• Non ci sono risultati.

Odd and even partial waves of ηπ- and η'π- in π-p→η(')π-

N/A
N/A
Protected

Academic year: 2021

Condividi "Odd and even partial waves of ηπ- and η'π- in π-p→η(')π-"

Copied!
9
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Odd

and

even

partial

waves

of

ηπ

and

η



π

in

π

p

η

(

)

π

p

at 191 GeV

/

c

COMPASS

Collaboration

C. Adolph

h

,

R. Akhunzyanov

g

,

M.G. Alexeev

aa

,

G.D. Alexeev

g

,

A. Amoroso

aa

,

ac

,

V. Andrieux

v

,

V. Anosov

g

,

A. Austregesilo

j

,

q

,

B. Badełek

ae

,

F. Balestra

aa

,

ac

,

J. Barth

d

,

G. Baum

a

,

R. Beck

c

,

Y. Bedfer

v

,

A. Berlin

b

,

J. Bernhard

m

,

K. Bicker

j

,

q

,

E.R. Bielert

j

,

J. Bieling

d

,

R. Birsa

y

,

J. Bisplinghoff

c

,

M. Bodlak

s

,

M. Boer

v

,

P. Bordalo

l

,

1

,

F. Bradamante

x

,

y

,

C. Braun

h

,

A. Bressan

x

,

y

,

,

M. Büchele

i

,

E. Burtin

v

,

L. Capozza

v

,

M. Chiosso

aa

,

ac

,

S.U. Chung

q

,

2

,

A. Cicuttin

z

,

y

,

M.L. Crespo

z

,

y

,

Q. Curiel

v

,

S. Dalla Torre

y

,

S.S. Dasgupta

f

,

S. Dasgupta

y

,

O.Yu. Denisov

ac

,

S.V. Donskov

u

,

N. Doshita

ag

,

V. Duic

x

,

W. Dünnweber

p

,

M. Dziewiecki

af

,

A. Efremov

g

,

C. Elia

x

,

y

,

P.D. Eversheim

c

,

W. Eyrich

h

,

M. Faessler

p

,

A. Ferrero

v

,

M. Finger

s

,

M. Finger Jr.

s

,

H. Fischer

i

,

C. Franco

l

,

N. du Fresne von Hohenesche

m

,

j

,

J.M. Friedrich

q

,

V. Frolov

j

,

F. Gautheron

b

,

O.P. Gavrichtchouk

g

,

S. Gerassimov

o

,

q

,

R. Geyer

p

,

I. Gnesi

aa

,

ac

,

B. Gobbo

y

,

S. Goertz

d

,

M. Gorzellik

i

,

S. Grabmüller

q

,

A. Grasso

aa

,

ac

,

B. Grube

q

,

T. Grussenmeyer

i

,

A. Guskov

g

,

F. Haas

q

,

D. von Harrach

m

,

D. Hahne

d

,

R. Hashimoto

ag

,

F.H. Heinsius

i

,

F. Herrmann

i

,

F. Hinterberger

c

,

Ch. Höppner

q

,

N. Horikawa

r

,

4

,

N. d’Hose

v

,

S. Huber

q

,

S. Ishimoto

ag

,

5

,

A. Ivanov

g

,

Yu. Ivanshin

g

,

T. Iwata

ag

,

R. Jahn

c

,

V. Jary

t

,

P. Jasinski

m

,

P. Jörg

i

,

R. Joosten

c

,

E. Kabuß

m

,

B. Ketzer

q

,

6

,

G.V. Khaustov

u

,

Yu.A. Khokhlov

u

,

7

,

Yu. Kisselev

g

,

F. Klein

d

,

K. Klimaszewski

ad

,

J.H. Koivuniemi

b

,

V.N. Kolosov

u

,

K. Kondo

ag

,

K. Königsmann

i

,

I. Konorov

o

,

q

,

V.F. Konstantinov

u

,

A.M. Kotzinian

aa

,

ac

,

O. Kouznetsov

g

,

M. Krämer

q

,

Z.V. Kroumchtein

g

,

N. Kuchinski

g

,

F. Kunne

v

,

,

K. Kurek

ad

,

R.P. Kurjata

af

,

A.A. Lednev

u

,

A. Lehmann

h

,

M. Levillain

v

,

S. Levorato

y

,

J. Lichtenstadt

w

,

A. Maggiora

ac

,

A. Magnon

v

,

N. Makke

x

,

y

,

G.K. Mallot

j

,

C. Marchand

v

,

A. Martin

x

,

y

,

J. Marzec

af

,

J. Matousek

s

,

H. Matsuda

ag

,

T. Matsuda

n

,

G. Meshcheryakov

g

,

W. Meyer

b

,

T. Michigami

ag

,

Yu.V. Mikhailov

u

,

Y. Miyachi

ag

,

A. Nagaytsev

g

,

T. Nagel

q

,

F. Nerling

m

,

S. Neubert

q

,

D. Neyret

v

,

J. Novy

t

,

W.-D. Nowak

i

,

A.S. Nunes

l

,

A.G. Olshevsky

g

,

I. Orlov

g

,

M. Ostrick

m

,

R. Panknin

d

,

D. Panzieri

ab

,

ac

,

B. Parsamyan

aa

,

ac

,

S. Paul

q

,

D.V. Peshekhonov

g

,

S. Platchkov

v

,

J. Pochodzalla

m

,

V.A. Polyakov

u

,

J. Pretz

d

,

8

,

M. Quaresma

l

,

C. Quintans

l

,

S. Ramos

l

,

1

,

C. Regali

i

,

G. Reicherz

b

,

E. Rocco

j

,

N.S. Rossiyskaya

g

,

D.I. Ryabchikov

u

,

A. Rychter

af

,

V.D. Samoylenko

u

,

A. Sandacz

ad

,

S. Sarkar

f

,

I.A. Savin

g

,

G. Sbrizzai

x

,

y

,

P. Schiavon

x

,

y

,

C. Schill

i

,

T. Schlüter

p

,

,

K. Schmidt

i

,

3

,

H. Schmieden

d

,

K. Schönning

j

,

S. Schopferer

i

,

M. Schott

j

,

O.Yu. Shevchenko

g

,

19

,

L. Silva

l

,

L. Sinha

f

,

S. Sirtl

i

,

M. Slunecka

g

,

S. Sosio

aa

,

ac

,

F. Sozzi

y

,

A. Srnka

e

,

L. Steiger

y

,

M. Stolarski

l

,

M. Sulc

k

,

R. Sulej

ad

,

H. Suzuki

ag

,

4

,

A. Szabelski

ad

,

T. Szameitat

i

,

3

,

P. Sznajder

ad

,

S. Takekawa

aa

,

ac

,

J. ter Wolbeek

i

,

3

,

S. Tessaro

y

,

F. Tessarotto

y

,

F. Thibaud

v

,

S. Uhl

q

,

I. Uman

p

,

M. Virius

t

,

*

Correspondingauthors.

