• Non ci sono risultati.

Experimental study of consistency degradation of different greases in mixed neutron and gamma radiation

N/A
N/A
Protected

Academic year: 2021

Condividi "Experimental study of consistency degradation of different greases in mixed neutron and gamma radiation"

Copied!
11
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Heliyon

www.elsevier.com/locate/heliyon

Experimental

study

of consistency

degradation

of

different

greases in

mixed

neutron

and

gamma

radiation

Matteo Ferrari

a,b,

,

Aldo Zenoni

a,b,

,

Monika Hartl

c

,

Yongjoong Lee

c

,

Alberto Andrighetto

d

,

Alberto Monetti

d

,

Andrea Salvini

e

,

Fabio Zelaschi

e

aDipartimentodiIngegneriaMeccanicaeIndustriale,UniversitàdegliStudidiBrescia,ViaBranze38,I-25123Brescia,Italy bIstitutoNazionalediFisicaNucleare,ViaBassi6,I-27100Pavia,Italy

cEuropeanSpallationSource,Odarslövsvägen113SE-22484Lund,Sweden

dLaboratoriNazionalidiLegnarodell’INFN,Vialedell’Università2,I-35020Legnaro(PD),Italy

eLaboratorioEnergiaNucleareApplicataLENA,UniversitàdegliStudidiPavia,ViaAselli 41,I-27100Pavia,Italy

A

R

T

I

C

L

E

I

N

F

O

A

B

S

T

R

A

C

T

Keywords: Materialsscience Aerospaceengineering Industrialengineering Nuclearengineering Materialschemistry Mechanicalengineering Nuclearreactorirradiation Polymerdegradation Neutrondamage Lubricatinggrease Radiationeffect Mixedradiationfield

Manyofthemovingcomponentsinacceleratorandtargetenvironmentsrequirelubrication.Lubricantsinsuch environmentsareexposedtohighfluxesofsecondaryradiation,whichoriginatesfrombeaminteractionswith thetargetandfrombeamlosses.Thesecondaryradiationisamixofcomponents,whichcanincludesignificant fractionsofneutrons.Lubricantsareradiation-sensitivepolymericmaterials.Theradiation-inducedmodifications oftheirstructurereducetheirservicelifetimeandimposeadditionalfacilitymaintenance,whichiscomplicated bytheenvironmentalradioactivity.Thestudyofthelubricantsradiationresistanceisthereforenecessaryforthe constructionofnewgenerationacceleratorsandtargetsystems.Nevertheless,datacollectedinmixedradiation fieldsarescarce.NinecommercialgreaseswereirradiatedataTRIGAMarkIIResearchReactortoservefor theconstructionofnewacceleratorprojectsliketheEuropeanSpallationSource(ESS)atLund(Sweden)and SelectiveProductionofExoticSpecies(SPES)atLegnaro,(Italy).Mixedneutronandgammadosesrangingfrom 0.1 MGyto9.0 MGyweredeliveredtothegreases.Foranexperimentalquantificationoftheirdegradation, consistencywasmeasured.Twoofthegreasesremainedstable,whiletheothersbecamefluid.Post-irradiation examinationsevidencethecleavageofthepolymericstructureasthedominantradiationeffect.Doseandfluence limitsfortheuseofeachproductarepresented.Apartfromthescientificsignificance,theresultsrepresentan originalandusefulreferenceinselectingradiationresistantgreasesforacceleratorandtargetapplications.

1. Introduction

Polymericmaterialsusedinhighpoweracceleratorandtarget envi-ronmentsareexposedtomixedradiationfields.Neutronsandgamma canrepresentsignificantcomponentsofthesefields.Theabsorbeddose duetodifferentradiationscausesstructuralmodificationsofthese mate-rials.Radiationsaffectpolymersmainlythroughthebasicmechanisms ofcleavageandcross-linkingofmacromolecularchains[1,2,3]. There-fore,significantradiation-inducedmodificationsoftheirphysicaland mechanicalpropertiescanbeinduced,whichcouldleadtoapremature failureofthecomponents.

TheEuropeanSpallationSource(ESS)projectisunderconstruction inLund,Sweden,aimingatbecomingthebrightestneutronsourcein theworld[4].TheSelectiveProductionofExoticSpecies(SPES)facility

*

Correspondingauthorsat:DipartimentodiIngegneriaMeccanicaeIndustriale,UniversitàdegliStudidiBrescia,ViaBranze38,I-25123Brescia,Italy.

E-mailaddresses:matteo.ferrari@unibs.it(M. Ferrari),aldo.zenoni@unibs.it(A. Zenoni).

isbeingbuiltinLegnaro,ItalyaimingatproducingintenseRadioactive IonBeamsviafissionreactionsoccurringin itstarget[5,6].Bothof theirtargetswillproduceintensemixedfieldsofneutronsandgamma radiation.ElastomericO-rings,lubricatingoilsandgreasesare neces-sarilyemployedintheirtargetareas.Astheyareexposedtosecondary neutronsandgammas,theirmodificationsmustbeevaluatedforsafe andreliablefacilityoperations.Unfortunately,radiationdamagedata onpolymersinneutronfieldsandinmixedradiationfieldsarescarce intheliterature.

Mostoftheavailabledataoriginatefromtechnicalreportsproduced byscientificorganisationsandbycompaniesmanufacturingproducts certifiedtoberadiation-resistant.TheYellowReportsfromCERNare oneofthewidelyusedreferencesconcerningtheradiationresistance ofpolymericmaterials.ResultsonseventypesofelastomericO-rings

https://doi.org/10.1016/j.heliyon.2019.e02489

Received18February2019;Receivedinrevisedform10April2019;Accepted27August2019

2405-8440/©2019TheAuthor(s). PublishedbyElsevierLtd. ThisisanopenaccessarticleundertheCCBY-NC-NDlicense( http://creativecommons.org/li-censes/by-nc-nd/4.0/).

(2)

availableontheCERNstoreshelvesandtwotypesoflubricatingoils irradiateduptoseveral MGyofgammadosearereportedinRef. [7]. Greaseswerenotanalysed.

InanITERreport [8],twocommercialelastomericgasketsandfour greasesdeclaredbytheproducer asradiation-hardweretestedupto highgammadosesfrom10 MGyto100 MGy.Arecentwork[9] iden-tifiesO-rings,lubricantsandcableinsulatorsamongthemostcritical componentsintheITERdesign.Radiationeffectsonoilsandgreases evaluatedintheviewpointoftheirchemicalcompositionarereported inRefs. [1] and[10].Neutronandgammairradiationdataontwelve solidlubricantsarereportedin [11].

Theavailableliteratureontheradiationeffectsinpolymersisnot satisfactoryfortheconstructionofnewacceleratorsandtarget facili-ties.Infact,mostofthestudieswereperformedmorethanadecade ago.Consideringtherapidevolutionoftheindustrialproduct develop-ment,mostofthetestedproductsarenowoutdated.Furthermore,most oftheliteratureanddataavailablebymanufacturerslackdetailsabout theirradiation conditionssuch asradiation type,doserate,presence ofoxygenandlinearenergytransfer(LET),whichinfluenceradiation effectsinpolymers [12,13].Lastly,most ofthestudiesusedgamma sources,althoughacceleratorandtargetenvironmentsgeneratemixed radiationfields.Insomeofthemneutronsrepresentthedominant com-ponent.

Gammasourceshavebeenpreferredtoneutronsourcesfor materi-alstestingbecauseoftheirwideravailabilityandbecausetheirradiated samplesmaintainamuchlowerresidualactivation.Ithasbeenbelieved thattheradiation-induceddamagedependsonthetotalamountof ab-sorbed doseonly,irrespectively of thetypeofradiation [7, 14, 15]. Accordingly,thepolymersradiationresistancehasbeenexpressedin termsofgammadoseanddirectlytranslatedtoneutronandmixedfield dose.Nevertheless,theequivalenceofgammaandneutrondoseshas notbeentheoreticallyverifiednorexperimentallyvalidated.

