• Non ci sono risultati.

Measurement of the azimuthal anisotropy of neutral pions in Pb-Pb collisions at √sNN=2.76 TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Measurement of the azimuthal anisotropy of neutral pions in Pb-Pb collisions at √sNN=2.76 TeV"

Copied!
15
0
0

Testo completo

(1)

Measurement of the Azimuthal Anisotropy of Neutral Pions in Pb-Pb

Collisions at ffiffiffiffiffiffiffiffiffi

p

s

NN

¼ 2:76 TeV

S. Chatrchyan et al.* (CMS Collaboration)

(Received 12 August 2012; published 22 January 2013)

First measurements of the azimuthal anisotropy of neutral pions produced in Pb-Pb collisions at a center-of-mass energy of ffiffiffiffiffiffiffiffisNN

p ¼ 2:76 TeV are presented. The amplitudes of the second Fourier component (v2) of the 0 azimuthal distributions are extracted using an event-plane technique. The

values of v2are studied as a function of the neutral pion transverse momentum (pT) for different classes of

collision centrality in the kinematic range 1:6 < pT< 8:0 GeV=c, within the pseudorapidity interval

jj < 0:8. The CMS measurements of v2ðpTÞ are similar to previously reported 0azimuthal anisotropy

results frompffiffiffiffiffiffiffiffisNN¼ 200 GeV Au-Au collisions at RHIC, despite a factor of 14 increase in the

center-of-mass energy. In the momentum range2:5 < pT< 5:0 GeV=c, the neutral pion anisotropies are found

to be smaller than those observed by CMS for inclusive charged particles.

DOI:10.1103/PhysRevLett.110.042301 PACS numbers: 25.75.Dw, 14.40.Be, 21.65.Qr

A central goal of relativistic heavy-ion experiments is to create a deconfined phase of nuclear matter, the quark gluon plasma (QGP), at extreme temperatures and energy densities, and to characterize its properties. Observations at the Relativistic Heavy Ion Collider (RHIC) suggest that an extremely dense partonic medium with near-perfect fluid properties is formed [1–4]. These observations include the suppression of high-transverse-momentum (pT) hadron production, referred to as ‘‘jet quenching’’; strong azimuthal anisotropies in bulk particle production at low pT; and baryon-meson differences in hadron suppression patterns and azimuthal anisotropies at intermediate pT. Measurements of the azimuthal correlations of the pro-duced particles play a key role in understanding the dominant physics processes in each of these transverse momentum ranges.

At low pT ( < 2 GeV=c), the azimuthal anisotropy of the emitted particles is understood to be the result of a collective hydrodynamic expansion of the medium, con-verting any initial-state spatial anisotropy (eccentricity of the nuclear overlap region) into a final-state momentum anisotropy [5,6]. The strength of the anisotropy is characterized by the values of the Fourier coefficients, vn, of the expansion of the particle yields given byddNR/

1 þPn2vncosnð cEPÞ, where  is the azimuthal angle of the outgoing particles andcEPis the event-plane angle reconstructed using the beam direction z and the azimuthal direction of the maximum transverse energy in each event. The second Fourier coefficient v2is referred to

as elliptic flow. At higher transverse momentum (pT * 6 GeV=c), the azimuthal anisotropies have been attributed to the path-length dependence of energy loss in the me-dium due to the asymmetry in the reaction zone [7–11]. In the intermediate pT region, the RHIC data show an enhancement of baryon production [12,13] and a larger v2of baryons as compared to mesons [14,15]. This behav-ior has been interpreted as a signature of quark recombi-nation as the dominant production mechanism of moderate pT hadrons, which implies the existence of quark degrees of freedom in the medium produced at RHIC [16]. Recent theoretical calculations also show that the RHIC measure-ments of baryon and meson v2at low pT can be described by model calculations based on thermal partons only. However, contributions from shower partons that are larger for mesons than for baryons must be included to explain the data in the intermediate pT range [17].

The measurements of the elliptic anisotropy for inclu-sive charged particles, produced in Pb-Pb collisions at a nucleon-nucleon center-of-mass energy of pffiffiffiffiffiffiffiffisNN ¼ 2:76 TeV at the Large Hadron Collider (LHC), have been reported by ALICE [18], ATLAS [19], and CMS [20]. The measured v2coefficients exhibit similar strength and pT dependence as those measured at RHIC in Au-Au collisions [18,21]. Differences in the elliptical flow of baryons and mesons can be indirectly tested via the com-parison of the strength of the v2signals for 0mesons and inclusive charged particles.

This Letter presents the first measurement of elliptic flow of 0 mesons as a function of pT in Pb-Pb collisions at a center-of-mass energy ofpffiffiffiffiffiffiffiffisNN¼ 2:76 TeV. The data were recorded by the CMS experiment during the first LHC heavy-ion run in November 2010. The 0 meson elliptic flow is measured in the pseudorapidity rangejj < 0:8, where  is defined as  ¼  ln½tanð=2Þ, and  is the polar angle between the particle momentum and the

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

anticlockwise beam direction. The measurement is per-formed over the full azimuthal coverage 0 <  < 2, and spans the range1:6 < pT< 8:0 GeV=c.

The detectors used for this analysis are the barrel elec-tromagnetic calorimeter (ECAL) and the hadron forward (HF) calorimeter, which have an  acceptance of jj < 1:4 and 2:9 < jj < 5:2, respectively. Despite a wider pseu-dorapidity coverage of the barrel ECAL, these results are restricted tojj < 0:8 in order to allow a direct comparison with the charged particle elliptic flow results [20]. The barrel ECAL is located within a 3.8 T solenoidal magnetic field. The ECAL is made of lead-tungstate crystals that have a short radiation length (0.89 cm), and a small Molie`re radius (2.19 cm). A more detailed description of the CMS experiment can be found elsewhere [22].

The minimum-bias event sample is collected using co-incidences between the trigger signals from each side of the interaction point using the beam scintillation counters (BSC) (3:23 < jj < 4:65) or the HF. Such a coincidence of minimum-bias trigger with bunches colliding in the interaction region suppresses any events due to noise, cosmic rays, out-of-time triggers, and beam backgrounds. The trigger acceptsð97  3Þ% of the total inelastic Pb-Pb cross section. Collision centrality, defined as the fraction of total inelastic nucleus-nucleus cross section, is calculated using the sum of transverse energy (ET) in towers from HF at both positive and negative z positions [23]. In this Letter, we present results based on centrality intervals of 10% width, ranging from (20–30)% (more central) to (70–80)% (more peripheral). For the most central colli-sions [(0–20)%], a small signal-to-background ratio limits the identification of 0 mesons.

The 0 mesons are measured by reconstructing their decay photons (0 ! ) in the barrel ECAL. Electromagnetic showers are found in the ECAL by form-ing clusters of contiguous crystals with a seed crystal having energy above a threshold of 200 MeV. Clusters are identified as photons on the basis of a shower shape requirement called the S4=S9 ratio. Photons are recon-structed using a3  3 array of crystals, which contain on average 93% of the photon energy. The quantity S4 is the total energy in a 2  2 array (a submatrix of the 3  3 array) containing the crystal with the highest energy depos-ited and S9 is the total energy in the3  3 crystal matrix. There are four possible2  2 matrix combinations, and S4 is defined as the most energetic of these four combinations. Clusters with S9 > 400 MeV and S4=S9 > 0:87 are selected as photon candidates for 0 meson reconstructed invariant mass, mij calculations. The invariant mass of a

photon pair (i, j) as measured in the ECAL is calculated from the energies and positions of the clusters, as given by mij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2EiEjð1  cosijÞ q

, where ij is the opening angle between the two photons. Candidate pairs are formed from each photon cluster in an event in a particular pT bin for the 0 meson invariant mass calculation.

A pT-dependent opening angle requirement and a cluster pair separation cut are also applied to the 0meson invari-ant mass distribution. Pairs are selected with ij>paTþ

b p2T, where a and b are opening angle cut parameters obtained from a detailed PYTHIA6.422 simulation [24]. The values of the parameters a and b are 0:17 GeV=c and 0:11 ðGeV=cÞ2, respectively. Further, a photon pair is rejected if the separation of the two photon clusters (dis-tance is calculated based on the  and  coordinates of the clusters and using 1.29 m radius of the ECAL) is less than a threshold distance at a certain pT. The threshold distance between photon clusters decreases monotonically from 15 cm at pT  1:6 GeV=c to 5.0 cm at pT  8:0 GeV=c. At sufficiently high pT, photons from a nearly symmetric decay (E1  E2, where Eiis the energy of a photon) can

produce showers in the calorimeter that are reconstructed as a single cluster. In CMS, this effect becomes apparent at pT> 8:0 GeV=c. Consequently, results presented here are restricted to pT< 8:0 GeV=c.

The 0 meson yields are extracted statistically by subtracting the combinatorial background from the 0 candidate invariant mass distribution. The combinatorial background is estimated and subtracted using an event-mixing technique, which forms pairs from photon candidates in different events. Each photon candidate is combined with all other photon candidates in three other events. The mixing of events is performed within intervals of centrality, z-vertex position and the event-plane angle [20] orientation to replicate the background from uncorre-lated pairs. All selections applied to the combinations of same-event pairs are also applied to mixed-event pairs. Event mixing is done in six z-vertex intervals of width z ¼ 5:0 cm in the range jzj < 15 cm. Similarly, the event-plane angle [20] is also divided into six intervals in the range 0 <cEP< . The event-plane angle is deter-mined from the HF, with flattening and resolution correc-tion factors applied as in [20]. The 0 reconstruction efficiencies as a function of pT, centrality, and event plane are studied by embedding simulated 0 mesons in real events. A total of 100 k such events are analyzed, where each event has ten 0mesons embedded with a flat pTand  distribution over a range of 0:2 < pT< 10:0 GeV=c and jj < 1:0 to avoid any edge effects. The results for 0 meson elliptic flow are corrected for the dependence of the reconstruction efficiency on pT for all centralities. In addition an in-plane versus out-of-plane dependence is observed for the 0 meson reconstruction efficiency in more central collisions. Corrections for this effect range from 16% (1:6 < pT< 2:0 GeV=c) to 6% (2:5 < pT< 3:0 GeV=c) for the (20–30)% centrality interval. For higher pT intervals in this centrality class, such -dependent efficiency corrections are not needed. Similarly for the (40–50)% and (50–60)% centrality inter-vals, these corrections range from 7% (1:6 < pT< 2:0 GeV=c) to 4% (2:5 < pT< 3:0 GeV=c), while no PRL110, 042301 (2013) P H Y S I C A L R E V I E W L E T T E R S 25 JANUARY 2013

(3)

-dependent efficiency corrections are needed for the more peripheral events.

