• Non ci sono risultati.

Selective oxidation of benzyl alcohol to benzaldehyde in water by TiO2/Cu(II)/UV solar system

N/A
N/A
Protected

Academic year: 2021

Condividi "Selective oxidation of benzyl alcohol to benzaldehyde in water by TiO2/Cu(II)/UV solar system"

Copied!
7
0
0

Testo completo

(1)

jo u r n al h om e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / c e j

Selective

oxidation

of

benzyl

alcohol

to

benzaldehyde

in

water

by

TiO

2

/Cu(II)/UV

solar

system

Raffaele

Marotta

,

Ilaria

Di

Somma,

Danilo

Spasiano,

Roberto

Andreozzi,

Vincenzo

Caprio

DepartmentofChemicalEngineering,FacultyofEngineering,UniversityofNaples“FedericoII”,p.leV.Tecchio,80–80125–Naples,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received11February2011

Receivedinrevisedform25May2011 Accepted25May2011

Keywords: Benzylicalcohol

Selectivephotocatalyticoxidation Benzaldehydeproduction Titaniumdioxide Cu(II)reduction

a

b

s

t

r

a

c

t

Selectiveoxidationofbenzylalcoholtobenzaldehydeinaqueoussolution,underacidicconditions, throughtheTiO2/Cu(II)/solarUVphotocatalyticsystem,wasinvestigated.DifferentcommercialTiO2

samplesweretested.

Thebestresultfound,intermsofyield,wasof35%forbenzaldehydewithrespecttotheinitialbenzyl alcoholconcentration.Duringasinglerun,apartialconversionofbenzaldehydetobenzoicacidwas alsoobserved.By-products,presentattracelevel,were2-hydroxy-benzyl-alcohol, 4-hydroxy-benzyl-alcohol,2-hydroxy-benzaldehydeand4-hydroxy-benzaldehyde.Onthebasisoftheformationofthese speciesaproductionofHOradicalscouldbethusinferred.

Thestudysuggestedthatdifferentoperativeparameters,suchasthecompositionandamountof pho-tocatalyst,pH,ioniccomponentsinwaterandtheinitialconcentrationofCu(II)ions,playedanimportant roleinthephotocatalyticselectiveoxidationofbenzylalcohol.

Moreover,theresultsofthepresentinvestigationindicatedthat,attheendoftheprocess,Cu(II)could beregeneratedandreused,throughare-oxidationofCu(0),producedduringthephotolyticrun,withair inthedark.

Ageneralmechanismofoxidation,supportedbytheexperimentalresultswasproposed.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Titaniumoxide(TiO2)photocatalysisisoneofthemost

stud-iedprocessestooxidizeorganicmoleculesinaqueoussolutionby meansofasolarUVsourceandoxygen(orair)[1–3].Ithasbeen extensivelyinvestigatedthereactionmechanismthatmakesthe processoccurr.Itincludes,asthekeystep,thephotochemical for-mationofanelectron–holepaironTiO2particleswhichstartsthe

processitself[4].Titaniumoxidephotocatalystshaveagreat poten-tialalsoasaversatiletoolin“green”organicsynthesis[5].Inrecent years,TiO2photocatalysishasbeensuccessfullyproposed–

replac-ingwaterwithCH3CN–asaselectiveoxidationprocessofaromatic

alcoholstoaldehydes,withyieldsapproachingto100%,relyingon therefractorinessofthelattertotheoxidationbypositiveholes [6,7].However,sincewaterremainsanelectivesolventfor envi-ronmentallyfriendlyprocesses,otherapproachesarenecessaryin ordertoavoidtheuseoforganicsolvents.Apossibilitycouldrely ontheuseofCu(II)ionsaselectronacceptorstoreplaceoxygen inaTiO2photocatalyticprocessinwater.Theideasupportingthis

choiceisthat,intheabsenceofoxygen,itisinhibitedoneofthe photochemicalpathwaysleadingtotheunselectiveOHradical

pro-∗ Correspondingauthor.Tel.:+390817682968;fax:+390815936936. E-mailaddress:rmarotta@unina.it(R.Marotta).

duction[8,9].Infact,intheabsenceofoxygen,itisnotpossiblethe formationofsuperoxideradical(O•−2)orhydrogenperoxide(H2O2)

whosephotolysiscangenerateOHradicals;therefore,inthiscase, OHradicalsshouldformjustasresultofthereactionofwaterwith positiveholes.Itisinterestingtonotethatadifferentapproach, basedontheuseofnanostructuredTiO2 catalysts,leadstovery

interestingresultsalthough,atthemoment,anexplanationofthem iswellbeyondtheabilityoftheAuthors[10,11].

Itiswellknownthatthesubstitutionofoxygenwithaspecies capableofreducing,bytrappingtheelectronsintheconducting band,stillenablestheoxidationoftheorganicspeciespresentin thesolution.Particularlyinterestingisthecaseinwhichoxygenis replacedbyametaliondissolvedinthesolution.Thelatterreduces toaloweroxidationstatebycapturingthephoto-generated elec-trons onTiO2,whereas theorganic species oxidizes,through a

directreactionwiththepositiveholes(h+)orOHradicals.Insome

cases,thereductionofthemetalresultsintoitsprecipitationfrom thesolutionthusenablingitsseparationandrecovery.Ifthisisthe properaimoftheprocess,theroleoftheorganicspeciesisthat ofasacrificialagentwhoseoxidation makespossiblethe reduc-tionandtherecoveryofthemetal.Thereductionofmanymetals, suchasCu(II),Ni(II),Pb(II)andZn(II),hasbeeninvestigatedinthe pastbysomeresearchers[12,13].Amongtheothers,somepapers havebeendevotedtothephotoreductionofCu(II)inthepresence oforganicspeciessuchasformicoroxalicacids[14,15],methanol, 1385-8947/$–seefrontmatter © 2011 Elsevier B.V. All rights reserved.

