 (2012). [5] G. R. Farrar and P. Fayet,Phys. Lett. B 76, 575 (1978). [6] CMS Collaboration,Phys. Lett. B 725, 243 (2013). [7] CMS Collaboration,arXiv:1308.1586.

[8] ATLAS Collaboration,arXiv:1308.2631.

[9] R. Barbier, C. Be´rat, M. Besanc¸on, M. Chemtob, A. Deandrea, E. Dudas, P. Fayet, S. Lavignac, G. Moreau, E. Perez, and Y. Sirois,Phys. Rep. 420, 1 (2005). [10] J. Beringer et al. (Particle Data Group),Phys. Rev. D 86,

010001 (2012).

[11] J. A. Evans and Y. Kats,J. High Energy Phys. 04 (2013) 028.

[12] A. Heister et al. (ALEPH Collaboration),Eur. Phys. J. C 31, 1 (2003).

[13] J. Abdallah et al. (DELPHI Collaboration),Eur. Phys. J. C 36, 1 (2004).

[14] P. Achard et al. (L3 Collaboration),Phys. Lett. B 524, 65 (2002).

[15] V. M. Abazov et al. (D0 Collaboration),Phys. Lett. B 638, 441 (2006).

[16] A. Abulencia et al. (CDF Collaboration),Phys. Rev. Lett. 98, 131804 (2007).

[17] S. Aid et al. (H1 Collaboration),Z. Phys. C 71, 211 (1996). [18] S. Chekanov et al. (ZEUS Collaboration),Eur. Phys. J. C

50, 269 (2007).

[19] CMS Collaboration,Phys. Lett. B 704, 411 (2011). [20] CMS Collaboration,J. High Energy Phys. 06 (2012) 169. [21] ATLAS Collaboration, J. High Energy Phys. 12 (2012)

124.

[22] CMS Collaboration,JINST 3, S08004 (2008).

[23] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-EGM-10-004, 2010 [http://cds .cern.ch/record/1299116].

[24] CMS Collaboration,JINST 7, P10002 (2012). [25] CMS Collaboration,JINST 7, P01001 (2012).

[26] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-PFT-10-004, 2010 [http://cds .cern.ch/record/1279358].

[27] CMS Collaboration, CMS Physics Analysis Summary CMS-PAS-PFT-08-001, 2009 [http://cds.cern.ch/record/ 1198228].

[28] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-PFT-10-002 [http://cds.cern.ch/ record/1279341].

[29] M. Cacciari, G. P. Salam, and G. Soyez,J. High Energy Phys. 04 (2008) 063.

[30] CMS Collaboration,JINST 8, P04013 (2013).

[31] F. Maltoni and T. Stelzer,J. High Energy Phys. 02 (2003) 027.

[32] T. Sjo¨strand, S. Mrenna, and P. Z. Skands,Comput. Phys. Commun. 178, 852 (2008).

[33] S. Agostinelli et al. (GEANT4),Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

[34] CMS Collaboration, J. Phys. Conf. Ser. 219, 032053 (2010).

[35] W. Beenakker, M. Klasen, M. Kra¨mer, T. Plehn, M. Spira, and P. M. Zerwas,Phys. Rev. Lett. 83, 3780 (1999). [36] A. Kulesza and L. Motyka,Phys. Rev. Lett. 102, 111802

(2009).

[37] A. Kulesza and L. Motyka, Phys. Rev. D 80, 095004 (2009).

[38] W. Beenakker, S. Brensing, M. Kra¨mer, A. Kulesza, E. Laenen, and I. Niessen,J. High Energy Phys. 12 (2009) 041.

[39] W. Beenakker, S. Brensing, M. Kra¨mer, A. Kulesza, E. Laenen, L. Motyka, and I. Niessen, Int. J. Mod. Phys. A 26, 2637 (2011).

[40] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-LUM-12-001, 2012 [http://cds .cern.ch/record/1482193].

[41] M. Kra¨mer, A. Kulesza, R. van der Leeuw, M. Mangano, S. Padhi, T. Plehn, and X. Portell,arXiv:1206.2892. [42] CMS Collaboration,JINST 6, P11002 (2011).

(6)

[43] See Supplemental Material at http://link.aps.org/ supplemental/10.1103/PhysRevLett.111.221801 for additional figures and table that contain details about different background contributions, the breakdown of signal regions into finer binning, and efficiency times acceptances for the signal models.

[44] ATLAS and CMS Collaborations, Tech. Rep. CMS-NOTE-2011-005, ATLAS/CMS, Geneva, 2011 [http:// cds.cern.ch/record/1379837].

[45] T. Junk,Nucl. Instrum. Methods Phys. Res., Sect. A 434, 435 (1999).

[46] A. L. Read,J. Phys. G 28, 2693 (2002).

S. Chatrchyan,1V. Khachatryan,1A. M. Sirunyan,1A. Tumasyan,1W. Adam,2T. Bergauer,2M. Dragicevic,2J. Ero¨,2 C. Fabjan,2,bM. Friedl,2R. Fru¨hwirth,2,bV. M. Ghete,2N. Ho¨rmann,2J. Hrubec,2M. Jeitler,2,bW. Kiesenhofer,2

V. Knu¨nz,2M. Krammer,2,bI. Kra¨tschmer,2D. Liko,2I. Mikulec,2D. Rabady,2,cB. Rahbaran,2C. Rohringer,2 H. Rohringer,2R. Scho¨fbeck,2J. Strauss,2A. Taurok,2W. Treberer-Treberspurg,2W. Waltenberger,2C.-E. Wulz,2,b

V. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3S. Alderweireldt,4M. Bansal,4S. Bansal,4T. Cornelis,4 E. A. De Wolf,4X. Janssen,4A. Knutsson,4S. Luyckx,4L. Mucibello,4S. Ochesanu,4B. Roland,4R. Rougny,4

Z. Staykova,4H. Van Haevermaet,4P. Van Mechelen,4N. Van Remortel,4A. Van Spilbeeck,4F. Blekman,5 S. Blyweert,5J. D’Hondt,5A. Kalogeropoulos,5J. Keaveney,5M. Maes,5A. Olbrechts,5S. Tavernier,5 W. Van Doninck,5P. Van Mulders,5G. P. Van Onsem,5I. Villella,5B. Clerbaux,6G. De Lentdecker,6L. Favart,6 A. P. R. Gay,6T. Hreus,6A. Le´onard,6P. E. Marage,6A. Mohammadi,6L. Pernie`,6T. Reis,6T. Seva,6L. Thomas,6

C. Vander Velde,6P. Vanlaer,6J. Wang,6V. Adler,7K. Beernaert,7L. Benucci,7A. Cimmino,7S. Costantini,7 S. Dildick,7G. Garcia,7B. Klein,7J. Lellouch,7A. Marinov,7J. Mccartin,7A. A. Ocampo Rios,7D. Ryckbosch,7

M. Sigamani,7N. Strobbe,7F. Thyssen,7M. Tytgat,7S. Walsh,7E. Yazgan,7N. Zaganidis,7S. Basegmez,8 C. Beluffi,8,dG. Bruno,8R. Castello,8A. Caudron,8L. Ceard,8C. Delaere,8T. du Pree,8D. Favart,8L. Forthomme,8

A. Giammanco,8,eJ. Hollar,8P. Jez,8V. Lemaitre,8J. Liao,8O. Militaru,8C. Nuttens,8D. Pagano,8A. Pin,8 K. Piotrzkowski,8A. Popov,8,fM. Selvaggi,8J. M. Vizan Garcia,8N. Beliy,9T. Caebergs,9E. Daubie,9 G. H. Hammad,9G. A. Alves,10M. Correa Martins Junior,10T. Martins,10M. E. Pol,10M. H. G. Souza,10 W. L. Alda´ Ju´nior,11W. Carvalho,11J. Chinellato,11,gA. Custo´dio,11E. M. Da Costa,11D. De Jesus Damiao,11

C. De Oliveira Martins,11S. Fonseca De Souza,11H. Malbouisson,11M. Malek,11D. Matos Figueiredo,11 L. Mundim,11H. Nogima,11W. L. Prado Da Silva,11A. Santoro,11A. Sznajder,11E. J. Tonelli Manganote,11,g

A. Vilela Pereira,11C. A. Bernardes,12bF. A. Dias,12a,hT. R. Fernandez Perez Tomei,12aE. M. Gregores,12b C. Lagana,12aP. G. Mercadante,12bS. F. Novaes,12aSandra S. Padula,12aV. Genchev,13,cP. Iaydjiev,13,cS. Piperov,13 M. Rodozov,13G. Sultanov,13M. Vutova,13A. Dimitrov,14R. Hadjiiska,14V. Kozhuharov,14L. Litov,14B. Pavlov,14 P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15C. H. Jiang,15D. Liang,15S. Liang,15X. Meng,15J. Tao,15