Contrarytotheassumedequivalencebetweengammaandneutron doses,itisreportedinRef. [1] thattheeffectsofmixedreactor radia-tioninpolymersmightdifferfromthatofgammaalone.Thedatahere presentedchallengethislongbelievedequivalenceaswell.InaUKAEA report [16],theneedforestablishingmorepreciselytherelativeeffects of similar dosesof neutrons andgammas isaddressed. In aseminal studyperformedatORNL,theradiationdamageinducedinelastomers byreactorradiationiscomparedwiththedamageproducedby differ-entgammasources.Itwasreportedthatsimilardamagesareinduced bydosesofthetworadiationsthatcandifferofafactortwo[17].In amorerecentwork,theunderstandingofradiationeffectsinpolymers andtheirdependenceontheradiationtypologyareclearlystatedasone ofthemostimportantproblemstobesolved[18].Accordingto Riva-tonandArnold,fastneutronseffectsonorganicmaterialsarenotfully understooddespitetheirrelevanceinthenuclearengineeringandnew investigationsareneeded[19].Thefullcomprehensionof theeffects ofintenseneutronfieldsinpolymersisreportedasarequirementfor theirapplicationinnucleartechnologybyBoninetal. [20].Theneed forresearchonfastneutroneffectsonpolymersisreportedbySeguchi etal. [3].Theyreportaswellthelackofsuchstudiesintheliterature, whichisdominatedbygammaradiationstudies.

Forthementionedreasons,radiationdamageonpolymeric materi-alshastobefurtherinvestigated.Inparticular,mixedradiationdataare necessaryforthedesignandconstructionofnewfacilitiesproducing in-tenseneutronfields.Wededicatedapreviousstudytothedevelopment ofamethodologyfortestingelastomericO-ringsirradiatedinneutron andgammamixedfields [21].Afollowingstudywasdedicatedtothe experimental determinationof theend-of-lifeconditionsofaspecific EPDMO-ringtobeinstalledinagatevalveoftheSPESfacility.It rep-resentsanexampleofthedesignofacomponentwhichoperatesina mixedneutronandgammaradiationenvironment [22].The manage-mentof theSPESfacilityasanintenseneutronsourceis detailedin [23].The problemof theradiationresistanceof lubricants isbriefly mentionedtherein.

In this framework, the present study is dedicated to lubricating greases. A methodology for greases irradiation in a mixed neutron andgammareactorfieldwasdeveloped.Post-irradiationexaminations basedonconsistencyevaluationswerecompleted.Thechosen defini-tionof dosethresholdsallowedtheselectedproductstobe compara-tivelyevaluated.

InSection2.1adescriptionofthecommercialproductsselectedfor thisstudycanbefoundaswellastheirmostrelevantproperties.Seven ofthemostimportantgreaseproducers intheworldhave been con-sidered.InSection2.2adescriptionofthemixedneutronandgamma irradiationfacilityof aTRIGAMarkIInuclearresearch reactorused forsampleirradiationisreported.InSection2.3adescriptionof the dosecomponentsabsorbedbythedifferentgreasesintheneutronand gamma irradiation mixed field is detailed. The methodology devel-opedtoirradiateandtestthegreaseevolutionwithdoseisreported inSection2.4.Consistencyischosenasthemostsignificantindicatorof radiation-inducedgreasedeterioration,asreportedinSection2.5. Re-sultsonninegreasesirradiatedinarangebetween0.1 MGyand9 MGy ofabsorbeddose areshown in Section3. Experimentalevidences of radiation-inducedcleavageofthegreasestructurearereportedin Sec-tion4.1whereasconsiderationsonthegreaseradiationresistanceasa functionoftheirchemicalcompositionsarereportedinSection4.2.In thediscussionsection,thegreasesarecomparedbasedontheir consis-tency.Doseandparticlefluencethresholdsaredefinedtoestimatethe usabilityofeachgrease,asreportedinSection4.3.Consistencyresults arecomparedwiththeradiationresistancedeclarationsofthe produc-ersinSection4.4.Thepossibilityofusingthepresentresultstoforesee theend-of-lifegreaseconditionsinspecificapplicationsisdiscussedin Section4.5.ConclusionsaredrawninSection5.

2. Productselectionandtestingmethodology

Greases aresemi-fluid to solid systemsoriginating from the dis-persionofathickenerin aliquidoil[1].Astandardgreasecontains about85%base oil,10%thickenerand5%other additives.Greases arecomplexmulti-phasesystemswhosechemicalandphysical proper-tiesoriginatefromthecoexistenceandinteractionoftheircomponents [24].

Theradiationresistanceofbaseoils isreportedtopredominantly dependontheiraromaticcontent.Ahighercontentofaromatic struc-turesisassociatedtoahigherstabilityoftheoilviscosityasafunction oftheabsorbeddose.Forthisreason,greasesbasedonaromaticand polyetheroilsareconsideredmoreradiationresistantthanmineraloil basedones[1] [10].However,theexperimentaldataherepresented challengethisgeneralstatement.

Theacademicliteratureon theradiationresistanceof lubricating greasesisverylimited,asreportedbyR.M.Mortieretal. [24].Forthis reason,inthepresentpaperalltheavailableinformationprovidedby theproducersisusedasreferencetoo.Radiationeffectsingreasesare complicatedbytheinteractionofthebaseoilwiththethickenerand theadditivesandtheoveralleffectisexpectedtodependnotonlyon theeffectsonitsbulkcomponents,butontheircomplexinteractionas well.

Sincetheavailableinformationonthegreaseradiationresistanceis solimited,awideandqualifiedspectrumofproductstobetestedwas necessary.Amarketresearchhasbeencompletedtoselect:i) experi-encedcompaniescertifyingaqualitycontrolonthegreaseproduction; ii) greasesdifferinginthechemicalcompositionsoftheircomponents; iii) bothgreasesdeclared asradiation resistantbytheproducer and genericones;iv) greaseshavingdifferentfeatures:vacuum compatibil-ity,extremepressureresistanceandextremeduration.

Thesecriterialeadtoaselectionofhigh-qualitygreasessuitablefor differentapplicationsinacceleratorandtargetenvironments.

(3)

2.1. Selectedlubricatinggreases

Ninecommercial greaseswereselected from themarket(see Ta-ble1).Indicationsabouttheirchemicalcompositionareprovidedby theproducerandreportedindatasheets.Consistency,whosevalueis reportedasaNLGIclass,isoneofthemostrelevantproperties charac-terizingthegrease [24].

Thenineselectedgreasesandtheirmajorpropertiesarelisted be-low:

• AFB-LFisproducedbyTHK(Japan).Itisageneral-purposegrease forbearingapplications,manufacturedusingarefinedmineraloil andaLibasedthickener.Itfeaturesextremepressureresistance andhighmechanicalstability.

• ApiezonM is producedby M&IMaterials(UnitedKingdom).1 It

isdevelopedforvacuumuseanditisdeclaredasradiation resis-tantuptoabout1 MGyofdosedeliveredusinga4 MeVelectron beam.Apiezon Mismanufacturedwithahydrocarbonoilandit is halogenfree. This is an advantage for applications in radia-tionenvironment,becausehalogenscanevolveacids.Apiezon M is manufacturedwithout athickener. Forthis reason,itis more properlyreferredasaveryviscousfluidratherthanagrease. • FAGArcanolLOAD 220isproducedbySchaeffler(Germany).Itis

developedforballandrollerbearings.Itismanufacturedusinga mineraloilandamixedthickener.Itfeatureshighloadresistance anddeclareddurableperformance.

• GrizzlygreaseNo. 1is producedbyLubricant ConsultantGmbH Lubcon (Germany). It is manufactured using a mineraloil and a Li/Ca special soap. It is developed for gears application and declared as resistantto gammaradiation up toa dose level of 1.2 MGy.

• KlüberlubBE41-542isproducedbyKlüberLubrication(Germany). Itismanufacturedusingamineraloilandaspeciallithiumsoap. Itisdefinedasheavy-dutyproduct,developedforhigh-loadrolling bearingsandfeaturingextremepressure(EP)resistance.

• Krytox240ACisproducedbyChemoursCompany(USA).2Krytox

fluoropolymersarehigh-performancelubricantsinitiallydeveloped for the aerospace industry. Now they have a broader rangeof applications,fromautomotivetoelectronics.Krytoxisa perfluo-ropolyether(PFPE)whosepolymerchainiscompletelysaturated withfluorine.Accordingtotheproducerdeclarations,itcontains carbon,oxygenandfluorineonly. Krytox240ACgreaseis com-poundedusing polytetrafluoroethylene(PTFE) asthickener.Itis selected in thepresentwork in view ofits claimed outstanding performanceandofitshydrogen-freecomposition.Thegreaseand itsbaseoilwereirradiatedusinga60Cogammasourceandthen testedbytheproducer.Aprogressivegreasesofteningisreported asafunctionoftheabsorbeddose.Reportedconsistencyvariations aregenerallynotexceedinga10%-15%comparedtothe unirradi-atedsamples.Theradiationstabilityofthebaseoilwasevaluated inanuclearreactor,uptoamaximumvalueof1 MGy.