(2)

244 R.Marottaetal./ChemicalEngineeringJournal172 (2011) 243–249

Scheme1.Mechanism depictingthesimultaneousphotocatalyticoxidationof organicspeciesandthereductionofCu(II).

n-propanol,2-propanolandn-butylalcohol[16]inabsenceof oxy-geninthesystem.Ithasbeenreportedthatthesimpleadmissionof airintothesystem,attheendoftheprocess,allowsthere-oxidation ofprecipitatedcopperwhichis,inthisway,completelysolubilised [15].Thenatureoftheprecipitatehasneverbeencompletely elu-cidated,Cu(0) and/orCu2Obeingreported bythemost partof

researchers[12,15–19], although someof theAuthorsreported someresultsinfavouroftheformationofCu(0)[14].

Theoverallbehaviourofthesystem,includingthereoxidation ofcopper,isillustratedinScheme1.

Atwostagesoxidationprocessresultsfromthescheme:inthe firststage,thereductionofcopper(II)allowstheoxidationofthe organiccompound,inthesecondonetheairreoxidizesthereduced formofcopper.Itisevidentfromthisschemethatoncethe re-oxidationofreducedcoppertoCu(II)byairistakenintoaccount, therole ofcopper(inthepresenceofTiO2 andUV)isthatof a

catalytitcspecies(movingbetweentwo(orthree)different oxida-tionstates(0or+1and+2),whichmakespossibletheoxidationof theorganicsubstancesbyairatambientconditions.Onthebasisof thisconsideration,theuseofCu(II)/TiO2/UVasaphotocatalytic

sys-temtooxidizeorganicspeciesbyaircanbeproposed.Atthebest oftheAuthors’knowledgenopreviousinvestigationshavebeen reportedontheuseofthissystemforselectiveoxidationoforganic molecules.

Benzaldehydeisthesimplestandindustriallythemost impor-tantaromaticaldehyde.Benzaldehydeisusedinalargenumberof applications;amongtheothers,asanindustrialsolventand com-mercialfoodflavouringanditisaninterestingkeyintermediatefor variousperfumesanddyes.

Benzaldehydeisproducedprincipallybythehydrolysisof ben-zylidene chloride orthe partialoxidation of toluene [20].Both theseprocessesemployveryhardoperatingconditionsandcause wastewaterdisposalproblems.

Fattima Al-Zahra Gassima and coworkers [21] investigated thepossibilitytoconvertliquidbenzylalcoholtobenzaldehyde throughasuspensionoftitaniumdioxide(anatase)andsensitized anataseunderanoxygenatmospherebutusingp-xyleneassolvent forbenzylalcohol.

InthepresentworkthepossibilitytoemploytheCu(II)/TiO2/UV

systemfortheselectiveoxidationofbenzylalcoholto benzalde-hydeinwaterisstudiedatvaryingtheoperatingconditions(TiO2

type,TiO2load,natureoftheinorganicanions,Cu(II)concentration

andpH).

2. Materialsandmethods

Experimentshavebeencarriedoutinabatchcylindricalglass jacketedreactor(280ml)equippedwithhigh-pressureUVlamp (HeliosItalquartz)mainlyemittingat305,313and366nm.The reactorhasbeenthermostatedat298K.

ThepHhasbeenregulatedwithphosphoricacidandmonitored bymeansofanOrion420A+pH-meter(Thermo).Inallthe

exper-240 210 180 150 120 90 60 30 0 Time (min) 0.00 0.20 0.40 0.60 0.80 1.00 [Bz Alcoh o l]/[Bz Alc o hol ]o

Fig.1.Photooxydationofbenzylalcohol– effectofTiO2type.[Cu(II)]o=1.50mM.

[Benzylalcohol]o=1.50mM.pH=2.0.T=25◦C.[TiO2]o=200mg/l. Runswithout

oxygen:•Aldrich(pureanatase,SA=9.5m2g−1),P25Degussa(80%anatase,

SA=50m2g−1),Aldrich(purerutile,SA=2.5m2g−1),Aldrich(prevalentlyrutile,

SA=2.7m2g−1).RunwithoxygenwithoutCu(II):Aldrich(pureanatase).

imentsthesolutionhasbeenpreventivelypurgedwithnitrogen toremovethedissolvedoxygenthatcouldhavecompetedwith cupricionsforthereactionwiththeelectrons.Duringtherunsa gaseousstreamofnitrogenhasbeencontinuouslyfedtothe irra-diatedmagneticallystirredsolutiontopreventanycontactwith oxygen.

