• Non ci sono risultati.

Measurement of the isolated prompt photons production cross section in pp collisions at √s=7TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Measurement of the isolated prompt photons production cross section in pp collisions at √s=7TeV"

Copied!
15
0
0

Testo completo

(1)

Measurement of the Isolated Prompt Photon Production Cross Section

in pp Collisions at

p

ffiffiffi

s

¼ 7 TeV

V. Khachatryan et al.* (CMS Collaboration)

(Received 3 December 2010; revised manuscript received 15 January 2011; published 23 February 2011) The differential cross section for the inclusive production of isolated prompt photons has been measured as a function of the photon transverse energy ET in pp collisions atpffiffiffis¼ 7 TeV using data recorded by the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 2:9 pb1. Photons are required to have a pseudorapidity jj < 1:45 and E

T>21 GeV, covering the

kinematic region0:006 < xT<0:086. The measured cross section is found to be in agreement with

next-to-leading-order perturbative QCD calculations.

DOI:10.1103/PhysRevLett.106.082001 PACS numbers: 13.85.Qk, 12.38.Bx

The measurement of isolated prompt photon production in proton-proton (pp) collisions provides a test of pertur-bative quantum chromodynamics (pQCD) and the possi-bility to constrain the parton distribution functions (PDF) of the proton. Such a measurement complements deep-inelastic scattering, Drell-Yan pair production, and jet production measurements [1–3]. At the Large Hadron Collider (LHC) [4], a significant increase of center-of-mass energy with respect to previous collider experiments [5–9] allows the exploration of new kinematic regions in the hard-interaction processes in hadron-hadron collisions [10]. Isolated prompt photon production also represents a background to searches for new phenomena involving photons in the final state.

In high-energy pp collisions, single prompt photons are produced directly in qg Compton scattering and qq anni-hilation, and in the fragmentation of partons with large transverse momentum. Photons are also produced in the decay of hadrons, which can mimic prompt production. This background, mostly from the decays of energetic 0 and  mesons, can be reduced by imposing isolation criteria on the photon candidates.

This Letter presents a measurement of the differential production cross section of isolated prompt photons as a function of the photon transverse energy ET in pp colli-sions at pffiffiffis¼ 7 TeV. The analyzed data sample corre-sponds to 2:9  0:3 pb1 of integrated luminosity, as recorded by the CMS detector at the LHC [11]. Isolated prompt photons with a pseudorapidity jj < 1:45 and ET>21 GeV are studied. Here, ¼  ln½tanð=2Þ and ET ¼ EsinðÞ, where E is the photon energy and

 is the polar angle of the photon momentum measured

with respect to the counterclockwise beam direction. This measurement exploits the difference between the electro-magnetic shower profiles of prompt photons and of photon pairs from neutral-meson decays.

Photons are detected in the lead tungstate (PbWO4) crystal electromagnetic calorimeter (ECAL), covering jj < 3:0, comprising barrel and end cap sections. The analysis presented in this Letter is restricted to the barrel section, which covers jj < 1:479. Light produced in the crystals is read out by avalanche photodiodes (APD) in the ECAL barrel. The ECAL barrel granularity is    ¼ 0:0174  0:0174, where  is the azimu-thal angle measured with respect to the beam direction. The ECAL has an ultimate energy resolution better than 0.5% for unconverted photons with transverse energies above 100 GeV [12]. In 2010 collision data, for ET> 20 GeV, this resolution is already better than 1% in the barrel [13]. Surrounding the ECAL there is a brass and scintillator sampling hadron calorimeter (HCAL), covering jj < 3:0. For jj < 1:479, the calorimeter modules are arranged in projective towers with a segmentation of   ¼ 0:0870  0:0870. The ECAL and HCAL surround a tracking system with multiple silicon pixel and microstrip layers, covering jj < 2:5. Both the tracker and the calo-rimeters are immersed in a 3.8 T axial magnetic field. A detailed description of the CMS detector can be found in Ref. [14].

Photons are reconstructed from clusters of energy de-posited in the ECAL, using the same algorithm and gran-ularity at the trigger level and in the offline analysis. Energy deposits within jj < 0:304 and jj < 0:044 are grouped into clusters [15]. The clustering algorithm efficiently reconstructs the energy of photons that convert in the material in front of the ECAL. The clustered energy is corrected taking into account interactions in the material in front of the ECAL and electromagnetic shower contain-ment [16]; the correction is parametrized as a function of cluster size, , ET, and is on average 1%. The triggers used

to collect the analyzed data sample require the presence of

*Full author list given at the end of the article.

Published by American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

at least one reconstructed electromagnetic cluster with a minimum transverse energy of 20 or 25 GeV. The trigger is fully efficient for ET>21 GeV and jj < 1:45, defining

the phase space of the measurement. Depending on the LHC instantaneous luminosity, rate-reduction factors were applied to the triggers at 20 GeV. Consequently, photons with ET <26 GeV are taken from a restricted data set having an integrated luminosity of 2:1  0:2 pb1. No photon isolation criteria are applied at the trigger level.

The event selection requires at least one reconstructed primary interaction vertex consistent with a pp collision [17]. The time of the ECAL signals is required to be compatible with that of collision products [18]. Topological selection criteria are used to suppress direct interactions in the ECAL APDs [19]. The residual contamination has an effect smaller than 0.2% on the measured cross section over the entire ET range consid-ered. Contamination from noncollision backgrounds is estimated to be negligible [16].

Photon candidates are built from ECAL energy clusters fully contained in the barrel section. The photon candidate pseudorapidity is corrected for the position of the primary interaction vertex. The absolute photon energy scale is determined with electrons from reconstructed Z-boson decays with an uncertainty estimated to be less than 1%. Consistent results are obtained with low-energy photons from 0 decays. The linearity of the response of detector and electronics has been measured with laser light and test beams, to a precision better than 1% in the energy range probed in this Letter [13]. Showers initiated by charged hadrons are rejected by requiring EHCAL=E<0:05, where EHCAL is the sum of energy in the HCAL towers within R <0:15, with R2 ¼ ð  Þ2þ ð  Þ2. Electrons

are rejected by requiring the absence of hits in the first two layers of the pixel detector that would be consistent with an electron track matching the observed location and energy of the photon candidate (pixel veto requirement).

The photon candidates must satisfy three isolation requirements that reject photons produced in hadron decays: (1)IsoTRK<2 GeV=c, where IsoTRK is the sum of the pT of tracks compatible with the primary event

vertex in an annulus 0:04 < R < 0:40, excluding a rectangular strip of    ¼ 0:015  0:400 to remove the photon’s own energy if it converts into an eþe pair; (2) IsoECAL<4:2 GeV, where IsoECAL is the transverse energy deposited in the ECAL in an annulus 0:06 < R < 0:40, excluding a rectangular strip of    ¼ 0:04  0:40; and (3) IsoHCAL<2:2 GeV, where

IsoHCAL is the transverse energy deposited in the HCAL

in an annulus 0:15 < R < 0:40. The requirements were designed with two other objectives in mind. First, the use of relatively loose photon identification and isolation se-lection criteria reduces the dependence of the results on the details of the simulation of the detector noise, the under-lying event, and event pile-up. Second, the shape of the

isolation regions is designed to allow the use of electrons to determine the efficiency of the isolation requirements in data. The isolation requirements also reduce the uncer-tainty on the signal due to the knowledge of the photon fragmentation functions. In total, 4  105 photon candi-dates fulfill the selection criteria.

While the isolation requirements remove the bulk of the neutral-meson background, a substantial contribution re-mains, mainly caused by fluctuations in the fragmentation of partons, where neutral mesons carry most of the energy and are isolated. A modified second moment of the elec-tromagnetic energy cluster about its mean  position, ,

is used to measure the isolated prompt photon yield. It is calculated as 2¼ X25 i¼1 wiði Þ2= X25 i¼1 wi;

where wi¼ maxð0; 4:7 þ lnðEi=EÞÞ, Eiis the energy of the

ith crystal in a group of5  5 centered on the one with the highest energy, and i¼ ^i , where ^iis the  index

of the ith crystal and ¼ 0:0174; E is the total energy of the group and  the average  weighted by wiin the same

group [20]. Since  expresses the extent in  of the

cluster, it discriminates between clusters belonging to iso-lated prompt photons, for which the  distribution is

very narrow and symmetric, and photons produced in hadron decays, for which the distribution is dominated by a long tail towards higher values. Given the axial configu-ration of the CMS magnetic field, interactions with the material in front of the ECAL have a small influence on the shower profile along the  direction, such that  is not

affected by uncertainties on the modeling of such effects. The mean of the distributions is found to be indepen-dent of the number of reconstructed interaction vertices, and therefore it does not show sensitivity to pileup interactions.

The isolated prompt photon yield is estimated with a binned extended maximum likelihood fit to the 

dis-tribution with the expected signal and background compo-nents. This is performed in each ETbin usingMINUIT[21]. The signal component shape is obtained from photon events generated with PYTHIA 6.420 [22] and the D6T parameter set [23], and simulated with GEANT 4 [24]. The distribution of electrons from Z-boson decays is

observed to be shifted when comparing data and simulated events. The shift is þð8  3Þ  105 and corresponds to 0.9% of the average of the simulated photon values, which are corrected for the observed shift. The background component shape is extracted from data by taking the 

distribution of events in a background-enriched isolation sideband defined by requiring 2 < IsoTRK<5 GeV=c, while keeping all other selection criteria unchanged. This choice provides a sufficient number of events while min-imizing the bias to the distribution due to the positive

(3)

correlation between  and IsoTRK. Both signal and

background shapes are obtained separately for each ET bin. Figure 1 illustrates the result of the two-component fit for the45 < ET <50 GeV bin, which is representative of the fits in all ETbins. The isolated prompt photon signal yield, N, is extracted with this fitting procedure. For

<0:01, the fraction of isolated prompt photons in

data after full selection increases from 38% at ET ¼ 25 GeV to 80% at E

T ¼ 100 GeV.

The differential cross section as a function of ET is defined as

d2=dETd ¼ N=ðL U  E T Þ;

whereET is the size of the ET bin,¼ 2:9, L is the

integrated luminosity, and U denotes bin-by-bin correc-tions that account for ET reconstruction effects and finite

detector resolution in  and isolation quantities. The

overall efficiency  is the product of the photon trigger, reconstruction, and selection efficiencies. The trigger is fully efficient for ET>21 GeV and jj < 1:45, as

pre-viously mentioned. The efficiency of the isolation criteria is measured in data using an electron sample from Z-boson decays and is found to be higher than in simulation by ¼ 1:035  0:017ðstat þ systÞ. The photon

reconstruc-tion and selecreconstruc-tion efficiencies are determined fromPYTHIA events with prompt photons and are scaled by . The estimated efficiency is ¼ 0:916  0:034ðstat þ systÞ and does not change appreciably with ET or . Using

events generated with PYTHIA, the values ofU are calcu-lated as a function of ET for prompt photons with jj < 1:45 and particle-level isolation less than 5 GeV.