• PetamoGHY133NisproducedbyKlüberLubrication.Itis manu-facturedusingamineraloilandapolyureathickener.Itisdeclared asalong-termandhigh-temperaturegreaseforrollingbearings. • RG-42R-1 is producedby MORESCO Corporation (Japan). It is

declared as radiation resistant up to high gamma doses. Tests areperformedbytheproduceronits baseoilonly. Itis consid-ered as representative of the whole grease in a simplistic way. Absorbeddoselevels up to30 MGy aredeliveredtotheoil us-inga 60Co gammasourcewitha doserateof 0.01 MGy/h.The viscosity evolution of theoil asa function of the dose is eval-uated. A dose threshold of 15 MGy is determined accordingly.

1 Apiezon®isaregisteredtrademark. 2 ChemoursTMandKrytoxTMaretrademarks.

Table 1

Thelubricatinggreases selectedfromthemarket forirradiationandtesting arelisted.Thecompositionofthebaseoilandofthethickenerisspecified. ConsistencyexpressedinNLGIgradeisreported.Radiationresistance,when declaredbytheproducer,isreported.Theinformationoriginatesfromthedata sheetsoftheproductsprovidedbythesuppliers.

Producer and product Base oil Thick. Cons. NLGI

Rad-hardness

AFB-LF Mineral Li 2 Not declared

Apiezon M Hydrocarbon — — 1 MGy, electr.

FAG Arcanol LOAD 220 Mineral Mixed 1-2 Not declared Grizzlygrease No.1 Mineral Li/Ca 0 1.2 MGy,𝛾 Klüberlub BE 41-542 Mineral Li 2 Not declared

Krytox 240 AC PFPE PTFE 2 1 MGy, reactor

RG-42R-1 PPE PC 1 15 MGy,𝛾

Petamo GHY 133 N Mineral Polyurea 2 Not declared Turmopolgrease 2 Polyglicol Li 2 Not declared

Table 2

Elementalcompositionoftheselectedgreasesinweightpercentisobtained withCHNanalyses.ThepercentageofthemassnotmeasuredbytheCHN anal-ysisisreportedaswell.Themeasurementerrorsarecontainedinthesecond decimalfigureofthequotedresults.

Product C % H % N % Others % AFB-LF 82.75 14.13 0.00 3.12 Apiezon M 86.19 13.70 0.11 0.00

FAG Arcanol LOAD 220 80.57 13.15 0.25 6.03

Grizzlygrease No.1 79.23 11.63 0.18 8.96 Klüberlub BE 41-542 82.50 12.29 0.58 4.63 Krytox 240 AC 21.03 0.00 1.01 77.96 Petamo GHY 133 N 84.26 12.42 1.23 2.09 RG-42R-1 78.50 9.67 0.00 11.83 Turmopolgrease 2 62.97 10.71 0.00 26.32

The radiation resistance of the grease is supposed to be equal tothe radiation resistance of the oil by the producer. Most of theMORESCOradiationresistantproductsincludingRG-42R-1are manufacturedusingapolyphenyletherbaseoilanda polycarbon-atethickener.

• Turmopolgrease2producedbyLubricantConsultantGmbH Lub-conisagreasemanufactured withapolyglicoloilandalithium basedsoap.Itfeaturesaverylonglubricationservicecomparedto conventionalproductswiththesamecomposition.

Thenumberofgreasesdeclaredasradiationresistanceontheworld marketisverylimited.

As described in details in Paragraph 2.2, the dose absorbed by greasesinafastneutronfieldhighlydependsonitslightelement com-position.Inparticular,itisproportionaltothehydrogencontent.For thisreason,themassfractionofsomerelevantlightelementscomposing thegreasesismeasuredbyCHNchemicalanalysis.Thepercentcontent ofcarbon,hydrogenandnitrogenineachproductismeasuredand re-portedinTable2.

Thehydrogenconcentrationfortheselectedproductsrangesfrom 0.00%to14.13%,depending on their chemicalcomposition. Krytox 240ACishydrogen-free,asdeclaredbytheproducer.Itiscompletely saturatedwithfluorine,whoseamountisabout70%ofthetotalmass.

ThehydrogenmasspercentageofMORESCORG-42R-1productis 9.67%.Itiscompatiblewiththechemicalcompositionofitsoil,which is polyphenylether based. Thehydrogen massconcentration of min-eraloilbasedproductsrangesfrom11.63%and14.22%.Theresults oftheseanalysesareusedtosimulatethecompositionofthematerials fordosimetrycalculations

(4)

Fig. 1. Thein-coreCentralThimbleirradiationfacilityoftheTRIGAMarkIInuclearreactoroftheUniversityofPavia.Left:apictureofthereactorcore.The aluminumpipeoftheCentralThimble,reachingthemiddleofthereactorcore,canbeseen.Right:ahorizontalcross-sectionofthereactorcoreasmodelledwith thesimulationprogramMCNP5.TheCentralThimblefacilityisindicated.

Table 3

IrradiationconditionsoftheCentralThimblefacilityoftheTRIGA Mark IInuclearreactoroftheUniversityofPavia.Parametersreferto thenominalworkingpowerof250 kW.Fluxesarecalculatedusinga reactormodelrealizedwiththesimulationMonteCarlocodeMCNP5. Thefastneutronfluxreferstoneutronshavingenergyhigherthan0.5 MeV.Thegammafluxconsidersthefissionpromptgammasandthe photonsfromradiativecaptureofneutronsonthereactormaterials. Sincethegammasproducedbythefissionproductdecayarenot sim-ulatedbyMCNP5,thegammafluxisunderestimated.

Parameter Value

Neutron flux 1.72 1013neutron/(cm2s) Fast neutron flux 3.80 1012neutron/(cm2s)

Gamma flux 1.65 1013photon/(cm2s)

Temperature range 50◦C – 70C

Atmosphere Air at atmospheric pressure

2.2. Irradiationconditions,fluxesandspectra

TheTRIGAMarkIInuclearreactoroftheUniversityofPavia,Italy isequippedwithirradiationfacilitiesforresearch.TheCentralThimble (seeFig.1)isanin-corefacilityreachingthecentre ofthefuelelements. Radiationcomponentsin theCentralThimbleoriginate from sev-eralreactionsoccurringinthereactorcore.Nuclearfissionisthemain sourceofneutronsandphotons.Mostofthegammasareproducedby fissionreactionsandbythedecayofradioactivefissionproducts.They arereferredtoaspromptgammasanddelayedgammasrespectively.In addition,aminorgammacomponentisduetoradiativecapture reac-tionsinthematerialsconstitutingthereactor[25].

Inthepresentwork,radiationfieldsanddosecomponentsare cal-culatedwithasimulationofthereactor[26] realizedwiththeMonte CarlocodeMCNP5[27].Inapreviousexperimentalcampaign,the Cen-tralThimbleneutronspectrumwasmeasured.Thecalculatedneutron spectrumagrees withthemeasuredone[28]. Accordingly,the calcu-latedneutronspectrumcanbeconsideredareliablerepresentationof themeasuredone.Onthecontrary,thecalculatedgammafluxis un-derestimatedbecauseMCNP5doesnotaccountforthefissionproducts decay.BasedonexistingmeasurementsonsimilarTRIGAMarkII reac-tors,themissinggammacomponentcanbeestimated.Itcanrepresent upto30%ofthetotalgammacomponent[29].Thesystematicerror onthegammadoseisevaluatedaccordingly.Table3summarizesthe CentralThimblecalculatedparameters.

Fig.2showsthecalculatedneutronenergyspectrumintheCentral Thimble. The spectrum is normalized tothe nominal reactor work-ing power of 250 kW, which is associated to a source intensity of 1.9⋅ 1016 n/s.Twomaincomponentsarepresent.Thefastcomponent refershere toneutrons withenergy higherthan 0.5 MeV.Fast neu-tronsoriginatefromfissionreactions.TheirdistributionintheCentral

Fig. 2. TheneutronenergyspectrumintheCentralThimblefacilitycalculated withMCNP5.Thespectrumisnormalizedtothenominalreactorpowerof250 kW.Thefastneutroncomponentandthethermal-epithermalonearedominant. Thimblefacilityis comparableto atypical fissionspectrum.An im-portantcomponentofslowerneutronsinthethermalandepithermal energyrangeis presentaswell.They originatefrom themoderation offastneutronsinthereactormoderatorandstructures.Theneutron doseabsorbedbytheirradiatedgreasesdependsonthespecificneutron spectrum.