Theconcentrations of benzylalcohol, benzaldehyde,benzoic acid, 2-hydroxy-benzyl alcohol, 4-hydroxy-benzyl alcohol, 2-hydroxy-benzaldehydeand4-hydroxy-benzaldehydeatdifferent reactiontimeshavebeenevaluatedbyHPLCanalysis.Forthis pur-pose,theHPLCapparatus(Agilent1100)hasbeenequippedwith adiodearrayUV/Visdetector(=220,230,250nm)andasinergy 4␮Hydro-RP80A(Phenomenex)column,usingamobilephaseof 50%buffer,30%H2Oand20%CH3CN,flowingat1.0mlmin−1.One

litreofbufferhasbeenmadeby10mlofphosphoricacidsolution (5.05M),50mlofmethylalcoholandwaterforHPLC.

Theconcentrationofcupricionshasbeenmeasuredbymeans ofacolorimetricmethodusingananalyticalkit(basedonoxalic acidbis-cyclohexylidenehydrazide,cuprizone®)purchasedfrom

Macherey-Nagel.AnUV/Visspectrometer(Unicam)hasbeenused forthemeasurementsatawavelengthof585nm.

Four commercial microcrystalline TiO2 powders have been

studied:(1)TiO2DegussaP25(80%anatase,20%rutile,BETspecific

surfacearea50m2g−1),(2)TiO2Aldrich(pureanatasephase,BET

specificsurfacearea9.5m2g−1),(3)TiO2Aldrich(purerutilephase,

BETspecificsurfacearea2.5m2g−1),(4)TiO2Aldrich(rutilephase

withsmallamountofanatase,BETspecificsurfacearea2.7m2g−1).

BETspecificsurfaceareashavebeenmeasuredbythe single-pointBETmethodusingaMicrometricsFlowSorb2020apparatus. Cu(II) ions have been introduced in the system as cupric sulphate.Benzylalcohol,benzoicacid,phosphoricacid,cupric sul-phate,sodiumsulphateandsodiumdihydrogenphosphate,with apurity>99.0%(w/w),havebeenpurchasedfromSigmaAldrich aswellasbenzaldehydewithapurity>90% (w/w)andusedas received.

(3)

Fig.2. EffectofTiO2type:benzaldehyde(a)andbenzoicacid(b)production.[Benzylalcohol]o=1.50mM.[Cu(II)]o=1.50mM.pH=2.0.T=25◦C.[TiO2]o=200mg/l.Only

strippingwithnitrogenatdark().Runswithoutoxygen:•Aldrich(pureanatase,SA=9.5m2g−1),P25Degussa(80%anatase,SA=50m2g−1),Aldrich(purerutile,

SA=2.5m2g−1),Aldrich(prevalentlyrutile,SA=2.7m2g−1).RuninpresenceofoxygenwithoutCu(II):Aldrich(pureanatase).

3. Resultsanddiscussion

Preliminaryphotolyticruns(datanot shown)inpresence of thesubstrateand Cu(II)ionswithoutTiO2 or thesubstrateand

TiO2withoutCu(II)additiontothesolutionundernitrogengaseous

stream,didnotresultintoanyconsumptionofbenzylalcoholeven forlongreactiontimes(morethan12h).

3.1. EffectofTiO2type

Theresultsobtainedduringsomerunsofphotoxidationof ben-zylalcoholatpH=2.0,withdifferentTiO2commercialsamples,at

aloadequalto200mg/l,areshowninFig.1.Thediagramsshow thatthereactivityofbenzylalcoholisstronglyinfluencedbythe typeofTiO2usedintheexperiment,whereasthespecificsurface

areacouldnotbetakenasapredictorofthesamplereactivity.In particular,thebestresultsintermsofconversion,atafixed react-ingtime,areobservedwhenAldrichTiO2(pureanatase)isusedin

therun.Inthiscase,after120minofreaction,theconcentrationof Cu(II)approachestozerowithaconversionofthealcoholofabout 75%,despiteofaninitialratio[benzylalcohol/Cu(II)]=1.

Asimilarreactivity,butwithalowerconversionofbenzyl alco-hol(65%), isshown byaP25 Degussasample inwhich anatase formis present at 80% witha specific surface area(50m2g−1)

higherthantheAldrichsample(pureanatase,9.5m2g−1).The

cat-alystsinwhichTiO2ispresentasrutileform,eitherprevalentlyor

totally,showloweractivitiesthanthesamplescontaining preva-lentlyanatase.

Theobservedresultscanbeexplainedthroughthefactthatfor bothcrystallographicformsofTiO2(anataseandrutile),thevalence

band(VB)redoxpotentialsaremorepositive(2.96and2.85Vvs NHErespectively)[27]thanthe•OH/−OHand•OH/H2Oredox

cou-ples(1.89and2.72VvsNHErespectively)[28].Consequently,both adsorbedwaterandhydroxylgroupscanbeoxidizedtoreactive hydroxylradicalsonbothirradiatedTiO2typessurfaces[1]:

TiIV−OH−+h+→TiIV−OH• (r1)

TiIV−H2O+h+→TiIV−OH·+H+ (r2)

Nevertheless the more negative redox potential(−0.27V vs NHE)oftheanataseconductionband(CB),makesitmore competi-tivethantherutileone(−0.15VvsNHE)forreductionreactions [27]. In thissense,taking intoaccount thatthe standardredox potentialofCu2+/Cu(0)coupleis 0.337V [9],cupricionscanbe

reducedtometalcopperbyanataseCBelectronsmoreeasilythan byrutileCBelectrons.

Inanycase,asreportedbyothers[22,23],severalother prop-erties of the tested photocatalysts such as particle geometry, crystallinity, density of surface functional groups, and defects, shouldbeconsideredtoforeseethebehaviouroftheadoptedTiO2.