The latter is defined as the sum of the pT of simulated particles within R <0:4. The resulting values of U decrease from 1.01 to 0.97 as ET increases and are listed in TableI.

The total systematic uncertainty on the measured cross section includes contributions from the uncertainties in the shapes of the  distributions of signal and background,

the efficiency, the photon energy scale, the binning of the distributions, and theU corrections. The largest

con-tribution is due to the limited knowledge of the background component shape, which affects the measurement for two reasons. First, photon candidates selected from the isola-tion sideband have more associated activity in the isolaisola-tion region than the true background. This effect is investigated by comparing the sideband and true  distributions in simulated dijet events. Events from the sideband empha-size the tail of the background distribution, such that the cross section values extracted using the true back-ground  distribution are systematically lower by 15% for ET<85 GeV and 7% otherwise. Second, the sideband

η η σ 0.005 0.01 0.015 0.02 0.025 0.03 candidates / 0.001γ 0 500 1000 1500 2000 2500 3000 Data Fit result Background component = 7 TeV s CMS -1 L = 2.9 pb < 50 GeV T γ 45 < E

FIG. 1 (color online). Measured  distribution for photons

with 45 < ET<50 GeV. The fit result (solid) and the back-ground component (dashed) are also shown.

TABLE I. Isolated prompt photon cross section for jj < 1:45 and in bins of E T.

Uncertainties in the cross sections are statistical. An additional 11% luminosity uncertainty is not included in the systematic uncertainty (third column). The last column reports the correc-tions for finite detector resolution. A correction to account for extra activity (C¼ 0:97  0:02) is applied to the theoretical predictions, as explained in the text.

ET(GeV) d2=dETd(nb/GeV) Systematic uncertainty (%) U

21–23 2:17  0:03 þ13, 16 1.01 23–26 1:39  0:02 þ13, 16 1.01 26–30 0:774  0:010 þ13, 16 1.01 30–35 0:402  0:006 þ13, 16 1.00 35–40 0:209  0:004 þ13, 16 1.00 40–45 ð124:4  2:8Þ  103 þ13, 16 1.00 45–50 ð74:0  2:1Þ  103 þ13, 16 1.00 50–60 ð40:3  1:0Þ  103 þ13, 16 1.00 60–85 ð12:36  0:35Þ  103 þ14, 16 0.99 85–120 ð2:43  0:12Þ  103 þ14, 9 0.98 120–300 ð0:188  0:013Þ  103 þ13, 9 0.97

(4)

requirements also select some prompt photons. This effect is investigated by comparing the isolation sideband  distributions of simulated samples with and without prompt photons. Samples with prompt photons enhance the peaking part of the background distribution, such that the cross section values extracted using the samples without prompt photons are systematically higher by 12%. These two effects are checked with data by changing the isolation sideband limits so as to accentuate each of them. The observed variations in the extracted cross section agree with the estimated systematic uncertainties given above. The systematic uncertainty on the cross section due to the efficiencies is3:8%, independent of ETand is dominated by the uncertainty in the efficiency of the pixel veto requirement. The full inefficiency of the pixel veto require-ment, estimated with simulated events, is assigned to the systematic uncertainty and is mostly due to the rejection of prompt photons that convert in, or before, the first layer of the pixel detector. The use of simulation to estimate this inefficiency is supported by the 10% accuracy with which the material distribution is known [25]. All the other sources of uncertainty have an effect on the measured cross section smaller than3%.

The measured isolated prompt photon cross section as a function of ET, including both statistical and total system-atic uncertainties, is reported in TableI. The 11% overall uncertainty on the integrated luminosity is considered separately. The data are shown in Fig. 2, together with next-to-leading order (NLO) pQCD predictions from

JETPHOX 1.1 [26] using the CT10 PDFs [1] and the BFG set II of fragmentation functions (FF) [27]. The renormal-ization, factorrenormal-ization, and fragmentation scales (R, F,

and f) are all set to ET. The hadronic energy surrounding

the photon is required to be at most 5 GeV within R <0:4 at the parton level. To estimate the effect of the choice of theory scales in the predictions, the three scales are varied independently and simultaneously between ET=2 and 2ET. Retaining the largest variations the predictions change by ðþ30; 22Þ% to ðþ12; 6Þ% with increasing ET. The uncertainty on the predictions due to the PDFs is estimated from the envelope of predictions obtained using three global-fit parametrizations, CT10, MSTW2008 [3], and NNPDF2.0 [2], as recommended by the PDF4LHC Working Group [28]. This uncertainty is about6% over the considered ET range. Predictions obtained using the CTEQ6.1M PDFs [29], extensively used in previous com-parisons with data, are consistent with those obtained with CT10 to within 3%. Finally, using the BFG set I of FFs instead of the BFG set II yields negligible differences in the predictions. The theoretical predictions include an addi-tional correction factor CðETÞ to account for the presence of contributions from the underlying event and parton-to-hadron fragmentation, which tend to increase the energy in the isolation cone. Using simulatedPYTHIAevents, C is determined as the ratio between the isolated fraction of the

[GeV] γ T E 20 30 40 50 60 70 80 100 200 300 [ nb / GeV ] γη d γ T / dEσ 2 d -4 10 -3 10 -2 10 -1 10 1 Data

Stat + syst uncertainty 11% luminosity uncertainty not shown ± NLO pQCD JETPHOX 1.1 CT10 PDFs / BFG-II FFs γ T = E R µ = f µ = F µ = 7 TeV s CMS -1 L = 2.9 pb | < 1.45 γ η | < 5 GeV iso T E

FIG. 2 (color online). Measured isolated prompt photon dif-ferential cross section and NLO pQCD predictions, as a function of ET. The vertical error bars show the statistical uncertainties, while the shaded areas show the statistical and systematic un-certainties added in quadrature. A correction to account for extra activity (C¼ 0:97  0:02) is applied to the theoretical predic-tions, as explained in the text. The 11% luminosity uncertainty on the data is not included.

[GeV] γ T E 20 30 40 50 60 70 80 100 200 300 Data / Theory 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 Data / JETPHOX 1.1 CT10 PDFs / BFG-II FFs Stat + syst uncertainty

11% luminosity uncertainty not shown

±

Theory scale dependence γ T < 2 E µ /2 < γ T E PDFs uncertainty = 7 TeV s CMS -1 L = 2.9 pb | < 1.45 γ η | < 5 GeV iso T E

FIG. 3 (color online). Ratio of the measured isolated prompt photon differential cross section to the NLO pQCD predictions. The vertical error bars show the statistical uncertainties, while the shaded areas show the statistical and systematic uncertainties added in quadrature. The 11% luminosity uncertainty on the data is not included. The two sets of curves show the uncertainties on the theoretical predictions due to their dependency on the renormalization, factorization, and fragmentation scales, and on the PDFs. A correction to account for extra activity (C¼ 0:97  0:02) is applied to the theoretical predictions, as explained in the text.

(5)

total prompt photon cross section at the hadron level and the same fraction obtained after turning off both multiple-parton interactions and hadronization. Four different sets ofPYTHIAparameters (Z2 [30], D6T, DWT, and Perugia-0 [31]) are considered. The value C¼ 0:97  0:02 is taken as the correction, its uncertainty covering the results obtained with the different PYTHIA parameter sets. As expected, the correction reduces the predicted cross sec-tion, since the presence of extra activity results in some photons failing the isolation requirements.

Predictions from NLO pQCD are found to be in good agreement with the measured cross sections, as shown in Figs.2and3. The measured pattern is better described by the theoretical predictions than in previous measurements at lowerpffiffiffisand higher xT ¼ 2ET=

ffiffiffi s p

[8,9,32–37]. In conclusion, a measurement of the differential cross section for the production of isolated prompt photons with 21 < E

T<300 GeV and jj < 1:45 in pp collisions at

ffiffiffi s p

¼ 7 TeV has been presented. This measurement is performed in the kinematic regime 0:006 < xT<0:086, probing a previously unexplored region at low xT, and agrees with NLO pQCD predictions in the whole xT range. This measurement establishes a benchmark for photon identification and background estimation, and constrains the rate of one of the background processes affecting searches for new physics involving photons.

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administra-tive staff at CERN and other CMS institutes, and acknowl-edge support from the following: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF

(Germany); GSRT (Greece); OTKA and NKTH

(Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (U.K.); DOE and NSF (U.S.).

[1] H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, J. Pumplin, and C.-P. Yuan, Phys. Rev. D 82, 074024 (2010).

[2] R. D. Ball, L. D. Debbio, S. Forte, A. Guffanti, J. I. Latorre, J. Rojo, and M. Ubiali (NNPDF Collaboration), Nucl. Phys. B838, 136 (2010);arXiv:1002.4407.

[3] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Eur. Phys. J. C 63, 189 (2009).

[4] L. Evans and P. Bryant,JINST 3, S08001 (2008). [5] M. Diakonou et al.,Phys. Lett. B 87, 292 (1979). [6] T. Ferbel and W. R. Molzon, Rev. Mod. Phys. 56, 181

(1984).

[7] J. A. Appel et al. (UA2 Collaboration),Phys. Lett. B 176, 239 (1986).

[8] V. M. Abazov et al. (D0 Collaboration),Phys. Lett. B 639, 151 (2006);658, 285(E) (2008).

[9] T. Aaltonen et al. (CDF Collaboration),Phys. Rev. D 80, 111106 (2009).

[10] R. Ichou and D. d’Enterria, Phys. Rev. D 82, 014015 (2010).

[11] CMS Collaboration, Report No. CMS-PAS-EWK-10-004, 2010.

[12] P. Adzic et al.,JINST 2, P04004 (2007).

[13] CMS Collaboration, Report No. CMS-PAS-EGM-10-003, 2010.

[14] R. Adolphi et al. (CMS Collaboration),JINST 3, S08004 (2008).

[15] CMS Collaboration, Report No. CMS-TDR-008-1, 2006.

[16] CMS Collaboration, Report No. CMS-PAS-EGM-10-005, 2010.

[17] V. Khachatryan et al. (CMS Collaboration),Eur. Phys. J. C 70, 1165 (2010).

[18] S. Chatrchyan et al. (CMS Collaboration), JINST 5, T03011 (2010).