2.3. Dosimetrycalculations

Theneutronandphotondosecomponentsabsorbedbyeach irra-diatedgreasearecalculatedusingMCNP5.Thegreasecompositionin thesimulationisbasedontheCHNanalysesresults(seeTable2). Addi-tionalassumptionsaremadetomodelthemissingcompositionfraction. ForKrytox240AC,whichisafluorinatedmaterial,themissingmass isassumedtobefluorine(70.4%)andoxygen(7.56%).These assump-tionsarebasedonthebaseoilandthickenerchemicalcompositions,as declaredbytheproducer.Foralltheothergreases,theremainingmass isassumedtobeoxygen.Metallictracesarepresentintheproductsin mostcases.However,theirrelevanceintheoveralldosimetry calcula-tionisnegligible.Asafirstapproximation,metallictracesareneglected. Thesystematicerrorintroducedbythesehypothesesinthedosimetry calculationsisestimatedbychangingtheassumedcompositionsin dif-ferentways.However,sincetheneutrondoseismostlyrelatedtothe hydrogencontent,whoseamountismeasured,theerrorduetothe as-sumptionsonthecompositionisnotlargerthanfewpercent.

(5)

Fig. 3. DoseratescalculatedwithMCNP5forgreasesirradiatedintheCentralThimblefacilityatthenominalworkingpowerof250 kW.Greasesareordered fromlefttorightaccordingtotheincreasinghydrogencontent,rangingfrom0.00%(Krytox 240 AC)to14.13%(AFB-LF).Theneutrondoseratecomponentisin darkgrey,thegammaoneinpalegrey.Theoverallsystematicerrorisestimatedtobelowerthan15%.Thestatisticalerroronthesimulatedresultsisnegligible comparedtothesystematicone.

The dose absorbed in a neutron and gamma mixed field highly dependsonthecompositionoftheirradiatedmaterialsandonthe ra-diationenergyspectrum.Forthisreason,thedosimetryconsiderations herereportedspecificallyrefertotheselectedgreasesirradiatedinthe CentralThimble.Thecalculatedtotaldoseratesforthegreasesare re-portedinFig.3.Thedoserateisseparatedinitstwomainneutronand

gammacomponents.

Except forKrytox 240 AC,whose hydrogencontentisnegligible, fortheothergreases thetotaldoseraterangesfrom0.76 MGy/hto 0.94 MGy/h.Thedifferencedependsontheneutroncontribution, rang-ingfrom0.50 MGy/hto0.67 MGy/h.Itisproportionaltothehydrogen masscontent,rangingfrom9.67%to14.13%.Theneutroncomponents dominate,representing65%-71%ofthetotal.Thegammacomponent isabout0.26 MGy/hforallthegreases.Itisroughlyirrespectiveofthe specificmaterialcomposition.

Becauseofitshydrogen-freecomposition,Krytox240ACbehave dif-ferentlyinthisneutronfield.Itstotaldoserateis0.28 MGy/h,about threetimeslowercomparedtotheothergreases.Thisisduetothe neu-tron component,which ismore thanoneorder of magnitude lower. Thegammacomponentdominates,representingabout93%ofthe to-tal.Productscontaininghalogensareusuallynotemployedinradiation environmentsbecausetheycanproduceacidsduringirradiation. Never-theless,fluorinatedproductsareinterestingforapplicationsinneutron fieldsinviewoftheirlowhydrogencontent.Thisisthereasonwhya fluorinatedproducthasbeenselectedforthepresentstudy.

Theneutrondosecomponentisproportionaltothehydrogen con-tentforallthegreases.Thisisbecausethemainenergyrelease mecha-nismistheelasticscatteringoffastneutrononlightnucleicontainedin thegrease.Theaverageenergytransferredtoanucleusinthisprocess increaseswhenthemassofthetargetnucleusdecreases.Forthis rea-son,theprocessismostlyeffectiveonhydrogen.Moreover,theaverage energytransferredviaelastic scatteringisproportional tothe incom-ingneutronenergy.Forthisreason,theaverageenergytransferredby fastneutronsisseveralordersofmagnitudehigherthantheone trans-ferredbythermalneutronsbythesamemechanism[30].High-energy

secondaryprotonsoriginatingfromneutronscatteringonhydrogen de-liveralargefractionofthetotaldose.

Thesystematicerroronthetotalabsorbeddoseisestimatedtobe lowerthan15%.Itdepends ontheagreementbetween the measure-mentsandthesimulatedmodel.However,thetotalabsorbeddoseis underestimatedbecauseofthefractionofthegammacomponentthat isnotaccountedforbythecode.Thestatisticalerroronthesimulated resultsisnegligiblecomparedtothesystematicone.

Inthepresentwork,thetotal amountofabsorbeddoseischosen astheparametertowhichthegreaseconsistencyevolutionisreferred. Inaddition,radiationeffectsingreasesarereferredaswelltothetotal neutronandgammaparticlefluencetowhichthesamplesareexposed duringirradiation.Table4showsthedosevaluesabsorbedbythe irra-diatedgreasesandthetotalneutronandgammafluence.Thosevalues dependontheparticlefluxesintheirradiationfacility,asreportedin Table3andontheexposuretimeonly,irrespectiveofthegrease compo-sition.Infacttheirradiatedgreasesamplesdonotsignificantlyperturb theparticle fluxesinthefacilitybecauseoftheirsmallsize.

2.4. Experimentalmethodology

Theninegreaseswereirradiatedforexposuretimesrangingbetween 10minutesand10hours.Themoststablegreaseswereselectedfor5 h and10 hlongirradiations. Theirradiationsarerealizedin the Cen-tralThimblefacilityatthenominalreactorpowerof250kW.Table4

reportsthechosen irradiationtimes andthecorresponding absorbed doses.Absorbeddosesrangefromabout0.1MGytoabout9MGy.The samplesareirradiatedinairatatmosphericpressure.

Asingleirradiation wascompletedon Krytox240 ACgrease.An irradiationtimeof3 hand30 minuteswasselectedinviewofits fluo-rinatedcomposition.Additionalirradiationswerenotpossiblebecause ofthelimitedamountofavailableproduct,whosecommercialpriceis extremelyhighcomparedtotheotherones.

Qualitativepreliminarytestswereperformedonirradiatedgreases todesigna safeanefficientset-up. Onetestevaluates the radiation-inducedgreasemobility.Smallplasticcontainerswerefilledwith

(6)

dif-Table 4

DosesabsorbedbytheselectedgreasesinMGy.CorrespondingirradiationtimesintheCentralThimblefacilityofthe TRIGAMarkIIreactorarereported.Krytox240ACisnotreportedhere.Sinceitsdoserateinthefacilityismuchlower comparedtotheotherones,asingleirradiationtimeof3 hoursand30 minuteswaschosen,correspondingtoatotal doseof0.99 MGy.Totalneutronandgammafluencetowhichthesamplesareexposedisreportedaswellasafunction oftheirradiationtime.

Irradiation time 10 min 30 min 1 h 2 h 5 h 10 h

Product

AFB-LF (MGy) — 0.47 0.94 1.88 — —

Apiezon M (MGy) 0.16 0.47 0.94 1.88 4.70 —

FAG Arcanol LOAD 220 (MGy) 0.15 0.46 0.91 1.83 — —

Grizzlygrease No.1 (MGy) 0.14 0.42 0.85 1.70 — —

Klüberlub BE 41-542 (MGy) 0.15 0.44 0.88 1.75 4.39 —

Petamo GHY 133 N (MGy) 0.15 0.44 0.89 1.78 4.44 8.89

RG-42R-1 (MGy) — 0.38 0.76 1.52 3.80 7.60

Turmopolgrease 2 (MGy) 0.13 0.41 0.81 1.63 — —

Neutron fluence (1016par cm−2) 1.03 3.1 6.2 12.4 31.0 62.0

Gamma fluence (1016par cm−2) 0.99 3.0 5.9 11.9 29.7 59.4

Fig. 4. Left:asyringefilledwithgrease,brokenduetotheradiation-inducedgas pressure.Right:asectionviewofthesyringeafterirradiation.The radiation-inducedgreasemobilitycanbeobserved.Thescatteringofthegreaseinsidethe syringevolumeisduetotheproductionofgasbubbles.

ferentamountsofgreaserangingfrom20%to80%ofthetotalvolume. Animportantradiation-inducedgasevolutionisobserved,promotinga highgreasemobilityinthecontainers(seeFig.4).Thedeveloped pres-sureduetothegasproductionintheset-upcan reachcriticallevels, sometimesdamagingandbreakingthecontainer.

Radioactivenuclidesareproducedintheirradiatedgreasesdueto neutroncapturereactions.Becauseoftheirresidualactivation, irradi-atedgreasesmustbehandledbyqualifiedoperatorsaccordingtothe existing radiation protection regulation. Seven daysafterirradiation thecontactdoseraterangesbetween0.1 μSv/hand0.3 μSv/hforall thegreases.Thisiscomparablewiththenaturalradiationbackground, thereforethegreasesamplescanbesafelytestedafterirradiation.