E-mailaddresses:Andrea.Bressan@cern.ch(A. Bressan),Fabienne.Kunne@cern.ch(F. Kunne),tobias.schlueter@physik.uni-muenchen.de(T. Schlüter). http://dx.doi.org/10.1016/j.physletb.2014.11.058

0370-2693/©2014TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/3.0/).Fundedby SCOAP3.

(2)

L. Wang

b

,

T. Weisrock

m

,

M. Wilfert

m

,

R. Windmolders

d

,

H. Wollny

v

,

K. Zaremba

af

,

M. Zavertyaev

o

,

E. Zemlyanichkina

g

,

M. Ziembicki

af

,

A. Zink

h

aUniversitätBielefeld,Germany bUniversitätBochum,Germany

cUniversitätBonn,Helmholtz-InstitutfürStrahlen- undKernphysik,53115Bonn,Germany9 dUniversitätBonn,PhysikalischesInstitut,53115Bonn,Germany9

eInstituteofScientificInstruments,ASCR,61264Brno,CzechRepublic10

fMatrivaniInstituteofExperimentalResearch&Education,Calcutta700030,India11 gJointInstituteforNuclearResearch,141980Dubna,MoscowRegion,Russia12 hUniversitätErlangen–Nürnberg,PhysikalischesInstitut,91054Erlangen,Germany9 iUniversitätFreiburg,PhysikalischesInstitut,79104Freiburg,Germany9,16 jCERN,1211Geneva23,Switzerland

kTechnicalUniversityinLiberec,46117Liberec,CzechRepublic10 lLIP,1000-149Lisbon,Portugal13

mUniversitätMainz,InstitutfürKernphysik,55099Mainz,Germany9 nUniversityofMiyazaki,Miyazaki889-2192,Japan14

oLebedevPhysicalInstitute,119991Moscow,Russia

pLudwig-Maximilians-UniversitätMünchen,DepartmentfürPhysik,80799Munich,Germany9,15 qTechnischeUniversitätMünchen,PhysikDepartment,85748Garching,Germany9,15

rNagoyaUniversity,464Nagoya,Japan14

sCharlesUniversityinPrague,FacultyofMathematicsandPhysics,18000Prague,CzechRepublic10 tCzechTechnicalUniversityinPrague,16636Prague,CzechRepublic10

uStateScientificCenterInstituteforHighEnergyPhysicsofNationalResearchCenter‘KurchatovInstitute’,142281Protvino,Russia vCEAIRFU/SPhNSaclay,91191Gif-sur-Yvette,France16

wTelAvivUniversity,SchoolofPhysicsandAstronomy,69978TelAviv,Israel17 xUniversityofTrieste,DepartmentofPhysics,34127Trieste,Italy

yTriesteSectionofINFN,34127Trieste,Italy zAbdusSalamICTP,34151Trieste,Italy

aaUniversityofTurin,DepartmentofPhysics,10125Turin,Italy abUniversityofEasternPiedmont,15100Alessandria,Italy acTorinoSectionofINFN,10125Turin,Italy

adNationalCentreforNuclearResearch,00-681Warsaw,Poland18 aeUniversityofWarsaw,FacultyofPhysics,00-681Warsaw,Poland18

afWarsawUniversityofTechnology,InstituteofRadioelectronics,00-665Warsaw,Poland18 agYamagataUniversity,Yamagata,992-8510,Japan14

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received21August2014

Receivedinrevisedform24November2014 Accepted30November2014

Availableonline3December2014 Editor:M.Doser

Exclusive production of

ηπ

− and

η



π

− has been studied with a 191 GeV/c

π

− beam impinging on a hydrogen target at COMPASS (CERN). Partial-wave analyses reveal different odd/even angular momentum(L)characteristicsintheinspectedinvariantmassrangeupto3 GeV/c2.Astrikingsimilarity

betweenthetwosystemsisobservedfortheL=2,4,6 intensities(scaledbykinematicalfactors)andthe relativephases.Theknownresonancesa2(1320)anda4(2040)areinlinewiththissimilarity.Incontrast,

a strongenhancementof

η



π

−over

ηπ

−isfoundfortheL=1,3,5 waves,whichcarrynon-qq quantum¯

numbers.TheL=1 intensitypeaksat1.7 GeV/c2in

η



π

andat1.4 GeV/c2in

ηπ

,thecorresponding phasemotionswithrespecttoL=2 aredifferent.

©2014TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/3.0/).FundedbySCOAP3.

1 AlsoatInstitutoSuperiorTécnico,UniversidadedeLisboa,Lisbon,Portugal.

2 AlsoatDepartmentofPhysics,PusanNationalUniversity,Busan609-735,RepublicofKoreaandatPhysicsDepartment,BrookhavenNationalLaboratory,Upton,NY11973,

USA.

3 SupportedbytheDFGResearchTrainingGroupProgramme1102“PhysicsatHadronAccelerators”. 4 AlsoatChubuUniversity,Kasugai,Aichi,487-8501,Japan.

5 AlsoatKEK,1-1Oho,Tsukuba,Ibaraki,305-0801,Japan.

6 Presentaddress:UniversitätBonn,Helmholtz-InstitutfürStrahlen- undKernphysik,53115Bonn,Germany. 7 AlsoatMoscowInstituteofPhysicsandTechnology,MoscowRegion,141700,Russia.

8 Presentaddress:RWTHAachenUniversity,III.PhysikalischesInstitut,52056Aachen,Germany. 9 SupportedbytheGermanBundesministeriumfürBildungundForschung.

10 SupportedbyCzechRepublicMEYSGrantsME492andLA242. 11 SupportedbySAIL(CSR),Govt.ofIndia.

12 SupportedbyCERN-RFBRGrants08-02-91009and12-02-91500.

13 SupportedbythePortugueseFCTFundaçãoparaaCiênciaeTecnologia,COMPETEandQREN,GrantsCERN/FP/109323/2009,CERN/FP/116376/2010and

CERN/FP/123600/2011.

14 SupportedbytheMEXTandtheJSPSundertheGrantsNos.18002006,20540299and18540281;DaikoFoundationandYamadaFoundation. 15 SupportedbytheDFGclusterofexcellence‘OriginandStructureoftheUniverse’(www.universe-cluster.de).