J. Wang,15X. Wang,15Z. Wang,15H. Xiao,15M. Xu,15C. Asawatangtrakuldee,16Y. Ban,16Y. Guo,16Q. Li,16 W. Li,16S. Liu,16Y. Mao,16S. J. Qian,16D. Wang,16L. Zhang,16W. Zou,16C. Avila,17C. A. Carrillo Montoya,17

L. F. Chaparro Sierra,17J. P. Gomez,17B. Gomez Moreno,17J. C. Sanabria,17N. Godinovic,18D. Lelas,18 R. Plestina,18,iD. Polic,18I. Puljak,18Z. Antunovic,19M. Kovac,19V. Brigljevic,20S. Duric,20K. Kadija,20

J. Luetic,20D. Mekterovic,20S. Morovic,20L. Tikvica,20A. Attikis,21G. Mavromanolakis,21J. Mousa,21 C. Nicolaou,21F. Ptochos,21P. A. Razis,21M. Finger,22M. Finger, Jr.,22A. A. Abdelalim,23,jY. Assran,23,k

S. Elgammal,23,jA. Ellithi Kamel,23,lM. A. Mahmoud,23,mA. Radi,23,n,oM. Kadastik,24M. Mu¨ntel,24 M. Murumaa,24M. Raidal,24L. Rebane,24A. Tiko,24P. Eerola,25G. Fedi,25M. Voutilainen,25J. Ha¨rko¨nen,26 V. Karima¨ki,26R. Kinnunen,26M. J. Kortelainen,26T. Lampe´n,26K. Lassila-Perini,26S. Lehti,26T. Linde´n,26 P. Luukka,26T. Ma¨enpa¨a¨,26T. Peltola,26E. Tuominen,26J. Tuominiemi,26E. Tuovinen,26L. Wendland,26T. Tuuva,27

M. Besancon,28S. Choudhury,28F. Couderc,28M. Dejardin,28D. Denegri,28B. Fabbro,28J. L. Faure,28F. Ferri,28 S. Ganjour,28A. Givernaud,28P. Gras,28G. Hamel de Monchenault,28P. Jarry,28E. Locci,28J. Malcles,28 L. Millischer,28A. Nayak,28J. Rander,28A. Rosowsky,28M. Titov,28S. Baffioni,29F. Beaudette,29L. Benhabib,29

L. Bianchini,29M. Bluj,29,pP. Busson,29C. Charlot,29N. Daci,29T. Dahms,29M. Dalchenko,29L. Dobrzynski,29 A. Florent,29R. Granier de Cassagnac,29M. Haguenauer,29P. Mine´,29C. Mironov,29I. N. Naranjo,29M. Nguyen,29

C. Ochando,29P. Paganini,29D. Sabes,29R. Salerno,29Y. Sirois,29C. Veelken,29A. Zabi,29J.-L. Agram,30,q J. Andrea,30D. Bloch,30D. Bodin,30J.-M. Brom,30E. C. Chabert,30C. Collard,30E. Conte,30,qF. Drouhin,30,q

J.-C. Fontaine,30,qD. Gele´,30U. Goerlach,30C. Goetzmann,30P. Juillot,30A.-C. Le Bihan,30P. Van Hove,30 S. Gadrat,31S. Beauceron,32N. Beaupere,32G. Boudoul,32S. Brochet,32J. Chasserat,32R. Chierici,32D. Contardo,32

(7)

L. Mirabito,32S. Perries,32L. Sgandurra,32V. Sordini,32Y. Tschudi,32M. Vander Donckt,32P. Verdier,32S. Viret,32 Z. Tsamalaidze,33,rC. Autermann,34S. Beranek,34B. Calpas,34M. Edelhoff,34L. Feld,34N. Heracleous,34 O. Hindrichs,34K. Klein,34A. Ostapchuk,34A. Perieanu,34F. Raupach,34J. Sammet,34S. Schael,34D. Sprenger,34

H. Weber,34B. Wittmer,34V. Zhukov,34,fM. Ata,35J. Caudron,35E. Dietz-Laursonn,35D. Duchardt,35 M. Erdmann,35R. Fischer,35A. Gu¨th,35T. Hebbeker,35C. Heidemann,35K. Hoepfner,35D. Klingebiel,35 P. Kreuzer,35M. Merschmeyer,35A. Meyer,35M. Olschewski,35K. Padeken,35P. Papacz,35H. Pieta,35H. Reithler,35

S. A. Schmitz,35L. Sonnenschein,35J. Steggemann,35D. Teyssier,35S. Thu¨er,35M. Weber,35V. Cherepanov,36 Y. Erdogan,36G. Flu¨gge,36H. Geenen,36M. Geisler,36W. Haj Ahmad,36F. Hoehle,36B. Kargoll,36T. Kress,36

Y. Kuessel,36J. Lingemann,36,cA. Nowack,36I. M. Nugent,36L. Perchalla,36O. Pooth,36A. Stahl,36 M. Aldaya Martin,37I. Asin,37N. Bartosik,37J. Behr,37W. Behrenhoff,37U. Behrens,37M. Bergholz,37,s

A. Bethani,37K. Borras,37A. Burgmeier,37A. Cakir,37L. Calligaris,37A. Campbell,37F. Costanza,37 C. Diez Pardos,37S. Dooling,37T. Dorland,37G. Eckerlin,37D. Eckstein,37G. Flucke,37A. Geiser,37I. Glushkov,37

P. Gunnellini,37S. Habib,37J. Hauk,37G. Hellwig,37D. Horton,37H. Jung,37M. Kasemann,37P. Katsas,37 C. Kleinwort,37H. Kluge,37M. Kra¨mer,37D. Kru¨cker,37E. Kuznetsova,37W. Lange,37J. Leonard,37K. Lipka,37

W. Lohmann,37,sB. Lutz,37R. Mankel,37I. Marfin,37I.-A. Melzer-Pellmann,37A. B. Meyer,37J. Mnich,37 A. Mussgiller,37S. Naumann-Emme,37O. Novgorodova,37F. Nowak,37J. Olzem,37H. Perrey,37A. Petrukhin,37

D. Pitzl,37R. Placakyte,37A. Raspereza,37P. M. Ribeiro Cipriano,37C. Riedl,37E. Ron,37M. O¨ . Sahin,37 J. Salfeld-Nebgen,37R. Schmidt,37,sT. Schoerner-Sadenius,37N. Sen,37M. Stein,37R. Walsh,37C. Wissing,37

V. Blobel,38H. Enderle,38J. Erfle,38U. Gebbert,38M. Go¨rner,38M. Gosselink,38J. Haller,38K. Heine,38 R. S. Ho¨ing,38G. Kaussen,38H. Kirschenmann,38R. Klanner,38R. Kogler,38J. Lange,38I. Marchesini,38T. Peiffer,38 N. Pietsch,38D. Rathjens,38C. Sander,38H. Schettler,38P. Schleper,38E. Schlieckau,38A. Schmidt,38M. Schro¨der,38

T. Schum,38M. Seidel,38J. Sibille,38,tV. Sola,38H. Stadie,38G. Steinbru¨ck,38J. Thomsen,38D. Troendle,38 L. Vanelderen,38C. Barth,39C. Baus,39J. Berger,39C. Bo¨ser,39E. Butz,39T. Chwalek,39W. De Boer,39

A. Descroix,39A. Dierlamm,39M. Feindt,39M. Guthoff,39,cF. Hartmann,39,cT. Hauth,39,cH. Held,39 K. H. Hoffmann,39U. Husemann,39I. Katkov,39,fJ. R. Komaragiri,39A. Kornmayer,39,cP. Lobelle Pardo,39 D. Martschei,39Th. Mu¨ller,39M. Niegel,39A. Nu¨rnberg,39O. Oberst,39J. Ott,39G. Quast,39K. Rabbertz,39

F. Ratnikov,39S. Ro¨cker,39F.-P. Schilling,39G. Schott,39H. J. Simonis,39F. M. Stober,39R. Ulrich,39 J. Wagner-Kuhr,39S. Wayand,39T. Weiler,39M. Zeise,39G. Anagnostou,40G. Daskalakis,40T. Geralis,40

S. Kesisoglou,40A. Kyriakis,40D. Loukas,40A. Markou,40C. Markou,40E. Ntomari,40L. Gouskos,41 T. J. Mertzimekis,41A. Panagiotou,41N. Saoulidou,41E. Stiliaris,41X. Aslanoglou,42I. Evangelou,42G. Flouris,42