Figure 1 (top panel) presents the 0 meson invariant mass distribution before background subtraction for2:5 < pT< 3:0 GeV=c for the (40–50)% centrality interval. This panel shows the same-event distribution (solid circles) and the mixed-event normalized background (dashed line). For a given pTbin, the mixed-event background distribution is normalized to the same-event signal distribution in the range 200–250 MeV=c2. Different normalization regions such as175–225 MeV=c2 and225–275 MeV=c2 are also studied and no significant change in the resulting 0 meson v2 is observed. The middle panel of Fig. 1shows the combinatorial-background-subtracted 0 meson in-variant mass distribution (solid circles) in the same pT bin and centrality class. Oversubtraction is observed for higher mass regions, m> 250 MeV=c2. Investigations using PYTHIA and HYDJET (1.8) [25] simulations show that this effect can be attributed to a correlated conversion background (converted photons) which has a different shape than a purely combinatorial background.

By definition, the event-mixing technique cannot account for the effect of a correlated conversion background. Open symbols in the middle panel correspond to HYDJET simu-lations, the result obtained without rejecting any converted photons. The background-subtracted mass spectrum pre-dicted by simulations is seen to reproduce the data well.

HYDJET simulation results also show that the oversubtrac-tion at high invariant mass is eliminated when the clusters from the converted photons are suppressed, as shown in the bottom panel of Fig. 1. The event yield is calculated by integrating the data in a 2 standard deviations (, in units of mass) window around the mean () of the distribution. The  and  are determined from a Gaussian fit to the combinatorial-background-subtracted 0 meson invariant mass distribution for every pT and centrality interval. To avoid any model dependence, no corrections to the data are applied in order to account for these converted photons; instead, asymmetric mass integration ranges of   2 < m<  and   3 < m<  are employed to under-stand the systematic effect of the conversion contribution to the mass peak in the higher mass regions. Studies showed that the maximum effect of the correlated back-ground on the yield extraction in the mass integration range is less than 16%. To obtain the dependence of 0 meson production on azimuthal angle, the extracted yield is first measured in a given pT bin as a function of the azimuthal angle between the 0meson trajectory and the event-plane orientation cEP found as described in Ref. [20]. The measurement is performed in six equally spaced intervals of ¼ ð0Þ cEPin the range0 <  < =2. The 0meson yields corrected for reconstruction efficiency are measured for each  bin and the resulting angular dis-tribution, dN=d, is fitted with N0ð1 þ 2v2cos2Þ to determine the strength of the modulation in the yield. We use an analytic linear 2 fitting procedure that matches the integral of N0ð1 þ 2v2cos2Þ over each  bin to the measured 0 meson yield within the corresponding bin [14,15].

Systematic uncertainties are assessed by varying the S4=S9 ratio and the mass integration ranges. A combina-tion of the S4=S9 ¼ 0:87 and jm j < 2:0 mass integration range serves as a reference in this analysis. The 0 meson v2 results are calculated forS4=S9 ¼ 0:83 or 0.91 keeping the mass integration range at a reference value of jm j < 2:0. In addition to asymmetric mass integration ranges, symmetric ranges such asjm j < 3:0 and jm j < 1:5 are used to determine the 0 meson v2results for all centralities keepingS4=S9 fixed at 0.87. The largest observed differences in the v2 results based on different S4=S9 ratio cuts and m– ranges are used to determine the systematic uncertainty. The systematic uncertainty determined from the precision of the -efficiency curves obtained from the embedding procedure ranges from 18% to 4% from the lowest to the highest pT intervals for (20–30)% centrality.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 -1 ] 2 [MeV/c γγ dN/dm 0 20000 40000 60000 80000 = 2.76 TeV NN s CMS PbPb (40-50)% |<0.8 η | < 3.0 GeV/c T 2.5 < p

Same event distribution Mixed event distribution

)

2

Invariant mass (GeV/c γ γ 0.05 0.1 0.15 0.2 0.25 0.3 0.35 -5000 0 5000 10000 15000 CMS PbPb sNN = 2.76 TeV = 2.76 TeV NN s HYDJET PbPb

Without rejecting any conversion photons

] 2 [GeV/c γ γ m 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 -5000 0 5000 10000 15000 HYDJET PbPb sNN = 2.76 TeV

Conversion photons rejected

FIG. 1 (color online). Top panel: 0 meson invariant mass distribution with combinatorial background for 2:5 < pT<

3:0 GeV=c for (40–50)% centrality interval in Pb-Pb collisions atpffiffiffiffiffiffiffiffisNN¼ 2:76 TeV. The solid line represents the combinatorial

background estimated from the event-mixing technique. Middle panel: Combinatorial background-subtracted 0 invariant mass distribution (solid circles) in the same pT bin and centrality

interval. Open squares showHYDJETsimulation results. Bottom panel: HYDJET simulation results obtained after rejecting con-verted photons. TheHYDJETsimulation results have been scaled up by a factor of 556 to match the data.

(4)

For (70–80)% centrality, the systematic uncertainty varies from 7.2% to 9%. The total systematic uncertainties obtained upon adding all the sources listed above in quad-rature vary from 21% (1:6 < pT < 2:0 GeV=c) to 31% (6:0 < pT< 8:0 GeV=c) for the (20–30)% centrality in-terval. Similarly for (70–80)% these uncertainties change from 9.6% (1:6 < pT< 2:0 GeV=c) to 33% (6:0 < pT < 8:0 GeV=c). Systematic uncertainties arising from the trigger efficiency are found to be negligible.

The 0meson v2ðpTÞ results are shown in Fig.2for six centrality classes from (20–30)% to (70–80)%. CMS 0 meson v2 results, shown as solid circles, are compared to PHENIX 0v2results [9], for Au-Au collisions atpffiffiffiffiffiffiffiffisNN ¼ 200 GeV, shown as open circles. Green (gray) shaded bands show the systematic uncertainties associated with the CMS 0 meson (charged particle) v2 measurements. Our measurement shows qualitatively similar features as observed at RHIC energies despite an order of magnitude increase in the center-of-mass energy and the correspond-ing larger contribution from hard-scattered partons to me-son production [26]. This observation is consistent with the previously reported similarity in the elliptic flow results for inclusive charged particles at RHIC and LHC [18,19].

Figure 2also presents a comparison between CMS 0 meson v2 results (solid circles), and CMS inclusive charged particle v2 [20] (open squares) as a function of pT using the event-plane method. The 0 meson v2 is systematically lower than that for inclusive charged parti-cles v2 between 2:5 < pT< 5:0 GeV=c for midcentral collisions [(20–60)%]. In more peripheral collisions [(60–80)%], the differences tend to decrease for 0mesons and inclusive charged particles, indicating a related origin of the elliptic anisotropy for all particle species. For parti-cles with intermediate pT at RHIC, the v2 values of bary-ons are observed to be higher than those for mesbary-ons [14,15]. The differences observed between the inclusive charged particle and 0 meson results may be due to the contribution from baryons which would increase the over-all v2 of the inclusive charged particles, compared to that for neutral pions, assuming a baryon-meson v2 splitting comparable to that seen at RHIC. The baryon enhancement at RHIC has a strong centrality dependence [12–14]. Therefore, a detailed measurement of v2 of identified particles as a function of centrality is important for under-standing the production mechanism and the path-length dependence of parton energy loss in the medium.

In summary, the CMS detector has been used to perform the first measurements of the azimuthal anisotropy of neutral pions in Pb-Pb collisions at pffiffiffiffiffiffiffiffisNN ¼ 2:76 TeV. The measurements of v2 were presented as a function of pT for six centralities, from (20–30)% to (70–80)% for 1:6 < pT < 8:0 GeV=c. Results were compared with PHENIX 0meson [9] and CMS inclusive charged particle measurements [20]. It was found that the values of v2ðpTÞ for neutral pions measured at RHIC and the LHC were of comparable magnitude. These data may shed light on the hadronization mechanism at RHIC and LHC energies, and contribute to the understanding of the parton-medium interactions. In the collision centrality interval (20–60)%, and in the momentum range 2:5 < pT< 5:0 GeV=c, the magnitude of elliptic flow for neutral pions was found to be systematically lower than that for charged particles. This behavior is consistent with observations at lower collision energies, where this difference is found to be caused by the larger elliptic flow of baryons compared to mesons. The differences tend to decrease for more peripheral collisions [(60–80)%] in the CMS data, where RHIC measurements are not available.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP 0.1 0.2 (20-30)% 0 = 2.76 TeV NN s CMS PbPb = 200 GeV NN s PHENIX AuAu 0 π PHENIX CMS charged particle 0 π CMS 0.1 0.2 0 (40-50)% 0 5 10 0.1 0.2 (60-70)% (30-40)% (50-60)% 0 5 10 (70-80)% 2 v [GeV/c] T p

FIG. 2 (color online). CMS 0meson v2 (solid circles)

com-pared to PHENIX 0meson v2[9] (open circles) for midrapidity

(jj < 0:8 and jj < 0:35, respectively) and CMS charged particle v2 (open squares, jj < 0:8). Results are presented

as a function of pT for six centrality intervals [(20–30)% to

(70–80)%]. Green (gray) shaded bands represent systematic uncertainties associated with CMS 0meson (charged particle) v2measurements. Only statistical uncertainties are shown for the

PHENIX results. The systematic uncertainties for the (50–60)% centrality on the PHENIX data points are 10.4%.

(5)

(Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (U.S.).

[1] K. Adcox et al. (PHENIX Collaboration), Nucl. Phys. A757, 184 (2005).

[2] J. Adams et al. (STARCollaboration), Nucl. Phys.A757, 102 (2005).

[3] B. B. Back et al. (PHOBOSCollaboration), Nucl. Phys. A757, 28 (2005).

[4] I. Arsene et al. (BRAHMSCollaboration), Nucl. Phys. A757, 1 (2005).

[5] A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998).

[6] J. Y. Ollitrault,Phys. Rev. D46, 229 (1992).

[7] M. Gyulassy, I. Vitev, and X.-N. Wang,Phys. Rev. Lett. 86, 2537 (2001).

[8] S. Afanasiev et al. (PHENIX Collaboration),Phys. Rev. C 80, 054907 (2009).

[9] A. Adare et al. (PHENIX Collaboration),Phys. Rev. Lett. 105, 142301 (2010).

[10] S. A. Bass, C. Gale, A. Majumder, C. Nonaka, G.-Y. Qin, T. Renk, and J. Ruppert,Phys. Rev. C79, 024901 (2009). [11] S. Chatrchyan et al. (CMS Collaboration),Phys. Rev. Lett.

109, 022301 (2012).

[12] S. S. Adler et al. (PHENIX Collaboration), Phys. Rev. Lett.91, 172301 (2003).

[13] S. S. Adler et al. (PHENIX Collaboration),Phys. Rev. C 69, 034909 (2004).

[14] J. Adams et al. (STAR Collaboration),Phys. Rev. Lett.92, 052302 (2004).

[15] A. Adare et al. (PHENIX Collaboration),Phys. Rev. Lett. 98, 162301 (2007).

[16] B. Muller,Nucl. Phys.A750, 84 (2005).

[17] C. B. Chiu, R. C. Hwa, and C. B. Yang,Phys. Rev. C78, 044903 (2008).

[18] K. Aamodt et al. (ALICE Collaboration),Phys. Rev. Lett. 105, 252302 (2010).

[19] G. Aad et al. (ATLAS Collaboration),Phys. Lett. B707, 330 (2012).

[20] CMS Collaboration,arXiv:1204.1409[Phys. Rev. C (to be published)].