16 SupportedbyEUFP7(HadronPhysics3,GrantAgreementnumber283286).

17 SupportedbytheIsraelScienceFoundation,foundedbytheIsraelAcademyofSciencesandHumanities. 18 SupportedbythePolishNCNGrantDEC-2011/01/M/ST2/02350.

(3)

The

ηπ

and

η



π

mesonic systems are attractive for spectro-scopicstudies becauseany statewithodd angularmomentum L, whichcoincideswiththetotalspin J ,hasnon-qq (“exotic”)

¯

quan-tumnumbers JPC

=

1−+

,

3−+

,

5−+

,

. . .

. The 1−+ state has been theprincipalcasestudiedsofar[1,2].

A comparison of

ηπ

and

η



π

should illuminate the role of flavoursymmetry.Since

η

and

η

aredominantlyflavouroctetand singletstates,respectively, differentSU

(

3

)

flavour configurationsare

formed by

ηπ

and

η



π

. These configurations are linked to odd or even L by Bose symmetry [3–5]. Indeed, experimentally the diffractivelyproduced P -wave(L

=

J

=

1) in

η



π

− was found to bemorepronouncedthanin

ηπ

−[6].Amoresystematicstudyof thetwosystemsintheoddandevenpartialwavesisdesirable.

Diffractive productionof

ηπ

− and

η



π

− was studied by pre-vious experiments with

π

− beams in the 18 GeV

/

c–37 GeV

/

c range[6–9].Apartfromthewell-knownresonancesa2

(

1320

)

and a4

(

2040

)

,resonancefeatureswereobservedfortheexotic P -wave

inthe 1

.

4 GeV

/

c2–1

.

7 GeV

/

c2 mass range.It has quantum

num-bers JPG

=

1−−, where G-parity is used forthe charged system, correspondingtoC

= +

1 sincetheisospinis1.Resultsfor charge-exchangeproductionof

η

()

π

0aredifficulttorelatetothese

obser-vations[1].Criticaldiscussionsoftheresonancecharacterconcern apossibledynamicaloriginofthebehaviourofthe L

=

1 wavein thesesystems[10,11,1].

The present study is performed with a 191 GeV

/

c

π

− beam andin the region 0

.

1

(

GeV

/

c

)

2

<

t

<

1

(

GeV

/

c

)

2, where t de-notesthe squaredfour-momentum transfer to the proton target. This is within the range of Reggeon-exchange processes [12,13], wherediffractiveexcitationandmid-rapidity(“central”)production coexist.Theformercaninduceexclusiveresonanceproduction.The latterwill leadto a systemofthe leading andthe centrally pro-ducedmesonswith(almost)nointeractioninthefinalstate.

InthisLetter,thebehaviourofallpartialwaveswithL

=

1–6 in the

η

()

π

invariantmassrangeupto 3 GeV

/

c2 isstudied.A

pe-culiardifference between

ηπ

− and

η



π

− in theeven andodd-L wavesisobserved.

ThedatawerecollectedwiththeCOMPASSapparatusatCERN. COMPASSisatwo-stagemagneticspectrometer withtrackingand calorimetryin both stages[14,15]. A beamofnegatively charged hadronsat191 GeV

/

c wasimpinging ona liquidhydrogentarget of40 cm lengthand35 mm diameter.Usingtheinformationfrom beamparticleidentificationdetectors,itwascheckedthat K− and

¯

p admixtures to the 97%

π

− beam are insignificant in the final sampleanalysed here. Recoilingtarget protonswere identified by theirtimeofflightandenergylossinadetector(RPD)which con-sistedoftwocylindricalringsofscintillatingcountersatdistances of12 cm and 78 cm fromthebeam axis,covering thepolar an-gle rangeabove 50◦ as seen fromthe target centre.The angular rangebetween the RPDand the openingangle of the spectrom-eter of about

±

10◦ was covered mostly by a large-area photon andcharged-particle veto detector (SW), thus enriching the data recordingwithkinematicallycompleteevents[16].Thetriggerfor takingthe presentdatarequiredcoincidencebetweenbeam defi-nitioncountersandtheRPD, andno vetofromtheSWnorfrom a small counter telescope for non-interacting beam particles far downstream(32 m)fromthetarget.Asampleof4

.

5

×

109events

wasrecordedwiththistriggerin2008.

For the analysis of the exclusively produced

π

η

and

π

η

 mesonicsystems,the

η

wasdetected by itsdecay

η

π

π

+

π

0

(

π

0

γ γ

),andthe

η

 byitsdecay

η



π

π

+

η

(

η

γ γ

).The

preselectionforthecommonfinalstate

π

π

π

+

γ γ

required: (a) three tracks withtotal charge

1 reconstructedin the

spec-trometer,

(b) avertex,locatedinsidethetargetvolume,withoneincoming beamparticletrackandthethreeoutgoingtracks,

(c) exactlytwo“eligible”clustersintheelectromagnetic calorime-tersofCOMPASS(ECAL1,ECAL2),and

(d) thetotalenergyEtotoftheoutgoingparticleswithina10 GeV

wide windowcentredon the6 GeV FWHM peak at191 GeV inthe Etotdistribution.

Clusterswereconsidered“eligible”iftheywerenotassociatedwith a reconstructedtrack, ifthecluster energywas above 1 GeVand 4 GeVin ECAL1andECAL2, respectively, andiftheir timing with respecttothebeamwaswithin

±

4 ns.

Sharp

η

(

η

) peaks of widths 3 MeV

/

c2–4 MeV

/

c2 were

ob-tainedinthe

π

π

+

π

0 and

π

π

+

η

massspectraafterkinematic

fittingofthe

γ γ

systemswithin

±

20 MeV

/

c2 windowsaboutthe

respective

π

0 and

η

masses. For the present four-body analyses

of the systems

π

π

π

+

π

0 and

π

π

π

+

η

, broad windows of

50 MeV

/

c2 widthaboutthe

η

and

η

 masseswereapplied tothe

three-body

π

π

+

π

0 and

π

π

+

η

systems, respectively. In this

way,acommontreatmentof

η

() andthesmallnumberofnon-

η

()

eventsbecomes possible inthe subsequentlikelihood fit.No sig-nificantdeviationsfromcoplanarity(required toholdwithin13◦) areobservedforthemomentumvectorsofbeamparticle,mesonic systemandrecoilproton,whichconfirmstheexclusivityofthe re-action.DetailsarefoundinRefs.[17,18].