C. Foudas,42P. Kokkas,42N. Manthos,42I. Papadopoulos,42E. Paradas,42G. Bencze,43C. Hajdu,43P. Hidas,43 D. Horvath,43,uB. Radics,43F. Sikler,43V. Veszpremi,43G. Vesztergombi,43,vA. J. Zsigmond,43N. Beni,44 S. Czellar,44J. Molnar,44J. Palinkas,44Z. Szillasi,44J. Karancsi,45P. Raics,45Z. L. Trocsanyi,45B. Ujvari,45 S. K. Swain,46,wS. B. Beri,47V. Bhatnagar,47N. Dhingra,47R. Gupta,47M. Kaur,47M. Z. Mehta,47M. Mittal,47 N. Nishu,47L. K. Saini,47A. Sharma,47J. B. Singh,47Ashok Kumar,48Arun Kumar,48S. Ahuja,48A. Bhardwaj,48

B. C. Choudhary,48S. Malhotra,48M. Naimuddin,48K. Ranjan,48P. Saxena,48V. Sharma,48R. K. Shivpuri,48 S. Banerjee,49S. Bhattacharya,49K. Chatterjee,49S. Dutta,49B. Gomber,49Sa. Jain,49Sh. Jain,49R. Khurana,49

A. Modak,49S. Mukherjee,49D. Roy,49S. Sarkar,49M. Sharan,49A. Abdulsalam,50D. Dutta,50S. Kailas,50 V. Kumar,50A. K. Mohanty,50,cL. M. Pant,50P. Shukla,50A. Topkar,50T. Aziz,51R. M. Chatterjee,51S. Ganguly,51

S. Ghosh,51M. Guchait,51,xA. Gurtu,51,yG. Kole,51S. Kumar,51M. Maity,51,zG. Majumder,51K. Mazumdar,51 G. B. Mohanty,51B. Parida,51K. Sudhakar,51N. Wickramage,51,aaS. Banerjee,52S. Dugad,52H. Arfaei,53

H. Bakhshiansohi,53S. M. Etesami,53,bbA. Fahim,53,ccH. Hesari,53A. Jafari,53M. Khakzad,53 M. Mohammadi Najafabadi,53S. Paktinat Mehdiabadi,53B. Safarzadeh,53,ddM. Zeinali,53M. Grunewald,54 M. Abbrescia,55a,55bL. Barbone,55a,55bC. Calabria,55a,55bS. S. Chhibra,55a,55bA. Colaleo,55aD. Creanza,55a,55c

N. De Filippis,55a,55cM. De Palma,55a,55bL. Fiore,55aG. Iaselli,55a,55cG. Maggi,55a,55cM. Maggi,55a B. Marangelli,55a,55bS. My,55a,55cS. Nuzzo,55a,55bN. Pacifico,55aA. Pompili,55a,55bG. Pugliese,55a,55c G. Selvaggi,55a,55bL. Silvestris,55aG. Singh,55a,55bR. Venditti,55a,55bP. Verwilligen,55aG. Zito,55aG. Abbiendi,56a

A. C. Benvenuti,56aD. Bonacorsi,56a,56bS. Braibant-Giacomelli,56a,56bL. Brigliadori,56a,56bR. Campanini,56a,56b P. Capiluppi,56a,56bA. Castro,56a,56bF. R. Cavallo,56aM. Cuffiani,56a,56bG. M. Dallavalle,56aF. Fabbri,56a A. Fanfani,56a,56bD. Fasanella,56a,56bP. Giacomelli,56aC. Grandi,56aL. Guiducci,56a,56bS. Marcellini,56a G. Masetti,56a,cM. Meneghelli,56a,56bA. Montanari,56aF. L. Navarria,56a,56bF. Odorici,56aA. Perrotta,56a

(8)

F. Primavera,56a,56bA. M. Rossi,56a,56bT. Rovelli,56a,56bG. P. Siroli,56a,56bN. Tosi,56a,56bR. Travaglini,56a,56b S. Albergo,57a,57bM. Chiorboli,57a,57bS. Costa,57a,57bF. Giordano,57a,cR. Potenza,57a,57bA. Tricomi,57a,57b

C. Tuve,57a,57bG. Barbagli,58aV. Ciulli,58a,58bC. Civinini,58aR. D’Alessandro,58a,58bE. Focardi,58a,58b S. Frosali,58a,58bE. Gallo,58aS. Gonzi,58a,58bV. Gori,58a,58bP. Lenzi,58a,58bM. Meschini,58aS. Paoletti,58a G. Sguazzoni,58aA. Tropiano,58a,58bL. Benussi,59S. Bianco,59F. Fabbri,59D. Piccolo,59P. Fabbricatore,60a R. Musenich,60aS. Tosi,60a,60bA. Benaglia,61aF. De Guio,61a,61bL. Di Matteo,61a,61bS. Fiorendi,61a,61bS. Gennai,61a

A. Ghezzi,61a,61bP. Govoni,61aM. T. Lucchini,61a,cS. Malvezzi,61aR. A. Manzoni,61a,61b,cA. Martelli,61a,61b,c D. Menasce,61aL. Moroni,61aM. Paganoni,61a,61bD. Pedrini,61aS. Ragazzi,61a,61bN. Redaelli,61a T. Tabarelli de Fatis,61a,61bS. Buontempo,62aN. Cavallo,62a,62cA. De Cosa,62a,62bF. Fabozzi,62a,62c A. O. M. Iorio,62a,62bL. Lista,62aS. Meola,62a,62d,cM. Merola,62aP. Paolucci,62a,cP. Azzi,63aN. Bacchetta,63a D. Bisello,63a,63bA. Branca,63a,63bR. Carlin,63a,63bP. Checchia,63aT. Dorigo,63aU. Dosselli,63aM. Galanti,63a,63b,c

F. Gasparini,63a,63bU. Gasparini,63a,63bP. Giubilato,63a,63bA. Gozzelino,63aK. Kanishchev,63a,63cS. Lacaprara,63a I. Lazzizzera,63a,63cM. Margoni,63a,63bA. T. Meneguzzo,63a,63bF. Montecassiano,63aM. Passaseo,63a J. Pazzini,63a,63bM. Pegoraro,63aN. Pozzobon,63a,63bP. Ronchese,63a,63bF. Simonetto,63a,63bE. Torassa,63a M. Tosi,63a,63bA. Triossi,63aP. Zotto,63a,63bG. Zumerle,63a,63bM. Gabusi,64a,64bS. P. Ratti,64a,64bC. Riccardi,64a,64b

P. Vitulo,64a,64bM. Biasini,65a,65bG. M. Bilei,65aL. Fano`,65a,65bP. Lariccia,65a,65bG. Mantovani,65a,65b M. Menichelli,65aA. Nappi,65a,65b,aF. Romeo,65a,65bA. Saha,65aA. Santocchia,65a,65bA. Spiezia,65a,65b K. Androsov,66a,eeP. Azzurri,66aG. Bagliesi,66aJ. Bernardini,66aT. Boccali,66aG. Broccolo,66a,66cR. Castaldi,66a R. T. D’Agnolo,66a,66c,cR. Dell’Orso,66aF. Fiori,66a,66cL. Foa`,66a,66cA. Giassi,66aM. T. Grippo,66a,eeA. Kraan,66a F. Ligabue,66a,66cT. Lomtadze,66aL. Martini,66a,eeA. Messineo,66a,66bF. Palla,66aA. Rizzi,66a,66bA. T. Serban,66a P. Spagnolo,66aP. Squillacioti,66aR. Tenchini,66aG. Tonelli,66a,66bA. Venturi,66aP. G. Verdini,66aC. Vernieri,66a,66c

L. Barone,67a,67bF. Cavallari,67aD. Del Re,67a,67bM. Diemoz,67aM. Grassi,67a,67b,cE. Longo,67a,67b F. Margaroli,67a,67bP. Meridiani,67aF. Micheli,67a,67bS. Nourbakhsh,67a,67bG. Organtini,67a,67bR. Paramatti,67a S. Rahatlou,67a,67bL. Soffi,67a,67bN. Amapane,68a,68bR. Arcidiacono,68a,68cS. Argiro,68a,68bM. Arneodo,68a,68c