[19] CMS Collaboration, Report No. CMS-NOTE- 2010-012, 2010.

[20] T. C. Awes et al.,Nucl. Instrum. Methods Phys. Res., Sect. A 311, 130 (1992).

[21] F. James and M. Roos,Comput. Phys. Commun. 10, 343 (1975).

[22] T. Sjo¨strand, S. Mrenna, and P. Z. Skands,J. High Energy Phys. 05 (2006) 026.

[23] M. G. Albrow et al. (TeV4LHC QCD Working Group), arXiv:hep-ph/0610012.

[24] S. Agostinelli et al. (GEANT 4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

[25] CMS Collaboration, Report No. CMS-PAS-TRK-10-003, 2010.

[26] S. Catani, M. Fontannaz, J. P. Guillet, and E. Pilon,J. High Energy Phys. 05 (2002) 028.

[27] L. Bourhis, M. Fontannaz, and J. P. Guillet,Eur. Phys. J. C 2, 529 (1998).

[28] M. Botje et al. (PDF4LHC Working Group), arXiv:1101.0538.

[29] J. Pumplin, D. R. Stump, J. Huston, H.-L. Lai, P. Nadolsky, and W.-K. Tung, J. High Energy Phys. 07 (2002) 012.

[30] R. Field,arXiv:1010.3558.

[31] P. Z. Skands,arXiv:1003.4220v1, p. 284.

[32] F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 68, 2734 (1992).

[33] F. Abe et al. (CDF Collaboration),Phys. Rev. D 48, 2998 (1993).

[34] F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 73, 2662 (1994).

(6)

[35] S. Abachi et al. (D0 Collaboration),Phys. Rev. Lett. 77, 5011 (1996).

[36] B. Abbott et al. (D0 Collaboration),Phys. Rev. Lett. 84, 2786 (2000).

[37] D. E. Acosta et al. (CDF Collaboration),Phys. Rev. D 70, 074008 (2004).

V. Khachatryan,1A. M. Sirunyan,1A. Tumasyan,1W. Adam,2T. Bergauer,2M. Dragicevic,2J. Ero¨,2C. Fabjan,2 M. Friedl,2R. Fru¨hwirth,2V. M. Ghete,2J. Hammer,2,bS. Ha¨nsel,2C. Hartl,2M. Hoch,2N. Ho¨rmann,2J. Hrubec,2

M. Jeitler,2G. Kasieczka,2W. Kiesenhofer,2M. Krammer,2D. Liko,2I. Mikulec,2M. Pernicka,2H. Rohringer,2 R. Scho¨fbeck,2J. Strauss,2A. Taurok,2F. Teischinger,2W. Waltenberger,2G. Walzel,2E. Widl,2C.-E. Wulz,2 V. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3L. Benucci,4L. Ceard,4K. Cerny,4E. A. De Wolf,4X. Janssen,4

T. Maes,4L. Mucibello,4S. Ochesanu,4B. Roland,4R. Rougny,4M. Selvaggi,4H. Van Haevermaet,4 P. Van Mechelen,4N. Van Remortel,4V. Adler,5S. Beauceron,5F. Blekman,5S. Blyweert,5J. D’Hondt,5 O. Devroede,5R. Gonzalez Suarez,5A. Kalogeropoulos,5J. Maes,5M. Maes,5S. Tavernier,5W. Van Doninck,5 P. Van Mulders,5G. P. Van Onsem,5I. Villella,5O. Charaf,6B. Clerbaux,6G. De Lentdecker,6V. Dero,6A. P. R. Gay,6 G. H. Hammad,6T. Hreus,6P. E. Marage,6L. Thomas,6C. Vander Velde,6P. Vanlaer,6J. Wickens,6S. Costantini,7 M. Grunewald,7B. Klein,7A. Marinov,7J. Mccartin,7D. Ryckbosch,7F. Thyssen,7M. Tytgat,7L. Vanelderen,7

P. Verwilligen,7S. Walsh,7N. Zaganidis,7S. Basegmez,8G. Bruno,8J. Caudron,8J. De Favereau De Jeneret,8 C. Delaere,8P. Demin,8D. Favart,8A. Giammanco,8G. Gre´goire,8J. Hollar,8V. Lemaitre,8J. Liao,8O. Militaru,8 S. Ovyn,8D. Pagano,8A. Pin,8K. Piotrzkowski,8L. Quertenmont,8N. Schul,8N. Beliy,9T. Caebergs,9E. Daubie,9

G. A. Alves,10D. De Jesus Damiao,10M. E. Pol,10M. H. G. Souza,10W. Carvalho,11E. M. Da Costa,11 C. De Oliveira Martins,11S. Fonseca De Souza,11L. Mundim,11H. Nogima,11V. Oguri,11W. L. Prado Da Silva,11 A. Santoro,11S. M. Silva Do Amaral,11A. Sznajder,11F. Torres Da Silva De Araujo,11F. A. Dias,12M. A. F. Dias,12 T. R. Fernandez Perez Tomei,12E. M. Gregores,12F. Marinho,12S. F. Novaes,12Sandra S. Padula,12N. Darmenov,13,b

L. Dimitrov,13V. Genchev,13,bP. Iaydjiev,13,bS. Piperov,13M. Rodozov,13S. Stoykova,13G. Sultanov,13 V. Tcholakov,13R. Trayanov,13I. Vankov,13M. Dyulendarova,14R. Hadjiiska,14V. Kozhuharov,14L. Litov,14 E. Marinova,14M. Mateev,14B. Pavlov,14P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15C. H. Jiang,15 D. Liang,15S. Liang,15J. Wang,15J. Wang,15X. Wang,15Z. Wang,15M. Xu,15M. Yang,15J. Zang,15Z. Zhang,15

Y. Ban,16S. Guo,16W. Li,16Y. Mao,16S. J. Qian,16H. Teng,16B. Zhu,16A. Cabrera,17B. Gomez Moreno,17 A. A. Ocampo Rios,17A. F. Osorio Oliveros,17J. C. Sanabria,17N. Godinovic,18D. Lelas,18K. Lelas,18 R. Plestina,18,cD. Polic,18I. Puljak,18Z. Antunovic,19M. Dzelalija,19V. Brigljevic,20S. Duric,20K. Kadija,20 S. Morovic,20A. Attikis,21M. Galanti,21J. Mousa,21C. Nicolaou,21F. Ptochos,21P. A. Razis,21H. Rykaczewski,21

Y. Assran,22,llM. A. Mahmoud,22,mmA. Hektor,23M. Kadastik,23K. Kannike,23M. Mu¨ntel,23M. Raidal,23 L. Rebane,23V. Azzolini,24P. Eerola,24S. Czellar,25J. Ha¨rko¨nen,25A. Heikkinen,25V. Karima¨ki,25R. Kinnunen,25 J. Klem,25M. J. Kortelainen,25T. Lampe´n,25K. Lassila-Perini,25S. Lehti,25T. Linde´n,25P. Luukka,25T. Ma¨enpa¨a¨,25

E. Tuominen,25J. Tuominiemi,25E. Tuovinen,25D. Ungaro,25L. Wendland,25K. Banzuzi,26A. Korpela,26 T. Tuuva,26D. Sillou,27M. Besancon,28M. Dejardin,28D. Denegri,28B. Fabbro,28J. L. Faure,28F. Ferri,28 S. Ganjour,28F. X. Gentit,28A. Givernaud,28P. Gras,28G. Hamel de Monchenault,28P. Jarry,28E. Locci,28

J. Malcles,28M. Marionneau,28L. Millischer,28J. Rander,28A. Rosowsky,28I. Shreyber,28M. Titov,28 P. Verrecchia,28S. Baffioni,29F. Beaudette,29L. Bianchini,29M. Bluj,29,dC. Broutin,29P. Busson,29C. Charlot,29 T. Dahms,29L. Dobrzynski,29R. Granier de Cassagnac,29M. Haguenauer,29P. Mine´,29C. Mironov,29C. Ochando,29

P. Paganini,29D. Sabes,29R. Salerno,29Y. Sirois,29C. Thiebaux,29B. Wyslouch,29,eA. Zabi,29J.-L. Agram,30 J. Andrea,30A. Besson,30D. Bloch,30D. Bodin,30J.-M. Brom,30M. Cardaci,30E. C. Chabert,30C. Collard,30 E. Conte,30F. Drouhin,30C. Ferro,30J.-C. Fontaine,30D. Gele´,30U. Goerlach,30S. Greder,30P. Juillot,30M. Karim,30 A.-C. Le Bihan,30Y. Mikami,30P. Van Hove,30F. Fassi,31D. Mercier,31C. Baty,32N. Beaupere,32M. Bedjidian,32 O. Bondu,32G. Boudoul,32D. Boumediene,32H. Brun,32N. Chanon,32R. Chierici,32D. Contardo,32P. Depasse,32 H. El Mamouni,32A. Falkiewicz,32J. Fay,32S. Gascon,32B. Ille,32T. Kurca,32T. Le Grand,32M. Lethuillier,32

L. Mirabito,32S. Perries,32V. Sordini,32S. Tosi,32Y. Tschudi,32P. Verdier,32H. Xiao,32V. Roinishvili,33 G. Anagnostou,34M. Edelhoff,34L. Feld,34N. Heracleous,34O. Hindrichs,34R. Jussen,34K. Klein,34J. Merz,34

N. Mohr,34A. Ostapchuk,34A. Perieanu,34F. Raupach,34J. Sammet,34S. Schael,34D. Sprenger,34H. Weber,34 M. Weber,34B. Wittmer,34M. Ata,35W. Bender,35M. Erdmann,35J. Frangenheim,35T. Hebbeker,35A. Hinzmann,35 K. Hoepfner,35C. Hof,35T. Klimkovich,35D. Klingebiel,35P. Kreuzer,35D. Lanske,35,aC. Magass,35G. Masetti,35

(7)

M. Merschmeyer,35A. Meyer,35P. Papacz,35H. Pieta,35H. Reithler,35S. A. Schmitz,35L. Sonnenschein,35 J. Steggemann,35D. Teyssier,35M. Bontenackels,36M. Davids,36M. Duda,36G. Flu¨gge,36H. Geenen,36M. Giffels,36 W. Haj Ahmad,36D. Heydhausen,36T. Kress,36Y. Kuessel,36A. Linn,36A. Nowack,36L. Perchalla,36O. Pooth,36