Moreover,sinceforeachCu(II)ionreducedtoCu(0),two pho-togeneratedelectronsareconsumedandtwopositiveholeshave tobesaturated,theexperimentaldatainvariablyindicatethe exis-tenceofsecondaryreactionsinwhichotherspecies,incompetition withbenzylalcohol molecules,consumethepositiveholesthus reducingtheconsumptionratio[benzylalcohol]/[Cu(II)],toavalue lowerthan1.0.

AsitcanbeinferredfromFig.2a,duringtheprocessthesubstrate ismainlyconvertedintobenzaldehydethatpartiallyundergoesto afurtheroxidationtobenzoicacid(Fig.2b).Whenthehighest con-version ofthesubstrateis achieved(72%), 35%of initialbenzyl alcoholresultedtobeconverted intobenzaldehydeandonly8% intobenzoicacidforpureanataseTiO2.

Inordertobetterunderstandtheimportanceofreplacing oxy-gen with Cu(II) ions, the data related to a run in which the alcoholiscontactedwithoxygen,withoutanyadditionofCu(II), in thepresence ofAldrichTiO2 (pureanatase) sample are

pre-sented in Figs. 1 and 2a (emptycircles). Although the system resultstobecapableofpromptlyconvertingbenzylalcohol(Fig.1), the yield in benzaldehyde is very low (Fig.2a). Similar results have been alsoobtainedwith differentTiO2 samples (datanot

shown).

Theslightdecreaseoftheconcentrationprofilesof benzalde-hydeforreactiontimeshigherthan90min(Fig.2a:fulldiamonds, full circles),when Cu(II)is totally converted toCu(0), couldbe ascribedtoitslossfromthesolutionduetoastrippingeffectof theinlet nitrogengaseous stream bubbling.Anexample of the importanceofthiseffectisgiveninthesamefigure(Fig.2a:empty squares)reporting theresults collectedby bubblinga nitrogen

(4)

246 R.Marottaetal./ChemicalEngineeringJournal172 (2011) 243–249 240 210 180 150 120 90 60 30 0 Time (min) 0.00 0.20 0.40 0.60 0.80 1.00 [C u( II )] /[C u (I I) ]o

Fig.3. Photoreductionofcopper(II)–effectofTiO2type.[Cu(II)]o=1.50mM.

[Ben-zylalcohol]o=1.50mM.pH=2.0.T=25◦C.[TiO2]o=200mg/l.

Runswithoutoxygen:•Aldrich(pureanatase,SA=9.5m2g−1),P25Degussa(80%

anatase,SA=50m2g−1),Aldrich(purerutile,SA=2.5m2g−1),Aldrich

(preva-lentlyrutile,SA=2.7m2g−1).

gaseousstreaminasolutioninitiallycontainingonlybenzaldehyde (atdarkandinabsenceofTiO2andCu(II)ions).

Small amounts of undesired by-products, such as 2-hydroxy-benzyl-alcohol,4-hydroxy-benzyl-alcohol, 2-hydroxy-benzaldehydeand4-hydroxy-benzaldehyde,havebeendetected duringtherunsinthereactingsolutions,asaresultofhydroxyl rad-icals(HO.)attacktobenzylalcoholandbenzaldehydemolecules.In

fact,despitetheeliminationofoxygenfromthesysteminhibited HO.formationfromH

2O2photolysis,theproductionofhydroxyl

radicalsthroughtheadsorbedwaterand/orhydroxylgroupswith positiveholes(r1andr2)cannotberuledout.

Duringeachrun,thedecreaseoftheconcentrationofcupricions (Fig.3)isaccompaniedbytheprecipitationofapurplesolidwhich mixedwithTiO2 particles.Accordingtowhatreportedbysome

oftheAuthorsinapreviouspaper[14],thissolidcouldbeCu(0). WhenCu(II)istotallyconvertedtoCu(0),i.e.at120minforP25 DegussasampleandTiO2Aldrichpureanatase(Fig.3,fulldiamonds

andcircles),nofurtherconsumptionofbenzylalcohol(Fig.1,full diamondsandcircles)neitherproductionofbothbenzaldehydeand benzoicacidisobserved(Figs.2aandb,fulldiamondsandcircles). Thepossibilitytoreuseacertaincopperamountformoreruns hasbeendirectlyinvestigated(Fig.4).After90minofoxidationrun, thelamphasbeenswitchedoffandanoxygenstreamhasbeenfed tothereactorfor110min.Afterabout60min–theCu(II) concentra-tionreachesapproximatelythesamevalueasthatatthebeginning oftherunwhereasduringthisstepnofurtherconsumptionofthe substrateisrecorded.Atthistime,thepurplecolourdisappeared andthesolutionreturnedtobewhite.Thesystemthusobtained (at200min),hasbeenusedforanewoxidationexperimentaftera nitrogengasbubblingtopurgeoxygenandswitchingonthelamp.