C. Biino,68aN. Cartiglia,68aS. Casasso,68a,68bM. Costa,68a,68bN. Demaria,68aC. Mariotti,68aS. Maselli,68a E. Migliore,68a,68bV. Monaco,68a,68bM. Musich,68aM. M. Obertino,68a,68cG. Ortona,68a,68bN. Pastrone,68a M. Pelliccioni,68a,cA. Potenza,68a,68bA. Romero,68a,68bM. Ruspa,68a,68cR. Sacchi,68a,68bA. Solano,68a,68b A. Staiano,68aU. Tamponi,68aS. Belforte,69aV. Candelise,69a,69bM. Casarsa,69aF. Cossutti,69a,cG. Della Ricca,69a,69b B. Gobbo,69aC. La Licata,69a,69bM. Marone,69a,69bD. Montanino,69a,69bA. Penzo,69aA. Schizzi,69a,69bA. Zanetti,69a S. Chang,70T. Y. Kim,70S. K. Nam,70D. H. Kim,71G. N. Kim,71J. E. Kim,71D. J. Kong,71Y. D. Oh,71H. Park,71 D. C. Son,71J. Y. Kim,72Zero J. Kim,72S. Song,72S. Choi,73D. Gyun,73B. Hong,73M. Jo,73H. Kim,73T. J. Kim,73 K. S. Lee,73S. K. Park,73Y. Roh,73M. Choi,74J. H. Kim,74C. Park,74I. C. Park,74S. Park,74G. Ryu,74Y. Choi,75 Y. K. Choi,75J. Goh,75M. S. Kim,75E. Kwon,75B. Lee,75J. Lee,75S. Lee,75H. Seo,75I. Yu,75I. Grigelionis,76 A. Juodagalvis,76H. Castilla-Valdez,77E. De La Cruz-Burelo,77I. Heredia-de La Cruz,77,ffR. Lopez-Fernandez,77

J. Martı´nez-Ortega,77A. Sanchez-Hernandez,77L. M. Villasenor-Cendejas,77S. Carrillo Moreno,78 F. Vazquez Valencia,78H. A. Salazar Ibarguen,79E. Casimiro Linares,80A. Morelos Pineda,80M. A. Reyes-Santos,80

D. Krofcheck,81A. J. Bell,82P. H. Butler,82R. Doesburg,82S. Reucroft,82H. Silverwood,82M. Ahmad,83 M. I. Asghar,83J. Butt,83H. R. Hoorani,83S. Khalid,83W. A. Khan,83T. Khurshid,83S. Qazi,83M. A. Shah,83

M. Shoaib,83H. Bialkowska,84B. Boimska,84T. Frueboes,84M. Go´rski,84M. Kazana,84K. Nawrocki,84 K. Romanowska-Rybinska,84M. Szleper,84G. Wrochna,84P. Zalewski,84G. Brona,85K. Bunkowski,85M. Cwiok,85

W. Dominik,85K. Doroba,85A. Kalinowski,85M. Konecki,85J. Krolikowski,85M. Misiura,85W. Wolszczak,85 N. Almeida,86P. Bargassa,86C. Beira˜o Da Cruz E Silva,86P. Faccioli,86P. G. Ferreira Parracho,86M. Gallinaro,86

J. Rodrigues Antunes,86J. Seixas,86,cJ. Varela,86P. Vischia,86S. Afanasiev,87P. Bunin,87I. Golutvin,87 I. Gorbunov,87A. Kamenev,87V. Karjavin,87V. Konoplyanikov,87G. Kozlov,87A. Lanev,87A. Malakhov,87 V. Matveev,87P. Moisenz,87V. Palichik,87V. Perelygin,87S. Shmatov,87N. Skatchkov,87V. Smirnov,87A. Zarubin,87 S. Evstyukhin,88V. Golovtsov,88Y. Ivanov,88V. Kim,88P. Levchenko,88V. Murzin,88V. Oreshkin,88I. Smirnov,88

V. Sulimov,88L. Uvarov,88S. Vavilov,88A. Vorobyev,88An. Vorobyev,88Yu. Andreev,89A. Dermenev,89 S. Gninenko,89N. Golubev,89M. Kirsanov,89N. Krasnikov,89A. Pashenkov,89D. Tlisov,89A. Toropin,89 V. Epshteyn,90M. Erofeeva,90V. Gavrilov,90N. Lychkovskaya,90V. Popov,90G. Safronov,90S. Semenov,90 A. Spiridonov,90V. Stolin,90E. Vlasov,90A. Zhokin,90V. Andreev,91M. Azarkin,91I. Dremin,91M. Kirakosyan,91

(9)

M. Dubinin,92,hL. Dudko,92A. Ershov,92A. Gribushin,92V. Klyukhin,92O. Kodolova,92I. Lokhtin,92A. Markina,92 S. Obraztsov,92V. Savrin,92A. Snigirev,92I. Azhgirey,93I. Bayshev,93S. Bitioukov,93V. Kachanov,93A. Kalinin,93

D. Konstantinov,93V. Krychkine,93V. Petrov,93R. Ryutin,93A. Sobol,93L. Tourtchanovitch,93S. Troshin,93 N. Tyurin,93A. Uzunian,93A. Volkov,93P. Adzic,94,ggM. Djordjevic,94M. Ekmedzic,94D. Krpic,94,ggJ. Milosevic,94

M. Aguilar-Benitez,95J. Alcaraz Maestre,95C. Battilana,95E. Calvo,95M. Cerrada,95M. Chamizo Llatas,95,c N. Colino,95B. De La Cruz,95A. Delgado Peris,95D. Domı´nguez Va´zquez,95C. Fernandez Bedoya,95 J. P. Ferna´ndez Ramos,95A. Ferrando,95J. Flix,95M. C. Fouz,95P. Garcia-Abia,95O. Gonzalez Lopez,95 S. Goy Lopez,95J. M. Hernandez,95M. I. Josa,95G. Merino,95E. Navarro De Martino,95J. Puerta Pelayo,95 A. Quintario Olmeda,95I. Redondo,95L. Romero,95J. Santaolalla,95M. S. Soares,95C. Willmott,95C. Albajar,96

J. F. de Troco´niz,96H. Brun,97J. Cuevas,97J. Fernandez Menendez,97S. Folgueras,97I. Gonzalez Caballero,97 L. Lloret Iglesias,97J. Piedra Gomez,97J. A. Brochero Cifuentes,98I. J. Cabrillo,98A. Calderon,98S. H. Chuang,98

J. Duarte Campderros,98M. Fernandez,98G. Gomez,98J. Gonzalez Sanchez,98A. Graziano,98C. Jorda,98 A. Lopez Virto,98J. Marco,98R. Marco,98C. Martinez Rivero,98F. Matorras,98F. J. Munoz Sanchez,98T. Rodrigo,98

A. Y. Rodrı´guez-Marrero,98A. Ruiz-Jimeno,98L. Scodellaro,98I. Vila,98R. Vilar Cortabitarte,98D. Abbaneo,99 E. Auffray,99G. Auzinger,99M. Bachtis,99P. Baillon,99A. H. Ball,99D. Barney,99J. Bendavid,99J. F. Benitez,99

C. Bernet,99,iG. Bianchi,99P. Bloch,99A. Bocci,99A. Bonato,99O. Bondu,99C. Botta,99H. Breuker,99 T. Camporesi,99G. Cerminara,99T. Christiansen,99J. A. Coarasa Perez,99S. Colafranceschi,99,hhD. d’Enterria,99 A. Dabrowski,99A. David,99A. De Roeck,99S. De Visscher,99S. Di Guida,99M. Dobson,99N. Dupont-Sagorin,99

A. Elliott-Peisert,99J. Eugster,99W. Funk,99G. Georgiou,99M. Giffels,99D. Gigi,99K. Gill,99D. Giordano,99 M. Girone,99M. Giunta,99F. Glege,99R. Gomez-Reino Garrido,99S. Gowdy,99R. Guida,99J. Hammer,99 M. Hansen,99P. Harris,99C. Hartl,99A. Hinzmann,99V. Innocente,99P. Janot,99E. Karavakis,99K. Kousouris,99 K. Krajczar,99P. Lecoq,99Y.-J. Lee,99C. Lourenc¸o,99N. Magini,99M. Malberti,99L. Malgeri,99M. Mannelli,99 L. Masetti,99F. Meijers,99S. Mersi,99E. Meschi,99R. Moser,99M. Mulders,99P. Musella,99E. Nesvold,99L. Orsini,99 E. Palencia Cortezon,99E. Perez,99L. Perrozzi,99A. Petrilli,99A. Pfeiffer,99M. Pierini,99M. Pimia¨,99D. Piparo,99 M. Plagge,99L. Quertenmont,99A. Racz,99W. Reece,99G. Rolandi,99,iiC. Rovelli,99,jjM. Rovere,99H. Sakulin,99 F. Santanastasio,99C. Scha¨fer,99C. Schwick,99I. Segoni,99S. Sekmen,99A. Sharma,99P. Siegrist,99P. Silva,99 M. Simon,99P. Sphicas,99,kkD. Spiga,99M. Stoye,99A. Tsirou,99G. I. Veres,99,vJ. R. Vlimant,99H. K. Wo¨hri,99 S. D. Worm,99,llW. D. Zeuner,99W. Bertl,100K. Deiters,100W. Erdmann,100K. Gabathuler,100R. Horisberger,100