J. Rennefeld,36P. Sauerland,36A. Stahl,36M. Thomas,36D. Tornier,36M. H. Zoeller,36M. Aldaya Martin,37 W. Behrenhoff,37U. Behrens,37M. Bergholz,37,vK. Borras,37A. Cakir,37A. Campbell,37E. Castro,37 D. Dammann,37G. Eckerlin,37D. Eckstein,37A. Flossdorf,37G. Flucke,37A. Geiser,37I. Glushkov,37J. Hauk,37

H. Jung,37M. Kasemann,37I. Katkov,37P. Katsas,37C. Kleinwort,37H. Kluge,37A. Knutsson,37D. Kru¨cker,37 E. Kuznetsova,37W. Lange,37W. Lohmann,37,vR. Mankel,37M. Marienfeld,37I.-A. Melzer-Pellmann,37 A. B. Meyer,37J. Mnich,37A. Mussgiller,37J. Olzem,37A. Parenti,37A. Raspereza,37A. Raval,37R. Schmidt,37,v

T. Schoerner-Sadenius,37N. Sen,37M. Stein,37J. Tomaszewska,37D. Volyanskyy,37R. Walsh,37C. Wissing,37 C. Autermann,38S. Bobrovskyi,38J. Draeger,38H. Enderle,38U. Gebbert,38K. Kaschube,38G. Kaussen,38 R. Klanner,38J. Lange,38B. Mura,38S. Naumann-Emme,38F. Nowak,38N. Pietsch,38C. Sander,38H. Schettler,38

P. Schleper,38M. Schro¨der,38T. Schum,38J. Schwandt,38A. K. Srivastava,38H. Stadie,38G. Steinbru¨ck,38 J. Thomsen,38R. Wolf,38J. Bauer,39V. Buege,39T. Chwalek,39W. De Boer,39A. Dierlamm,39G. Dirkes,39

M. Feindt,39J. Gruschke,39C. Hackstein,39F. Hartmann,39S. M. Heindl,39M. Heinrich,39H. Held,39 K. H. Hoffmann,39S. Honc,39T. Kuhr,39D. Martschei,39S. Mueller,39Th. Mu¨ller,39M. Niegel,39O. Oberst,39 A. Oehler,39J. Ott,39T. Peiffer,39D. Piparo,39G. Quast,39K. Rabbertz,39F. Ratnikov,39M. Renz,39C. Saout,39 A. Scheurer,39P. Schieferdecker,39F.-P. Schilling,39G. Schott,39H. J. Simonis,39F. M. Stober,39D. Troendle,39 J. Wagner-Kuhr,39M. Zeise,39V. Zhukov,39,fE. B. Ziebarth,39G. Daskalakis,40T. Geralis,40S. Kesisoglou,40

A. Kyriakis,40D. Loukas,40I. Manolakos,40A. Markou,40C. Markou,40C. Mavrommatis,40E. Petrakou,40 L. Gouskos,41T. J. Mertzimekis,41A. Panagiotou,41,bI. Evangelou,42C. Foudas,42P. Kokkas,42N. Manthos,42

I. Papadopoulos,42V. Patras,42F. A. Triantis,42A. Aranyi,43G. Bencze,43L. Boldizsar,43G. Debreczeni,43 C. Hajdu,43,bD. Horvath,43,gA. Kapusi,43K. Krajczar,43,wA. Laszlo,43F. Sikler,43G. Vesztergombi,43,wN. Beni,44

J. Molnar,44J. Palinkas,44Z. Szillasi,44V. Veszpremi,44P. Raics,45Z. L. Trocsanyi,45B. Ujvari,45S. Bansal,46 S. B. Beri,46V. Bhatnagar,46N. Dhingra,46M. Jindal,46M. Kaur,46J. M. Kohli,46M. Z. Mehta,46N. Nishu,46

L. K. Saini,46A. Sharma,46A. P. Singh,46J. B. Singh,46S. P. Singh,46S. Ahuja,47S. Bhattacharya,47 B. C. Choudhary,47P. Gupta,47S. Jain,47S. Jain,47A. Kumar,47R. K. Shivpuri,47R. K. Choudhury,48D. Dutta,48 S. Kailas,48S. K. Kataria,48A. K. Mohanty,48,bL. M. Pant,48P. Shukla,48P. Suggisetti,48T. Aziz,49M. Guchait,49,h

A. Gurtu,49M. Maity,49D. Majumder,49G. Majumder,49K. Mazumdar,49G. B. Mohanty,49A. Saha,49 K. Sudhakar,49N. Wickramage,49S. Banerjee,50S. Dugad,50N. K. Mondal,50H. Arfaei,51H. Bakhshiansohi,51

S. M. Etesami,51A. Fahim,51M. Hashemi,51A. Jafari,51M. Khakzad,51A. Mohammadi,51 M. Mohammadi Najafabadi,51S. Paktinat Mehdiabadi,51B. Safarzadeh,51M. Zeinali,51M. Abbrescia,52,53 L. Barbone,52,53C. Calabria,52,53A. Colaleo,52D. Creanza,52,54N. De Filippis,52,54M. De Palma,52,53A. Dimitrov,52 L. Fiore,52G. Iaselli,52,54L. Lusito,52,53,bG. Maggi,52,54M. Maggi,52N. Manna,52,53B. Marangelli,52,53S. My,52,54 S. Nuzzo,52,53N. Pacifico,52,53G. A. Pierro,52A. Pompili,52,53G. Pugliese,52,54F. Romano,52,54G. Roselli,52,53

G. Selvaggi,52,53L. Silvestris,52R. Trentadue,52S. Tupputi,52,53G. Zito,52G. Abbiendi,55A. C. Benvenuti,55 D. Bonacorsi,55S. Braibant-Giacomelli,55,56P. Capiluppi,55,56A. Castro,55,56F. R. Cavallo,55M. Cuffiani,55,56

G. M. Dallavalle,55F. Fabbri,55A. Fanfani,55,56D. Fasanella,55P. Giacomelli,55M. Giunta,55C. Grandi,55 S. Marcellini,55M. Meneghelli,55,56A. Montanari,55F. L. Navarria,55,56F. Odorici,55A. Perrotta,55A. M. Rossi,55,56 T. Rovelli,55,56G. Siroli,55,56R. Travaglini,55,56S. Albergo,57,58G. Cappello,57,58M. Chiorboli,57,58,bS. Costa,57,58

A. Tricomi,57,58C. Tuve,57G. Barbagli,59V. Ciulli,59,60C. Civinini,59R. D’Alessandro,59,60E. Focardi,59,60 S. Frosali,59,60E. Gallo,59C. Genta,59P. Lenzi,59,60M. Meschini,59S. Paoletti,59G. Sguazzoni,59A. Tropiano,59,b

L. Benussi,61S. Bianco,61S. Colafranceschi,61,xF. Fabbri,61D. Piccolo,61P. Fabbricatore,62R. Musenich,62 A. Benaglia,63,64F. De Guio,63,64,bL. Di Matteo,63,64A. Ghezzi,63,64,bM. Malberti,63,64S. Malvezzi,63 A. Martelli,63,64A. Massironi,63,64D. Menasce,63L. Moroni,63M. Paganoni,63,64D. Pedrini,63S. Ragazzi,63,64

N. Redaelli,63S. Sala,63T. Tabarelli de Fatis,63,64V. Tancini,63,64S. Buontempo,65C. A. Carrillo Montoya,65 A. Cimmino,65,66A. De Cosa,65,66M. De Gruttola,65,66F. Fabozzi,65,yA. O. M. Iorio,65L. Lista,65M. Merola,65,66

P. Noli,65,66P. Paolucci,65P. Azzi,67N. Bacchetta,67P. Bellan,67,68D. Bisello,67,68A. Branca,67R. Carlin,67,68 P. Checchia,67E. Conti,67M. De Mattia,67,68T. Dorigo,67U. Dosselli,67F. Fanzago,67F. Gasparini,67,68

U. Gasparini,67,68 P. Giubilato,67,68A. Gresele,67,69S. Lacaprara,67I. Lazzizzera,67,69M. Margoni,67,68 M. Mazzucato,67A. T. Meneguzzo,67,68L. Perrozzi,67,bN. Pozzobon,67,68P. Ronchese,67,68F. Simonetto,67,68

(8)

E. Torassa,67M. Tosi,67,68S. Vanini,67,68P. Zotto,67,68G. Zumerle,67,68U. Berzano,70C. Riccardi,70,71P. Torre,70,71 P. Vitulo,70,71M. Biasini,72,73G. M. Bilei,72B. Caponeri,72,73L. Fano`,72,73P. Lariccia,72,73A. Lucaroni,72,73,b G. Mantovani,72,73M. Menichelli,72A. Nappi,72,73A. Santocchia,72,73L. Servoli,72S. Taroni,72,73M. Valdata,72,73

R. Volpe,72,73,bP. Azzurri,74,76G. Bagliesi,74J. Bernardini,74,75T. Boccali,74,bG. Broccolo,74,76R. Castaldi,74 R. T. D’Agnolo,74,76R. Dell’Orso,74F. Fiori,74,75L. Foa`,74,76A. Giassi,74A. Kraan,74F. Ligabue,74,76T. Lomtadze,74 L. Martini,74,zA. Messineo,74,75F. Palla,74F. Palmonari,74S. Sarkar,74,76G. Segneri,74A. T. Serban,74P. Spagnolo,74

R. Tenchini,74G. Tonelli,74,75,bA. Venturi,74,bP. G. Verdini,74L. Barone,77,78F. Cavallari,77D. Del Re,77,78 E. Di Marco,77,78M. Diemoz,77D. Franci,77,78M. Grassi,77E. Longo,77,78G. Organtini,77,78A. Palma,77,78

F. Pandolfi,77,78,bR. Paramatti,77S. Rahatlou,77,78N. Amapane,79,80R. Arcidiacono,79,81S. Argiro,79,80 M. Arneodo,79,81C. Biino,79C. Botta,79,80,bN. Cartiglia,79R. Castello,79,80M. Costa,79,80N. Demaria,79 A. Graziano,79,80,bC. Mariotti,79M. Marone,79,80S. Maselli,79E. Migliore,79,80G. Mila,79,80V. Monaco,79,80

M. Musich,79,80M. M. Obertino,79,81N. Pastrone,79M. Pelliccioni,79,80,bA. Romero,79,80M. Ruspa,79,81 R. Sacchi,79,80V. Sola,79,80A. Solano,79,80A. Staiano,79D. Trocino,79,80A. Vilela Pereira,79,80,bF. Ambroglini,82,83 S. Belforte,82F. Cossutti,82G. Della Ricca,82,83B. Gobbo,82D. Montanino,82,83A. Penzo,82S. G. Heo,84S. Chang,85 J. Chung,85D. H. Kim,85G. N. Kim,85J. E. Kim,85D. J. Kong,85H. Park,85D. Son,85D. C. Son,85Zero Kim,86 J. Y. Kim,86S. Song,86S. Choi,87B. Hong,87M. Jo,87H. Kim,87J. H. Kim,87T. J. Kim,87K. S. Lee,87D. H. Moon,87 S. K. Park,87H. B. Rhee,87E. Seo,87S. Shin,87K. S. Sim,87M. Choi,88S. Kang,88H. Kim,88C. Park,88I. C. Park,88