Basedonthepreliminarytests,a20 mLdisposableplasticsyringeis chosenasirradiationset-up.Amaximumof10 mLofgreaseis irradi-ated,toavoidcriticalgasevolutionandexcessivemobility.Thegrease is distributedasalayer on theinnersyringesurface. Thesyringeis placedinacylindricalaluminumcontainerroutinelyusedforsample irradiation.Fig.5showstheset-up.

2.5. Consistencytests

Consistencyiswidelyconsideredasthemostimportantpropertyof alubricatinggreaseandmarksthedifferencebetweenliquidoilsand greases [24]. The presenceof thethickener givesthegrease a solid characterandarigiditycommonlyreferredtoasconsistency.

Consis-Fig. 5. Theset-upusedtoirradiategreasesamplesintheCentralThimble facil-ity.Adisposableplastic20 mLsyringeisfilledwithabout10 mLofgrease.The syringeisplacedinanaluminumcontainer.

tencyismeasuredforbothirradiatedandunirradiatedgreasesamples accordingtoASTMD217-02andASTMD1403-02 standards. Consis-tencyisthereindefined asthe degreeof resistancetomovement under stress.Itismeasuredwithapenetrometerequippedwithaconewhose tippenetratestheflatgreasesurface(seeFig.6).Theconeis freeto fallintothegreaseundergravityfor5 seconds.Consistencymeasures theconepenetrationintenthsofmillimeters.Asemi-automatic preci-sionpenetrometerbyS.D.M.ApparecchiScientificis.r.l.equipped with aone-quarterscaleconeis usedin this work.The one-quarterscale equipmentasdescribedinASTMD1403 allowsaconsistencytesttobe completedonasampleofabout5mLonly.Thisisanadvantage con-sideringthelimitedavailablespaceintheirradiationfacilityandthe needtoreduceasmuchaspossibletheamountofproducedradioactive waste.

Accordingtothestandard,thegreasemustbeworkedusinga ma-nipulatorbeforebeing tested(seeFig.7).Thegreaseis subjectedto 60 fulldoublestrokesinone minute.This manipulationis necessary toperformaworkedpenetrationtest.Theconsistencymeasuredafter manipulationisreferredtoasworkedconsistency.

TheNationalLubricatingGreaseInstitute(NLGI)classifiesgreases based on their worked consistency. NLGI grades are universally ac-ceptedandusedbyproducersandfinalusers.NLGIgradesrangefrom 000to6. Grade000 indicatesa softand almostfluidmaterial con-dition,correspondingtohighpenetrations(445-475 mm/10).Grade6 indicatesahardsolid-likematerialcondition,correspondingtolow pen-etrations(85-115 mm/10).Forthegreasesselectedinthepresentstudy, a10%consistencyvariationapproximatelycorrespondstoavariation ofonegrade.

(7)

Fig. 6. Thesemi-automaticpenetrometerbyS.D.M.Srlusedforconsistencymeasurements.Right:thepenetrationconepositionedovertheflatsurfaceofthegrease, beforethemeasurement.Theone-quarterscaleequipmentisused.

Fig. 7. Theone-quarter scaleequipmentusedtomanipulatethegrease be-forethemeasurementofconsistency.Thegreaseissubjectedto60fulldouble strokesinaboutone minute.

The one-quarterscale equipment used in this workcan measure NLGIgradesrangingfrom0to4.Asreported.Measuredvalueslower than0inNLGIclasswillbeherereferredtoasout-of-scale.Measured valueshigherthan4werenotobserved.

3. Results

Consistencyvariationsoftheirradiatedsamplesrelativetothe unir-radiatedonesarereportedasafunctionofthetotalabsorbeddose(see Fig.8).Therelativeconsistencyvaluesarecalculatedasfollows:

𝐶𝑟𝑒𝑙(𝐷) =𝐶(𝐷)𝐶

0

(1) C(D)istheconsistencyvalue(inmm/10)ofthegreaseirradiatedat a totaldose D.𝐶0 is theconsistencyvalue(inmm/10) of the unir-radiated grease. The error associated to 𝐶𝑟𝑒𝑙(𝐷) is estimated to be

lowerthan5%,basingonrepeatedmeasurementsonunirradiated sam-ples.

Six out of the nine tested greases experience severe radiation-inducedconsistencyincreaseasafunctionofthedose.Theybecome almostfluidbetween0.4 MGyand5 MGy.Theconditionand appear-anceofthesegreasesamplesafterirradiationarecompletelydifferent fromtheunirradiatedones.Theconsistencyincreaseisremarkable, ex-ceedingtherangeoftheinstrument.Theseexceedingvaluesareanyway

usedinEquation1toestimatearelativeconsistencyvariation.Theyare associatedtoafluidgreasestateandtheyareinthepresentpaper re-ferredtoas out-of-scalevalues.Theyaremarked bydashedlinesin Fig.8.

Post-irradiationconsistencyresultscanbeanalysedwithreference totheirpercentagedeviationfromtheirunirradiatedsamples consis-tency,recallingthata10%consistencyvariationisapproximately asso-ciatedtoachangeinNLGIgrade.

Threegroupsof productscan be distinguishedaccordingtotheir consistencymodificationwithabsorbeddose:

1. HugeconsistencyincreasesarereportedforAFB-LF,Grizzlygrease No.1,Krytox240ACandTurmopolgrease2atdosevalueslower than1 MGy.

AFB-LF consistencyincreasesof 25%at 0.94 MGy.Itbecomes fluidat1.9 MGy,showinga46%increaseinconsistency.

Grizzlygrease No.1 consistency increases of 25% at 0.4 MGy. This valueisout-of-scaleandthegreasebecomes fluid (seeFig.9).Thegreaseremainssteadilyfluiduptoabout 1.7 MGy.

Krytox 240 AC becomesfluidat0.97MGy,showinga45% con-sistencyincrease.Acidgasesevolvedduringirradiation due tothefluorinecontentledtothecorrosion ofthe aluminumcontainer(seeFig.10).

Turmopolgrease 2 consistencyincreasesof37%at0.8 MGy.It becomesfluidat1.6 MGyofdose,showinga60% con-sistencyincrease.

2. ApiezonM,FAGArcanolLOAD220andKlüberlubBE41-542 re-mainratherstableup to1.0 MGy.Theirconsistencyremarkably increasesbetween1.5 MGyand5 MGy.

FAG Arcanol LOAD 220 isstableupto0.9 MGy.Itabruptly be-comesfluidat1.8 MGy,showinga40%consistency in-crease.

Klüberlub BE 41-542 exhibitsaprogressiveconsistencyincrease as a functionof thedose. Consistency valueincreases of 7%at 0.9 MGyandof10%at 1.8 MGyof dose.It becomes fluidat4.4 MGy,showinga30%consistency increase.

(8)

Fig. 8. Relativeconsistencyvalue𝐶𝑟𝑒𝑙(𝐷) asafunctionofthetotalabsorbeddoseforthenineselectedgreases.Dashedlinesindicateconsistencyvaluesexceeding

themaximuminstrumentrange,correspondingtoanalmostfluidmaterialstate.Highconsistencyvaluesareassociatedtosoftergreases,whichcorrespondtolower NLGIconsistencygrades.

Fig. 9. Post-irradiationconsistencytestofGrizzlygrease No.1.Topleft:grease irradiatedat0.15 MGy.Consistencyiscomparabletotheunirradiatedone. Bot-tomleft:GrizzlygreaseNo.1irradiatedat0.45 MGy.Aremarkableconsistency increasecanbeobserved.Themeasuredconsistencyvalueisoutofthe instru-mentscale.Theirradiatedgreasebecomesfluid.Right:thegreaseirradiatedat 0.45 MGyafterpenetrationmeasurement.Thegreasedripsfromthe penetrom-etertip.

Apiezon M doesnotexhibitsignificantconsistencyvariationsup to1.9 MGy.Itabruptlybecomesfluidat4.7 MGy, show-inga70%consistencyincrease.

3. PetamoGHY133N and RG-42R-1 donotexhibitsignificant con-sistencyvariationsuptothemaximuminvestigateddosevaluesof 8.9 MGyand7.6 MGyrespectively.

Thecolourofsomegreasesisdarkenedbyirradiation.Itis particu-larlyevidentforPetamoGHY133N(seeFig.11),whosecolour turns fromyellowish(unirradiatedsample)toblackatabout0.4 MGy.

Fig. 10. Left:Krytox 240 ACsampleirradiatedat0.97MGy(3 hand30min). Right:thealuminumset-upusedforirradiation.Thestopperhasbeencorroded bytheacidgasesevolved.