Q. Ingram,100H. C. Kaestli,100S. Ko¨nig,100D. Kotlinski,100U. Langenegger,100D. Renker,100T. Rohe,100 F. Bachmair,101L. Ba¨ni,101P. Bortignon,101M. A. Buchmann,101B. Casal,101N. Chanon,101A. Deisher,101 G. Dissertori,101M. Dittmar,101M. Donega`,101M. Du¨nser,101P. Eller,101K. Freudenreich,101C. Grab,101D. Hits,101

P. Lecomte,101W. Lustermann,101A. C. Marini,101P. Martinez Ruiz del Arbol,101N. Mohr,101F. Moortgat,101 C. Na¨geli,101,mmP. Nef,101F. Nessi-Tedaldi,101F. Pandolfi,101L. Pape,101F. Pauss,101M. Peruzzi,101F. J. Ronga,101 M. Rossini,101L. Sala,101A. K. Sanchez,101A. Starodumov,101,nnB. Stieger,101M. Takahashi,101L. Tauscher,101,a

A. Thea,101K. Theofilatos,101D. Treille,101C. Urscheler,101R. Wallny,101H. A. Weber,101C. Amsler,102,oo V. Chiochia,102C. Favaro,102M. Ivova Rikova,102B. Kilminster,102B. Millan Mejias,102P. Otiougova,102 P. Robmann,102H. Snoek,102S. Taroni,102S. Tupputi,102M. Verzetti,102M. Cardaci,103K. H. Chen,103C. Ferro,103 C. M. Kuo,103S. W. Li,103W. Lin,103Y. J. Lu,103R. Volpe,103S. S. Yu,103P. Bartalini,104P. Chang,104Y. H. Chang,104 Y. W. Chang,104Y. Chao,104K. F. Chen,104C. Dietz,104U. Grundler,104W.-S. Hou,104Y. Hsiung,104K. Y. Kao,104 Y. J. Lei,104R.-S. Lu,104D. Majumder,104E. Petrakou,104X. Shi,104J. G. Shiu,104Y. M. Tzeng,104M. Wang,104

B. Asavapibhop,105N. Suwonjandee,105A. Adiguzel,106M. N. Bakirci,106,ppS. Cerci,106,qqC. Dozen,106 I. Dumanoglu,106E. Eskut,106S. Girgis,106G. Gokbulut,106E. Gurpinar,106I. Hos,106E. E. Kangal,106

A. Kayis Topaksu,106G. Onengut,106,rrK. Ozdemir,106S. Ozturk,106,ppA. Polatoz,106K. Sogut,106,ss D. Sunar Cerci,106,qqB. Tali,106,qqH. Topakli,106,ppM. Vergili,106I. V. Akin,107T. Aliev,107B. Bilin,107S. Bilmis,107

M. Deniz,107H. Gamsizkan,107A. M. Guler,107G. Karapinar,107,ttK. Ocalan,107A. Ozpineci,107M. Serin,107 R. Sever,107U. E. Surat,107M. Yalvac,107M. Zeyrek,107E. Gu¨lmez,108B. Isildak,108,uuM. Kaya,108,vvO. Kaya,108,vv

S. Ozkorucuklu,108,wwN. Sonmez,108,xxH. Bahtiyar,109,yyE. Barlas,109K. Cankocak,109Y. O. Gu¨naydin,109,zz F. I. Vardarl,109M. Yu¨cel,109L. Levchuk,110P. Sorokin,110J. J. Brooke,111E. Clement,111D. Cussans,111 H. Flacher,111R. Frazier,111J. Goldstein,111M. Grimes,111G. P. Heath,111H. F. Heath,111L. Kreczko,111 S. Metson,111D. M. Newbold,111,llK. Nirunpong,111A. Poll,111S. Senkin,111V. J. Smith,111T. Williams,111 L. Basso,112,aaaK. W. Bell,112A. Belyaev,112,aaaC. Brew,112R. M. Brown,112D. J. A. Cockerill,112J. A. Coughlan,112

(10)

K. Harder,112S. Harper,112J. Jackson,112E. Olaiya,112D. Petyt,112B. C. Radburn-Smith,112

C. H. Shepherd-Themistocleous,112I. R. Tomalin,112W. J. Womersley,112R. Bainbridge,113O. Buchmuller,113 D. Burton,113D. Colling,113N. Cripps,113M. Cutajar,113P. Dauncey,113G. Davies,113M. Della Negra,113 W. Ferguson,113J. Fulcher,113D. Futyan,113A. Gilbert,113A. Guneratne Bryer,113G. Hall,113Z. Hatherell,113

J. Hays,113G. Iles,113M. Jarvis,113G. Karapostoli,113M. Kenzie,113R. Lane,113R. Lucas,113,llL. Lyons,113 A.-M. Magnan,113J. Marrouche,113B. Mathias,113R. Nandi,113J. Nash,113A. Nikitenko,113,nnJ. Pela,113 M. Pesaresi,113K. Petridis,113M. Pioppi,113,bbbD. M. Raymond,113S. Rogerson,113A. Rose,113C. Seez,113 P. Sharp,113,aA. Sparrow,113A. Tapper,113M. Vazquez Acosta,113T. Virdee,113S. Wakefield,113N. Wardle,113 T. Whyntie,113M. Chadwick,114J. E. Cole,114P. R. Hobson,114A. Khan,114P. Kyberd,114D. Leggat,114D. Leslie,114

W. Martin,114I. D. Reid,114P. Symonds,114L. Teodorescu,114M. Turner,114J. Dittmann,115K. Hatakeyama,115 A. Kasmi,115H. Liu,115T. Scarborough,115O. Charaf,116S. I. Cooper,116C. Henderson,116P. Rumerio,116 A. Avetisyan,117T. Bose,117C. Fantasia,117A. Heister,117P. Lawson,117D. Lazic,117J. Rohlf,117D. Sperka,117

J. St. John,117L. Sulak,117J. Alimena,118S. Bhattacharya,118G. Christopher,118D. Cutts,118Z. Demiragli,118 A. Ferapontov,118A. Garabedian,118U. Heintz,118G. Kukartsev,118E. Laird,118G. Landsberg,118M. Luk,118

M. Narain,118M. Segala,118T. Sinthuprasith,118T. Speer,118R. Breedon,119G. Breto,119

M. Calderon De La Barca Sanchez,119S. Chauhan,119M. Chertok,119J. Conway,119R. Conway,119P. T. Cox,119 R. Erbacher,119M. Gardner,119R. Houtz,119W. Ko,119A. Kopecky,119R. Lander,119O. Mall,119T. Miceli,119

R. Nelson,119D. Pellett,119F. Ricci-Tam,119B. Rutherford,119M. Searle,119J. Smith,119M. Squires,119 M. Tripathi,119S. Wilbur,119R. Yohay,119V. Andreev,120D. Cline,120R. Cousins,120S. Erhan,120P. Everaerts,120 C. Farrell,120M. Felcini,120J. Hauser,120M. Ignatenko,120C. Jarvis,120G. Rakness,120P. Schlein,120,aE. Takasugi,120

P. Traczyk,120V. Valuev,120M. Weber,120J. Babb,121R. Clare,121M. E. Dinardo,121J. Ellison,121J. W. Gary,121 G. Hanson,121H. Liu,121O. R. Long,121A. Luthra,121H. Nguyen,121S. Paramesvaran,121J. Sturdy,121 S. Sumowidagdo,121R. Wilken,121S. Wimpenny,121W. Andrews,122J. G. Branson,122G. B. Cerati,122S. Cittolin,122 D. Evans,122A. Holzner,122R. Kelley,122M. Lebourgeois,122J. Letts,122I. Macneill,122B. Mangano,122S. Padhi,122 C. Palmer,122G. Petrucciani,122M. Pieri,122M. Sani,122V. Sharma,122S. Simon,122E. Sudano,122M. Tadel,122 Y. Tu,122A. Vartak,122S. Wasserbaech,122,cccF. Wu¨rthwein,122A. Yagil,122J. Yoo,122D. Barge,123R. Bellan,123

C. Campagnari,123M. D’Alfonso,123T. Danielson,123K. Flowers,123P. Geffert,123C. George,123F. Golf,123 J. Incandela,123C. Justus,123P. Kalavase,123D. Kovalskyi,123V. Krutelyov,123S. Lowette,123R. Magan˜a Villalba,123