[21] STAR Collaboration,Phys. Rev. C86, 054908 (2012). [22] S. Chatrchyan et al. (CMS Collaboration), JINST 3,

S08004 (2008).

[23] S. Chatrchyan et al. (CMS Collaboration),J. High Energy Phys. 08 (2011) 141.

[24] T. Sjostrand, S. Mrenna, and P. Skands,J. High Energy Phys. 05 (2006) 026.

[25] I. P. Lokhtin and A. M. Snigirev,Eur. Phys. J. C45, 211 (2006).

[26] R. C. Hwa and L. Zhu,Phys. Rev. C84, 064914 (2011).

S. Chatrchyan,1V. Khachatryan,1A. M. Sirunyan,1A. Tumasyan,1W. Adam,2E. Aguilo,2T. Bergauer,2 M. Dragicevic,2J. Ero¨,2C. Fabjan,2,bM. Friedl,2R. Fru¨hwirth,2,bV. M. Ghete,2J. Hammer,2N. Ho¨rmann,2 J. Hrubec,2M. Jeitler,2,bW. Kiesenhofer,2V. Knu¨nz,2M. Krammer,2,bI. Kra¨tschmer,2D. Liko,2I. Mikulec,2

M. Pernicka,2,aB. Rahbaran,2C. Rohringer,2H. Rohringer,2R. Scho¨fbeck,2J. Strauss,2A. Taurok,2 W. Waltenberger,2G. Walzel,2E. Widl,2C.-E. Wulz,2,bV. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3 S. Bansal,4T. Cornelis,4E. A. De Wolf,4X. Janssen,4S. Luyckx,4L. Mucibello,4S. Ochesanu,4B. Roland,4

R. Rougny,4M. Selvaggi,4Z. Staykova,4H. Van Haevermaet,4P. Van Mechelen,4N. Van Remortel,4 A. Van Spilbeeck,4F. Blekman,5S. Blyweert,5J. D’Hondt,5R. Gonzalez Suarez,5A. Kalogeropoulos,5M. Maes,5 A. Olbrechts,5W. Van Doninck,5P. Van Mulders,5G. P. Van Onsem,5I. Villella,5B. Clerbaux,6G. De Lentdecker,6

V. Dero,6A. P. R. Gay,6T. Hreus,6A. Le´onard,6P. E. Marage,6T. Reis,6L. Thomas,6G. Vander Marcken,6 C. Vander Velde,6P. Vanlaer,6J. Wang,6V. Adler,7K. Beernaert,7A. Cimmino,7S. Costantini,7G. Garcia,7

M. Grunewald,7B. Klein,7J. Lellouch,7A. Marinov,7J. Mccartin,7A. A. Ocampo Rios,7D. Ryckbosch,7 N. Strobbe,7F. Thyssen,7M. Tytgat,7P. Verwilligen,7S. Walsh,7E. Yazgan,7N. Zaganidis,7S. Basegmez,8 G. Bruno,8R. Castello,8L. Ceard,8C. Delaere,8T. du Pree,8D. Favart,8L. Forthomme,8A. Giammanco,8,cJ. Hollar,8

V. Lemaitre,8J. Liao,8O. Militaru,8C. Nuttens,8D. Pagano,8A. Pin,8K. Piotrzkowski,8N. Schul,8 J. M. Vizan Garcia,8N. Beliy,9T. Caebergs,9E. Daubie,9G. H. Hammad,9G. A. Alves,10M. Correa Martins Junior,10

D. De Jesus Damiao,10T. Martins,10M. E. Pol,10M. H. G. Souza,10W. L. Alda´ Ju´nior,11W. Carvalho,11 A. Custo´dio,11E. M. Da Costa,11C. De Oliveira Martins,11S. Fonseca De Souza,11D. Matos Figueiredo,11 L. Mundim,11H. Nogima,11V. Oguri,11W. L. Prado Da Silva,11A. Santoro,11L. Soares Jorge,11A. Sznajder,11 T. S. Anjos,12,dC. A. Bernardes,12,dF. A. Dias,12,eT. R. Fernandez Perez Tomei,12E. M. Gregores,12,dC. Lagana,12 F. Marinho,12P. G. Mercadante,12,dS. F. Novaes,12Sandra S. Padula,12V. Genchev,13,fP. Iaydjiev,13,fS. Piperov,13

(6)

M. Rodozov,13S. Stoykova,13G. Sultanov,13V. Tcholakov,13R. Trayanov,13M. Vutova,13A. Dimitrov,14 R. Hadjiiska,14V. Kozhuharov,14L. Litov,14B. Pavlov,14P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15 C. H. Jiang,15D. Liang,15S. Liang,15X. Meng,15J. Tao,15J. Wang,15X. Wang,15Z. Wang,15H. Xiao,15M. Xu,15

J. Zang,15Z. Zhang,15C. Asawatangtrakuldee,16Y. Ban,16S. Guo,16Y. Guo,16W. Li,16S. Liu,16Y. Mao,16 S. J. Qian,16H. Teng,16D. Wang,16L. Zhang,16B. Zhu,16W. Zou,16C. Avila,17J. P. Gomez,17B. Gomez Moreno,17

A. F. Osorio Oliveros,17J. C. Sanabria,17N. Godinovic,18D. Lelas,18R. Plestina,18,gD. Polic,18I. Puljak,18,f Z. Antunovic,19M. Kovac,19V. Brigljevic,20S. Duric,20K. Kadija,20J. Luetic,20S. Morovic,20A. Attikis,21

M. Galanti,21G. Mavromanolakis,21J. Mousa,21C. Nicolaou,21F. Ptochos,21P. A. Razis,21M. Finger,22 M. Finger, Jr.,22Y. Assran,23,hS. Elgammal,23,iA. Ellithi Kamel,23,jS. Khalil,23,iM. A. Mahmoud,23,kA. Radi,23,l,m

M. Kadastik,24M. Mu¨ntel,24M. Raidal,24L. Rebane,24A. Tiko,24P. Eerola,25G. Fedi,25M. Voutilainen,25 J. Ha¨rko¨nen,26A. Heikkinen,26V. Karima¨ki,26R. Kinnunen,26M. J. Kortelainen,26T. Lampe´n,26K. Lassila-Perini,26

S. Lehti,26T. Linde´n,26P. Luukka,26T. Ma¨enpa¨a¨,26T. Peltola,26E. Tuominen,26J. Tuominiemi,26E. Tuovinen,26 D. Ungaro,26L. Wendland,26K. Banzuzi,27A. Karjalainen,27A. Korpela,27T. Tuuva,27M. Besancon,28 S. Choudhury,28M. Dejardin,28D. Denegri,28B. Fabbro,28J. L. Faure,28F. Ferri,28S. Ganjour,28A. Givernaud,28 P. Gras,28G. Hamel de Monchenault,28P. Jarry,28E. Locci,28J. Malcles,28L. Millischer,28A. Nayak,28J. Rander,28 A. Rosowsky,28I. Shreyber,28M. Titov,28S. Baffioni,29F. Beaudette,29L. Benhabib,29L. Bianchini,29M. Bluj,29,n

C. Broutin,29P. Busson,29C. Charlot,29N. Daci,29T. Dahms,29L. Dobrzynski,29R. Granier de Cassagnac,29 M. Haguenauer,29P. Mine´,29C. Mironov,29I. N. Naranjo,29M. Nguyen,29C. Ochando,29P. Paganini,29D. Sabes,29

R. Salerno,29Y. Sirois,29C. Veelken,29A. Zabi,29J.-L. Agram,30,oJ. Andrea,30D. Bloch,30D. Bodin,30 J.-M. Brom,30M. Cardaci,30E. C. Chabert,30C. Collard,30E. Conte,30,oF. Drouhin,30,oC. Ferro,30J.-C. Fontaine,30,o

D. Gele´,30U. Goerlach,30P. Juillot,30A.-C. Le Bihan,30P. Van Hove,30F. Fassi,31D. Mercier,31S. Beauceron,32 N. Beaupere,32O. Bondu,32G. Boudoul,32J. Chasserat,32R. Chierici,32,fD. Contardo,32P. Depasse,32 H. El Mamouni,32J. Fay,32S. Gascon,32M. Gouzevitch,32B. Ille,32T. Kurca,32M. Lethuillier,32L. Mirabito,32 S. Perries,32V. Sordini,32Y. Tschudi,32P. Verdier,32S. Viret,32Z. Tsamalaidze,33,pG. Anagnostou,34S. Beranek,34

M. Edelhoff,34L. Feld,34N. Heracleous,34O. Hindrichs,34R. Jussen,34K. Klein,34J. Merz,34A. Ostapchuk,34 A. Perieanu,34F. Raupach,34J. Sammet,34S. Schael,34D. Sprenger,34H. Weber,34B. Wittmer,34V. Zhukov,34,q M. Ata,35J. Caudron,35E. Dietz-Laursonn,35D. Duchardt,35M. Erdmann,35R. Fischer,35A. Gu¨th,35T. Hebbeker,35

C. Heidemann,35K. Hoepfner,35D. Klingebiel,35P. Kreuzer,35C. Magass,35M. Merschmeyer,35A. Meyer,35 M. Olschewski,35P. Papacz,35H. Pieta,35H. Reithler,35S. A. Schmitz,35L. Sonnenschein,35J. Steggemann,35 D. Teyssier,35M. Weber,35M. Bontenackels,36V. Cherepanov,36G. Flu¨gge,36H. Geenen,36M. Geisler,36 W. Haj Ahmad,36F. Hoehle,36B. Kargoll,36T. Kress,36Y. Kuessel,36A. Nowack,36L. Perchalla,36O. Pooth,36

P. Sauerland,36A. Stahl,36M. Aldaya Martin,37J. Behr,37W. Behrenhoff,37U. Behrens,37M. Bergholz,37,r A. Bethani,37K. Borras,37A. Burgmeier,37A. Cakir,37L. Calligaris,37A. Campbell,37E. Castro,37F. Costanza,37

D. Dammann,37C. Diez Pardos,37G. Eckerlin,37D. Eckstein,37G. Flucke,37A. Geiser,37I. Glushkov,37 P. Gunnellini,37S. Habib,37J. Hauk,37G. Hellwig,37H. Jung,37M. Kasemann,37P. Katsas,37C. Kleinwort,37 H. Kluge,37A. Knutsson,37M. Kra¨mer,37D. Kru¨cker,37E. Kuznetsova,37W. Lange,37W. Lohmann,37,rB. Lutz,37

R. Mankel,37I. Marfin,37M. Marienfeld,37I.-A. Melzer-Pellmann,37A. B. Meyer,37J. Mnich,37A. Mussgiller,37 S. Naumann-Emme,37J. Olzem,37H. Perrey,37A. Petrukhin,37D. Pitzl,37A. Raspereza,37P. M. Ribeiro Cipriano,37

C. Riedl,37E. Ron,37M. Rosin,37J. Salfeld-Nebgen,37R. Schmidt,37,rT. Schoerner-Sadenius,37N. Sen,37 A. Spiridonov,37M. Stein,37R. Walsh,37C. Wissing,37C. Autermann,38V. Blobel,38J. Draeger,38H. Enderle,38