4. Discussion

4.1. Cleavageobservationinthegreasestructure

Greasesarecomplexmulti-phasesystems.Forthisreason,the con-sistencyevolutionwithdoseisexpectedtobecomplextoo.Radiation effectsingreasesresultfromtheinteractionofseveraldamage mecha-nisms.Twomaineffectscharacterizetheinteractionofradiationwith polymersatthestructurallevel:cleavageandcross-linkingofthe poly-mericchains.Asreported byR.O.Bolt andJ.G.Carrol [1],thefirst radiationeffectexpectedingreasesisthedamageofthegelling struc-ture of the thickener, causinga consistency increase.Radiation can inducefracturesinthesoapfibres,whichbecomeunabletomaintain agellingstructure.Athigherdoselevels,aconsistencydecreaseis ex-pectedbecauseoftheincreasedviscosityofitsbaseoilduetopolymeric chainscross-linking.Theformerbehaviourwasobservedformostofthe investigatedproducts,whereasthelatterwasnotobservedinthe con-sideredirradiationconditions.

Accordingtotheliterature,thepresenceofaromaticgroupsinthe baseoilshoulddeterminetheradiation-resistanceofagrease.However, theconsistencyresultsdon’tallowthegreasechemicalstructureandits radiationresistancetobeeasilycorrelated.Thecollecteddataconfirm thecomplexityoftheradiationinteractionwithmulti-phasesystems.

(9)

Fig. 11. PetamoGHY133Ngreasesamples.Fromlefttoright:anunirradiatedsample,asampleirradiatedat0.15MGy(10minirradiation)andasampleirradiated at0.44MGy(30minirradiation).Aprogressivegreasedarkeningcanbeobserved,fromyellowishtocompletelyblack.Samplesirradiatedathigherdoselevels havethesamecolour oftheoneirradiatedat0.44MGy.

The tested greases feature either a stable consistency or a con-sistencyincreasewith dose.Sevenout ofthenineirradiated greases becomefluidanddripfromthetestinginstrumentundergravity(See Fig.9).Bydefinition,agreaseshouldremaininplaceasasolidbody undergravity [24].Greasefluidizationisanindicatorofsevere mate-rialdamage,probablyrelatedtoacompletedamageof thethickener structure.Thethickenerisaradiation-sensitivecomponentandforthis reasonitisrelevantindeterminingtheoverallradiation-resistanceof thegrease.

ApiezonMbehaviourisdiscussedseparatelybecauseitis manufac-turedwithoutathickener.Forthisreason,itsfluidizationat4.7 MGyis notrelatedtothethickenerdisruptionandmightberelatedtotheoil structurecleavage.

Thequalitativepreliminarytestsprovideindirectinformationonthe greaseradiationeffectstoo.Greasemobilityishighlypromotedby ir-radiationforallthetestedproducts.Theintensegasevolutioncould originatefromthecleavageofthepolymericchains.Thegasevolved duringirradiationleadstotheformationofbubbles,whichmodifythe distributionofthegreaseintheset-up.AcidgasesareevolvedbyKrytox 240ACbecauseofitsfluorinatedcomposition.

Inconclusion, cleavagedominates asdamage mechanismfor the greases here analyzed. Further understanding of the mechanismsof radiationinteractionatthestructuralscaleisnotpossiblebasedon con-sistencyresultsonly.Greasesarecomplicatedsystems,whosechemical andphysicalcharacteristicscannotbeeasilymodelled.Thelackof aca-demicbaseresearchintothegreasefundamentalsevidencestheneed forfurtherinvestigation[24].

4.2. Correlationbetweenradiationeffectsandchemicalcomposition

According to the literature,the grease radiation stability should be predominantly determined by its base oilchemical composition. Forexample,polyphenyletherbasedproductsarereportedtobemore radiation-resistantthanmineraloilbasedones[1,10].The outstand-ingstabilityofRG-42R-1complieswiththisconsideration.However, therearereasonstobelievethatradiationstabilitydependsonamore complexinteractionbetweenthechemicalnatureof thebaseoil,the thickenerandtheadditives.Thisis supportedbysomeof theresults herereported.

Fiveof thetestedgreases(AFB-LF, FAGArcanolLOAD 220,

Griz-zlygrease No.1, Klüberlub BE 41-542 and Petamo GHY 133 N) are

manufactured withmineral oilsbutdifferent thickeners.Despite the similar composition of their base oil, they show very different be-haviour,maybethankstothepresenceofdifferentthickeners.Petamo GHY133Nhasastableconsistencyuptoabout9 MGy,whereasthe othersbecomefluidbelow5 MGy.

PetamoGHY133NandRG-42R-1haveacomparablestabilitywith dose,despitetheirdifferentchemicalcomposition.Theformeris

real-Table 5

Thresholdsforthetestedgreasesassociatedtothefunctionalendpoint defini-tion,correspondingtoa10%variationfromtheoriginalconsistency. Thresh-oldsaredeterminedusingalinear interpolation.Whenvariationsarelower than10%forallthetesteddosevalues,consistencyvariationatthemaximum doseisreported. Product Dose MGy Cons.var % Fluence(n) parcm−2 Fluence(𝛾) parcm−2 Turmopolgrease 2 0.1 +10% 7.6 1015 7.3 1015 Krytox 240 AC 0.2 +10% 4.1 1016 4.0 1016 Grizzlygrease No. 1 0.3 +10% 2.2 1016 2.1 1016 AFB-LF 0.4 +10% 2.7 1016 2.6 1016

FAG Arcanol LOAD 220 1.1 +10% 7.5 1016 7.2 1016 Klüberlub BE 41-542 1.8 +10 % 1.2 1017 1.2 1017

Apiezon M 2.3 +10% 1.5 1017 1.5 1017

RG-42R-1 7.6 +5% 6.2 1017 5.9 1017

Petamo GHY 133 N 8.9 −3% 6.2 1017 5.9 1017

izedwithamineraloilandapolyurea thickener,whilethelatter is realizedwithpolyphenylether oilandapolycarbonatethickener.

Therefore,itisconcludedthatthechemicalcompositionoftheoil aloneisnotrepresentativeofthegreaseradiationsensitivity.Specific additivesareexpectedtoinfluenceradiationstabilityaswell.Forthose reasons,generalconclusionsbasedonthechemicalcompositioncanbe hardlydrawnandspecificproductsmustbeindividuallytested.

4.3. Thresholdsofradiationdamage

Theconceptofradiationdamagethresholdingreasesisscarcely de-fined.However,itisofutmostimportanceintheengineeringviewpoint andforend-userslike theESS andtheSPESfacilities.Inthepresent work,twoendpointsaredefinedtoevaluatetheradiation-resistanceof thetestedproducts.

A10%deviationfromthenon-irradiatedconsistencyisconsidered inthepresentstudyasafunctionalendpoint.Consistencycanbe ex-pressedaswellinNLGIgrades,rangingfrom000(soft)to6(hard).The NLGIgradeisarelevantparameterforthegreasespecificapplication. Adeviationofonegradefromtheoriginalconsistencygrade approx-imatelycorrespondstoa10%consistencyvariation.Table5contains thethresholdsassociatedtothis functionalendpoint. Thresholdsare expressedintermsoftotalabsorbeddoseandintermsofexposureto thetotalneutronandgammafluenceinthemixedirradiationfieldof thefacility.

Aseverestructuralendpointisassociatedtotheradiation-induced fluidizationofthegrease.Itcorresponds toconsistencyvaluesbeing outofthemaximumpenetrometerrange.Thisendpointisevidenced bydashedlinesinFig.8andmarksanendof lifeconditionforthe irradiatedgrease.

The defined endpoints provide useful dose and particle fluence thresholdstocomparetheproductsradiation-resistance.PetamoGHY

(10)

133NandRG-42R-1areidentifiedasthemostradiationresistant prod-uctscomparatively.Infact,theirconsistencydeviationfromtheoriginal valueislowerthan10%foralltheinvestigateddosevalues.Forthese products,theconsistencyvariationatthemaximumabsorbeddoseis reportedin Table 5. Fluorinatedproducts, despitethelower amount ofneutrondoseabsorbedincomparisonwithhydrogenatedones,are notrecommendedforapplicationinradioactiveenvironments.Infact, theacidgasesevolvedduringirradiationcoulddamagethesurrounding metalliccomponents.