N. Mccoll,123V. Pavlunin,123J. Ribnik,123J. Richman,123R. Rossin,123D. Stuart,123W. To,123C. West,123 A. Apresyan,124A. Bornheim,124J. Bunn,124Y. Chen,124E. Di Marco,124J. Duarte,124D. Kcira,124Y. Ma,124

A. Mott,124H. B. Newman,124C. Rogan,124M. Spiropulu,124V. Timciuc,124J. Veverka,124R. Wilkinson,124 S. Xie,124Y. Yang,124R. Y. Zhu,124V. Azzolini,125A. Calamba,125R. Carroll,125T. Ferguson,125Y. Iiyama,125 D. W. Jang,125Y. F. Liu,125M. Paulini,125J. Russ,125H. Vogel,125I. Vorobiev,125J. P. Cumalat,126B. R. Drell,126

W. T. Ford,126A. Gaz,126E. Luiggi Lopez,126U. Nauenberg,126J. G. Smith,126K. Stenson,126K. A. Ulmer,126 S. R. Wagner,126J. Alexander,127A. Chatterjee,127N. Eggert,127L. K. Gibbons,127W. Hopkins,127 A. Khukhunaishvili,127B. Kreis,127N. Mirman,127G. Nicolas Kaufman,127J. R. Patterson,127A. Ryd,127 E. Salvati,127W. Sun,127W. D. Teo,127J. Thom,127J. Thompson,127J. Tucker,127Y. Weng,127L. Winstrom,127 P. Wittich,127D. Winn,128S. Abdullin,129M. Albrow,129J. Anderson,129G. Apollinari,129L. A. T. Bauerdick,129

A. Beretvas,129J. Berryhill,129P. C. Bhat,129K. Burkett,129J. N. Butler,129V. Chetluru,129H. W. K. Cheung,129 F. Chlebana,129S. Cihangir,129V. D. Elvira,129I. Fisk,129J. Freeman,129Y. Gao,129E. Gottschalk,129L. Gray,129

D. Green,129O. Gutsche,129D. Hare,129R. M. Harris,129J. Hirschauer,129B. Hooberman,129S. Jindariani,129 M. Johnson,129U. Joshi,129B. Klima,129S. Kunori,129S. Kwan,129J. Linacre,129D. Lincoln,129R. Lipton,129 J. Lykken,129K. Maeshima,129J. M. Marraffino,129V. I. Martinez Outschoorn,129S. Maruyama,129D. Mason,129

P. McBride,129K. Mishra,129S. Mrenna,129Y. Musienko,129,dddC. Newman-Holmes,129V. O’Dell,129 O. Prokofyev,129N. Ratnikova,129E. Sexton-Kennedy,129S. Sharma,129W. J. Spalding,129L. Spiegel,129 L. Taylor,129S. Tkaczyk,129N. V. Tran,129L. Uplegger,129E. W. Vaandering,129R. Vidal,129J. Whitmore,129 W. Wu,129F. Yang,129J. C. Yun,129D. Acosta,130P. Avery,130D. Bourilkov,130M. Chen,130T. Cheng,130S. Das,130

M. De Gruttola,130G. P. Di Giovanni,130D. Dobur,130A. Drozdetskiy,130R. D. Field,130M. Fisher,130Y. Fu,130 I. K. Furic,130J. Hugon,130B. Kim,130J. Konigsberg,130A. Korytov,130A. Kropivnitskaya,130T. Kypreos,130

J. F. Low,130K. Matchev,130P. Milenovic,130,eeeG. Mitselmakher,130L. Muniz,130R. Remington,130 A. Rinkevicius,130N. Skhirtladze,130M. Snowball,130J. Yelton,130M. Zakaria,130V. Gaultney,131

(11)

S. Hewamanage,131L. M. Lebolo,131S. Linn,131P. Markowitz,131G. Martinez,131J. L. Rodriguez,131T. Adams,132 A. Askew,132J. Bochenek,132J. Chen,132B. Diamond,132S. V. Gleyzer,132J. Haas,132S. Hagopian,132 V. Hagopian,132K. F. Johnson,132H. Prosper,132V. Veeraraghavan,132M. Weinberg,132M. M. Baarmand,133

B. Dorney,133M. Hohlmann,133H. Kalakhety,133F. Yumiceva,133M. R. Adams,134L. Apanasevich,134 V. E. Bazterra,134R. R. Betts,134I. Bucinskaite,134J. Callner,134R. Cavanaugh,134O. Evdokimov,134L. Gauthier,134

C. E. Gerber,134D. J. Hofman,134S. Khalatyan,134P. Kurt,134F. Lacroix,134D. H. Moon,134C. O’Brien,134 C. Silkworth,134D. Strom,134P. Turner,134N. Varelas,134U. Akgun,135E. A. Albayrak,135,yyB. Bilki,135,fff W. Clarida,135K. Dilsiz,135F. Duru,135S. Griffiths,135J.-P. Merlo,135H. Mermerkaya,135,gggA. Mestvirishvili,135

A. Moeller,135J. Nachtman,135C. R. Newsom,135H. Ogul,135Y. Onel,135F. Ozok,135,yyS. Sen,135P. Tan,135 E. Tiras,135J. Wetzel,135T. Yetkin,135,hhhK. Yi,135B. A. Barnett,136B. Blumenfeld,136S. Bolognesi,136 D. Fehling,136G. Giurgiu,136A. V. Gritsan,136G. Hu,136P. Maksimovic,136M. Swartz,136A. Whitbeck,136

P. Baringer,137A. Bean,137G. Benelli,137R. P. Kenny III,137M. Murray,137D. Noonan,137S. Sanders,137 R. Stringer,137J. S. Wood,137A. F. Barfuss,138I. Chakaberia,138A. Ivanov,138S. Khalil,138M. Makouski,138

Y. Maravin,138S. Shrestha,138I. Svintradze,138J. Gronberg,139D. Lange,139F. Rebassoo,139D. Wright,139 A. Baden,140B. Calvert,140S. C. Eno,140J. A. Gomez,140N. J. Hadley,140R. G. Kellogg,140T. Kolberg,140Y. Lu,140

M. Marionneau,140A. C. Mignerey,140K. Pedro,140A. Peterman,140A. Skuja,140J. Temple,140M. B. Tonjes,140 S. C. Tonwar,140A. Apyan,141G. Bauer,141W. Busza,141I. A. Cali,141M. Chan,141V. Dutta,141

G. Gomez Ceballos,141M. Goncharov,141Y. Kim,141M. Klute,141Y. S. Lai,141A. Levin,141P. D. Luckey,141 T. Ma,141S. Nahn,141C. Paus,141D. Ralph,141C. Roland,141G. Roland,141G. S. F. Stephans,141F. Sto¨ckli,141 K. Sumorok,141K. Sung,141D. Velicanu,141R. Wolf,141B. Wyslouch,141M. Yang,141Y. Yilmaz,141A. S. Yoon,141

M. Zanetti,141V. Zhukova,141B. Dahmes,142A. De Benedetti,142G. Franzoni,142A. Gude,142J. Haupt,142 S. C. Kao,142K. Klapoetke,142Y. Kubota,142J. Mans,142N. Pastika,142R. Rusack,142M. Sasseville,142 A. Singovsky,142N. Tambe,142J. Turkewitz,142L. M. Cremaldi,143R. Kroeger,143L. Perera,143R. Rahmat,143

D. A. Sanders,143D. Summers,143E. Avdeeva,144K. Bloom,144S. Bose,144D. R. Claes,144A. Dominguez,144 M. Eads,144R. Gonzalez Suarez,144J. Keller,144I. Kravchenko,144J. Lazo-Flores,144S. Malik,144F. Meier,144

G. R. Snow,144J. Dolen,145A. Godshalk,145I. Iashvili,145S. Jain,145A. Kharchilava,145A. Kumar,145 S. Rappoccio,145Z. Wan,145G. Alverson,146E. Barberis,146D. Baumgartel,146M. Chasco,146J. Haley,146

A. Massironi,146D. Nash,146T. Orimoto,146D. Trocino,146D. Wood,146J. Zhang,146A. Anastassov,147 K. A. Hahn,147A. Kubik,147L. Lusito,147N. Mucia,147N. Odell,147B. Pollack,147A. Pozdnyakov,147M. Schmitt,147 S. Stoynev,147M. Velasco,147S. Won,147D. Berry,148A. Brinkerhoff,148K. M. Chan,148M. Hildreth,148C. Jessop,148 D. J. Karmgard,148J. Kolb,148K. Lannon,148W. Luo,148S. Lynch,148N. Marinelli,148D. M. Morse,148T. Pearson,148 M. Planer,148R. Ruchti,148J. Slaunwhite,148N. Valls,148M. Wayne,148M. Wolf,148L. Antonelli,149B. Bylsma,149 L. S. Durkin,149C. Hill,149R. Hughes,149K. Kotov,149T. Y. Ling,149D. Puigh,149M. Rodenburg,149G. Smith,149