J. Erfle,38U. Gebbert,38M. Go¨rner,38T. Hermanns,38R. S. Ho¨ing,38K. Kaschube,38G. Kaussen,38 H. Kirschenmann,38R. Klanner,38J. Lange,38B. Mura,38F. Nowak,38T. Peiffer,38N. Pietsch,38D. Rathjens,38 C. Sander,38H. Schettler,38P. Schleper,38E. Schlieckau,38A. Schmidt,38M. Schro¨der,38T. Schum,38M. Seidel,38

V. Sola,38H. Stadie,38G. Steinbru¨ck,38J. Thomsen,38L. Vanelderen,38C. Barth,39J. Berger,39C. Bo¨ser,39 T. Chwalek,39W. De Boer,39A. Descroix,39A. Dierlamm,39M. Feindt,39M. Guthoff,39,fC. Hackstein,39

F. Hartmann,39T. Hauth,39,fM. Heinrich,39H. Held,39K. H. Hoffmann,39S. Honc,39I. Katkov,39,q J. R. Komaragiri,39P. Lobelle Pardo,39D. Martschei,39S. Mueller,39Th. Mu¨ller,39M. Niegel,39A. Nu¨rnberg,39

O. Oberst,39A. Oehler,39J. Ott,39G. Quast,39K. Rabbertz,39F. Ratnikov,39N. Ratnikova,39S. Ro¨cker,39 A. Scheurer,39F.-P. Schilling,39G. Schott,39H. J. Simonis,39F. M. Stober,39D. Troendle,39R. Ulrich,39 J. Wagner-Kuhr,39S. Wayand,39T. Weiler,39M. Zeise,39G. Daskalakis,40T. Geralis,40S. Kesisoglou,40 A. Kyriakis,40D. Loukas,40I. Manolakos,40A. Markou,40C. Markou,40C. Mavrommatis,40E. Ntomari,40 PRL110, 042301 (2013) P H Y S I C A L R E V I E W L E T T E R S 25 JANUARY 2013

(7)

L. Gouskos,41T. J. Mertzimekis,41A. Panagiotou,41N. Saoulidou,41I. Evangelou,42C. Foudas,42,fP. Kokkas,42 N. Manthos,42I. Papadopoulos,42V. Patras,42G. Bencze,43C. Hajdu,43,fP. Hidas,43D. Horvath,43,sF. Sikler,43 V. Veszpremi,43G. Vesztergombi,43,tN. Beni,44S. Czellar,44J. Molnar,44J. Palinkas,44Z. Szillasi,44J. Karancsi,45

P. Raics,45Z. L. Trocsanyi,45B. Ujvari,45S. B. Beri,46V. Bhatnagar,46N. Dhingra,46R. Gupta,46M. Jindal,46 M. Kaur,46M. Z. Mehta,46N. Nishu,46L. K. Saini,46A. Sharma,46J. Singh,46Ashok Kumar,47Arun Kumar,47

S. Ahuja,47A. Bhardwaj,47B. C. Choudhary,47S. Malhotra,47M. Naimuddin,47K. Ranjan,47V. Sharma,47 R. K. Shivpuri,47S. Banerjee,48S. Bhattacharya,48S. Dutta,48B. Gomber,48Sa. Jain,48Sh. Jain,48R. Khurana,48

S. Sarkar,48M. Sharan,48A. Abdulsalam,49R. K. Choudhury,49D. Dutta,49S. Kailas,49V. Kumar,49P. Mehta,49 A. K. Mohanty,49,fL. M. Pant,49P. Shukla,49T. Aziz,50S. Ganguly,50M. Guchait,50,uM. Maity,50,vG. Majumder,50

K. Mazumdar,50G. B. Mohanty,50B. Parida,50K. Sudhakar,50N. Wickramage,50S. Banerjee,51S. Dugad,51 H. Arfaei,52H. Bakhshiansohi,52,wS. M. Etesami,52,xA. Fahim,52,wM. Hashemi,52H. Hesari,52A. Jafari,52,w

M. Khakzad,52M. Mohammadi Najafabadi,52S. Paktinat Mehdiabadi,52B. Safarzadeh,52,yM. Zeinali,52,x M. Abbrescia,53a,53bL. Barbone,53a,53bC. Calabria,53a,53b,fS. S. Chhibra,53a,53bA. Colaleo,53aD. Creanza,53a,53c N. De Filippis,53a,53c,fM. De Palma,53a,53bL. Fiore,53aG. Iaselli,53a,53cL. Lusito,53a,53bG. Maggi,53a,53cM. Maggi,53a

B. Marangelli,53a,53bS. My,53a,53cS. Nuzzo,53a,53bN. Pacifico,53a,53bA. Pompili,53a,53bG. Pugliese,53a,53c G. Selvaggi,53a,53bL. Silvestris,53aG. Singh,53a,53bR. Venditti,53aG. Zito,53aG. Abbiendi,54aA. C. Benvenuti,54a

D. Bonacorsi,54a,54bS. Braibant-Giacomelli,54a,54bL. Brigliadori,54a,54bP. Capiluppi,54a,54bA. Castro,54a,54b F. R. Cavallo,54aM. Cuffiani,54a,54bG. M. Dallavalle,54aF. Fabbri,54aA. Fanfani,54a,54bD. Fasanella,54a,54b,f P. Giacomelli,54aC. Grandi,54aL. Guiducci,54a,54bS. Marcellini,54aG. Masetti,54aM. Meneghelli,54a,54b,f A. Montanari,54aF. L. Navarria,54a,54bF. Odorici,54aA. Perrotta,54aF. Primavera,54a,54bA. M. Rossi,54a,54b T. Rovelli,54a,54bG. Siroli,54a,54bR. Travaglini,54a,54bS. Albergo,55a,55bG. Cappello,55a,55bM. Chiorboli,55a,55b S. Costa,55a,55bR. Potenza,55a,55bA. Tricomi,55a,55bC. Tuve,55a,55bG. Barbagli,56aV. Ciulli,56a,56bC. Civinini,56a R. D’Alessandro,56a,56bE. Focardi,56a,56bS. Frosali,56a,56bE. Gallo,56aS. Gonzi,56a,56bM. Meschini,56aS. Paoletti,56a

G. Sguazzoni,56aA. Tropiano,56a,fL. Benussi,57S. Bianco,57S. Colafranceschi,57,zF. Fabbri,57D. Piccolo,57 P. Fabbricatore,58aR. Musenich,58aS. Tosi,58aA. Benaglia,59a,59b,fF. De Guio,59a,59bL. Di Matteo,59a,59b,f S. Fiorendi,59a,59bS. Gennai,59a,fA. Ghezzi,59a,59bS. Malvezzi,59aR. A. Manzoni,59a,59bA. Martelli,59a,59b A. Massironi,59a,59b,fD. Menasce,59aL. Moroni,59aM. Paganoni,59a,59bD. Pedrini,59aS. Ragazzi,59a,59b N. Redaelli,59aS. Sala,59aT. Tabarelli de Fatis,59a,59bS. Buontempo,60aC. A. Carrillo Montoya,60aN. Cavallo,60a,aa

A. De Cosa,60a,60b,fO. Dogangun,60a,60bF. Fabozzi,60a,aaA. O. M. Iorio,60aL. Lista,60aS. Meola,60a,bb M. Merola,60a,60bP. Paolucci,60a,fP. Azzi,61aN. Bacchetta,61a,fP. Bellan,61a,61bD. Bisello,61a,61bA. Branca,61a,f

P. Checchia,61aT. Dorigo,61aU. Dosselli,61aF. Gasparini,61a,61bA. Gozzelino,61aM. Gulmini,61a,cc K. Kanishchev,61a,61cS. Lacaprara,61aI. Lazzizzera,61a,61cM. Margoni,61a,61bG. Maron,61a,cc A. T. Meneguzzo,61a,61bM. Nespolo,61a,fJ. Pazzini,61aP. Ronchese,61a,61bF. Simonetto,61a,61bE. Torassa,61a

S. Vanini,61a,61bP. Zotto,61a,61bG. Zumerle,61a,61bM. Gabusi,62a,62bS. P. Ratti,62a,62bC. Riccardi,62a,62b P. Torre,62a,62bP. Vitulo,62a,62bM. Biasini,63a,63bG. M. Bilei,63aL. Fano`,63a,63bP. Lariccia,63a,63bA. Lucaroni,63a,63b,f

G. Mantovani,63a,63bM. Menichelli,63aA. Nappi,63a,63bF. Romeo,63a,63bA. Saha,63aA. Santocchia,63a,63b A. Spiezia,63a,63bS. Taroni,63a,63b,fP. Azzurri,64a,64cG. Bagliesi,64aT. Boccali,64aG. Broccolo,64a,64cR. Castaldi,64a

R. T. D’Agnolo,64a,64cR. Dell’Orso,64aF. Fiori,64a,64b,fL. Foa`,64a,64cA. Giassi,64aA. Kraan,64aF. Ligabue,64a,64c T. Lomtadze,64aL. Martini,64a,ddA. Messineo,64a,64bF. Palla,64aA. Rizzi,64a,64bA. T. Serban,64a,eeP. Spagnolo,64a P. Squillacioti,64a,fR. Tenchini,64aG. Tonelli,64a,64b,fA. Venturi,64a,fP. G. Verdini,64aL. Barone,65a,65bF. Cavallari,65a D. Del Re,65a,65b,fM. Diemoz,65aC. Fanelli,65aM. Grassi,65a,65b,fE. Longo,65a,65bP. Meridiani,65a,fF. Micheli,65a,65b

S. Nourbakhsh,65a,65bG. Organtini,65a,65bR. Paramatti,65aS. Rahatlou,65a,65bM. Sigamani,65aL. Soffi,65a,65b N. Amapane,66a,66bR. Arcidiacono,66a,66cS. Argiro,66a,66bM. Arneodo,66a,66cC. Biino,66aN. Cartiglia,66a M. Costa,66a,66bD. Dattola,66aN. Demaria,66aC. Mariotti,66a,fS. Maselli,66aE. Migliore,66a,66bV. Monaco,66a,66b

M. Musich,66a,fM. M. Obertino,66a,66cN. Pastrone,66aM. Pelliccioni,66aA. Potenza,66a,66bA. Romero,66a,66b R. Sacchi,66a,66bA. Solano,66a,66bA. Staiano,66aA. Vilela Pereira,66aS. Belforte,67aV. Candelise,67a,67b F. Cossutti,67aG. Della Ricca,67a,67bB. Gobbo,67aM. Marone,67a,67b,fD. Montanino,67a,67b,fA. Penzo,67a A. Schizzi,67a,67bS. G. Heo,68T. Y. Kim,68S. K. Nam,68S. Chang,69D. H. Kim,69G. N. Kim,69D. J. Kong,69 H. Park,69S. R. Ro,69D. C. Son,69T. Son,69J. Y. Kim,70Zero J. Kim,70S. Song,70S. Choi,71D. Gyun,71B. Hong,71