3.2. EffectofinitialCu(II)concentration

Figs. 5a and b show the resultsobtained in oxidation runs at pH=2.0 with the same TiO2 sample (Aldrich, pureanatase,

200mg/l)butatdifferentinitialconcentrationsofCu(II),addedas CuSO4. 300 270 240 210 180 150 120 90 60 30 0 Time (min) 0.00 0.20 0.40 0.60 0.80 1.00 Normalized concentration

Nitrogen bubbling

Light on Oxygen bubbli Light off ng Nitrogen bubbl Light on ing

Fig.4. NormalizedconcentrationprofilesforCu(II)(circles)andbenzylalcohol (squares)withlightonandnitrogenpurgeorlightoffandoxygenpurge. [Ben-zylalcohol]o=1.50mM.[Cu(II)]o=1.16mM.TiO2(Aldrich,pureanatase)=200mg/l.

pH=2.0.T=25◦C.

AhigherinitialconcentrationofCu(II)resultsintoadecrease ofthesystemreactivityascanbeeasilyverifiedbycomparingthe half-lifetimeforthesubstratewhichchangedfrom50to90minfor [Cu(II)]oequalto1.12mMand2.30mMrespectively.Moreover,for

bothruns,theselectivitiestobenzaldehyde,evaluatedat15min (72%)and90min(57%),donotchangesignificantlyfromthe val-uescalculatedbyusingthedatashowninFigs.1and2a.Apossible explanationforthesefindingscouldbefoundsupposingachange ofthelightabsorptionpropertiesofthereactingsolutions,withan increasinginnerfiltereffectatincreasingCu(II)initial concentra-tions.UVabsorptionmeasurementshavebeenthusperformedon thereactingsolutionsinordertoevaluatethecapabilityofcupric solutionstoabsorbthelampradiationattheadoptedwavelengths (305, 313and 366nm).However, thevalues, estimated forthe molarextinctioncoefficientsofcupricaquocomplexesatpH=2.0, allowedtoruleoutthepossibilityofexistenceofanyinnerfilter effectduetothesespecies(datanotreported).

Thesearchofanexplanationoftheobservedreducedreactivity oftheoxidationofthealcoholatincreasingCu(II)concentrations revealedsomedifficultieswhichforcedtheattentiononthefact thatfortherunsconsidereda parallelincreaseofsulphateions hadtobetakenintoaccount.Thatis,sincethesaltusedtoprepare thesolutionsiscupricsulphate,itisevidentthatanyincreaseof Cu(II)resultedintooneofsulphatesandthatithasbeennecessary tounderstandtheeffectonthesystemreactivityexertedbythese species.

3.3. Effectofinitialsulphateconcentration

Somephotocatalytictestshavebeenthuscarriedoutvaryingthe initialsulphateconcentrationwithdifferentadditionsofNa2SO4

salt(Fig.6).

Theresultsobtainedintheseexperimentsindicatethatsulphate ionsexertamarkedinhibitingeffectonthephotoactivityofTiO2,by

decreasingtheoxidationrateofbenzylalcoholanditsconversion atincreasingtheinitialsulphateconcentration(fullsymbols).

Thisbehaviourcanbeascribed,asreportedbyothers[24,29,30], bothforthereactionbetweensulphatespeciesandthepositive

(5)

180 150 120 90 60 30 0 Time (min) 0.00 0.10 0.20 [Benzald ehyd e ]/ [Benzyl alco 180 150 120 90 60 30 0 Time (min) 0.00 0.20 0.40 0.60 [Bz Al cohol ]/ [Bz Alc ohol

Fig.5. EffectofinitialCu(II)concentration:Benzylalcoholconsumption(a)andbenzaldehydeproduction(b).TiO2(Aldrich,pureanatase)=200mg/l,pH=2.0,T=25◦C.

[Benzylalcohol]o=1.50mM.[Cu(II)]o:•1.12mM,1.42mM,1.84mM,2.30mM.

holes(h+)withtheformationofsulphateionradicals(SO− 4•)onthe

illuminatedtitaniumdioxidesurface:

SO24−+h+→SO−4• (r3)

andforaradicalscavengingeffectofsulphateions:

SO24−+HO•→SO−4•+HO− (r4)

SO−4•speciesarereportedtobelessreactivethanthehydroxyl radicalstowardsorganicmolecules[24].

Inanycase,asreportedbyAbdullahandcoworkers[31],a cat-alystdeactivation,bytheadsorbedsulphateionswhichcanblock theTiO2activesites,cannotberuledout.

Theselectivitytobenzaldehydewhichincreasedatincreasing sulphateconcentration(emptysymbols)confirmsthecapabilityof sulphateionstoscavengeveryreactiveandunselectivehydroxyl radicals. 150 120 90 60 30 0 Time (min) 0.00 0.20 0.40 0.60 0.80 1.00 [Bz Alcoho l]/[ Bz Alco hol]o 0.00 0.20 0.40 0.60 0.80 1.00 [B en zald e hyde ]/[Bz A lc oh ol ]o

Fig. 6. Effect of initial sulphate concentration: [Benzyl alcohol]o=1.50mM.

[Cu(II)]o=1.15mM.

TiO2(Aldrich, pureanatase)=200mg/l. pH=2.0.T=25◦C.Fullsymbols: benzyl

alcoholconsumption,emptysymbols:benzaldehydeproduction.[SO2−4 ]o:(•,)

1.15mM;(,)1.90mM;(,)2.40mM.

Therefore,theresultsreportedinFig.5couldnotbeattributed onlytoaneffectofCu(II)concentrationbutalsotoacombination ofthelatterandtheconcentrationofsulphateions.Inparticular, thenegativeeffectofsulphateonthesystemreactivityprevailed overtheeffectexertedbyCu(II).