C. Vuosalo,149G. Williams,149B. L. Winer,149H. Wolfe,149E. Berry,150P. Elmer,150V. Halyo,150P. Hebda,150 J. Hegeman,150A. Hunt,150P. Jindal,150S. A. Koay,150D. Lopes Pegna,150P. Lujan,150D. Marlow,150 T. Medvedeva,150M. Mooney,150J. Olsen,150P. Piroue´,150X. Quan,150A. Raval,150H. Saka,150D. Stickland,150

C. Tully,150J. S. Werner,150S. C. Zenz,150A. Zuranski,150E. Brownson,151A. Lopez,151H. Mendez,151 J. E. Ramirez Vargas,151E. Alagoz,152D. Benedetti,152G. Bolla,152D. Bortoletto,152M. De Mattia,152A. Everett,152

Z. Hu,152M. Jones,152K. Jung,152O. Koybasi,152M. Kress,152N. Leonardo,152V. Maroussov,152P. Merkel,152 D. H. Miller,152N. Neumeister,152I. Shipsey,152D. Silvers,152A. Svyatkovskiy,152M. Vidal Marono,152F. Wang,152

L. Xu,152H. D. Yoo,152J. Zablocki,152Y. Zheng,152S. Guragain,153N. Parashar,153A. Adair,154B. Akgun,154 K. M. Ecklund,154F. J. M. Geurts,154W. Li,154B. P. Padley,154R. Redjimi,154J. Roberts,154J. Zabel,154 B. Betchart,155A. Bodek,155R. Covarelli,155P. de Barbaro,155R. Demina,155Y. Eshaq,155T. Ferbel,155 A. Garcia-Bellido,155P. Goldenzweig,155J. Han,155A. Harel,155D. C. Miner,155G. Petrillo,155D. Vishnevskiy,155

M. Zielinski,155A. Bhatti,156R. Ciesielski,156L. Demortier,156K. Goulianos,156G. Lungu,156S. Malik,156 C. Mesropian,156S. Arora,157A. Barker,157J. P. Chou,157C. Contreras-Campana,157E. Contreras-Campana,157

D. Duggan,157D. Ferencek,157Y. Gershtein,157R. Gray,157E. Halkiadakis,157D. Hidas,157A. Lath,157 S. Panwalkar,157M. Park,157R. Patel,157V. Rekovic,157J. Robles,157S. Salur,157S. Schnetzer,157C. Seitz,157 S. Somalwar,157R. Stone,157S. Thomas,157P. Thomassen,157M. Walker,157G. Cerizza,158M. Hollingsworth,158 K. Rose,158S. Spanier,158Z. C. Yang,158A. York,158O. Bouhali,159,iiiR. Eusebi,159W. Flanagan,159J. Gilmore,159

(12)

A. Safonov,159T. Sakuma,159I. Suarez,159A. Tatarinov,159D. Toback,159N. Akchurin,160J. Damgov,160 C. Dragoiu,160P. R. Dudero,160C. Jeong,160K. Kovitanggoon,160S. W. Lee,160T. Libeiro,160I. Volobouev,160 E. Appelt,161A. G. Delannoy,161S. Greene,161A. Gurrola,161W. Johns,161C. Maguire,161Y. Mao,161A. Melo,161

M. Sharma,161P. Sheldon,161B. Snook,161S. Tuo,161J. Velkovska,161M. W. Arenton,162S. Boutle,162B. Cox,162 B. Francis,162J. Goodell,162R. Hirosky,162A. Ledovskoy,162C. Lin,162C. Neu,162J. Wood,162S. Gollapinni,163

R. Harr,163P. E. Karchin,163C. Kottachchi Kankanamge Don,163P. Lamichhane,163A. Sakharov,163 D. A. Belknap,164L. Borrello,164D. Carlsmith,164M. Cepeda,164S. Dasu,164E. Friis,164M. Grothe,164 R. Hall-Wilton,164M. Herndon,164A. Herve´,164K. Kaadze,164P. Klabbers,164J. Klukas,164A. Lanaro,164 R. Loveless,164A. Mohapatra,164M. U. Mozer,164I. Ojalvo,164G. A. Pierro,164G. Polese,164I. Ross,164A. Savin,164

W. H. Smith,164and J. Swanson164 (CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2Institut fu¨r Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus

4Universiteit Antwerpen, Antwerpen, Belgium 5Vrije Universiteit Brussel, Brussel, Belgium 6Universite´ Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium

8Universite´ Catholique de Louvain, Louvain-la-Neuve, Belgium 9Universite´ de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

12aUniversidade Estadual Paulista, Sa˜o Paulo, Brazil 12bUniversidade Federal do ABC, Sa˜o Paulo, Brazil 13

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

14University of Sofia, Sofia, Bulgaria 15Institute of High Energy Physics, Beijing, China

16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 17Universidad de Los Andes, Bogota, Colombia

18Technical University of Split, Split, Croatia 19University of Split, Split, Croatia 20Institute Rudjer Boskovic, Zagreb, Croatia

21University of Cyprus, Nicosia, Cyprus 22

Charles University, Prague, Czech Republic

23Academy of Scientific Research and Technology of the Arab Republic of Egypt,

Egyptian Network of High Energy Physics, Cairo, Egypt

24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 25Department of Physics, University of Helsinki, Helsinki, Finland

26Helsinki Institute of Physics, Helsinki, Finland 27Lappeenranta University of Technology, Lappeenranta, Finland

28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

30Institut Pluridisciplinaire Hubert Curien, Universite´ de Strasbourg, Universite´ de Haute Alsace Mulhouse,

CNRS/IN2P3, Strasbourg, France

31Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France 32Universite´ de Lyon, Universite´ Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucle´aire de Lyon, Villeurbanne, France

33Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia 34RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

35RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 36

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

37Deutsches Elektronen-Synchrotron, Hamburg, Germany 38University of Hamburg, Hamburg, Germany 39Institut fu¨r Experimentelle Kernphysik, Karlsruhe, Germany

40Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece 41University of Athens, Athens, Greece

(13)

43KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 44Institute of Nuclear Research ATOMKI, Debrecen, Hungary

45University of Debrecen, Debrecen, Hungary

46National Institute of Science Education and Research, Bhubaneswar, India 47Panjab University, Chandigarh, India

48University of Delhi, Delhi, India 49Saha Institute of Nuclear Physics, Kolkata, India

50Bhabha Atomic Research Centre, Mumbai, India 51

Tata Institute of Fundamental Research - EHEP, Mumbai, India

52Tata Institute of Fundamental Research - HECR, Mumbai, India 53Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

54University College Dublin, Dublin, Ireland 55aINFN Sezione di Bari, Bari, Italy

55bUniversita` di Bari, Bari, Italy 55cPolitecnico di Bari, Bari, Italy 56aINFN Sezione di Bologna, Bologna, Italy

56bUniversita` di Bologna, Bologna, Italy 57aINFN Sezione di Catania, Catania, Italy

57bUniversita` di Catania, Catania, Italy 58aINFN Sezione di Firenze, Firenze, Italy

58bUniversita` di Firenze, Firenze, Italy

59INFN Laboratori Nazionali di Frascati, Frascati, Italy 60aINFN Sezione di Genova, Genova, Italy

60bUniversita` di Genova, Genova, Italy 61a

INFN Sezione di Milano-Bicocca, Milano, Italy

61bUniversita` di Milano-Bicocca, Milano, Italy 62aINFN Sezione di Napoli, Napoli, Italy 62bUniversita` di Napoli ‘‘Federico II’’, Napoli, Italy 62cUniversita` della Basilicata (Potenza), Napoli, Italy

62dUniversita` G. Marconi (Roma), Napoli, Italy 63aINFN Sezione di Padova, Padova, Italy

63bUniversita` di Padova, Padova, Italy 63cUniversita` di Trento (Trento), Padova, Italy

64aINFN Sezione di Pavia, Pavia, Italy 64bUniversita` di Pavia, Pavia, Italy 65aINFN Sezione di Perugia, Perugia, Italy

65bUniversita` di Perugia, Perugia, Italy 66aINFN Sezione di Pisa, Pisa, Italy

66bUniversita` di Pisa, Pisa, Italy 66cScuola Normale Superiore di Pisa, Pisa, Italy

67aINFN Sezione di Roma, Roma, Italy 67bUniversita` di Roma, Roma, Italy 68aINFN Sezione di Torino, Torino, Italy