M. Jo,71H. Kim,71T. J. Kim,71K. S. Lee,71D. H. Moon,71S. K. Park,71M. Choi,72J. H. Kim,72C. Park,72 I. C. Park,72S. Park,72G. Ryu,72Y. Cho,73Y. Choi,73Y. K. Choi,73J. Goh,73M. S. Kim,73E. Kwon,73B. Lee,73

(8)

J. Lee,73S. Lee,73H. Seo,73I. Yu,73M. J. Bilinskas,74I. Grigelionis,74M. Janulis,74A. Juodagalvis,74 H. Castilla-Valdez,75E. De La Cruz-Burelo,75I. Heredia-de La Cruz,75R. Lopez-Fernandez,75R. Magan˜a Villalba,75

J. Martı´nez-Ortega,75A. Sa´nchez-Herna´ndez,75L. M. Villasenor-Cendejas,75S. Carrillo Moreno,76 F. Vazquez Valencia,76H. A. Salazar Ibarguen,77E. Casimiro Linares,78A. Morelos Pineda,78M. A. Reyes-Santos,78

D. Krofcheck,79A. J. Bell,80P. H. Butler,80R. Doesburg,80S. Reucroft,80H. Silverwood,80M. Ahmad,81 M. H. Ansari,81M. I. Asghar,81H. R. Hoorani,81S. Khalid,81W. A. Khan,81T. Khurshid,81S. Qazi,81M. A. Shah,81 M. Shoaib,81H. Bialkowska,82B. Boimska,82T. Frueboes,82R. Gokieli,82M. Go´rski,82M. Kazana,82K. Nawrocki,82 K. Romanowska-Rybinska,82M. Szleper,82G. Wrochna,82P. Zalewski,82G. Brona,83K. Bunkowski,83M. Cwiok,83

W. Dominik,83K. Doroba,83A. Kalinowski,83M. Konecki,83J. Krolikowski,83N. Almeida,84P. Bargassa,84 A. David,84P. Faccioli,84P. G. Ferreira Parracho,84M. Gallinaro,84J. Seixas,84J. Varela,84P. Vischia,84 S. Afanasiev,85P. Bunin,85M. Gavrilenko,85I. Golutvin,85I. Gorbunov,85A. Kamenev,85V. Karjavin,85G. Kozlov,85 A. Lanev,85A. Malakhov,85P. Moisenz,85V. Palichik,85V. Perelygin,85S. Shmatov,85V. Smirnov,85A. Volodko,85 A. Zarubin,85S. Evstyukhin,86V. Golovtsov,86Y. Ivanov,86V. Kim,86P. Levchenko,86V. Murzin,86V. Oreshkin,86

I. Smirnov,86V. Sulimov,86L. Uvarov,86S. Vavilov,86A. Vorobyev,86An. Vorobyev,86Yu. Andreev,87 A. Dermenev,87S. Gninenko,87N. Golubev,87M. Kirsanov,87N. Krasnikov,87V. Matveev,87A. Pashenkov,87

D. Tlisov,87A. Toropin,87V. Epshteyn,88M. Erofeeva,88V. Gavrilov,88M. Kossov,88,fN. Lychkovskaya,88 V. Popov,88G. Safronov,88S. Semenov,88V. Stolin,88E. Vlasov,88A. Zhokin,88A. Belyaev,89E. Boos,89A. Ershov,89

A. Gribushin,89V. Klyukhin,89O. Kodolova,89V. Korotkikh,89I. Lokhtin,89A. Markina,89S. Obraztsov,89 M. Perfilov,89S. Petrushanko,89A. Popov,89L. Sarycheva,89,aV. Savrin,89A. Snigirev,89I. Vardanyan,89 V. Andreev,90M. Azarkin,90I. Dremin,90M. Kirakosyan,90A. Leonidov,90G. Mesyats,90S. V. Rusakov,90 A. Vinogradov,90I. Azhgirey,91I. Bayshev,91S. Bitioukov,91V. Grishin,91,fV. Kachanov,91D. Konstantinov,91 A. Korablev,91V. Krychkine,91V. Petrov,91R. Ryutin,91A. Sobol,91L. Tourtchanovitch,91S. Troshin,91N. Tyurin,91

A. Uzunian,91A. Volkov,91P. Adzic,92,ffM. Djordjevic,92M. Ekmedzic,92D. Krpic,92,ffJ. Milosevic,92 M. Aguilar-Benitez,93J. Alcaraz Maestre,93P. Arce,93C. Battilana,93E. Calvo,93M. Cerrada,93 M. Chamizo Llatas,93N. Colino,93B. De La Cruz,93A. Delgado Peris,93D. Domı´nguez Va´zquez,93 C. Fernandez Bedoya,93J. P. Ferna´ndez Ramos,93A. Ferrando,93J. Flix,93M. C. Fouz,93P. Garcia-Abia,93

O. Gonzalez Lopez,93S. Goy Lopez,93J. M. Hernandez,93M. I. Josa,93G. Merino,93J. Puerta Pelayo,93 A. Quintario Olmeda,93I. Redondo,93L. Romero,93J. Santaolalla,93M. S. Soares,93C. Willmott,93C. Albajar,94

G. Codispoti,94J. F. de Troco´niz,94H. Brun,95J. Cuevas,95J. Fernandez Menendez,95S. Folgueras,95 I. Gonzalez Caballero,95L. Lloret Iglesias,95J. Piedra Gomez,95J. A. Brochero Cifuentes,96I. J. Cabrillo,96

A. Calderon,96S. H. Chuang,96J. Duarte Campderros,96M. Felcini,96,ggM. Fernandez,96G. Gomez,96 J. Gonzalez Sanchez,96A. Graziano,96C. Jorda,96A. Lopez Virto,96J. Marco,96R. Marco,96C. Martinez Rivero,96 F. Matorras,96F. J. Munoz Sanchez,96T. Rodrigo,96A. Y. Rodrı´guez-Marrero,96A. Ruiz-Jimeno,96L. Scodellaro,96 M. Sobron Sanudo,96I. Vila,96R. Vilar Cortabitarte,96D. Abbaneo,97E. Auffray,97G. Auzinger,97P. Baillon,97 A. H. Ball,97D. Barney,97J. F. Benitez,97C. Bernet,97,gG. Bianchi,97P. Bloch,97A. Bocci,97A. Bonato,97C. Botta,97

H. Breuker,97T. Camporesi,97G. Cerminara,97T. Christiansen,97J. A. Coarasa Perez,97D. D’Enterria,97 A. Dabrowski,97A. De Roeck,97S. Di Guida,97M. Dobson,97N. Dupont-Sagorin,97A. Elliott-Peisert,97B. Frisch,97

W. Funk,97G. Georgiou,97M. Giffels,97D. Gigi,97K. Gill,97D. Giordano,97M. Giunta,97F. Glege,97 R. Gomez-Reino Garrido,97P. Govoni,97S. Gowdy,97R. Guida,97M. Hansen,97P. Harris,97C. Hartl,97J. Harvey,97

B. Hegner,97A. Hinzmann,97V. Innocente,97P. Janot,97K. Kaadze,97E. Karavakis,97K. Kousouris,97P. Lecoq,97 Y.-J. Lee,97P. Lenzi,97C. Lourenc¸o,97T. Ma¨ki,97M. Malberti,97L. Malgeri,97M. Mannelli,97L. Masetti,97 F. Meijers,97S. Mersi,97E. Meschi,97R. Moser,97M. U. Mozer,97M. Mulders,97P. Musella,97E. Nesvold,97 T. Orimoto,97L. Orsini,97E. Palencia Cortezon,97E. Perez,97L. Perrozzi,97A. Petrilli,97A. Pfeiffer,97M. Pierini,97

M. Pimia¨,97D. Piparo,97G. Polese,97L. Quertenmont,97A. Racz,97W. Reece,97J. Rodrigues Antunes,97 G. Rolandi,97,hhT. Rommerskirchen,97C. Rovelli,97,iiM. Rovere,97H. Sakulin,97F. Santanastasio,97C. Scha¨fer,97 C. Schwick,97I. Segoni,97S. Sekmen,97A. Sharma,97P. Siegrist,97P. Silva,97M. Simon,97P. Sphicas,97,jjD. Spiga,97 A. Tsirou,97G. I. Veres,97,tJ. R. Vlimant,97H. K. Wo¨hri,97S. D. Worm,97,kkW. D. Zeuner,97W. Bertl,98K. Deiters,98

W. Erdmann,98K. Gabathuler,98R. Horisberger,98Q. Ingram,98H. C. Kaestli,98S. Ko¨nig,98D. Kotlinski,98 U. Langenegger,98F. Meier,98D. Renker,98T. Rohe,98J. Sibille,98,llL. Ba¨ni,99P. Bortignon,99M. A. Buchmann,99

B. Casal,99N. Chanon,99A. Deisher,99G. Dissertori,99M. Dittmar,99M. Donega`,99M. Du¨nser,99J. Eugster,99 K. Freudenreich,99C. Grab,99D. Hits,99P. Lecomte,99W. Lustermann,99A. C. Marini,99

(9)

P. Martinez Ruiz del Arbol,99N. Mohr,99F. Moortgat,99C. Na¨geli,99,mmP. Nef,99F. Nessi-Tedaldi,99F. Pandolfi,99 L. Pape,99F. Pauss,99M. Peruzzi,99F. J. Ronga,99M. Rossini,99L. Sala,99A. K. Sanchez,99A. Starodumov,99,nn B. Stieger,99M. Takahashi,99L. Tauscher,99,aA. Thea,99K. Theofilatos,99D. Treille,99C. Urscheler,99R. Wallny,99

H. A. Weber,99L. Wehrli,99C. Amsler,100V. Chiochia,100S. De Visscher,100C. Favaro,100M. Ivova Rikova,100 B. Millan Mejias,100P. Otiougova,100P. Robmann,100H. Snoek,100S. Tupputi,100M. Verzetti,100Y. H. Chang,101

K. H. Chen,101C. M. Kuo,101S. W. Li,101W. Lin,101Z. K. Liu,101Y. J. Lu,101D. Mekterovic,101A. P. Singh,101 R. Volpe,101S. S. Yu,101P. Bartalini,102P. Chang,102Y. H. Chang,102Y. W. Chang,102Y. Chao,102K. F. Chen,102 C. Dietz,102U. Grundler,102W.-S. Hou,102Y. Hsiung,102K. Y. Kao,102Y. J. Lei,102R.-S. Lu,102D. Majumder,102 E. Petrakou,102X. Shi,102J. G. Shiu,102Y. M. Tzeng,102X. Wan,102M. Wang,102A. Adiguzel,103M. N. Bakirci,103,oo

S. Cerci,103,ppC. Dozen,103I. Dumanoglu,103E. Eskut,103S. Girgis,103G. Gokbulut,103E. Gurpinar,103I. Hos,103 E. E. Kangal,103T. Karaman,103G. Karapinar,103,qqA. Kayis Topaksu,103G. Onengut,103K. Ozdemir,103 S. Ozturk,103,rrA. Polatoz,103K. Sogut,103,ssD. Sunar Cerci,103,ppB. Tali,103,ppH. Topakli,103,ooL. N. Vergili,103 M. Vergili,103I. V. Akin,104T. Aliev,104B. Bilin,104S. Bilmis,104M. Deniz,104H. Gamsizkan,104A. M. Guler,104 K. Ocalan,104A. Ozpineci,104M. Serin,104R. Sever,104U. E. Surat,104M. Yalvac,104E. Yildirim,104M. Zeyrek,104 E. Gu¨lmez,105B. Isildak,105,ttM. Kaya,105,uuO. Kaya,105,uuS. Ozkorucuklu,105,vvN. Sonmez,105,wwK. Cankocak,106