3.4. EffectofTiO2load

The effect of initial TiO2 loadwas successively investigated

bycarrying out someoxidation experimentsin which different amountsofthephotocatalystperlitrewereaddedtothereacting solutions(Figs.7aandb).

Asexpected,anincreaseofthecatalystloadfrom55mg/l to 200mg/lresultsintoamarkedincreaseofthesystemreactivity withthehalf-lifetimeforthesubstraterangingrespectivelyfrom 240minto60min.AnincreaseofTiO2load,forvalueshigherthan

200mg/l,doesnotleadtoanincreaseofsystemreactivityprobably duetoscatteringandscreeningofradiationbytheexcessparticles, whichmaskpartofthephotosensitivesurface[26,32].

3.5. EffectofpH

Fig.8aandbreporttheresultsobtainedvaryingthepHofthe solution,intherange2.0–4.0.Duringthetests,increasingthepH from2.0to4.0,adecreaseofbenzylalcoholconsumptionand ben-zaldehydeformationratesoccurred.Theseresultshavetwomain causes.Firstofall,TiO2surfacemaybecharacterizedbyan

ampho-tericcharacter,thatiseitherpositiveornegativechargecouldbe presentonitasfunctionofpH:

≡TiOH+2  ≡TiOH+H+ (r5)

≡TiOH ≡TiO−+H+ (r6)

ThepH’svalueatwhichTiO2hasanetzerosurfacechargeis

definedpHzpc.ThesurfacehasanetpositivechargeforpH<pHzpc,

whereasforpH>pHzpc,thesurfacehasanetnegativecharge.

Itcouldbesupposed,accordingtothepHzpcequalto4.2forthe

adoptedTiO2Aldrichsample[22],thatanincreaseofthepHfrom

2.0to4.0reducestheconcentrationofpositivechargesonthe cat-alystsurfacepartiallyinhibitingtheadsorption(andthereactivity) ofbenzylalcohol(pKa=15.2[25]).

(6)

248 R.Marottaetal./ChemicalEngineeringJournal172 (2011) 243–249 300 270 240 210 180 150 120 90 60 30 0 Time (min) 0.00 0.20 0.40 0.60 0.80 1.00 [B z Alcohol]/[B z Alcoho l]o

(a)

300 270 240 210 180 150 120 90 60 30 0 Time (min) 0.00 0.10 0.20 0.30 0.40 [Benza ldehyde] /[B z Alcohol]o

(b)

Fig.7. EffectofinitialTiO2load.Benzylalcoholconsumption(a)andbenzaldehydeproduction(b).[Benzylalcohol]o=1.50mM.[Cu(II)]o=1.50mM.pH=2.0.T=25◦C.TiO2

(Aldrich,pureanatase):•55mg/l,100mg/l,150mg/l,200mg/l.

Ontheotherhand,sincephosphoricacidhasbeenusedtoadjust thepHofthereactingsolutions,inthepHrange2.0–4.0,the preva-lentspeciespresentisH2PO−4.SincethecapabilityofH2PO−4 ionto

reactwiththepositiveholesformedonthecatalystafterradiation iswellknown[23]:

H2PO−4+h+→H2PO4• (r7)

itisclearthatforanyincreaseofpHresultingintoahigher concen-trationofthision,amarkedinhibitionofthedirectoxidationofthe substratecouldbeexpected.Inordertoconfirmthesehypothesis, somefurtherphoto-oxidationtestshavebeenperformed,withand withoutanadditionofNaH2PO4(2.44mM)salt,onbenzylalcohol

solutions(1.60mM),atpH=2.0(regulatedwithH3PO4),inthe

pres-enceofTiO2(200mg/l,Aldrich,pureanatase)andaninitial[Cu(II)]

equalto1.15mM(datanotshown).After120minofreaction,when Cu(II)hasbeencompletelyreducedtoCu(0),benzylalcoholtotal

conversionsof55.0%(withoutNaH2PO4)and45.8%(withNaH2PO4)

havebeenachievedrespectively.Moreover,thepercentageofthe substrateconvertedintobenzaldehydehasbeen25.7%(without NaH2PO4)and32.7%(withNaH2PO4),thusindicatingacapability

ofdihydrogenphosphateionstobehaveasaradicalscavenging towardshydroxylradicals[23]:

H2PO−4 +HO•→H2PO4•+HO− (r8)

Startingfrompreviouslydiscusseddata,collectedatdifferent experimentalconditions,thefollowingsimplifiedpictorialscheme ofthemechanismfortheselectivephotooxidationofbenzylalcohol tobenzaldehydeandbenzoicacidbyTiO2photocatalysiscouldbe

depicted(Scheme2).

Theirradiationofthephotocatalyticsurfaceleadstothe forma-tionofpositiveholes(h+)inthevalenceband(VB)andelectrons

(e−)in theconductionband(CB).Firstof all,thepositive holes

180 150 120 90 60 30 0 Time (min) 0.00 0.20 0.40 0.60 0.80 1.00 [Bz Alcoho l]/[Bz Alcohol]o

(a)

180 150 120 90 60 30 0 Time (min) 0.00 0.10 0.20 0.30 0.40 [Benza ldehyde] /[B z Alcohol]o

(b)

Fig.8. EffectofpH.Benzylalcoholconsumption(a)andbenzaldehydeproduction(b).[Benzylalcohol]o=1.50mM.[Cu(II)]o=1.50mM.TiO2(Aldrich,pureanatase)=200mg/l.