Inordertoaccountfortheacceptanceofthespectrometerand theselectionprocedure,MonteCarlosimulations[15,19]were per-formed for four-body phase-space distributions. The latter were weighted withthe experimental t distributions, approximatedby d

σ

/

dt

∝ |

t

|

exp

(

b

|

t

|)

with slope parameter b

=

8

.

0

(

GeV

/

c

)

−2

andb

=

8

.

45

(

GeV

/

c

)

−2 for

η



π

− and

ηπ

−,respectively. The ob-served weakmass-dependenceofthe slopeparameterwas found notto affectthe presentresults.Theoverall acceptancesfor

ηπ

and

η



π

− in the present kinematic range and decay channels amountedto10% and14%,respectively.Duetothelargecoverage of forwardsolid angle by the COMPASS spectrometer, the accep-tancesvarysmoothlyovertherelevantregionsofphasespace,see Ref. [20].A test ofthe Monte Carlodescription was provided by comparison to a five-charged-track sample where

η

 decays via

π

+

π

η

(

η

π

+

π

π

0). The known branching ratioof

η

decay

into

γ γ

and

π

π

+

π

0 was reproduced [18] leading toa

conser-vativeestimateof8%fortheuncertaintyoftherelativeacceptance ofthetwochannelsdiscussedhere.

To visualise the gross features of the two channels, subsam-ples ofeventswereselectedwithtight

±

10 MeV

/

c2 windows on

the

η

and

η

 masses. These contain 116 000 and 39 000 events, respectively,including5% backgroundfromnon-

η

() events.These

subsamplesareshownasfunctionofthe

ηπ

−and

η



π

−masses in

Figs. 1(a)and(b),andadditionallyinthescatterplotsFigs. 2 (a) and (b) as a function of these invariant masses and of cos

ϑ

GJ,

where

ϑ

GJ istheanglebetweenthedirectionsofthe

η

() andthe

beamas seenin the centreof massof the

η

()

π

system (polar

anglein the Gottfried–Jackson frame). Thesedistributions are in-tegratedover

|

t

|

from0

.

1

(

GeV

/

c

)

2 to1

.

0

(

GeV

/

c

)

2 andover the azimuth

ϕ

GJ (measured withrespect to the reaction plane). The

ϕ

GJ distributionsare observedto followcloselyasin2

ϕ

GJ pattern

throughoutthemassrangescoveredinbothchannels[18,20]. Several salientfeatures of the intensity distributions in Fig. 2

are noted before proceeding to the partial-wave analysis. In the

ηπ

− data, the a2

(

1320

)

with its two-hump D-wave angular

distribution is prominent, see also Fig. 1 (a). The D-wave pat-tern extends to 2 GeV

/

c2 where interference with the a

4

(

2040

)

can be discerned. For higher masses, increasingly narrow for-ward/backward peaks are observed. This feature corresponds to the emergence of a rapidity gap. In terms of partial waves it

(4)

Fig. 1. Invariant mass spectra (not acceptance corrected) for (a)ηπ−and (b)ηπ−. Acceptances (continuous lines) refer to the kinematic ranges of the present analysis.

Fig. 2. Data(notacceptancecorrected)asafunctionoftheinvariantηπ−(a)andηπ−(b)masses andofthecosineofthedecayangleintherespectiveGottfried–Jackson frameswherecosϑGJ=1 correspondsη()emissioninthebeamdirection.Two-dimensionalacceptancescanbefoundinRef.[20].

indicates coherent contributions from larger angular momenta. Forward/backward asymmetries (only weakly affected by accep-tance) occur for all masses in both channels, which indicates interferenceofoddandevenpartialwaves.Inthe

η



π

− data,the a2

(

1320

)

isclosetothethresholdenergyofthischannel(1

.

1 GeV),

andthesignalisnotdominant,seealsoFig. 1(b).A forward/back-wardasymmetricinterferencepattern,indicatingcoherent D- and P -wave contributions with mass-dependent relative phase, gov-ernsthe

η



π

−massrangeupto2 GeV

/

c2.Inthea4

(

2040

)

region,

well-localisedinterferenceisrecognised. As for

ηπ

−,narrow for-ward/backwardpeakingoccursathighermass,butinthiscasethe forward/backwardasymmetryisvisiblylargeroverthewholemass rangeof

η



π

−.

Thedataweresubjectedtoapartial-waveanalysis(PWA)using aprogramdevelopedatIllinoisandVES[21–23].Independentfits were carried out in 40 MeV

/

c2 wide bins of thefour-body mass

fromthresholdupto3 GeV

/

c2 (so-calledmass-independentPWA). Momentumtransferswerelimitedtotherangegivenabove.

An

η

()

π

partial-wave is characterised by the angular mo-mentum L, theabsolute value ofthe magnetic quantum number M

= |

m

|

andthereflectivity



= ±

1,whichistheeigenvalueof re-flectionabouttheproductionplane.Positive(negative)



ischosen tocorrespondto natural(unnatural)spin-parity oftheexchanged Reggeonwith JP

tr

=

1−or 2+or 3−

. . .

(0− or1+or2−. . . )

trans-fertothebeamparticle[18,24].Thesetwoclassesareincoherent. Ineachmassbin,thedifferentialcrosssectionasafunctionof four-body kinematic variables

τ

is taken to be proportional to a modelintensity I

(

τ

)

which isexpressedinterms ofpartial-wave amplitudes

ψ

LM

(

τ

)

, I

(

τ

)

=











L,M ALM

ψ

LM

(

τ

)





2

+

non-η()background

.

(1)

The magnitudesandphasesofthecomplexnumbers ALM consti-tutethefreeparametersofthefit.Theexpectednumberofevents inabinis

¯

N



I

(

τ

)

a

(

τ

)

,

(2) where d

τ

is the four-body phase spaceelement and a

(

τ

)

desig-nates the efficiency of detector and selection. Following the ex-tended likelihoodapproach [25,24], fits are carriedout maximis-ing ln

L

∼ − ¯

N

+

n



k=1 ln I

(

τ

k

),

(3)

where the sum runs over all observed events in the mass bin. Inthisway,theacceptance-correctedmodelintensityisfittothe data.