L. Levchuk,107F. Bostock,108J. J. Brooke,108E. Clement,108D. Cussans,108H. Flacher,108R. Frazier,108 J. Goldstein,108M. Grimes,108G. P. Heath,108H. F. Heath,108L. Kreczko,108S. Metson,108D. M. Newbold,108,kk K. Nirunpong,108A. Poll,108S. Senkin,108V. J. Smith,108T. Williams,108L. Basso,109,xxA. Belyaev,109,xxC. Brew,109 R. M. Brown,109D. J. A. Cockerill,109J. A. Coughlan,109K. Harder,109S. Harper,109J. Jackson,109B. W. Kennedy,109

E. Olaiya,109D. Petyt,109B. C. Radburn-Smith,109C. H. Shepherd-Themistocleous,109I. R. Tomalin,109 W. J. Womersley,109R. Bainbridge,110G. Ball,110R. Beuselinck,110O. Buchmuller,110D. Colling,110N. Cripps,110

M. Cutajar,110P. Dauncey,110G. Davies,110M. Della Negra,110W. Ferguson,110J. Fulcher,110D. Futyan,110 A. Gilbert,110A. Guneratne Bryer,110G. Hall,110Z. Hatherell,110J. Hays,110G. Iles,110M. Jarvis,110 G. Karapostoli,110L. Lyons,110A.-M. Magnan,110J. Marrouche,110B. Mathias,110R. Nandi,110J. Nash,110

A. Nikitenko,110,nnA. Papageorgiou,110J. Pela,110,fM. Pesaresi,110K. Petridis,110M. Pioppi,110,yy

D. M. Raymond,110S. Rogerson,110A. Rose,110M. J. Ryan,110C. Seez,110P. Sharp,110,aA. Sparrow,110M. Stoye,110 A. Tapper,110M. Vazquez Acosta,110T. Virdee,110S. Wakefield,110N. Wardle,110T. Whyntie,110M. Chadwick,111 J. E. Cole,111P. R. Hobson,111A. Khan,111P. Kyberd,111D. Leggat,111D. Leslie,111W. Martin,111I. D. Reid,111

P. Symonds,111L. Teodorescu,111M. Turner,111K. Hatakeyama,112H. Liu,112T. Scarborough,112O. Charaf,113 C. Henderson,113P. Rumerio,113A. Avetisyan,114T. Bose,114C. Fantasia,114A. Heister,114P. Lawson,114D. Lazic,114 J. Rohlf,114D. Sperka,114J. St. John,114L. Sulak,114J. Alimena,115S. Bhattacharya,115D. Cutts,115A. Ferapontov,115 U. Heintz,115S. Jabeen,115G. Kukartsev,115E. Laird,115G. Landsberg,115M. Luk,115M. Narain,115D. Nguyen,115

M. Segala,115T. Sinthuprasith,115T. Speer,115K. V. Tsang,115R. Breedon,116G. Breto,116

M. Calderon De La Barca Sanchez,116S. Chauhan,116M. Chertok,116J. Conway,116R. Conway,116P. T. Cox,116 J. Dolen,116R. Erbacher,116M. Gardner,116R. Houtz,116W. Ko,116A. Kopecky,116R. Lander,116T. Miceli,116

D. Pellett,116F. Ricci-tam,116B. Rutherford,116M. Searle,116J. Smith,116M. Squires,116M. Tripathi,116 R. Vasquez Sierra,116V. Andreev,117D. Cline,117R. Cousins,117J. Duris,117S. Erhan,117P. Everaerts,117 C. Farrell,117J. Hauser,117M. Ignatenko,117C. Jarvis,117C. Plager,117G. Rakness,117P. Schlein,117,aP. Traczyk,117

V. Valuev,117M. Weber,117J. Babb,118R. Clare,118M. E. Dinardo,118J. Ellison,118J. W. Gary,118F. Giordano,118 G. Hanson,118G. Y. Jeng,118,zzH. Liu,118O. R. Long,118A. Luthra,118H. Nguyen,118S. Paramesvaran,118 J. Sturdy,118S. Sumowidagdo,118R. Wilken,118S. Wimpenny,118W. Andrews,119J. G. Branson,119G. B. Cerati,119

S. Cittolin,119D. Evans,119F. Golf,119A. Holzner,119R. Kelley,119M. Lebourgeois,119J. Letts,119I. Macneill,119 B. Mangano,119S. Padhi,119C. Palmer,119G. Petrucciani,119M. Pieri,119M. Sani,119V. Sharma,119S. Simon,119 E. Sudano,119M. Tadel,119Y. Tu,119A. Vartak,119S. Wasserbaech,119,aaaF. Wu¨rthwein,119A. Yagil,119J. Yoo,119 D. Barge,120R. Bellan,120C. Campagnari,120M. D’Alfonso,120T. Danielson,120K. Flowers,120P. Geffert,120

J. Incandela,120C. Justus,120P. Kalavase,120S. A. Koay,120D. Kovalskyi,120V. Krutelyov,120S. Lowette,120 N. Mccoll,120V. Pavlunin,120F. Rebassoo,120J. Ribnik,120J. Richman,120R. Rossin,120D. Stuart,120W. To,120 C. West,120A. Apresyan,121A. Bornheim,121Y. Chen,121E. Di Marco,121J. Duarte,121M. Gataullin,121Y. Ma,121

A. Mott,121H. B. Newman,121C. Rogan,121M. Spiropulu,121,eV. Timciuc,121J. Veverka,121R. Wilkinson,121 Y. Yang,121R. Y. Zhu,121B. Akgun,122V. Azzolini,122R. Carroll,122T. Ferguson,122Y. Iiyama,122D. W. Jang,122

(10)

W. T. Ford,123A. Gaz,123B. Heyburn,123E. Luiggi Lopez,123J. G. Smith,123K. Stenson,123K. A. Ulmer,123 S. R. Wagner,123J. Alexander,124A. Chatterjee,124N. Eggert,124L. K. Gibbons,124B. Heltsley,124 A. Khukhunaishvili,124B. Kreis,124N. Mirman,124G. Nicolas Kaufman,124J. R. Patterson,124A. Ryd,124 E. Salvati,124W. Sun,124W. D. Teo,124J. Thom,124J. Thompson,124J. Tucker,124J. Vaughan,124Y. Weng,124 L. Winstrom,124P. Wittich,124D. Winn,125S. Abdullin,126M. Albrow,126J. Anderson,126L. A. T. Bauerdick,126

A. Beretvas,126J. Berryhill,126P. C. Bhat,126I. Bloch,126K. Burkett,126J. N. Butler,126V. Chetluru,126 H. W. K. Cheung,126F. Chlebana,126V. D. Elvira,126I. Fisk,126J. Freeman,126Y. Gao,126D. Green,126O. Gutsche,126

J. Hanlon,126R. M. Harris,126J. Hirschauer,126B. Hooberman,126S. Jindariani,126M. Johnson,126U. Joshi,126 B. Kilminster,126B. Klima,126S. Kunori,126S. Kwan,126C. Leonidopoulos,126J. Linacre,126D. Lincoln,126 R. Lipton,126J. Lykken,126K. Maeshima,126J. M. Marraffino,126S. Maruyama,126D. Mason,126P. McBride,126

K. Mishra,126S. Mrenna,126Y. Musienko,126,bbbC. Newman-Holmes,126V. O’Dell,126O. Prokofyev,126 E. Sexton-Kennedy,126S. Sharma,126W. J. Spalding,126L. Spiegel,126P. Tan,126L. Taylor,126S. Tkaczyk,126

N. V. Tran,126L. Uplegger,126E. W. Vaandering,126R. Vidal,126J. Whitmore,126W. Wu,126F. Yang,126 F. Yumiceva,126J. C. Yun,126D. Acosta,127P. Avery,127D. Bourilkov,127M. Chen,127T. Cheng,127S. Das,127 M. De Gruttola,127G. P. Di Giovanni,127D. Dobur,127A. Drozdetskiy,127R. D. Field,127M. Fisher,127Y. Fu,127

I. K. Furic,127J. Gartner,127J. Hugon,127B. Kim,127J. Konigsberg,127A. Korytov,127A. Kropivnitskaya,127 T. Kypreos,127J. F. Low,127K. Matchev,127P. Milenovic,127,cccG. Mitselmakher,127L. Muniz,127R. Remington,127

A. Rinkevicius,127P. Sellers,127N. Skhirtladze,127M. Snowball,127J. Yelton,127M. Zakaria,127V. Gaultney,128 S. Hewamanage,128L. M. Lebolo,128S. Linn,128P. Markowitz,128G. Martinez,128J. L. Rodriguez,128T. Adams,129

A. Askew,129J. Bochenek,129J. Chen,129B. Diamond,129S. V. Gleyzer,129J. Haas,129S. Hagopian,129 V. Hagopian,129M. Jenkins,129K. F. Johnson,129H. Prosper,129V. Veeraraghavan,129M. Weinberg,129 M. M. Baarmand,130B. Dorney,130M. Hohlmann,130H. Kalakhety,130I. Vodopiyanov,130M. R. Adams,131 I. M. Anghel,131L. Apanasevich,131Y. Bai,131V. E. Bazterra,131R. R. Betts,131I. Bucinskaite,131J. Callner,131

R. Cavanaugh,131C. Dragoiu,131O. Evdokimov,131L. Gauthier,131C. E. Gerber,131D. J. Hofman,131 S. Khalatyan,131F. Lacroix,131M. Malek,131C. O’Brien,131C. Silkworth,131D. Strom,131N. Varelas,131 U. Akgun,132E. A. Albayrak,132B. Bilki,132,dddW. Clarida,132F. Duru,132S. Griffiths,132J.-P. Merlo,132 H. Mermerkaya,132,eeeA. Mestvirishvili,132A. Moeller,132J. Nachtman,132C. R. Newsom,132E. Norbeck,132 Y. Onel,132F. Ozok,132S. Sen,132E. Tiras,132J. Wetzel,132T. Yetkin,132K. Yi,132B. A. Barnett,133B. Blumenfeld,133

S. Bolognesi,133D. Fehling,133G. Giurgiu,133A. V. Gritsan,133Z. J. Guo,133G. Hu,133P. Maksimovic,133 S. Rappoccio,133M. Swartz,133A. Whitbeck,133P. Baringer,134A. Bean,134G. Benelli,134O. Grachov,134 R. P. Kenny Iii,134M. Murray,134D. Noonan,134S. Sanders,134R. Stringer,134G. Tinti,134J. S. Wood,134 V. Zhukova,134A. F. Barfuss,135T. Bolton,135I. Chakaberia,135A. Ivanov,135S. Khalil,135M. Makouski,135