68bUniversita` di Torino, Torino, Italy

68cUniversita` del Piemonte Orientale (Novara), Torino, Italy 69aINFN Sezione di Trieste, Trieste, Italy

69bUniversita` di Trieste, Trieste, Italy 70

Kangwon National University, Chunchon, Korea

71Kyungpook National University, Daegu, Korea

72Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 73Korea University, Seoul, Korea

74University of Seoul, Seoul, Korea 75Sungkyunkwan University, Suwon, Korea

76Vilnius University, Vilnius, Lithuania

77Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 78Universidad Iberoamericana, Mexico City, Mexico

79

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

80Universidad Auto´noma de San Luis Potosı´, San Luis Potosı´, Mexico 81University of Auckland, Auckland, New Zealand

82University of Canterbury, Christchurch, New Zealand

(14)

84National Centre for Nuclear Research, Swierk, Poland

85Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland 86Laborato´rio de Instrumentac¸a˜o e Fı´sica Experimental de Partı´culas, Lisboa, Portugal

87Joint Institute for Nuclear Research, Dubna, Russia

88Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia 89Institute for Nuclear Research, Moscow, Russia

90Institute for Theoretical and Experimental Physics, Moscow, Russia 91P. N. Lebedev Physical Institute, Moscow, Russia

92

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

93State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 94University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

95Centro de Investigaciones Energe´ticas Medioambientales y Tecnolo´gicas (CIEMAT), Madrid, Spain 96Universidad Auto´noma de Madrid, Madrid, Spain

97Universidad de Oviedo, Oviedo, Spain

98Instituto de Fı´sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 99CERN, European Organization for Nuclear Research, Geneva, Switzerland

100Paul Scherrer Institut, Villigen, Switzerland

101Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 102Universita¨t Zu¨rich, Zurich, Switzerland

103National Central University, Chung-Li, Taiwan 104National Taiwan University (NTU), Taipei, Taiwan

105Chulalongkorn University, Bangkok, Thailand 106Cukurova University, Adana, Turkey

107Middle East Technical University, Physics Department, Ankara, Turkey 108

Bogazici University, Istanbul, Turkey

109Istanbul Technical University, Istanbul, Turkey

110National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 111University of Bristol, Bristol, United Kingdom

112Rutherford Appleton Laboratory, Didcot, United Kingdom 113Imperial College, London, United Kingdom 114Brunel University, Uxbridge, United Kingdom

115Baylor University, Waco, Texas, USA

116The University of Alabama, Tuscaloosa, Alabama, USA 117Boston University, Boston, Massachusetts, USA 118Brown University, Providence, Rhode Island, USA 119University of California, Davis, Davis, California, USA 120University of California, Los Angeles, Los Angeles, California, USA

121University of California, Riverside, Riverside, California, USA 122University of California, San Diego, La Jolla, California, USA 123University of California, Santa Barbara, Santa Barbara, California, USA

124California Institute of Technology, Pasadena, California, USA 125Carnegie Mellon University, Pittsburgh, Pennsylvania, USA 126University of Colorado at Boulder, Boulder, Colorado, USA

127Cornell University, Ithaca, New York, USA 128Fairfield University, Fairfield, Connecticut, USA 129Fermi National Accelerator Laboratory, Batavia, Illiniois, USA

130University of Florida, Gainesville, Florida, USA 131

Florida International University, Miami, Florida, USA

132Florida State University, Tallahassee, Florida, USA 133Florida Institute of Technology, Melbourne, Florida, USA 134University of Illinois at Chicago (UIC), Chicago, Illinois, USA

135The University of Iowa, Iowa City, Iowa, USA 136Johns Hopkins University, Baltimore, Maryland, USA

137The University of Kansas, Lawrence, Kansas, USA 138Kansas State University, Manhattan, Kansas, USA

139Lawrence Livermore National Laboratory, Livermore, California, USA 140

University of Maryland, College Park, Maryland, USA

141Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 142University of Minnesota, Minneapolis, Minnesota, USA

143University of Mississippi, Oxford, Mississippi, USA 144University of Nebraska-Lincoln, Lincoln, Nebraska, USA

(15)

145State University of New York at Buffalo, Buffalo, New York, USA 146Northeastern University, Boston, Massachusetts, USA

147Northwestern University, Evanston, Indiana, USA 148University of Notre Dame, Notre Dame, Indiana, USA

149The Ohio State University, Columbus, Ohio, USA 150Princeton University, Princeton, New Jersey, USA 151University of Puerto Rico, Mayaguez, Puerto Rico 152Purdue University, West Lafayette, Indiana, USA 153

Purdue University Calumet, Hammond, Indiana, USA

154Rice University, Houston, Texas, USA 155University of Rochester, Rochester, New York, USA 156The Rockefeller University, New York, New York, USA

157Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA 158University of Tennessee, Knoxville, Tennessee, USA

159Texas A&M University, College Station, Texas, USA 160Texas Tech University, Lubbock, Texas, USA 161Vanderbilt University, Nashville, Tennessee, USA 162University of Virginia, Charlottesville, Virginia, USA

163Wayne State University, Detroit, Michigan, USA 164University of Wisconsin, Madison, Wisconsin, USA

aDeceased.

bAlso at Vienna University of Technology, Vienna, Austria.

cAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.

dAlso at Institut Pluridisciplinaire Hubert Curien, Universite´ de Strasbourg, Universite´ de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France.

eAlso at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.

fAlso at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia. gAlso at Universidade Estadual de Campinas, Campinas, Brazil.

h

Also at California Institute of Technology, Pasadena, CA, USA.

iAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France. jAlso at Zewail City of Science and Technology, Zewail, Egypt.

kAlso at Suez Canal University, Suez, Egypt. lAlso at Cairo University, Cairo, Egypt. mAlso at Fayoum University, El-Fayoum, Egypt.

nAlso at British University in Egypt, Cairo, Egypt. oNow at Ain Shams University, Cairo, Egypt.

pAlso at National Centre for Nuclear Research, Swierk, Poland. qAlso at Universite´ de Haute Alsace, Mulhouse, France. rAlso at Joint Institute for Nuclear Research, Dubna, Russia. sAlso at Brandenburg University of Technology, Cottbus, Germany. tAlso at The University of Kansas, Lawrence, Kansas, USA.

uAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary. vAlso at Eo¨tvo¨s Lora´nd University, Budapest, Hungary.

w

Also at Tata Institute of Fundamental Research - EHEP, Mumbai, India. xAlso at Tata Institute of Fundamental Research - HECR, Mumbai, India. yNow at King Abdulaziz University, Jeddah, Saudi Arabia.

zAlso at University of Visva-Bharati, Santiniketan, India. aaAlso at University of Ruhuna, Matara, Sri Lanka. bbAlso at Isfahan University of Technology, Isfahan, Iran. ccAlso at Sharif University of Technology, Tehran, Iran.

ddAlso at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran. eeAlso at Universita` degli Studi di Siena, Siena, Italy.

ffAlso at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico. ggAlso at Faculty of Physics, University of Belgrade, Belgrade, Serbia.

hhAlso at Facolta` Ingegneria, Universita` di Roma, Roma, Italy. iiAlso at Scuola Normale e Sezione dell’INFN, Pisa, Italy.

Figura

FIG. 1 (color online). The S T distributions for SR1 including observed yields and background contributions.
FIG. 2 (color online). The 95% confidence level limits in the stop and bino mass plane for models with RPV couplings  122 ,  233 , and  0 233

Riferimenti

Documenti correlati

Keywords: Endocrine disruptor, humic substances, natural organic matter, organic contaminant, phytoremediation,

RNA-seq of AML-amp cases identi fied 12,468 and 58,032 raw chimeric transcripts by CS and FM, respectively, among which 38 and 429 involved 8q24-ampli fied genes (Supplementary

The aim of the present study was to estimate the preventable proportion of Intubation-Asso- ciated Pneumonia (IAP) in the Intensive Care Units (ICUs) participating in the Italian

In both GLC1 cell lines, we observed a significant up-regulation of the amplified genes AKT3 and RUNX1; CREG1 showed up-regulation in GLC1DM but not in GLC1HSR, most likely due to

an approximate admission rate to acute psychiatric wards, including voluntary and involuntary patients, of 31.8 per 10,000 residents in the city of Rome in 2002.. Another

The fractional frequency difference that VLBI evaluated was consistent with the difference between two HM frequencies which were separately calibrated by a Sr lattice clock

She has published broadly in early cinema, has programmed films for Cinema Ritrovato, Bologna, and been involved in Women and the Silent Screen since its founding in

Recall that the diseconomy of scope in R&amp;D reduces fundamental innovation, while the diseconomy of scope in the production of varieties increases specialized innovation,