Thepartial-waveamplitudesarecomposedoftwoparts:a fac-tor fη ( fη)that describesboth theDalitzplotdistributionofthe successive

η

(

η

) decay [26] and the experimental peak shape, anda two-bodypartial-wave factorthat dependson theprimary

η

()

π

decay angles. In this way, the four-body analysis is re-ducedtoquasi-two-body.Thepartial-wavefactorforthetwo spin-less mesons is expressed by spherical harmonics. Thus, the full

η

(

π

π

+

π

0

)

π

partial-waveamplitudesread

ψ

LM

(

τ

)

=

(

,

+

,

0

)

×

YLM

GJ

,

0

)

×



sin Mϕ GJ for



= +

1 cos MϕGJ for



= −

1 (4) and analogously for

η



(

π

π

+

η

)

π

−. There are no M

=

0, and therefore no L

=

0 waves for



= +

1. The fits require a weak

(5)

L

=

M

=

0,



= −

1 amplitude which contributes 0

.

5% (1

.

1%) to thetotal

ηπ

−(

η



π

−)intensity.Thisisotropicwaveisattributedto incoherentbackgroundcontaining

η

(),whereasthenon-

η

() back-groundamplitudeinEq.(1)isisotropicinfour-bodyphasespace.

An independent two-body PWA was carried out not taking intoaccount the decays ofthe

η

(), butusing tight windowcuts (

±

10 MeV

/

c2) onthe

η

() peakintherespectivethree-body spec-tra.Theresultswerefoundtobeconsistentwiththepresent anal-ysis[18].

The above-mentioned azimuthal sin2

ϕ

GJ dependence is in

agreement with a strong M

=

1 dominance, as was experienced earlier[6–9].NoM

>

1 contributionsareneededtofitthedatain thepresentt range,withtheexceptionofthe

ηπ

D-wavewhere statisticsallowstheextractionofasmallM

=

2 contribution.The final fit modelis restrictedto the coherent L

=

1–6, M

=

1 plus L

=

2, M

=

2 partialwavesfrom naturalparitytransfer (



= +

1) andtheincoherentbackgroundsintroducedabove.

Incoherenceofpartialwavesofthesamenaturality,leading to additionaltermsinEq.(1),couldarisefromcontributionswithand withoutprotonhelicityflip,orfromdifferentt-dependencesofthe amplitudesoverthebroadt range.However,fortwopseudoscalars, incoherenceorpartialincoherence ofanytwopartialwaveswith M

=

1 canbe accommodated by full coherence with appropriate choice ofphase [7]. ComparingPWA results fort above and be-low 0

.

3

(

GeV

/

c

)

2, no significant variation of the relative M

=

1 amplitudeswitht isobserved[18].TheL

=

2,M

=

2 contribution showsadifferentt-dependencebutdoesnotintroducesignificant incoherence.

Ingeneral,atwo-pseudoscalarPWAsuffersfromdiscrete ambi-guities[27,28,24].The observedinsignificanceofunnatural-parity transfercruciallyreducestheambiguities.Inthecaseof

ηπ

−,the remainingambiguitiesareresolved whenthe M

=

2 D-wave am-plitudeisintroduced.For

η



π

−,ambiguitiesoccurwhenthePWA is extended beyond the dominant L

=

1

,

2 and 4 waves. We re-solvethisbyrequiringcontinuousbehaviourofthedominant par-tialwavesandoftheBarreletzeros[24].Theacceptablesolutions agreewithinthestatisticaluncertaintieswiththesolutionselected here,whichistheonewiththesmallestL

=

3 contribution.

The results ofthe PWA are presented asintensities of all in-cluded partial waves in Figs. 3, 4, and as relative phases with respect to the L

=

2, M

=

1 wavein Fig. 5. The plotted intensi-tiesaretheacceptance-correctednumbersofeventsineachmass bin,asderivedfromthe

|

ALM

|

2ofEq.(1).Feedthroughoftheorder of3%fromthedominanta2

(

1320

)

signalisobservedinthe L

=

4

ηπ

−distribution,asshowninlightcolourinFig. 3.Relative inten-sitiesintegratedovermassupto3 GeV

/

c2,takingintoaccountthe

respective

η

() decaybranchings,aregiveninTable 1.Theratioof

thesummedintensitiesis I

(

ηπ

)/

I

(

η



π

)

=

4

.

0

±

0

.

3.Thisratio isnot affected by luminosity,its erroris estimatedfromthe un-certaintyoftheacceptance.The

ηπ

−yieldislargerforalleven-L waves.Conversely,theodd-L yieldsarelargerinthe

η



π

−data.

The

ηπ

P -wave intensity shows a compact peak of 400 MeV

/

c2 width, centred at a mass of 1

.

4 GeV

/

c2. Beyond

1

.

8 GeV

/

c2 it disappears. The D-wave intensity is a factor of twenty larger than the P -waveintensity. These observations re-semblethose atlower beamenergy[7,9].Asimilar P -wavepeak was observed in pn annihilation

¯

at rest, where it appears with an intensitycomparableto that of the D-wave [29]. The present D-waveischaracterisedbyadominanta2

(

1320

)

peakandabroad

shoulderthat extendstohighermassesandpossiblycontains the a2

(

1700

)

. An M

=

2 D-wave intensity is found at the 5% level.

The G-wave shows a peak consistent with the a4

(

2040

)

and a

broadbump centredatabout2

.

7 GeV

/

c2. The F , H and I-waves

(L

=

3

,

5

,

6)adopteachlessthan1%oftheintensityinthepresent

massrangebutaresignificantinthelikelihoodfitascanbejudged fromtheuncertaintiesgiveninTable 1.

The

η



π

P and D-waves have comparable intensities. The former peaks at 1

.

65 GeV

/

c2, drops to almost zero at 2 GeV

/

c2

and displays a broad second maximum around 2

.

4 GeV

/

c2. The D-waveshowsatwo-partstructure similar to

ηπ

− butwith rel-atively larger intensity of the shoulder. The G-wave distribution showsana4

(

2040

)

plusbumpshapeasobservedfor

ηπ

−.In

con-trasttotheG and I-waves,theodd F and H -waveshaveafactor of2–3moreintensitythaninthe

ηπ

− channel.Relativetothe to-talintensities observedinthetwochannels, theodd-L wavesare enhancedbyanorderofmagnitudein

η



π

−.TheF -wave distribu-tionfeaturesabroadpeakaround2

.

6 GeV

/

c2.

Phasemotionsinbothsystemscanbestbestudiedwithrespect totheD-wave,whichispresentwithsufficientintensityinthefull massrange.Therapidphaserotationscausedbythea2

(

1320

)

and a4

(

2040

)

resonancesarediscernible.The P versus D-wavephases

inbothsystemsarealmostthesamefromthe

η



π

− thresholdup to 1

.