Y. Maravin,135S. Shrestha,135I. Svintradze,135J. Gronberg,136D. Lange,136D. Wright,136A. Baden,137 M. Boutemeur,137B. Calvert,137S. C. Eno,137J. A. Gomez,137N. J. Hadley,137R. G. Kellogg,137M. Kirn,137

T. Kolberg,137Y. Lu,137M. Marionneau,137A. C. Mignerey,137K. Pedro,137A. Peterman,137A. Skuja,137 J. Temple,137M. B. Tonjes,137S. C. Tonwar,137E. Twedt,137A. Apyan,138G. Bauer,138J. Bendavid,138W. Busza,138

E. Butz,138I. A. Cali,138M. Chan,138V. Dutta,138G. Gomez Ceballos,138M. Goncharov,138K. A. Hahn,138 Y. Kim,138M. Klute,138K. Krajczar,138,fffW. Li,138P. D. Luckey,138T. Ma,138S. Nahn,138C. Paus,138D. Ralph,138

C. Roland,138G. Roland,138M. Rudolph,138G. S. F. Stephans,138F. Sto¨ckli,138K. Sumorok,138K. Sung,138 D. Velicanu,138E. A. Wenger,138R. Wolf,138B. Wyslouch,138S. Xie,138M. Yang,138Y. Yilmaz,138A. S. Yoon,138

M. Zanetti,138S. I. Cooper,139B. Dahmes,139A. De Benedetti,139G. Franzoni,139A. Gude,139S. C. Kao,139 K. Klapoetke,139Y. Kubota,139J. Mans,139N. Pastika,139R. Rusack,139M. Sasseville,139A. Singovsky,139 N. Tambe,139J. Turkewitz,139L. M. Cremaldi,140R. Kroeger,140L. Perera,140R. Rahmat,140D. A. Sanders,140 E. Avdeeva,141K. Bloom,141S. Bose,141J. Butt,141D. R. Claes,141A. Dominguez,141M. Eads,141J. Keller,141 I. Kravchenko,141J. Lazo-Flores,141H. Malbouisson,141S. Malik,141G. R. Snow,141U. Baur,142A. Godshalk,142

I. Iashvili,142S. Jain,142A. Kharchilava,142A. Kumar,142S. P. Shipkowski,142K. Smith,142G. Alverson,143 E. Barberis,143D. Baumgartel,143M. Chasco,143J. Haley,143D. Nash,143D. Trocino,143D. Wood,143J. Zhang,143

A. Anastassov,144A. Kubik,144N. Mucia,144N. Odell,144R. A. Ofierzynski,144B. Pollack,144A. Pozdnyakov,144 M. Schmitt,144S. Stoynev,144M. Velasco,144S. Won,144L. Antonelli,145D. Berry,145A. Brinkerhoff,145 M. Hildreth,145C. Jessop,145D. J. Karmgard,145J. Kolb,145K. Lannon,145W. Luo,145S. Lynch,145N. Marinelli,145 D. M. Morse,145T. Pearson,145R. Ruchti,145J. Slaunwhite,145N. Valls,145M. Wayne,145M. Wolf,145B. Bylsma,146 PRL110, 042301 (2013) P H Y S I C A L R E V I E W L E T T E R S 25 JANUARY 2013

(11)

L. S. Durkin,146C. Hill,146R. Hughes,146R. Hughes,146K. Kotov,146T. Y. Ling,146D. Puigh,146M. Rodenburg,146 C. Vuosalo,146G. Williams,146B. L. Winer,146N. Adam,147E. Berry,147P. Elmer,147D. Gerbaudo,147V. Halyo,147

P. Hebda,147J. Hegeman,147A. Hunt,147P. Jindal,147D. Lopes Pegna,147P. Lujan,147D. Marlow,147 T. Medvedeva,147M. Mooney,147J. Olsen,147P. Piroue´,147X. Quan,147A. Raval,147B. Safdi,147H. Saka,147 D. Stickland,147C. Tully,147J. S. Werner,147A. Zuranski,147J. G. Acosta,148E. Brownson,148X. T. Huang,148

A. Lopez,148H. Mendez,148S. Oliveros,148J. E. Ramirez Vargas,148A. Zatserklyaniy,148E. Alagoz,149 V. E. Barnes,149D. Benedetti,149G. Bolla,149D. Bortoletto,149M. De Mattia,149A. Everett,149Z. Hu,149M. Jones,149

O. Koybasi,149M. Kress,149A. T. Laasanen,149N. Leonardo,149V. Maroussov,149P. Merkel,149D. H. Miller,149 N. Neumeister,149I. Shipsey,149D. Silvers,149A. Svyatkovskiy,149M. Vidal Marono,149H. D. Yoo,149J. Zablocki,149 Y. Zheng,149S. Guragain,150N. Parashar,150A. Adair,151C. Boulahouache,151K. M. Ecklund,151F. J. M. Geurts,151 B. P. Padley,151R. Redjimi,151J. Roberts,151J. Zabel,151B. Betchart,152A. Bodek,152Y. S. Chung,152R. Covarelli,152

P. de Barbaro,152R. Demina,152Y. Eshaq,152A. Garcia-Bellido,152P. Goldenzweig,152J. Han,152A. Harel,152 D. C. Miner,152D. Vishnevskiy,152M. Zielinski,152A. Bhatti,153R. Ciesielski,153L. Demortier,153K. Goulianos,153

G. Lungu,153S. Malik,153C. Mesropian,153S. Arora,154A. Barker,154J. P. Chou,154C. Contreras-Campana,154 E. Contreras-Campana,154D. Duggan,154D. Ferencek,154Y. Gershtein,154R. Gray,154E. Halkiadakis,154 D. Hidas,154A. Lath,154S. Panwalkar,154M. Park,154R. Patel,154V. Rekovic,154J. Robles,154K. Rose,154S. Salur,154

S. Schnetzer,154C. Seitz,154S. Somalwar,154R. Stone,154S. Thomas,154G. Cerizza,155M. Hollingsworth,155 S. Spanier,155Z. C. Yang,155A. York,155R. Eusebi,156W. Flanagan,156J. Gilmore,156T. Kamon,156,ggg V. Khotilovich,156R. Montalvo,156I. Osipenkov,156Y. Pakhotin,156A. Perloff,156J. Roe,156A. Safonov,156

T. Sakuma,156S. Sengupta,156I. Suarez,156A. Tatarinov,156D. Toback,156N. Akchurin,157J. Damgov,157 P. R. Dudero,157C. Jeong,157K. Kovitanggoon,157S. W. Lee,157T. Libeiro,157Y. Roh,157I. Volobouev,157 E. Appelt,158A. G. Delannoy,158C. Florez,158S. Greene,158A. Gurrola,158W. Johns,158C. Johnston,158P. Kurt,158 C. Maguire,158A. Melo,158M. Sharma,158P. Sheldon,158B. Snook,158S. Tuo,158J. Velkovska,158M. W. Arenton,159

M. Balazs,159S. Boutle,159B. Cox,159B. Francis,159J. Goodell,159R. Hirosky,159A. Ledovskoy,159C. Lin,159 C. Neu,159J. Wood,159R. Yohay,159S. Gollapinni,160R. Harr,160P. E. Karchin,160

C. Kottachchi Kankanamge Don,160P. Lamichhane,160A. Sakharov,160M. Anderson,161M. Bachtis,161 D. Belknap,161L. Borrello,161D. Carlsmith,161M. Cepeda,161S. Dasu,161E. Friis,161L. Gray,161K. S. Grogg,161

M. Grothe,161R. Hall-Wilton,161M. Herndon,161A. Herve´,161P. Klabbers,161J. Klukas,161A. Lanaro,161 C. Lazaridis,161J. Leonard,161R. Loveless,161A. Mohapatra,161I. Ojalvo,161F. Palmonari,161G. A. Pierro,161

I. Ross,161A. Savin,161W. H. Smith,161and J. Swanson161 (CMS Collaboration)

1

Yerevan Physics Institute, Yerevan, Armenia

2Institut fu¨r Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus

4Universiteit Antwerpen, Antwerpen, Belgium 5Vrije Universiteit Brussel, Brussel, Belgium 6Universite´ Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium

8Universite´ Catholique de Louvain, Louvain-la-Neuve, Belgium 9Universite´ de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil

13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria 14University of Sofia, Sofia, Bulgaria

15Institute of High Energy Physics, Beijing, China

16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 17

Universidad de Los Andes, Bogota, Colombia

18Technical University of Split, Split, Croatia 19University of Split, Split, Croatia 20Institute Rudjer Boskovic, Zagreb, Croatia

21University of Cyprus, Nicosia, Cyprus 22Charles University, Prague, Czech Republic

(12)

23Academy of Scientific Research and Technology of the Arab Republic of Egypt,

Egyptian Network of High Energy Physics, Cairo, Egypt

24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 25Department of Physics, University of Helsinki, Helsinki, Finland

26Helsinki Institute of Physics, Helsinki, Finland 27

Lappeenranta University of Technology, Lappeenranta, Finland

28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France 30Institut Pluridisciplinaire Hubert Curien, Universite´ de Strasbourg,

Universite´ de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

31Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules,

CNRS/IN2P3, Villeurbanne, France, Villeurbanne, France

32Universite´ de Lyon, Universite´ Claude Bernard Lyon 1, CNRS-IN2P3,

Institut de Physique Nucle´aire de Lyon, Villeurbanne, France

33

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia

34RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany 35RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 36RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

37Deutsches Elektronen-Synchrotron, Hamburg, Germany 38University of Hamburg, Hamburg, Germany 39Institut fu¨r Experimentelle Kernphysik, Karlsruhe, Germany 40Institute of Nuclear Physics ‘‘Demokritos,’’ Aghia Paraskevi, Greece

41University of Athens, Athens, Greece 42University of Ioa´nnina, Ioa´nnina, Greece

43KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 44Institute of Nuclear Research ATOMKI, Debrecen, Hungary

45University of Debrecen, Debrecen, Hungary 46Panjab University, Chandigarh, India

47University of Delhi, Delhi, India 48Saha Institute of Nuclear Physics, Kolkata, India

49

Bhabha Atomic Research Centre, Mumbai, India

50Tata Institute of Fundamental Research-EHEP, Mumbai, India 51Tata Institute of Fundamental Research-HECR, Mumbai, India 52Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

53aINFN Sezione di Bari, Bari, Italy 53bUniversita` di Bari, Bari, Italy 53cPolitecnico di Bari, Bari, Italy 54aINFN Sezione di Bologna, Bologna, Italy

54bUniversita` di Bologna, Bologna, Italy 55a

INFN Sezione di Catania, Catania, Italy

55bUniversita` di Catania, Catania, Italy 56aINFN Sezione di Firenze, Firenze, Italy

56bUniversita` di Firenze, Firenze, Italy

57INFN Laboratori Nazionali di Frascati, Frascati, Italy 58aINFN Sezione di Genova, Genova, Italy

58bUniversita` di Genova, Genova, Italy 59aINFN Sezione di Milano-Bicocca, Milano, Italy

59bUniversita` di Milano-Bicocca, Milano, Italy 60aINFN Sezione di Napoli, Napoli, Italy 60bUniversita` di Napoli ‘‘Federico II,’’ Napoli, Italy