(7)

Scheme2.MechanismofselectiveoxidationofbenzylalcoholbyTiO2/Cu(II)/UV.

reactwith benzyl alcohol (substrate) and benzaldehyde (inter-mediate)toproducebenzaldehydeandbenzoicacidrespectively. Surfacehydroxylradicalsarealsoformedbythereactionofwater moleculeswiththe holes.Hydroxyl radicals attackboth benzyl alcoholandbenzaldehydetoformundesiredby-products(2-and 4-hydroxybenzylalcohols,2-and4-hydroxybenzaldehyde).Finally, theholes canbetrappedbysulphateanddihydrogenphosphate ionstogeneratelessreactiveSO−4•andH2PO4•species.The

elec-trons in the conduction band reactwith Cu(II) ions which are reducedtoCu(I)andCu(0).

4. Conclusion

Thepossibility tooxidizebenzylalcohol to benzaldehydein aqueous solution, under acidic conditions, using the photocat-alyticsystemTiO2/Cu(II)/solarUVhasbeenstudiedinthepresent

work.FoursamplesofTiO2 characterizedbydifferent

crystallo-graphicformsand specificsurfaceareashavebeenusedduring the experiments. The best result found was a yield of 35% of benzaldehyde with respect of the initial benzyl alcohol. Ben-zaldehydehasbeenalsopartiallyconvertedtobenzoicacid.The presence of undesired by-products, such as 2-hydroxy-benzyl-alcohol,4-hydroxy-benzyl-alcohol,2-hydroxy-benzaldehydeand 4-hydroxy-benzaldehyde,hasbeendemonstratedandindicatedan activeproductionofsurfaceHOradicals.Attheendoftheprocess copper(II)wastotallyreducedtocopper(0),whichcouldeasilybe reoxidizedtoCu(II),inthedark,inthepresenceofoxygen.

The effect of the catalyst load, the nature of the inorganic anions(SO2−4 ,H2PO4−),theinitialCu(II)concentrationandpHof

the solution has been also investigated. The sulphate and di-hydrogen-phosphateanionsresultedtoexertanegativeeffecton thephotooxidationratesofbenzylalcoholandtobehaveas scav-engerstowardssurfaceHOradicals.Adecreaseofbenzylalcohol oxidationandbenzaldehydeformationrateshasbeenobservedby increasingthepHfrom2.0to4.0.

Acknowledgements

TheAuthorsaregratefultoIng.LucaMicoliforhisassistanceon BETmeasurements.

References

[1] K.Kabra,R.Chaudhary,R.L.Sawhney,Treatmentofhazardousorganicand inor-ganiccompoundsthroughaqueous-phasephotocatalysis:areview,Ind.Eng. Chem.Res.43(2004)7683–7696.

photocatalysts,J.Photochem.Photobiol.C:Photochem.Rev.9(2008)157–170. [6]S.Higashimoto,N.Kitao,N.Yoshida,T.Sakura,M.Azuma,H.Ohue,Y.Sakata, Selectivephotocatalyticoxidationofbenzylalcoholanditsderivativesinto cor-respondingaldehydesbymolecularoxygenontitaniumdioxideundervisible lightirradiation,J.Catal.266(2)(2009)279–285.

[7]S.Higashimoto,N.Suetsugu,M.Azuma,H.Ohue,Y.Sakata,Efficientand selec-tiveoxidationofbenzylicalcoholbyO2intocorrespondingaldehydesonaTiO2

photocatalystundervisiblelightirradiation:Effectofphenyl-ringsubstitution onthephotocatalyticactivity,J.Catal.274(2010)76–83.

[8]R.Gao,A.Safrany,J.Rabani,ReactionsofTiO2excesselectroninnanocrystallite

aqueoussolutionsstudiedinpulseandgamma-radiolyticsystems,Radiat.Phys. Chem.67(2003)25–39.

[9] M.I.Litter,Heterogeneousphotocatalysistransitionmetalionsin photocat-alyticsystems,Appl.Catal.B:Environ.23(1999)89–114.

[10] G.Palmisano,S.Yurdakal,V.Augugliaro,V.Loddo,L.Palmisano,Photocatalytic selectiveoxidationof4-methoxybenzylalcoholtoaldehydeinaqueous sus-pensionofhome-preparedtitaniumdioxidecatalyst,Adv.Synth.Catal.349 (2007)964–970.

[11]V.Augugliaro,T.Caronna,V.Loddo,G.Marcì,L.Palmisano,S.Yurdakal, Oxi-dationofaromaticalcoholsinirradiatedaqueoussuspensionsofcommercial andhome-preparedrutileTiO2:aselectivitystudy,Chem.Eur.J.14(2008)

4640–4646.

[12]S.W.Zou,C.W.How,J.P.Chen,Photocatalytictreatmentofwastewater contam-inatedwithorganicwasteandcopperionfromsemiconductorindustry,Ind. Eng.Chem.Res.46(2007)6566–6571.

[13]K.Kabra,R.Chaudhary,R.L.Sawhney,EffectofpHonsolarphotocatalytic reduc-tionanddepositionofCu(II),Ni(II),Pb(II)andZn(II):speciationmodellingand reactionkinetics,J.Hazard.Mater.149(2007)680–685.