4 GeV

/

c2 where a branching takes place. Giventhe similar-ity of the D-wave intensities after applying a kinematical factor (seebelow),itissuggestiveto ascribethedifferentrelativephase motionsin the1

.

4 GeV

/

c2–2

.

0 GeV

/

c2 rangetothe P -wave.It is

notedthatthe P -waveintensitiesdropdramaticallywithinthis re-gion,almost vanishingat1

.

8 GeV

/

c2 in

ηπ

− andat2 GeV

/

c2 in

η



π

−.Incontrast,theG- versusD-phasemotionsarealmost iden-tical.Allphasedifferencestendtoconstantvaluesathighmasses, which is a wave-mechanical condition for narrow angular focus-ing.

Fits of resonance and background amplitudes to these PWA results (so-called mass-dependent fits) lead to strongly model-dependent resonance parameters. If these fits are restricted to massesbelow1

.

9 GeV

/

c2,comparabletopreviousanalyses,a sim-plemodelincorporatingonly P and D-waveBreit–Wigner ampli-tudes and a coherent D-wave background yields

π

1

(

1400

)

ηπ

resonance parameters and

π

1

(

1600

)

η



π

− resonance parameters

consistent with those of Refs. [7–9]. However, the inclusion of highermassesdemandsadditionalmodelamplitudes,inparticular additional D-waveresonancesandcoherent P -wavebackgrounds. ThepresenceofacoherentbackgroundintheP -waveissuggested by the PWA resultsin Figs. 3, 4, 5 (a): The vanishing of the in-tensitiesaround2

.

0 GeV

/

c2 isascribedtodestructiveinterference within this partial wave, and the relatively slow phase motion across the

η



π

P -wavepeak demands the additionalamplitude in order to dampen the

π

1

(

1600

)

phase rotation. Fitted P -wave

resonance masses in both channels are found to be shifted up-wards by typically 200 MeV

/

c2 whenintroducing constant-phase

model backgrounds as in Ref. [23]. In the present Letter, we re-frainfromproposingresonanceparameters fortheexotic P -wave oreventheexoticF and H -wavesobservedhere.Thepresent ob-servations at massesbeyondthe a2

(

1320

)

andthe

π

1 structures

mightstimulateextensionsofresonance-productionmodels,ase.g. multi-Reggemodels[13].

For the distinct a2

(

1320

)

and a4

(

2040

)

resonances,

mass-dependent fits using a standard relativistic Breit–Wigner param-eterisation, which for the a2 includes also the

ρπ

decay in the

parameterisationofthetotalwidth[6],givethefollowingresults:

m

(

a2

)

=

1315

±

12 MeV

/

c2

,

Γ (

a2

)

=

119

±

14 MeV

/

c2

,

m

(

a4

)

=

1900+−2080MeV

/

c2

,

Γ (

a4

)

=

300+−10080 MeV

/

c2

,

B2

N

(

a2

η



π

)

N

(

a2

ηπ

)

= (

5

±

2

)

%

,

B4

N

(

a4

η



π

)

N

(

a4

ηπ

)

= (

23

±

7

)

%

.

(5)

(6)

Fig. 3. IntensitiesoftheL=1–6,M=1 andL=2,M=2 partialwavesfromthepartial-waveanalysisoftheηπ−datainmassbinsof40 MeV/c2width.Thelight-coloured

partoftheL=4 intensitybelow1.5 GeV/c2isduetofeedthroughfromtheL=2 wave.Theerrorbarscorrespondtoachangeofthelog-likelihoodbyhalfaunitanddo

notincludeMCfluctuationswhichareontheorderof5%.

Here, N stands forthe integratedBreit–Wigner intensities ofthe given decay branches. The errors given above are dominated by the systematicuncertainty, which is estimatedby comparing fits

with and without coherent backgrounds, a2

(

1700

)

or

π

1

(

1400

)

.

The masses and B2 agree with the PDG values [26]. The decay

(7)

Fig. 4. IntensitiesoftheL=1–6,M=1 partialwavesfromthepartial-waveanalysisoftheηπ−datainmassbinsof40 MeV/c2 width(circles).Shownforcomparison

(triangles)aretheηπ−resultsscaledbytherelativekinematicalfactorgiveninEq.(7).

For a detailed comparison of the results from the mass-independent PWA of both channels, their different phase spaces andangular-momentum barriers are taken into account. For the decay of pointlike particles, transition rates are expected to be proportionalto

g

(

m

,

L

)

=

q

(

m

)

×

q

(

m

)

2L (6) withbreak-upmomentumq

(

m

)

[30–32].Overlaid onthePWA re-sultsfor

η



π

−inFig. 4arethosefor

ηπ

−,multipliedineachbin bytherelativekinematicalfactor

c

(

m

,

L

)

=

b

×

g



(

m

,

L

)

g

(

m

,

L

)

,

(7) whereg() refersto

η

()

π

withbreak-upmomentumq(),andthe factorb

=

0

.

746 accountsforthedecaybranchingsof

η

and

η

into

π

π

+

γ γ

[26].

Byintegratingtheinvariant massspectraofeach partialwave, scaledby

[

g()

(

m

,

L

)

]

−1,fromthe

η



π

thresholdupto3 GeV

/

c2,

weobtainscaledyields I(L) andderivetheratios

RL

=

b

×

IL

/

IL

.

(8) Asanalternativetotheangular-momentumbarrierfactorsq

(

m

)

2L

ofEq.(6),we havealsoused Blatt–Weisskopfbarrierfactors[33]. For the range parameter involved there, an upper limit of r

=

0

.

4 fm wasdeducedfromsystematicstudies oftensormeson de-cays,includingthepresentchannels[30,31],whereasforr

=

0 fm Eq.(6) is recovered.To demonstratethe sensitivityof RL on the barrier model, the rangeof values corresponding to these upper andlowerlimitsisgiveninTable 1.

ThecomparisoninFig. 4revealsaconspicuousresemblanceof theeven-L partialwavesofbothchannels. Thisfeatureremainsif r

=

0

.

4 fm, but the values of RL increase with increasing r (

Ta-ble 1). This similarity is corroborated by the relative phases as observedinFigs. 5(d)and(f).Theobservedbehaviourisexpected fromaquark-linepicturewhereonlythenon-strangecomponents nn (n

¯

=

u

,

d)oftheincoming

π

− andtheoutgoingsystemare in-volved. The similar values of RL for L

=

2

,

4

,

6 suggest that the respectiveintermediate statescoupletothe sameflavourcontent oftheoutgoingsystem.