4.4. Comparisonwithproducers’declarations

Consistencyresultsobtainedinthepresentworkcanbecompared withtheradiationresistancedeclarationsoftheproducers.Theresults achievedonGrizzlygreaseNo.1areparticularlyintriguing.Its consis-tencyabruptlyincreasesat0.4 MGyofmixedneutronandgammadose. Thisvalueismuchlowerthanthe1.2 MGygammadosethreshold de-claredbytheproducer.Theequivalenceoftheeffectsofgammadose andneutrondoseinpolymershasbeenlonglybelieved.However,the differencesreportedforGrizzlygreaseNo.1couldbeattributedtothe differentirradiationconditionadoptedinthetests,inparticulartheuse ofpuregammaormixedradiationfields.

Inaddition,itisinterestingtonotethatthetwomoststablegreases have different producer declarations concerning the radiation resis-tance.RG-42R-1isdeclaredbytheproducerasradiationresistantup to15 MGyofgammadose,whilePetamoGHY133Nhasnoradiation resistancedeclaration.

Itcanbeconcludedthattheproductslackingaradiationresistance declaration do not necessarily featurescarce radiationresistance. In fact, only a limited number of companies in the world tested their productswithradiation.Asherereported,somegreasesfeaturing excel-lentperformancebutnottestedwithradiationshowexcellentradiation stability.Onthecontrary,productshavingadeclareddosethreshold donotnecessarilyhaveacomparableradiationresistancewhen irradi-atedatsamedosesindifferentradiationfields.Thisevidencesupports theneedforfurthertestingonspecificproducts,especially whenitis neededtoknowtheirradiationresistanceinspecificirradiation condi-tions.Theproducer’sdeclarationbasedongammairradiationcannot beconsideredassatisfactoryfortheuseofaproductinadifferent radi-ationfield.

4.5. Predictiveabilityoftheresults

Inthepresentstudy,greasesareirradiatedinaneutronandgamma mixedreactorfield.Thechosenirradiationconditionsaresignificantfor applicationsinfacilitiesthatwillproducesimilarradiationfields,asthe SPESandtheESSsystems.However,theradiationfieldsinoperation willdifferfromtheoneusedinthepresentstudybyseveralparameters. Firstly,thedoserateexpectedinoperationwillbeingeneralordersof magnitudelowerthantheoneusedfortestinginthereactor.Testsin thereactorarenecessarilyaccelerated.Greaseshavebeenirradiatedin reactoruptoseveralMGyoftotaldose,correspondingtoneutronand gammafluencesoftheorderofmagnitudeof1017particlecm−2.Similar exposureswillbecumulatedinmuchlongeroperationtimes,ranging from weekstodecadesin theSPES andin theESSfacilities.Testing conditionscannoteasilyreplicatesolongexposuretimes,especiallyin caseofextensiveexperimentalcampaignswhichcountseveralproducts irradiatedatvariousdoselevels.Tocompleteirradiationina reason-abletime,quicker radiationdamagetests,referredtoasaccelerated, arenecessary.

Moreover,greasesaretestedinairatmosphereatatmospheric pres-sure,whileinsomeapplicationstheywillworkinvacuumorinabsence ofoxygen.Thetemperatureintheirradiationfacilityishigherthatthe temperatureexpectedformostapplications.Theexpectedneutron spec-truminoperationwilldifferfromthereactorone.Neutronswithhigher

energywillbeproducedbyspallationneutrontargetsandbyfacilities fortheproductionofradioactiveionbeams.

Damagemechanismsinpolymersareexpectedtodependonseveral parametersastheradiationfields,thedoserate,theoxygendiffusion inthematerialandthetemperature,inasynergisticway.Forthis rea-son,thepresentresultscannotbeusedtoexactlypredicttheexpected greasebehaviourinspecificoperatingconditions.Nevertheless,the con-sistencybehaviourofseveraldifferentcommercialgreasesirradiatedin thesameconditionsinaneutronandgammamixedfieldoveratotal absorbeddoseofabout10 MGyareherereported.Thesetofcollected dataisuniqueinthepresentliterature.

5. Summaryandconclusions

Thepresentworkapproachestheproblemof radiationeffectson lubricatinggreases from an experimentalviewpoint. A methodology forgreaseirradiationin aneutronandgammamixedfieldand post-irradiation examination is developed. Nine commercially available productsareselectedfromsomeofthemostimportantproducersinthe world.Greasesamplesareirradiatedinanin-corefacilityofaresearch nuclearreactoratabsorbeddosesrangingbetween0.1 MGyand9 MGy. Dosimetryintheneutronandgammamixedfieldiscalculated. Consis-tencyis testedafterirradiation asthemostsignificantfunctional pa-rametercharacterizingagrease.Extremeradiation-inducedconsistency modificationsareobservedforsevenoutof theninetestedproducts, leadingtothegreasefluidization.Twooutoftheninetestedproducts exhibitstableconsistencyasafunctionofthedose.

Itcanbeconcludedthatthecleavageofthegreasestructureisthe dominantprocessinthechosenirradiationconditions.Thisisevidenced bythegreasefluidizationandbytheevolutionofgas,whichdepends onthethickenerdisruptionandontheproductionoffragments respec-tively.

Someofthegreaseshavingbaseoilswithasimilarchemical com-positionshowverydifferentradiationeffects.Forthisreason,itisnot possibletodirectlycorrelatethechemicalstructureofgreaseswiththeir radiationresistance.Thepresentstudycontributestoprovide experi-mentalevidencesofcleavageasthedominantprocessinducedby radi-ationonthegreasestructureuptothetestedvaluesofabsorbeddose. However,thecollecteddataevidencetheneedforafurther understand-ingoftheinteractionbetweenradiationsandthecomplexmulti-phase chemicalstructureofgreases.

Endoflifeusabilityconditionsarepresentedtoproposeradiation thresholdsforthe greases.Twogreases arecomparatively evaluated as the most radiation resistant ones. Someof the results allow the commonlyuseddefinitionsofradiation-resistancetobequestioned.In fact,someofthecommercialproductswhicharedeclaredbythe pro-ducerasradiationresistant,show extremedegradationinthepresent study.Theseproducerdeclarationsrefertogammaradiationonly.The observeddifferencesareprobablyduetothedifferentirradiation con-ditions,whichinfluencetheradiationdamage.Forthisreason,gamma radiationdatashouldnotbeusedtodrawgeneralconclusionsonthe radiationresistanceofgreasesandtodefineuniversallyaccepteddose thresholds.Inaddition, thepresentedresults challengethegenerally believedassumptionclaimingthatequaldosesofdifferent radiations areequallyeffectiveindamagingpolymers.Theuseofmixedradiation fieldsisnecessarytomoreaccuratelytesttheresistanceofpolymeric materialsthatmustworkinthepresenceofmixedradiations.

Theresultscollectedinthispaperrepresentasetofdataachieved inirradiationconditionsthatdifferfromtheonescommonlyemployed totestpolymers.Thedevelopedmethodologyheredescribedallowsthe radiationresistanceofthetestedgreasestobecomparativelyevaluated. Apartfromthescientificsignificance,thedatacollectedinmixed neu-tronandgammaradiationareparticularlyrelevantfornewgeneration facilitiesinwhichtheusedgreasesareexposedtoamixedneutronand gammaenvironment.Discussionswithsomeofthegreaseprovidersare ongoingaswellfor adeeperinvestigation andunderstandingof the

(11)

basicmechanismsthatdeterminetheobservedphenomena.Chemical analysesonselectedirradiatedgreaseswillbeperformedforadeeper understandingoftheexperimentalresultspresentedinthispaper.

Declarations

Authorcontributionstatement

M.Ferrari:Conceivedanddesignedtheexperiments;Performedthe experiments;Analyzedandinterpretedthedata;Contributedreagents, materials,analysistoolsordata;Wrotethepaper.

A. Zenoni,Y.Lee: Conceivedanddesignedtheexperiments; Ana-lyzedandinterpretedthedata;Contributedreagents,materials,analysis toolsordata.

M.Hartl:Analyzedandinterpretedthedata.

A. Andrighetto: Conceived and designed the experiments; Con-tributedreagents,materials,analysistoolsordata.

A.Monetti:Conceivedanddesignedtheexperiments;Contributed reagents,materials,analysistoolsordata.

A.Salvini:Contributedreagents,materials,analysistoolsordata. F.Zelaschi:Conceivedanddesignedtheexperiments;Performedthe experiments;Analyzedandinterpretedthedata;Contributedreagents, materials,analysistoolsordata.

Fundingstatement

Thisresearchdidnotreceiveanyspecificgrantfromfunding agen-ciesinthepublic,commercial,ornot-for-profitsectors.

Competingintereststatement

Theauthorsdeclarenoconflictofinterest.

Additionalinformation

Noadditionalinformationisavailableforthispaper.