S. Park,88G. Ryu,88Y. Choi,89Y. K. Choi,89J. Goh,89J. Lee,89S. Lee,89H. Seo,89I. Yu,89M. J. Bilinskas,90 I. Grigelionis,90M. Janulis,90D. Martisiute,90P. Petrov,90T. Sabonis,90H. Castilla Valdez,91E. De La Cruz Burelo,91

R. Lopez-Fernandez,91A. Sa´nchez Herna´ndez,91L. M. Villasenor-Cendejas,91S. Carrillo Moreno,92 F. Vazquez Valencia,92H. A. Salazar Ibarguen,93E. Casimiro Linares,94A. Morelos Pineda,94M. A. Reyes-Santos,94

P. Allfrey,95D. Krofcheck,95P. H. Butler,96R. Doesburg,96H. Silverwood,96M. Ahmad,97I. Ahmed,97 M. I. Asghar,97H. R. Hoorani,97W. A. Khan,97T. Khurshid,97S. Qazi,97M. Cwiok,98W. Dominik,98K. Doroba,98

A. Kalinowski,98M. Konecki,98J. Krolikowski,98T. Frueboes,99R. Gokieli,99M. Go´rski,99M. Kazana,99 K. Nawrocki,99K. Romanowska-Rybinska,99M. Szleper,99G. Wrochna,99P. Zalewski,99N. Almeida,100 A. David,100P. Faccioli,100P. G. Ferreira Parracho,100M. Gallinaro,100P. Martins,100P. Musella,100A. Nayak,100 P. Q. Ribeiro,100J. Seixas,100P. Silva,100J. Varela,100,bH. K. Wo¨hri,100I. Belotelov,101P. Bunin,101M. Finger,101

M. Finger, Jr.,101I. Golutvin,101A. Kamenev,101V. Karjavin,101G. Kozlov,101A. Lanev,101P. Moisenz,101 V. Palichik,101V. Perelygin,101S. Shmatov,101V. Smirnov,101A. Volodko,101A. Zarubin,101N. Bondar,102 V. Golovtsov,102Y. Ivanov,102V. Kim,102P. Levchenko,102V. Murzin,102V. Oreshkin,102I. Smirnov,102 V. Sulimov,102L. Uvarov,102S. Vavilov,102A. Vorobyev,102Yu. Andreev,103S. Gninenko,103N. Golubev,103 M. Kirsanov,103N. Krasnikov,103V. Matveev,103A. Pashenkov,103A. Toropin,103S. Troitsky,103V. Epshteyn,104

V. Gavrilov,104V. Kaftanov,104,aM. Kossov,104,bA. Krokhotin,104N. Lychkovskaya,104G. Safronov,104 S. Semenov,104V. Stolin,104E. Vlasov,104A. Zhokin,104E. Boos,105M. Dubinin,105,iL. Dudko,105A. Ershov,105 A. Gribushin,105O. Kodolova,105I. Lokhtin,105S. Obraztsov,105S. Petrushanko,105L. Sarycheva,105V. Savrin,105 A. Snigirev,105V. Andreev,106M. Azarkin,106I. Dremin,106M. Kirakosyan,106S. V. Rusakov,106A. Vinogradov,106 I. Azhgirey,107S. Bitioukov,107V. Grishin,107,bV. Kachanov,107D. Konstantinov,107A. Korablev,107V. Krychkine,107

V. Petrov,107R. Ryutin,107S. Slabospitsky,107A. Sobol,107L. Tourtchanovitch,107S. Troshin,107N. Tyurin,107 A. Uzunian,107A. Volkov,107P. Adzic,108M. Djordjevic,108D. Krpic,108J. Milosevic,108M. Aguilar-Benitez,109

J. Alcaraz Maestre,109P. Arce,109C. Battilana,109E. Calvo,109M. Cepeda,109M. Cerrada,109N. Colino,109 B. De La Cruz,109C. Diez Pardos,109C. Fernandez Bedoya,109J. P. Ferna´ndez Ramos,109A. Ferrando,109J. Flix,109

M. C. Fouz,109P. Garcia-Abia,109O. Gonzalez Lopez,109S. Goy Lopez,109J. M. Hernandez,109M. I. Josa,109 G. Merino,109J. Puerta Pelayo,109I. Redondo,109L. Romero,109J. Santaolalla,109C. Willmott,109C. Albajar,110

G. Codispoti,110J. F. de Troco´niz,110J. Cuevas,111J. Fernandez Menendez,111S. Folgueras,111

I. Gonzalez Caballero,111L. Lloret Iglesias,111J. M. Vizan Garcia,111J. A. Brochero Cifuentes,112I. J. Cabrillo,112 A. Calderon,112M. Chamizo Llatas,112S. H. Chuang,112J. Duarte Campderros,112M. Felcini,112,jM. Fernandez,112 G. Gomez,112J. Gonzalez Sanchez,112C. Jorda,112P. Lobelle Pardo,112A. Lopez Virto,112J. Marco,112R. Marco,112

C. Martinez Rivero,112F. Matorras,112F. J. Munoz Sanchez,112J. Piedra Gomez,112,kT. Rodrigo,112 A. Ruiz Jimeno,112L. Scodellaro,112M. Sobron Sanudo,112I. Vila,112R. Vilar Cortabitarte,112D. Abbaneo,113

E. Auffray,113G. Auzinger,113P. Baillon,113A. H. Ball,113D. Barney,113A. J. Bell,113,aaD. Benedetti,113 C. Bernet,113,cW. Bialas,113P. Bloch,113A. Bocci,113S. Bolognesi,113H. Breuker,113G. Brona,113K. Bunkowski,113

(9)

T. Camporesi,113E. Cano,113G. Cerminara,113T. Christiansen,113J. A. Coarasa Perez,113B. Cure´,113 D. D’Enterria,113A. De Roeck,113F. Duarte Ramos,113A. Elliott-Peisert,113B. Frisch,113W. Funk,113A. Gaddi,113

S. Gennai,113G. Georgiou,113H. Gerwig,113D. Gigi,113K. Gill,113D. Giordano,113F. Glege,113 R. Gomez-Reino Garrido,113M. Gouzevitch,113P. Govoni,113S. Gowdy,113L. Guiducci,113M. Hansen,113 J. Harvey,113J. Hegeman,113B. Hegner,113C. Henderson,113G. Hesketh,113H. F. Hoffmann,113A. Honma,113 V. Innocente,113P. Janot,113E. Karavakis,113P. Lecoq,113C. Leonidopoulos,113C. Lourenc¸o,113A. Macpherson,113

T. Ma¨ki,113L. Malgeri,113M. Mannelli,113L. Masetti,113F. Meijers,113S. Mersi,113E. Meschi,113R. Moser,113 M. U. Mozer,113M. Mulders,113E. Nesvold,113,bM. Nguyen,113T. Orimoto,113L. Orsini,113E. Perez,113

A. Petrilli,113A. Pfeiffer,113M. Pierini,113M. Pimia¨,113G. Polese,113A. Racz,113G. Rolandi,113,bb T. Rommerskirchen,113C. Rovelli,113,lM. Rovere,113H. Sakulin,113C. Scha¨fer,113C. Schwick,113I. Segoni,113 A. Sharma,113P. Siegrist,113M. Simon,113P. Sphicas,113,mD. Spiga,113M. Spiropulu,113,iF. Sto¨ckli,113M. Stoye,113

P. Tropea,113A. Tsirou,113A. Tsyganov,113G. I. Veres,113,wP. Vichoudis,113M. Voutilainen,113W. D. Zeuner,113 W. Bertl,114K. Deiters,114W. Erdmann,114K. Gabathuler,114R. Horisberger,114Q. Ingram,114H. C. Kaestli,114

S. Ko¨nig,114D. Kotlinski,114U. Langenegger,114F. Meier,114D. Renker,114T. Rohe,114J. Sibille,114,n A. Starodumov,114,oP. Bortignon,115L. Caminada,115,pZ. Chen,115S. Cittolin,115G. Dissertori,115M. Dittmar,115

J. Eugster,115K. Freudenreich,115C. Grab,115A. Herve´,115W. Hintz,115P. Lecomte,115W. Lustermann,115 C. Marchica,115,pP. Martinez Ruiz del Arbol,115P. Meridiani,115P. Milenovic,115,qF. Moortgat,115P. Nef,115 F. Nessi-Tedaldi,115L. Pape,115F. Pauss,115T. Punz,115A. Rizzi,115F. J. Ronga,115M. Rossini,115L. Sala,115 A. K. Sanchez,115M.-C. Sawley,115B. Stieger,115L. Tauscher,115,aA. Thea,115K. Theofilatos,115D. Treille,115 C. Urscheler,115R. Wallny,115,jM. Weber,115L. Wehrli,115J. Weng,115E. Aguilo´,116C. Amsler,116V. Chiochia,116

S. De Visscher,116C. Favaro,116M. Ivova Rikova,116B. Millan Mejias,116C. Regenfus,116P. Robmann,116 A. Schmidt,116H. Snoek,116L. Wilke,116Y. H. Chang,117K. H. Chen,117W. T. Chen,117S. Dutta,117A. Go,117 C. M. Kuo,117S. W. Li,117W. Lin,117M. H. Liu,117Z. K. Liu,117Y. J. Lu,117J. H. Wu,117S. S. Yu,117P. Bartalini,118 P. Chang,118Y. H. Chang,118Y. W. Chang,118Y. Chao,118K. F. Chen,118W.-S. Hou,118Y. Hsiung,118K. Y. Kao,118

Y. J. Lei,118R.-S. Lu,118J. G. Shiu,118Y. M. Tzeng,118M. Wang,118A. Adiguzel,119M. N. Bakirci,119,dd S. Cerci,119,ccZ. Demir,119C. Dozen,119I. Dumanoglu,119E. Eskut,119S. Girgis,119G. Gokbulut,119Y. Guler,119

E. Gurpinar,119I. Hos,119E. E. Kangal,119T. Karaman,119A. Kayis Topaksu,119A. Nart,119G. Onengut,119 K. Ozdemir,119S. Ozturk,119A. Polatoz,119K. Sogut,119,eeB. Tali,119H. Topakli,119,ddD. Uzun,119L. N. Vergili,119