(8)

Fig. 5. PhasesΦLoftheM=1 partialwaveswithangularmomentumL relativetotheL=2,M=1 waveofηπ−(triangles)andηπ−(circles)systems.Forηπ−,thephase betweenthe P andD-wavesisill-definedintheregionofvanishing P -waveintensitybetween1.8and2.05 GeV/c2(shaded).Panel(b)showstherelativeM=2 versus M=1 phaseoftheηπD-wave.

Table 1

Intensities(yields),integratedover themassrangeupto3 GeV/c2, forthe

par-tialwaveswith M=1 (and M=2 for L=2)relativetoL=2,M=1 inηπ− (setto100).Theseyieldstakeintoaccountthedecaybranchingratiosofη()into

ππ+γ γ.Errorsarederivedfrom thelog-likelihoodfit anddonotincludethe commonuncertainty(8%)oftheacceptanceratioofthetwochannels.Thelast col-umnlistsηπ−overηπ−yieldratiosderivedfromthescaledintensities(seetext, Eq.(8)).Thefirst(second)valueofRL correspondstorangeparameterr=0 fm (r=0.4 fm). L yield(ηπ) yieldπ) RL 1 5.4±0.3 12.8±0.4 0.08–0.12 2 100 (fixed) 13.0±0.3 0.84–1.18 2, M=2 5.4±0.2 3 0.39±0.07 1.14±0.13 0.14–0.19 4 10.0±0.3 2.57±0.18 0.80–0.97 5 0.12±0.04 0.28±0.10 0.13–0.15 6 0.87±0.08 0.36±0.05 0.66–0.74

The quark-line estimate (see Eq. (3) in[31]) for thea2

(

1320

)

decaybranchingusingr

=

0

.

4 fm andtheisoscalarmixinganglein thequarkflavour basis,

φ

=

39

.

3◦ [32],is B2

=

3

.

9% for ourmass

value. Thisisinreasonableagreementwiththepresent measure-ment.Ananalogouscalculationforthea4

(

2040

)

yieldsB4

=

11

.

8%,

whichisbelowtheexperimentalvalue.Alargerrangeparameterr wouldimprovetheagreement.

On the other hand, the odd-L

η



π

− intensities are enhanced by a factor 5–10 as compared to

ηπ

−, see Fig. 4, Table 1. The P -wavefits wellinto thetrendobservedforthe F and H -waves, which alsocarry exotic quantumnumbers. Itis suggestive to as-cribetheseobservationstothedominant8

8 and1

8

charac-terofthe

ηπ

− and

η



π

− SU

(

3

)

flavour configurations,respectively.

Whentheformercouplestoanoctetintermediatestate,Bose sym-metrydemandsevenL,whereasthelattermaycoupletothe non-symmetric odd-L configurations. The importance of this relation was alreadypointedout inprevious discussions oftheexotic

π

1,

whereinparticularthehybrid(gqq)

¯

orthelowestmolecularstate (qqq

¯

q)

¯

has 1

8 character[3–5].

A P -wave peak, consistent with quoted resonance parame-ters [26], appears in each channel. In the

η



π

− channel, its rel-atively large contribution is directly visible in Fig. 2 (b). The

(9)

forward/backward asymmetry, ascribed to L

=

1

,

3

,

5 amplitudes interferingwiththeeven-L ones,extendstohighermasses,where atransitiontorapidity-gapphenomena(centralproduction)is ex-pected.Inthe

ηπ

−data,theasymmetryismuchlesspronounced. Inconclusion,two strikingfeaturescharacterisethesystematic behaviourofpartialwavespresentedhere:

(i) TheevenpartialwaveswithL

=

2

,

4

,

6 showaclosesimilarity betweenthetwochannels, bothintheintensitiesasfunction ofmass–afterscalingbythephase-spaceandbarrierfactors –aswellasintheirphasebehaviour.

(ii) TheoddpartialwaveswithL

=

1

,

3

,

5,carryingnon-qq quan-

¯

tum numbers,are suppressed in

ηπ

− withrespect to

η



π

−, underliningtheimportanceofflavoursymmetry.

Acknowledgements

We gratefullyacknowledge the support of the CERN manage-mentandstaffaswellastheskills andeffortsofthe technicians ofthecollaborating institutions.Thisworkwas madepossible by thefinancialsupportofourfundingagencies.

References

[1] E.Klempt,A.Zaitsev,Glueballs,hybrids,multiquarks.Experimentalfactsversus QCDinspiredconcepts,Phys.Rep.454(2007)1–202,http://dx.doi.org/10.1016/ j.physrep.2007.07.006,arXiv:0708.4016[hep-ph].

[2]N.Brambilla,etal.,QCDandstronglycoupledgaugetheories:challengesand perspectives,Eur.Phys.J.C74(2014)2981,arXiv:1404.3723.

[3] F. Close,H. Lipkin, New experimentalevidence for four quark exotics:the Serpukhovφπ resonanceandtheGAMSηπ enhancement,Phys.Lett.B196 (1987)245–250,http://dx.doi.org/10.1016/0370-2693(87)90613-7.

[4] F. Iddir,etal., qqg hybrid¯ and qqq¯q diquonium¯ interpretationofthe GAMS 1−+ resonance,Phys.Lett. B205(1988)564–568,http://dx.doi.org/10.1016/ 0370-2693(88)90999-9.

[5] S.U. Chung, E.Klempt, J.G. Körner, SU(3) classification of p-wave ηπ and ηπsystems,Eur.Phys.J.A15(2002)539–542,http://dx.doi.org/10.1140/epja/ i2002-10058-0,arXiv:hep-ph/0211100.

[6] G.Beladidze,et al.,StudyofπNηπN and πNηπN reactions

at 37 GeV/c, Phys. Lett. B 313 (1993) 276–282, http://dx.doi.org/10.1016/ 0370-2693(93)91224-B.

[7] S.Chung,etal.,Evidenceforexotic JPC=1−+mesonproductioninthe

re-action πpηπp at 18 GeV/c, Phys. Rev.D60 (1999) 092001, http:// dx.doi.org/10.1103/PhysRevD.60.092001,arXiv:hep-ex/9902003.

[8] E.I. Ivanov,et al., Observation of exotic meson production in the reaction πpηπp at 18 GeV/c, Phys. Rev.Lett. 86(2001) 3977–3980, http:// dx.doi.org/10.1103/PhysRevLett.86.3977,arXiv:hep-ex/0101058.