61aINFN Sezione di Padova, Padova, Italy 61bUniversita` di Padova, Padova, Italy 61cUniversita` di Trento (Trento), Padova, Italy

62aINFN Sezione di Pavia, Pavia, Italy 62bUniversita` di Pavia, Pavia, Italy 63a

INFN Sezione di Perugia, Perugia, Italy

63bUniversita` di Perugia, Perugia, Italy 64aINFN Sezione di Pisa, Pisa, Italy

64bUniversita` di Pisa, Pisa, Italy 64cScuola Normale Superiore di Pisa, Pisa, Italy

65aINFN Sezione di Roma, Roma, Italy

(13)

65bUniversita` di Roma ‘‘La Sapienza,’’ Roma, Italy 66aINFN Sezione di Torino, Torino, Italy

66bUniversita` di Torino, Torino, Italy

66cUniversita` del Piemonte Orientale (Novara), Torino, Italy 67aINFN Sezione di Trieste, Trieste, Italy

67bUniversita` di Trieste, Trieste, Italy 68Kangwon National University, Chunchon, Korea

69Kyungpook National University, Daegu, Korea 70

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea

71Korea University, Seoul, Korea 72University of Seoul, Seoul, Korea 73Sungkyunkwan University, Suwon, Korea

74Vilnius University, Vilnius, Lithuania

75Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 76Universidad Iberoamericana, Mexico City, Mexico

77Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 78Universidad Auto´noma de San Luis Potosı´, San Luis Potosı´, Mexico

79University of Auckland, Auckland, New Zealand 80University of Canterbury, Christchurch, New Zealand

81National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 82National Centre for Nuclear Research, Swierk, Poland

83Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland 84Laborato´rio de Instrumentac¸a˜o e Fı´sica Experimental de Partı´culas, Lisboa, Portugal

85Joint Institute for Nuclear Research, Dubna, Russia 86

Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia

87Institute for Nuclear Research, Moscow, Russia

88Institute for Theoretical and Experimental Physics, Moscow, Russia 89Moscow State University, Moscow, Russia

90P.N. Lebedev Physical Institute, Moscow, Russia

91State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 92University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

93Centro de Investigaciones Energe´ticas Medioambientales y Tecnolo´gicas (CIEMAT), Madrid, Spain 94Universidad Auto´noma de Madrid, Madrid, Spain

95Universidad de Oviedo, Oviedo, Spain

96Instituto de Fı´sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 97CERN, European Organization for Nuclear Research, Geneva, Switzerland

98Paul Scherrer Institut, Villigen, Switzerland

99Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 100Universita¨t Zu¨rich, Zurich, Switzerland

101National Central University, Chung-Li, Taiwan 102National Taiwan University (NTU), Taipei, Taiwan

103Cukurova University, Adana, Turkey

104Middle East Technical University, Physics Department, Ankara, Turkey 105Bogazici University, Istanbul, Turkey

106Istanbul Technical University, Istanbul, Turkey

107National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 108University of Bristol, Bristol, United Kingdom

109

Rutherford Appleton Laboratory, Didcot, United Kingdom

110Imperial College, London, United Kingdom 111Brunel University, Uxbridge, United Kingdom

112Baylor University, Waco, Texas 76706, USA

113The University of Alabama, Tuscaloosa, Alabama 35487, USA 114Boston University, Boston, Massachusetts 02215, USA 115Brown University, Providence, Rhode Island 02912, USA 116University of California, Davis, Davis, California 95616, USA 117University of California, Los Angeles, Los Angeles, California 90095, USA

118

University of California, Riverside, Riverside, California 92521, USA

119University of California, San Diego, La Jolla, California 92093, USA 120University of California, Santa Barbara, Santa Barbara, California 93106, USA

121California Institute of Technology, Pasadena, California 91125, USA 122Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

(14)

123University of Colorado at Boulder, Boulder, Colorado 80309, USA 124Cornell University, Ithaca, New York 14853, USA 125Fairfield University, Fairfield, Connecticut 06824, USA 126Fermi National Accelerator Laboratory, Batavia, Illinois 6051, USA

127University of Florida, Gainesville, Florida 3261, USA 128Florida International University, Miami, Florida 33199, USA

129Florida State University, Tallahassee, Florida 32306, USA 130Florida Institute of Technology, Melbourne, Florida 32901, USA 131

University of Illinois at Chicago (UIC), Chicago, Illinois 60607, USA

132The University of Iowa, Iowa City, Iowa 52242, USA 133Johns Hopkins University, Baltimore, Maryland 21218, USA

134The University of Kansas, Lawrence, Kansas 66045, USA 135Kansas State University, Manhattan, Kansas 66506, USA

136Lawrence Livermore National Laboratory, Livermore, California 94720, USA 137University of Maryland, College Park, Maryland 20742, USA 138Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

139University of Minnesota, Minneapolis, Minnesota 55455, USA 140University of Mississippi, University, Mississippi 38677, USA 141University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA 142State University of New York at Buffalo, Buffalo, New York 14260, USA

143Northeastern University, Boston, Massachusetts 02115, USA 144Northwestern University, Evanston, Illinois 60208, USA 145University of Notre Dame, Notre Dame, Indiana 46556, USA

146The Ohio State University, Columbus, Ohio 43210, USA 147

Princeton University, Princeton, New Jersey 08544, USA

148University of Puerto Rico, Mayaguez, Puerto Rico 00680 149Purdue University, West Lafayette, Indiana 47907, USA 150Purdue University Calumet, Hammond, Indiana 46323, USA

151Rice University, Houston, Texas 77251, USA 152University of Rochester, Rochester, New York 14627, USA 153The Rockefeller University, New York, New York 10021, USA

154Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA 155University of Tennessee, Knoxville, Tennessee 37996, USA

156Texas A&M University, College Station, Texas 77843, USA 157Texas Tech University, Lubbock, Texas 79409, USA 158Vanderbilt University, Nashville, Tennessee 37235, USA 159University of Virginia, Charlottesville, Virginia 22901, USA

160Wayne State University, Detroit, Michigan 48202, USA 161University of Wisconsin, Madison, Wisconsin 53706, USA

a

Deceased.

bAlso at Vienna University of Technology, Vienna, Austria.

cAlso at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia. dAlso at Universidade Federal do ABC, Santo Andre, Brazil.

eAlso at California Institute of Technology, Pasadena, California, USA.

fAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.

gAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France. hAlso at Suez Canal University, Suez, Egypt.

iAlso at Zewail City of Science and Technology, Zewail, Egypt. jAlso at Cairo University, Cairo, Egypt.

kAlso at Fayoum University, El-Fayoum, Egypt. lAlso at British University, Cairo, Egypt.

mPresent address: Ain Shams University, Cairo, Egypt.

nAlso at National Centre for Nuclear Research, Swierk, Poland. oAlso at Universite´ de Haute-Alsace, Mulhouse, France. p

Present address: Joint Institute for Nuclear Research, Dubna, Russia.

qAlso at Moscow State University, Moscow, Russia.

rAlso at Brandenburg University of Technology, Cottbus, Germany. sAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.

(15)

tAlso at Eo¨tvo¨s Lora´nd University, Budapest, Hungary.

uAlso at Tata Institute of Fundamental Research-HECR, Mumbai, India. vAlso at University of Visva-Bharati, Santiniketan, India.

wAlso at Sharif University of Technology, Tehran, Iran. xAlso at Isfahan University of Technology, Isfahan, Iran.

yAlso at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Teheran, Iran. zAlso at Facolta` Ingegneria Universita` di Roma, Roma, Italy.

aaAlso at Universita` della Basilicata, Potenza, Italy.

bbAlso at Universita` degli Studi Guglielmo Marconi, Roma, Italy. ccAlso at Laboratori Nazionali di Legnaro dell’ INFN, Legnaro, Italy. ddAlso at Universita` degli studi di Siena, Siena, Italy.

eeAlso at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania. ffAlso at Faculty of Physics of University of Belgrade, Belgrade, Serbia.

ggAlso at University of California, Los Angeles, Los Angeles, California, USA. hh

Also at Scuola Normale e Sezione dell’ INFN, Pisa, Italy.

iiAlso at INFN Sezione di Roma, Universita` di Roma ‘‘La Sapienza,’’ Roma, Italy. jjAlso at University of Athens, Athens, Greece.

kkAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom. llAlso at The University of Kansas, Lawrence, Kansas, USA. mmAlso at Paul Scherrer Institut, Villigen, Switzerland.

nnAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia. ooAlso at Gaziosmanpasa University, Tokat, Turkey.

ppAlso at Adiyaman University, Adiyaman, Turkey. qqAlso at Izmir Institute of Technology, Izmir, Turkey.

rrAlso at The University of Iowa, Iowa City, Iowa, USA. ssAlso at Mersin University, Mersin, Turkey.

ttAlso at Ozyegin University, Istanbul, Turkey. uuAlso at Kafkas University, Kars, Turkey.

vvAlso at Suleyman Demirel University, Isparta, Turkey. ww

Also at Ege University, Izmir, Turkey.

xxAlso at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom. yyAlso at INFN Sezione di Perugia, Universita` di Perugia, Perugia, Italy.

zzAlso at University of Sydney, Sydney, Australia. aaaAlso at Utah Valley University, Orem, Utah, USA. bbbAlso at Institute for Nuclear Research, Moscow, Russia.

cccAlso at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia. dddAlso at Argonne National Laboratory, Argonne, Illinois, USA.

eeeAlso at Erzincan University, Erzincan, Turkey.

fffAlso at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary. gggAlso at Kyungpook National University, Daegu, Korea.

Figura

Figure 1 (top panel) presents the  0 meson invariant mass distribution before background subtraction for 2:5 &lt; p T &lt; 3:0 GeV=c for the (40–50)% centrality interval
Figure 2 also presents a comparison between CMS  0 meson v 2 results (solid circles), and CMS inclusive charged particle v 2 [ 20 ] (open squares) as a function of p T using the event-plane method

Riferimenti

Documenti correlati

In 2012, during a conference in Rome about Late Antique plates deco- rated with engravings, I presented a paper about the potentially very useful contribute that the

In both cases, an accurate reflection is needed: archaic texts often present palaeographic characters, writing techniques and linguistic issues that are completely different from

Per esempio, venivano ammessi alla ricollocazione solo i richiedenti appartenenti a nazionalità per le quali la percentuale di decisioni di riconoscimento della

To identify the miRNA targetome, the 560 DE mRNAs and the 6 DE miRNAs were selected for gene target analysis, using an integrated approach of validated and predicted interaction

The ALICE Collaboration acknowledges the following funding agencies for their support in building and run- ning the ALICE detector: State Committee of Science, World Fed- eration

The clotting time was evaluated manually, and the anticoagulant activity at each cell concentration was calculated as the ratio between the clotting time of patient plasma and

Peripheral insulin resistance (IR) promotes increased production of free fatty acids (FFA) direct in the liver, resulting in an imbalance between oxidation/divestiture

The purpose of this study is to assess the growth rate of CA in the presence of different concen- trations of glucose and fructose, two of the main phys- iopathologically