M. Vergili,119C. Zorbilmez,119I. V. Akin,120T. Aliev,120S. Bilmis,120M. Deniz,120H. Gamsizkan,120 A. M. Guler,120K. Ocalan,120A. Ozpineci,120M. Serin,120R. Sever,120U. E. Surat,120E. Yildirim,120M. Zeyrek,120

M. Deliomeroglu,121D. Demir,121,ffE. Gu¨lmez,121A. Halu,121B. Isildak,121M. Kaya,121,ggO. Kaya,121,gg S. Ozkorucuklu,121,hhN. Sonmez,121,iiL. Levchuk,122P. Bell,123F. Bostock,123J. J. Brooke,123T. L. Cheng,123

E. Clement,123D. Cussans,123R. Frazier,123J. Goldstein,123M. Grimes,123M. Hansen,123D. Hartley,123 G. P. Heath,123H. F. Heath,123B. Huckvale,123J. Jackson,123L. Kreczko,123S. Metson,123D. M. Newbold,123,r K. Nirunpong,123A. Poll,123S. Senkin,123V. J. Smith,123S. Ward,123L. Basso,124K. W. Bell,124A. Belyaev,124 C. Brew,124R. M. Brown,124B. Camanzi,124D. J. A. Cockerill,124J. A. Coughlan,124K. Harder,124S. Harper,124

B. W. Kennedy,124E. Olaiya,124D. Petyt,124B. C. Radburn-Smith,124C. H. Shepherd-Themistocleous,124 I. R. Tomalin,124W. J. Womersley,124S. D. Worm,124R. Bainbridge,125G. Ball,125J. Ballin,125R. Beuselinck,125

O. Buchmuller,125D. Colling,125N. Cripps,125M. Cutajar,125G. Davies,125M. Della Negra,125J. Fulcher,125 D. Futyan,125A. Guneratne Bryer,125G. Hall,125Z. Hatherell,125J. Hays,125G. Iles,125G. Karapostoli,125 L. Lyons,125A.-M. Magnan,125J. Marrouche,125R. Nandi,125J. Nash,125A. Nikitenko,125,oA. Papageorgiou,125

M. Pesaresi,125K. Petridis,125M. Pioppi,125,sD. M. Raymond,125N. Rompotis,125A. Rose,125M. J. Ryan,125 C. Seez,125P. Sharp,125A. Sparrow,125A. Tapper,125S. Tourneur,125M. Vazquez Acosta,125T. Virdee,125 S. Wakefield,125D. Wardrope,125T. Whyntie,125M. Barrett,126M. Chadwick,126J. E. Cole,126P. R. Hobson,126 A. Khan,126P. Kyberd,126D. Leslie,126W. Martin,126I. D. Reid,126L. Teodorescu,126K. Hatakeyama,127T. Bose,128 E. Carrera Jarrin,128A. Clough,128C. Fantasia,128A. Heister,128J. St. John,128P. Lawson,128D. Lazic,128J. Rohlf,128

D. Sperka,128L. Sulak,128A. Avetisyan,129S. Bhattacharya,129J. P. Chou,129D. Cutts,129A. Ferapontov,129 U. Heintz,129S. Jabeen,129G. Kukartsev,129G. Landsberg,129M. Narain,129D. Nguyen,129M. Segala,129T. Speer,129 K. V. Tsang,129M. A. Borgia,130R. Breedon,130M. Calderon De La Barca Sanchez,130D. Cebra,130S. Chauhan,130

M. Chertok,130J. Conway,130P. T. Cox,130J. Dolen,130R. Erbacher,130E. Friis,130W. Ko,130A. Kopecky,130 R. Lander,130H. Liu,130S. Maruyama,130T. Miceli,130M. Nikolic,130D. Pellett,130J. Robles,130T. Schwarz,130

(10)

M. Searle,130J. Smith,130M. Squires,130M. Tripathi,130R. Vasquez Sierra,130C. Veelken,130V. Andreev,131 K. Arisaka,131D. Cline,131R. Cousins,131A. Deisher,131J. Duris,131S. Erhan,131C. Farrell,131J. Hauser,131 M. Ignatenko,131C. Jarvis,131C. Plager,131G. Rakness,131P. Schlein,131,aJ. Tucker,131V. Valuev,131J. Babb,132

R. Clare,132J. Ellison,132J. W. Gary,132F. Giordano,132G. Hanson,132G. Y. Jeng,132S. C. Kao,132F. Liu,132 H. Liu,132A. Luthra,132H. Nguyen,132G. Pasztor,132,tA. Satpathy,132B. C. Shen,132,aR. Stringer,132J. Sturdy,132

S. Sumowidagdo,132R. Wilken,132S. Wimpenny,132W. Andrews,133J. G. Branson,133G. B. Cerati,133 E. Dusinberre,133D. Evans,133F. Golf,133A. Holzner,133R. Kelley,133M. Lebourgeois,133J. Letts,133 B. Mangano,133J. Muelmenstaedt,133S. Padhi,133C. Palmer,133G. Petrucciani,133H. Pi,133M. Pieri,133 R. Ranieri,133M. Sani,133V. Sharma,133,bS. Simon,133Y. Tu,133A. Vartak,133F. Wu¨rthwein,133A. Yagil,133 D. Barge,134R. Bellan,134C. Campagnari,134M. D’Alfonso,134T. Danielson,134K. Flowers,134P. Geffert,134 J. Incandela,134C. Justus,134P. Kalavase,134S. A. Koay,134D. Kovalskyi,134V. Krutelyov,134S. Lowette,134 N. Mccoll,134V. Pavlunin,134F. Rebassoo,134J. Ribnik,134J. Richman,134R. Rossin,134D. Stuart,134W. To,134 J. R. Vlimant,134A. Bornheim,135J. Bunn,135Y. Chen,135M. Gataullin,135D. Kcira,135V. Litvine,135Y. Ma,135 A. Mott,135H. B. Newman,135C. Rogan,135V. Timciuc,135P. Traczyk,135J. Veverka,135R. Wilkinson,135Y. Yang,135

R. Y. Zhu,135B. Akgun,136R. Carroll,136T. Ferguson,136Y. Iiyama,136D. W. Jang,136S. Y. Jun,136Y. F. Liu,136 M. Paulini,136J. Russ,136N. Terentyev,136H. Vogel,136I. Vorobiev,136J. P. Cumalat,137M. E. Dinardo,137 B. R. Drell,137C. J. Edelmaier,137W. T. Ford,137B. Heyburn,137E. Luiggi Lopez,137U. Nauenberg,137J. G. Smith,137

K. Stenson,137K. A. Ulmer,137S. R. Wagner,137S. L. Zang,137L. Agostino,138J. Alexander,138A. Chatterjee,138 S. Das,138N. Eggert,138L. J. Fields,138L. K. Gibbons,138B. Heltsley,138W. Hopkins,138A. Khukhunaishvili,138 B. Kreis,138V. Kuznetsov,138G. Nicolas Kaufman,138J. R. Patterson,138D. Puigh,138D. Riley,138A. Ryd,138 X. Shi,138W. Sun,138W. D. Teo,138J. Thom,138J. Thompson,138J. Vaughan,138Y. Weng,138L. Winstrom,138 P. Wittich,138A. Biselli,139G. Cirino,139D. Winn,139S. Abdullin,140M. Albrow,140J. Anderson,140G. Apollinari,140

M. Atac,140J. A. Bakken,140S. Banerjee,140L. A. T. Bauerdick,140A. Beretvas,140J. Berryhill,140P. C. Bhat,140 I. Bloch,140F. Borcherding,140K. Burkett,140J. N. Butler,140V. Chetluru,140H. W. K. Cheung,140F. Chlebana,140 S. Cihangir,140M. Demarteau,140D. P. Eartly,140V. D. Elvira,140S. Esen,140I. Fisk,140J. Freeman,140Y. Gao,140

E. Gottschalk,140D. Green,140K. Gunthoti,140O. Gutsche,140A. Hahn,140J. Hanlon,140R. M. Harris,140 J. Hirschauer,140B. Hooberman,140E. James,140H. Jensen,140M. Johnson,140U. Joshi,140R. Khatiwada,140 B. Kilminster,140B. Klima,140K. Kousouris,140S. Kunori,140S. Kwan,140P. Limon,140R. Lipton,140J. Lykken,140

K. Maeshima,140J. M. Marraffino,140D. Mason,140P. McBride,140T. McCauley,140T. Miao,140K. Mishra,140 S. Mrenna,140Y. Musienko,140,uC. Newman-Holmes,140V. O’Dell,140S. Popescu,140,jjR. Pordes,140 O. Prokofyev,140N. Saoulidou,140E. Sexton-Kennedy,140S. Sharma,140A. Soha,140W. J. Spalding,140L. Spiegel,140 P. Tan,140L. Taylor,140S. Tkaczyk,140L. Uplegger,140E. W. Vaandering,140R. Vidal,140J. Whitmore,140W. Wu,140

F. Yang,140F. Yumiceva,140J. C. Yun,140D. Acosta,141P. Avery,141D. Bourilkov,141M. Chen,141 G. P. Di Giovanni,141D. Dobur,141A. Drozdetskiy,141R. D. Field,141M. Fisher,141Y. Fu,141I. K. Furic,141 J. Gartner,141S. Goldberg,141B. Kim,141S. Klimenko,141J. Konigsberg,141A. Korytov,141A. Kropivnitskaya,141 T. Kypreos,141K. Matchev,141G. Mitselmakher,141L. Muniz,141Y. Pakhotin,141C. Prescott,141R. Remington,141 M. Schmitt,141B. Scurlock,141P. Sellers,141N. Skhirtladze,141D. Wang,141J. Yelton,141M. Zakaria,141C. Ceron,142

V. Gaultney,142L. Kramer,142L. M. Lebolo,142S. Linn,142P. Markowitz,142G. Martinez,142J. L. Rodriguez,142 T. Adams,143A. Askew,143D. Bandurin,143J. Bochenek,143J. Chen,143B. Diamond,143S. V. Gleyzer,143J. Haas,143 S. Hagopian,143V. Hagopian,143M. Jenkins,143K. F. Johnson,143H. Prosper,143S. Sekmen,143V. Veeraraghavan,143

M. M. Baarmand,144B. Dorney,144S. Guragain,144M. Hohlmann,144H. Kalakhety,144R. Ralich,144 I. Vodopiyanov,144M. R. Adams,145I. M. Anghel,145L. Apanasevich,145Y. Bai,145V. E. Bazterra,145R. R. Betts,145