[9] V.Dorofeev,etal.,The JPC=1−+huntingseasonatVES,AIPConf.Proc.619

(2002)143–154,http://dx.doi.org/10.1063/1.1482444,arXiv:hep-ex/0110075. [10] A. Donnachie, P. Page, Interpretation of experimental JPC exotic signals,

Phys.Rev.D58(1998)114012,http://dx.doi.org/10.1103/PhysRevD.58.114012, arXiv:hep-ph/9808225.

[11] A.Szczepaniak,M.Swat,A.Dzierba,S.Teige,ηπandηπspectraand interpre-tationofpossibleexotic JPC=1−+mesons,Phys.Rev.Lett.91(2003)092002,

http://dx.doi.org/10.1103/PhysRevLett.91.092002,arXiv:hep-ph/0304095. [12]S. Donnachie,H.G.Dosch,O.Nachtmann,P.Landshoff,PomeronPhysicsand

QCD, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol.,Cambridge University Press,2002.

[13] T.Shimada,A.Martin,A.Irving,DoubleRegge exchangephenomenology,Nucl. Phys.B142(1978)344,http://dx.doi.org/10.1016/0550-3213(78)90209-2. [14]P.Abbon,et al.,TheCOMPASS experimentatCERN,Nucl.Instrum.Methods,

Sect.A577(2007)455–518.

[15]P.Abbon,etal.,TheCOMPASSsetupforphysicswithhadronbeams,Nucl. In-strum.Methods,Sect.A,inpreparation,arXiv:1410.1797.

[16] T.Schlüter,etal.,Large-areasandwichvetodetectorwithWLSfibrereadoutfor hadronspectroscopyatCOMPASS,Nucl.Instrum.Methods,Sect.A654(2011) 219,http://dx.doi.org/10.1016/j.nima.2011.05.069,arXiv:1108.4587.

[17] T.Schlüter,Theexoticηπ− wavein190GeVπpπηp atCOMPASS, in:B.Grube,S.Paul,N.Brambilla(Eds.),ProceedingsoftheXIVInternational Conference on HadronSpectroscopy, in:eConf C, vol. 110613,2011, arXiv: 1108.6191,http://www.slac.stanford.edu/econf/C110613.

[18] T.Schlüter,Theπηandπηsystemsinexclusive190GeVπp reactions

at COMPASS (CERN), PhD thesis, Ludwig-Maximilians-Universität, München, 2012, http://wwwcompass.cern.ch/compass/publications/theses/%2012%5Fphd %5Fschlueter.pdf.

[19] CERN,GEANT–detectordescriptionandsimulationtool,CERN-W5013(1994). [20]T.Schlüter,Oddandevenpartialwavesofηπ−andηπ− in191GeVπp,

PoSHadron2013(2014)085,arXiv:1401.4067.

[21] G.Ascoli,etal.,Partialwaveanalysisofthe3πdecayoftheA2,Phys.Rev.Lett.

25(1970)962,http://dx.doi.org/10.1103/PhysRevLett.25.962. [22] I.Kachaev,D.Ryabchikov,privatecommunication.

[23] M.Alekseev,et al.,Observationofa JPC=1−+exoticresonancein

diffrac-tivedissociationof190 GeV/cπ−intoπππ+,Phys.Rev.Lett.104(2010) 241803,http://dx.doi.org/10.1103/PhysRevLett.104.241803,arXiv:0910.5842. [24] S.U. Chung,Techniquesofamplitudeanalysisfor twopseudoscalarsystems,

Phys.Rev.D56(1997)7299–7316,http://dx.doi.org/10.1103/PhysRevD.56.7299. [25] R. Barlow,Extended maximum likelihood, Nucl. Instrum. Methods, Sect. A

297 (3)(1990)496–506,http://dx.doi.org/10.1016/0168-9002(90)91334-8. [26] J.Beringer,etal.,Reviewofparticlephysics,Phys.Rev.D86(2012)010001,

http://dx.doi.org/10.1103/PhysRevD.86.010001.

[27] A. Martin, et al., A study of isospin 1 meson states using 10 GeV/c KK0productiondata,Phys.Lett.B74(1978)417,http://dx.doi.org/10.1016/

0370-2693(78)90693-7.

[28]S.Sadovsky,Ontheambiguitiesinthepartialwaveanalysisofπpηπ0n reaction,Tech.rep.,IHEP91-75,IHEPProtvino,1991.

[29] A. Abele, et al., Exotic ηπ state in pd¯ annihilation at rest into ππ0ηp

spectator,Phys.Lett.B423(1998)175–184,http://dx.doi.org/10.1016/

S0370-2693(98)00123-3.

[30] K. Peters,E. Klempt, The suppressionof s¯s pair creationfrom tensor me-son decays, Phys. Lett. B 352 (1995) 467–471, http://dx.doi.org/10.1016/ 0370-2693(95)00457-V.

[31] A.Abele,etal.,Studyoftheπ0π0ηfinalstateinp p annihilation¯ atrest,Phys.

Lett.B404(1997)179–186,http://dx.doi.org/10.1016/S0370-2693(97)00526-1. [32] A.Bramon,R. Escribano,M.Scadron, The ηη mixinganglerevisited, Eur. Phys. J.C7(1999)271–278,http://dx.doi.org/10.1007/s100529801009,arXiv: hep-ph/9711229.

[33] F.vonHippel,C.Quigg,Centrifugal-barriereffectsinresonancepartialdecay widths,shapes,and productionamplitudes,Phys.Rev.D5(1972)624–638, http://dx.doi.org/10.1103/PhysRevD.5.624.

Riferimenti

Documenti correlati

New findings support early surgery for pain management in chronic pancreatitis patients, since Hindawi Publishing Corporation.. Gastroenterology Research and Practice Volume

Dionisotti, che sbagliava le date della carcerazione di Botta (da fine 1792 all’estate del 1794, diceva, quando invece nel 1793 era ben fuori dal carcere; vi fu dal 28 maggio 1794 al

In conclusion, results of this study showed that a large part of the differences between combined therapy and single pharmacotherapy registered in BPD patients at the

Ragion per cui se la stella polare continua a permanere quella della sopravvivenza quale effettiva e tangibile capacità e attitudine persistentiva, se si prova a gettare uno

Dove le persone disabili possono

Correlation between the dust mass in the dense component, derived from our best fit models, and the IR luminosity for our sample of 30 ULIRGs.. On the upper axis, we display

In particolare, le città metropolitane caratterizzate dalla maggiore propensione alla smartness sono Bologna, Firenze e Milano, che registrano performance

The original descrip- tion of the fossil avifauna of Gargano referred all the phasianid specimens to Palaeortyx grivensis, a fossil species described form the Miocene (MN7+8) of