[14] M.Canterino,I.DiSomma,R.Marotta,R.Andreozzi,Kineticinvestigationof Cu(II)ionsphotoreductioninpresenceoftitaniumdioxideandformicacid, WaterRes.42(2008)4498–4506.

[15]N.S.Foster,R.D.Noble,C.A.Koval,Reversiblephotoreductivedepositionand oxidativedissolutionofcopperionsintitaniumdioxideaqueoussuspensions, Environ.Sci.Technol.27(2)(1993)350–356.

[16]N.S.Foster,A.N.Lancaster,R.D.Noble,C.A.Koval,Theeffectoforganichole scavengeronthephotodepositionofcopperintitaniumdioxidesuspensions, Ind.Eng.Chem.Res.34(1995)3865–3871.

[17] J.W.M.Jacobs,F.W.H.Kampers,J.M.G.Rikken,C.W.T.Bulle-Lieuwma,D.C. Kon-ingsberger,CopperphotodepositiononTiO2studiedwithHrEMandEXAFS,J.

Electrochem.Soc.136(1989)2914–2923.

[18] M.Bideau,B.Claudel,L.Faure,M.Rachimoellah,Photooxidationofformicacid byoxygeninthepresenceoftitaniumdioxideanddissolvedcopperions: oxy-gentransferandreactionkinetics,Chem.Eng.Commun.93(1990)167–179. [19]S.Morishita,PhotoelectrochemicaldepositionofcopperonTiO2particles.

Gen-erationofcopperpatternswithoutphotoresists,Chem.Lett.(1992)1979–1982. [20] Ullmann’sEncyclopediaofIndustrialChemistry,sixthed.Wiley-VCH,

Wein-heim,2005.

[21]G.FattimaAl-ZahraGassima,N.AhmedAlkhateebb,H.FalahHu,Photocatalytic oxidationofbenzylalcoholusingpureandsensitizedanatase,Desalination209 (2007)342–349.

[22]J.Ryu,W.Choi,Substrate-specificphotocatalyticactivitiesofTiO2and

multi-activitytestforwatertreatmentapplication,Environ.Sci.Technol.42(2008) 294–300.

[23]S.Ahmed,M.G.Rasul,N.MartensWayde,R.Brown,M.A.Hashib,Heterogeneous photocatalyticdegradationofphenolsinwastewater:areviewoncurrent sta-tusanddevelopments,Desalination261(2010)3–18.

[24] C.Hu,T.Yuchao,L.Lanyu,H.Zhengping,W.Yizhong,T.Hongxiao,Effectsof inorganicanionsonphotoactivityofvariousphotocatalystsunderdifferent conditions,J.Chem.Technol.Biotechnol.79(2004)247–252.

[25]F.M.Menger,M.Ladika,Originofrateaccelerationsinanenzymemodel:the p-nitrophenylestersyndrome,J.Am.Chem.Soc.109(1987)3145–3146. [26]J.M.Hermann,Heterogeneousphotocatalysis:stateoftheartandpresent

appli-cations,Top.Catal.34(1–4)(2005)49–65.

[27]R.Long,Y.Dai,B.Huang,Structuralandelectronicpropertiesofiodine-doped anataseandrutileTiO2,Comput.Mater.Sci.45(2009)223–228.

[28]H.A.Schwarz,R.W.Dodsonj,Equilibriumbetweenhydroxylradicalsand thal-lium(II)andtheoxidationpotential ofOH(aq), J. Phys.Chem.88(1984) 3643–3647.

[29]O.Carp,C.L.Huisman,A.Reller,Photoinducedreactivityoftitaniumdioxide, Prog.SolidStateChem.32(2004)33–177.

[30]M.Ziegmann,T.Doll,F.H.Frimmel,Matrixeffectsonthephotocatalytical degra-dationofdichloroaceticacidandatrazineinwater,ActaHydrochim.Hydrobiol. 34(2006)146–154.

[31]M.Abdullah,G.K.C.Low,R.W.Matthews,Effectsofcommoninorganicanionson ratesofphotocatalyticoxidationoforganiccarbonoverilluminatedtitanium dioxide,J.Phys.Chem.94(1990)6820–6825.

[32] D.Vione,C.Minero,V.Maurino,M.E.Carlotti,T.Picatonotto,E.Pelizzetti, DegradationofphenolandbenzoicacidinthepresenceofaTiO2-based

Riferimenti

Documenti correlati

Canopy-forming macroalgae were experimentally removed, and the structure (abun- dance and distribution) of associated algal assemblages (in terms of morpho-functional groups)

From available references we can mention some investigations devoted to modelling and performance evaluation of solar domestic hot water systems [2], investigation of

The concentrations of Cr and Fe in the sea water at Gresik coastal area was exceeded quality standard based on the Ministry of Environment Regulation Number 51 The year 2004

This value was converted to average daily water consumption values and then compared with guidelines for selection of water meter diameters from MPWiK in Włocławek – Variant I,

In una prospettiva puramente diacronica, la storia degli Hymni sinesiani è costituita, se mi è consentita questa estrema, ma credo efficace semplificazione, da

Italia e nel Diritto Privato Europeo” – Ciclo XXII. - TESI DI

In conclusion conceptual links between the rate of recombination of charge carriers, their energetic distribu- tion and mode of transport are used to account for the

delle figure opera di Giuseppe Bossi e ai valenti pittori che seguirono i loro consigli», a Villa Melzi «le arti hanno fatto ogni prova per ingenti- lire gli interni», si legge in