J. Callner,145R. Cavanaugh,145C. Dragoiu,145E. J. Garcia-Solis,145C. E. Gerber,145D. J. Hofman,145 S. Khalatyan,145F. Lacroix,145C. O’Brien,145C. Silvestre,145A. Smoron,145D. Strom,145N. Varelas,145 U. Akgun,146E. A. Albayrak,146B. Bilki,146K. Cankocak,146,kkW. Clarida,146F. Duru,146C. K. Lae,146 E. McCliment,146J.-P. Merlo,146H. Mermerkaya,146A. Mestvirishvili,146A. Moeller,146J. Nachtman,146 C. R. Newsom,146E. Norbeck,146J. Olson,146Y. Onel,146F. Ozok,146S. Sen,146J. Wetzel,146T. Yetkin,146K. Yi,146

B. A. Barnett,147B. Blumenfeld,147A. Bonato,147C. Eskew,147D. Fehling,147G. Giurgiu,147A. V. Gritsan,147 Z. J. Guo,147G. Hu,147P. Maksimovic,147S. Rappoccio,147M. Swartz,147N. V. Tran,147A. Whitbeck,147 P. Baringer,148A. Bean,148G. Benelli,148O. Grachov,148M. Murray,148D. Noonan,148V. Radicci,148S. Sanders,148

(11)

S. Shrestha,149I. Svintradze,149Z. Wan,149J. Gronberg,150D. Lange,150D. Wright,150A. Baden,151 M. Boutemeur,151S. C. Eno,151D. Ferencek,151J. A. Gomez,151N. J. Hadley,151R. G. Kellogg,151M. Kirn,151

Y. Lu,151A. C. Mignerey,151K. Rossato,151P. Rumerio,151F. Santanastasio,151A. Skuja,151J. Temple,151 M. B. Tonjes,151S. C. Tonwar,151E. Twedt,151B. Alver,152G. Bauer,152J. Bendavid,152W. Busza,152E. Butz,152

I. A. Cali,152M. Chan,152V. Dutta,152P. Everaerts,152G. Gomez Ceballos,152M. Goncharov,152K. A. Hahn,152 P. Harris,152Y. Kim,152M. Klute,152Y.-J. Lee,152W. Li,152C. Loizides,152P. D. Luckey,152T. Ma,152S. Nahn,152

C. Paus,152D. Ralph,152C. Roland,152G. Roland,152M. Rudolph,152G. S. F. Stephans,152K. Sumorok,152 K. Sung,152E. A. Wenger,152S. Xie,152M. Yang,152Y. Yilmaz,152A. S. Yoon,152M. Zanetti,152P. Cole,153 S. I. Cooper,153P. Cushman,153B. Dahmes,153A. De Benedetti,153P. R. Dudero,153G. Franzoni,153J. Haupt,153

K. Klapoetke,153Y. Kubota,153J. Mans,153V. Rekovic,153R. Rusack,153M. Sasseville,153A. Singovsky,153 L. M. Cremaldi,154R. Godang,154R. Kroeger,154L. Perera,154R. Rahmat,154D. A. Sanders,154D. Summers,154

K. Bloom,155S. Bose,155J. Butt,155D. R. Claes,155A. Dominguez,155M. Eads,155J. Keller,155T. Kelly,155 I. Kravchenko,155J. Lazo-Flores,155C. Lundstedt,155H. Malbouisson,155S. Malik,155G. R. Snow,155U. Baur,156 A. Godshalk,156I. Iashvili,156A. Kharchilava,156A. Kumar,156S. P. Shipkowski,156K. Smith,156G. Alverson,157

E. Barberis,157D. Baumgartel,157O. Boeriu,157M. Chasco,157K. Kaadze,157S. Reucroft,157J. Swain,157 D. Wood,157J. Zhang,157A. Anastassov,158A. Kubik,158N. Odell,158R. A. Ofierzynski,158B. Pollack,158 A. Pozdnyakov,158M. Schmitt,158S. Stoynev,158M. Velasco,158S. Won,158L. Antonelli,159D. Berry,159 M. Hildreth,159C. Jessop,159D. J. Karmgard,159J. Kolb,159T. Kolberg,159K. Lannon,159W. Luo,159S. Lynch,159

N. Marinelli,159D. M. Morse,159T. Pearson,159R. Ruchti,159J. Slaunwhite,159N. Valls,159J. Warchol,159 M. Wayne,159J. Ziegler,159B. Bylsma,160L. S. Durkin,160J. Gu,160C. Hill,160P. Killewald,160K. Kotov,160 T. Y. Ling,160M. Rodenburg,160G. Williams,160N. Adam,161E. Berry,161P. Elmer,161D. Gerbaudo,161V. Halyo,161 P. Hebda,161A. Hunt,161J. Jones,161E. Laird,161D. Lopes Pegna,161D. Marlow,161T. Medvedeva,161M. Mooney,161

J. Olsen,161P. Piroue´,161X. Quan,161H. Saka,161D. Stickland,161C. Tully,161J. S. Werner,161A. Zuranski,161 J. G. Acosta,162X. T. Huang,162A. Lopez,162H. Mendez,162S. Oliveros,162J. E. Ramirez Vargas,162 A. Zatserklyaniy,162E. Alagoz,163V. E. Barnes,163G. Bolla,163L. Borrello,163D. Bortoletto,163A. Everett,163

A. F. Garfinkel,163Z. Gecse,163L. Gutay,163Z. Hu,163M. Jones,163O. Koybasi,163A. T. Laasanen,163 N. Leonardo,163C. Liu,163V. Maroussov,163P. Merkel,163D. H. Miller,163N. Neumeister,163K. Potamianos,163

I. Shipsey,163D. Silvers,163A. Svyatkovskiy,163H. D. Yoo,163J. Zablocki,163Y. Zheng,163P. Jindal,164 N. Parashar,164C. Boulahouache,165V. Cuplov,165K. M. Ecklund,165F. J. M. Geurts,165J. H. Liu,165 J. Morales,165B. P. Padley,165R. Redjimi,165J. Roberts,165J. Zabel,165B. Betchart,166A. Bodek,166 Y. S. Chung,166R. Covarelli,166P. de Barbaro,166R. Demina,166Y. Eshaq,166H. Flacher,166A. Garcia-Bellido,166

P. Goldenzweig,166Y. Gotra,166J. Han,166A. Harel,166D. C. Miner,166D. Orbaker,166G. Petrillo,166 D. Vishnevskiy,166M. Zielinski,166A. Bhatti,167L. Demortier,167K. Goulianos,167G. Lungu,167 C. Mesropian,167M. Yan,167O. Atramentov,168A. Barker,168D. Duggan,168Y. Gershtein,168R. Gray,168

E. Halkiadakis,168D. Hidas,168D. Hits,168A. Lath,168S. Panwalkar,168R. Patel,168A. Richards,168 K. Rose,168S. Schnetzer,168S. Somalwar,168R. Stone,168S. Thomas,168G. Cerizza,169M. Hollingsworth,169

S. Spanier,169Z. C. Yang,169A. York,169J. Asaadi,170R. Eusebi,170J. Gilmore,170A. Gurrola,170 T. Kamon,170V. Khotilovich,170R. Montalvo,170C. N. Nguyen,170J. Pivarski,170A. Safonov,170 S. Sengupta,170A. Tatarinov,170D. Toback,170M. Weinberger,170N. Akchurin,171C. Bardak,171

J. Damgov,171C. Jeong,171K. Kovitanggoon,171S. W. Lee,171P. Mane,171Y. Roh,171A. Sill,171I. Volobouev,171 R. Wigmans,171E. Yazgan,171E. Appelt,172E. Brownson,172D. Engh,172C. Florez,172W. Gabella,172 W. Johns,172P. Kurt,172C. Maguire,172A. Melo,172P. Sheldon,172J. Velkovska,172M. W. Arenton,173

M. Balazs,173S. Boutle,173M. Buehler,173S. Conetti,173B. Cox,173B. Francis,173R. Hirosky,173 A. Ledovskoy,173C. Lin,173C. Neu,173R. Yohay,173S. Gollapinni,174R. Harr,174P. E. Karchin,174 P. Lamichhane,174M. Mattson,174C. Milste`ne,174A. Sakharov,174M. Anderson,175M. Bachtis,175 J. N. Bellinger,175D. Carlsmith,175S. Dasu,175J. Efron,175L. Gray,175K. S. Grogg,175M. Grothe,175 R. Hall-Wilton,175,bM. Herndon,175P. Klabbers,175J. Klukas,175A. Lanaro,175C. Lazaridis,175J. Leonard,175

D. Lomidze,175R. Loveless,175A. Mohapatra,175D. Reeder,175I. Ross,175A. Savin,175W. H. Smith,175 J. Swanson,175and M. Weinberg175

(12)

1Yerevan Physics Institute, Yerevan, Armenia 2Institut fu¨r Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus

4Universiteit Antwerpen, Antwerpen, Belgium 5Vrije Universiteit Brussel, Brussel, Belgium 6Universite´ Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium

8Universite´ Catholique de Louvain, Louvain-la-Neuve, Belgium 9

Universite´ de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil

13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria 14University of Sofia, Sofia, Bulgaria

15Institute of High Energy Physics, Beijing, China

16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 17Universidad de Los Andes, Bogota, Colombia

18Technical University of Split, Split, Croatia 19University of Split, Split, Croatia 20Institute Rudjer Boskovic, Zagreb, Croatia

21University of Cyprus, Nicosia, Cyprus

22Academy of Scientific Research and Technology of the Arab Republic of Egypt,

Egyptian Network of High Energy Physics, Cairo, Egypt

23National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 24

Department of Physics, University of Helsinki, Helsinki, Finland

25Helsinki Institute of Physics, Helsinki, Finland 26Lappeenranta University of Technology, Lappeenranta, Finland

27Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France 28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

30Institut Pluridisciplinaire Hubert Curien, Universite´ de Strasbourg, Universite´ de Haute Alsace Mulhouse,

CNRS/IN2P3, Strasbourg, France

31Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France 32Universite´ de Lyon, Universite´ Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucle´aire de Lyon, Villeurbanne, France

33E. Andronikashvili Institute of Physics, Academy of Science, Tbilisi, Georgia 34RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany 35RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 36RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

37Deutsches Elektronen-Synchrotron, Hamburg, Germany 38University of Hamburg, Hamburg, Germany 39Institut fu¨r Experimentelle Kernphysik, Karlsruhe, Germany 40Institute of Nuclear Physics "Demokritos," Aghia Paraskevi, Greece

41University of Athens, Athens, Greece 42University of Ioa´nnina, Ioa´nnina, Greece

43KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 44Institute of Nuclear Research ATOMKI, Debrecen, Hungary

45University of Debrecen, Debrecen, Hungary 46

Panjab University, Chandigarh, India

47University of Delhi, Delhi, India 48Bhabha Atomic Research Centre, Mumbai, India 49Tata Institute of Fundamental Research–EHEP, Mumbai, India 50Tata Institute of Fundamental Research–HECR, Mumbai, India 51Institute for Studies in Theoretical Physics & Mathematics (IPM), Tehran, Iran

52INFN Sezione di Bari, Bari, Italy 53Universita` di Bari, Bari, Italy 54Politecnico di Bari, Bari, Italy 55

INFN Sezione di Bologna, Bologna, Italy

56Universita` di Bologna, Bologna, Italy 57INFN Sezione di Catania, Catania, Italy

58Universita` di Catania, Catania, Italy 59INFN Sezione di Firenze, Firenze, Italy

(13)

60Universita` di Firenze, Firenze, Italy

61INFN Laboratori Nazionali di Frascati, Frascati, Italy 62INFN Sezione di Genova, Genova, Italy 63INFN Sezione di Milano-Biccoca, Milano, Italy

64Universita` di Milano-Bicocca, Milano, Italy 65INFN Sezione di Napoli, Napoli, Italy 66Universita` di Napoli "Federico II," Napoli, Italy

67INFN Sezione di Padova, Padova, Italy 68

Universita` di Padova, Padova, Italy

69Universita` di Trento (Trento), Padova, Italy 70INFN Sezione di Pavia, Pavia, Italy

71Universita` di Pavia, Pavia, Italy 72INFN Sezione di Perugia, Perugia, Italy

73Universita` di Perugia, Perugia, Italy 74INFN Sezione di Pisa, Pisa, Italy

75Universita` di Pisa, Pisa, Italy 76Scuola Normale Superiore di Pisa, Pisa, Italy

77INFN Sezione di Roma, Roma, Italy 78Universita` di Roma "La Sapienza," Roma, Italy

79INFN Sezione di Torino, Torino, Italy 80Universita` di Torino, Torino, Italy

81Universita` del Piemonte Orientale (Novara), Torino, Italy 82INFN Sezione di Trieste, Trieste, Italy

83Universita` di Trieste, Trieste, Italy 84

Kangwon National University, Chunchon, Korea

85Kyungpook National University, Daegu, Korea

86Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 87Korea University, Seoul, Korea

88University of Seoul, Seoul, Korea 89Sungkyunkwan University, Suwon, Korea

90Vilnius University, Vilnius, Lithuania

91Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 92Universidad Iberoamericana, Mexico City, Mexico

93Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 94Universidad Auto´noma de San Luis Potosı´, San Luis Potosı´, Mexico

95University of Auckland, Auckland, New Zealand 96University of Canterbury, Christchurch, New Zealand

97National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 98Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

99Soltan Institute for Nuclear Studies, Warsaw, Poland

100Laborato´rio de Instrumentac¸a˜o e Fı´sica Experimental de Partı´culas, Lisboa, Portugal 101Joint Institute for Nuclear Research, Dubna, Russia

102Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia 103Institute for Nuclear Research, Moscow, Russia

104Institute for Theoretical and Experimental Physics, Moscow, Russia 105Moscow State University, Moscow, Russia

106P. N. Lebedev Physical Institute, Moscow, Russia 107

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

108University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia 109Centro de Investigaciones Energe´ticas Medioambientales y Tecnolo´gicas (CIEMAT), Madrid, Spain

110Universidad Auto´noma de Madrid, Madrid, Spain 111Universidad de Oviedo, Oviedo, Spain

112Instituto de Fı´sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 113CERN, European Organization for Nuclear Research, Geneva, Switzerland

114Paul Scherrer Institut, Villigen, Switzerland

115Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 116

Universita¨t Zu¨rich, Zurich, Switzerland

117National Central University, Chung-Li, Taiwan 118National Taiwan University (NTU), Taipei, Taiwan

119Cukurova University, Adana, Turkey

(14)

121Bogazici University, Istanbul, Turkey

122National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 123University of Bristol, Bristol, United Kingdom

124Rutherford Appleton Laboratory, Didcot, United Kingdom 125Imperial College, London, United Kingdom 126Brunel University, Uxbridge, United Kingdom

127Baylor University, Waco, Texas 76706, USA 128Boston University, Boston, Massachusetts 02215, USA 129

Brown University, Providence, Rhode Island 02912, USA

130University of California, Davis, Davis, California 95616, USA 131University of California, Los Angeles, Los Angeles, California 90095, USA

132University of California, Riverside, Riverside, California 92521, USA 133University of California, San Diego, La Jolla, California 92093, USA 134University of California, Santa Barbara, Santa Barbara, California 93106, USA

135California Institute of Technology, Pasadena, California 91125, USA 136Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA 137University of Colorado at Boulder, Boulder, Colorado 80309, USA

138Cornell University, Ithaca, New York 14853-5001, USA 139Fairfield University, Fairfield, Connecticut 06824, USA

140Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500, USA 141University of Florida, Gainesville, Florida 32611-8440, USA 142Florida International University, Miami, Florida 33199, USA 143Florida State University, Tallahassee, Florida 32306-4350, USA 144Florida Institute of Technology, Melbourne, Florida 32901, USA 145

University of Illinois at Chicago (UIC), Chicago, Illinois 60607-7059, USA

146The University of Iowa, Iowa City, Iowa 52242-1479, USA 147Johns Hopkins University, Baltimore, Maryland 21218, USA

148The University of Kansas, Lawrence, Kansas 66045, USA 149Kansas State University, Manhattan, Kansas 66506, USA

150Lawrence Livermore National Laboratory, Livermore, California 94720, USA 151University of Maryland, College Park, Maryland 20742, USA 152Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

153University of Minnesota, Minneapolis, Minnesota 55455, USA 154University of Mississippi, University, Mississippi 38677, USA 155University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0111, USA 156State University of New York at Buffalo, Buffalo, New York 14260-1500, USA

157Northeastern University, Boston, Massachusetts 02115, USA 158Northwestern University, Evanston, Illinois 60208-3112, USA

159University of Notre Dame, Notre Dame, Indiana 46556, USA 160The Ohio State University, Columbus, Ohio 43210, USA 161Princeton University, Princeton, New Jersey 08544-0708, USA

162University of Puerto Rico, Mayaguez, Puerto Rico 00680 163Purdue University, West Lafayette, Indiana 47907-1396, USA

164Purdue University Calumet, Hammond, Indiana 46323, USA 165Rice University, Houston, Texas 77251-1892, USA 166University of Rochester, Rochester, New York 14627-0171, USA 167The Rockefeller University, New York, New York 10021-6399, USA 168

Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854-8019, USA

169University of Tennessee, Knoxville, Tennessee 37996-1200, USA 170Texas A&M University, College Station, Texas 77843-4242, USA

171Texas Tech University, Lubbock, Texas 79409-1051, USA 172Vanderbilt University, Nashville, Tennessee 37235, USA 173University of Virginia, Charlottesville, Virginia 22901, USA

174Wayne State University, Detroit, Michigan 48202, USA 175University of Wisconsin, Madison, Wisconsin 53706, USA

aDeceased.

bAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.

cAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France. dAlso at Soltan Institute for Nuclear Studies, Warsaw, Poland.

(15)

eAlso at Massachusetts Institute of Technology, Cambridge, MA, USA. fAlso at Moscow State University, Moscow, Russia.

gAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary. hAlso at Tata Institute of Fundamental Research–HECR, Mumbai, India.

iAlso at California Institute of Technology, Pasadena, CA, USA. jAlso at University of California, Los Angeles, Los Angeles, CA, USA. kAlso at University of Florida, Gainesville, FL, USA.

lAlso at INFN Sezione di Roma, Universita` di Roma ‘‘La Sapienza,’’ Roma, Italy. mAlso at University of Athens, Athens, Greece.

nAlso at The University of Kansas, Lawrence, KS, USA.

oAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia. pAlso at Paul Scherrer Institut, Villigen, Switzerland.

qAlso at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia. rAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom.

s

Also at INFN Sezione di Perugia, Universita` di Perugia, Perugia, Italy.

tAlso at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary. uAlso at Institute for Nuclear Research, Moscow, Russia.

vAlso at Brandenburg University of Technology, Cottbus, Germany. wAlso at Lora´nd Eo¨tvo¨s University, Budapest, Hungary.

xAlso at Universita` di Roma ‘‘La Sapienza,’’ Roma, Italy. yAlso at Universita` della Basilicata, Potenza, Italy. zAlso at Universita` di Siena, Siena, Italy.

aaAlso at University of Geneva, Geneva, Switzerland. bbAlso at Scuola Normale Superiore, Pisa, Italy. ccAlso at Adyaman University, Adyaman, Turkey. ddAlso at Gaziosmanpasa University, Tokat, Turkey. eeAlso at Mersin University, Mersin, Turkey.

ffAlso at Izmir Institute of Technology, Izmir, Turkey. ggAlso at Kafkas University, Kars, Turkey.

hh

Also at Suleman Demirel University, Turkey.

iiAlso at Ege University, Izmir, Turkey.

jjAlso at Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania. kkAlso at Istanbul Technical University, Turkey.

llAlso at Suez Canal University, Suez, Egypt. mmAlso at Fayoum University, El-Fayoum, Egypt.

Figura

TABLE I. Isolated prompt photon cross section for j  j &lt; 1:45 and in bins of E  T .
FIG. 3 (color online). Ratio of the measured isolated prompt photon differential cross section to the NLO pQCD predictions

Riferimenti

Documenti correlati

Abstract: The present paper concerns a Maximum Likelihood analysis for the Markov switching approach to the forecasting problem of financial time series.. In particular we model

alignment on safety in terms of sight distances and design consistency conditions.. Transition curves were firstly

Altresì sentita era la necessità di reprimere l’agire ‘temerario’; in determinati casi l’infondata resistenza in giudizio (infitiatio) determinava la condanna nella

Ogni pubblicazione sulla teoria e la critica del fantastico italiano, individuata tra il 1980 e il 2015, trova la sua sistemazione in una delle cinque suddivisioni operate nel campo

[r]

In both GLC1 cell lines, we observed a significant up-regulation of the amplified genes AKT3 and RUNX1; CREG1 showed up-regulation in GLC1DM but not in GLC1HSR, most likely due to

In this study, we report for the first time the molecular characterization of the MSH2 c.2635-2A&gt;G variant through in silico prediction analysis, microsatellite instability, and