Dataavailability

Therawdatarequiredtoreproducethesefindingscannotbeshared atthistimeasthedataalsoformspartofanongoingstudy.The pro-cesseddatarequiredtoreproduce thesefindingscannotbesharedat thistimeasthedataalsoformspartofanongoingstudy.

Acknowledgements

Theauthorsaregratefulforthecontributiontothestudygivenby Prof.S.PandiniandbyDr.C.ReminooftheUniversityofBrescia.The authorsthankDr.F.BorgnaoftheSPESprojectofINFNforassistance withelementalanalysisperformedongreasesandDr.F.D’Agostiniof theSPESprojectofINFNforhelpinginpurchasingsomeoftheproducts.

References

[1]R.O.Bolt,J.G.Carrol,RadiationEffectsonOrganicMaterials,AcademicPress,1963.

[2]J.Davenas,etal.,Stabilityofpolymersunderionisingradiation:themanyfaces ofradiationinteractionswithpolymers,Nucl.Instrum.MethodsPhys.Res. B191

(2002)653–661.

[3]T. Seguchi, N. Hayakawa, K. Yoshida, N. Tamura, Fast neutron irradiation

effect – II. Crosslinking of polyethylene, ethylene-propylene copolymer, and

tetrafluoroethylene-propylenecopolymer,Phys.Chem.26 (2)(1985)221–225.

[4]M.Aberg,N.Ahlfors,R.Ainsworth,C.Alba-Simionesco,S.Alimov,N.Aliouane, P.K.Willendrup,ESSTechnicalDesignReport.EuropeanSpallationSource,2013.

[5]A.Andrighetto,etal.,Spes:anintensesourceofneutron-richradioactivebeamsat Legnaro,J.Phys.Conf.Ser.966(2018)012028.

[6]A.Monetti,etal.,TheRIBproductiontargetfortheSPESproject,Eur.Phys.J.A51 (2015)128.

[7]P.Beynel,P.Maier,H.Schoenbacher,CompilationofRadiationDamageTestData: MaterialsUsedAroundHigh-EnergyAccelerators,EuropeanOrganizationfor Nu-clearResearch(CERN),YellowReportCERN-82-10Part3,1982.

[8]K.Obara,etal.,HighGamma-RaysIrradiationTestsofCriticalComponentsfor ITER(InternationalThermonuclearExperimentalReactor)in-VesselRemote Han-dlingSystem,JapanAtomicEnergyResearchInstitute,JAERI-Tech99-003, Febru-ary1999.

[9]M.Saito,etal.,DevelopmentofradiationhardcomponentsforITERblanketremote handlingsystem,FusionEng.Des.109–111(2016)1502–1506.

[10]I.V.Shul’zhenko,R.I.Kobzova,M.B.Chepurova,Yu.P.Izotov,Effectoflow-power ionizingradiationonpropertiesoflubricatinggreases,Chem.Technol.FuelsOils 17 (4)(1981)217–219.

[11]W.L.R.Rice,W.L.Cox,TheEffectsofNuclearRadiationonSolidFilmLubricants,

MaterialLaboratoriesoftheWrightAirDevelopmentCenter,AirResearchand

DevelopmentCommand,UnitedStatesAirForce,Ohio,WADCTechnicalReport

58-499ASTIADocumentNo.207795,January1959.

[12]F.Hanish,P.Maier,S.Okada,H.Schoenbacher,Effectsofradiationtypesanddose ratesonselectedcable-insulatingmaterials,Radiat.Phys.Chem.30 (1)(1987)1–9.

[13]A.Rivaton,S.Cambon,J.-L.Gardette,RadiochemicalageingofEPDMelastomers.

IdentificationandquantificationofchemicalchangesinEPDMandEPRfilms

𝛾-irradiatedunderoxygenatmosphere,Nucl.Instrum.MethodsPhys.Res. B227

(2005)343–356.

[14]M.B.Bruce,M.V.Davis,RadiationEffectsonOrganicMaterialsinNuclearPlants, GeorgiaInstituteofTechnology,NuclearEngineeringDepartment,EPRINP-2129, ResearchProject1707-3,FinalReport,Nov.1981.

[15]H.Schoenbacher,RadiationDamageStudiesforDetectorMaterials,CERN,Geneva, Switzerland,1989.

[16]D.C.Phillips,Theeffectsofradiationonelectricalinsulatorsinfusionreactors,in: MaterialsDevelopmentDivision,AEREHarwell,Oxfordshire,UKAEAAERE-R8923, July1978.

[17]C.D.Bopp,O.Sisman,RadiationStabilityofPlasticsandElastomers,OakRidge NationalLaboratories1373(Suppl.toORNL-928),ResearchProject1707-3,Final

Report,November1981.

[18]B.A.Briskman,Specificityofprotonirradiationeffectsonpolymers,Nucl.Instrum. MethodsPhys.Res.B265(2007)72–75.

[19]A.Rivaton,J.Arnold,Structuralmodificationsofpolymersundertheimpactoffast neutrons,Polym.Degrad.Stab.93(2008)1864–1868.

[20]H.W.Bonin,V.T.Bui,P.E.Poirier,Effectsofneutronsandgammaradiationonhigh polymerepoxyadhesives,in:R.Loewer(Ed.),CNSProceedingsofthe16Annual Conference,vol.IandII,Canada,1995,p. 2v.

[21]A.Zenoni,etal.,RadiationresistanceofelastomericO-ringsinmixedneutronand gammafields:testingmethodologyandexperimentalresults,Rev.Sci.Instrum.88

(2017)113304.

[22]D.Battini,etal.,Experimentaltestingandnumericalsimulationsforlifeprediction ofgatevalveO-ringsexposedtomixedneutronandgammafields,Mater.Des.156 (2018)514–527.

[23]M.Ferrari,etal.,TheSPESfacilityasanintenseneutronsource:radiation resis-tanceofpolymericmaterialsandresidualactivationcalculations,Radiat.Appl.3 (2) (2018)98–105.

[24]R.M.Mortier,etal.,ChemistryandTechnologyofLubricants,vol.14,3rdedn, Springer,Chap,2010,pp. 411–432.

[25]J.R.Lamarsch,IntroductiontoNuclearReactorTheory,Addison-WesleyPublishing

Company,1966.

[26]TRIGAMarkIIMCNPModel,LENALaboratory,UniversityofPavia,Italy,2015.

[27]D.B.Pelowitz(Ed.),MCNPXTMUser’sManual,Version2.7.0,LosAlamosNational LaboratoryReportLA-CP-11-00438,April2011.

[28]D.Chiesa,DevelopmentandExperimentalValidationofaMonteCarloSimulation ModelfortheTRIGAMarkIIReactor,UniversitàdegliStudidiMilano-Bicocca, Ph.D.Thesis,2013.

[29]K.Ambrožiˇc,G.Žerovnik,L.Snoj,ComputationalanalysisofthedoseratesatJSI TRIGAreactorirradiationfacilities,Appl.Radiat.Isot.130(2017)140–152.

[30]F.H.Attix,IntroductiontoRadiologicalPhysicsandRadiationDosimetry, Wiley-VCHVerlagGmbH&Co.KGaA,Weiheim,2004.

Figura

Fig. 2 shows the calculated neutron energy spectrum in the Central Thimble. The spectrum is normalized to the nominal reactor  work-ing power of 250 kW, which is associated to a source intensity of 1 .9 ⋅ 10 16 n/s
Fig. 3. Dose rates calculated with MCNP5 for greases irradiated in the Central Thimble facility at the nominal working power of 250 kW
Fig. 5. The set-up used to irradiate grease samples in the Central Thimble facil- facil-ity
Fig. 6. The semi-automatic penetrometer by S.D.M. Srl used for consistency measurements
+3

Riferimenti

Documenti correlati

Under these assumptions the profitability of services increases with the number of positively evaluated loan applicants (borrowers) per bank. Therefore the impact of

The article assesses the financial security of the Kemerovo region according to its main criteria: revenues and expenditures of the consolidated budgets of the

The presented research was based on 13 case studies of urban wastelands that were chosen according to the following criteria: neglected, abandoned or undeveloped green

At the territory of the Far East there are geological and economic potential to create raw material bases for development of important economic complexes such as agrochemical

The observation of this event in the visible range and observations in the field of gamma and X-ray radiation are a kind of warning signal, which proves that we can also deal

Pifferi, "The BITMAP exercise: a multi-laboratory performance assessment campaign of diffuse optical instrumentation," in Diffuse Optical Spectroscopy and Imaging VII,

Both middleware services (such as workload and data management) and applications (such as monitoring tools etc.) require an interface to the Grid Information Service (IS) to

In particular, the preparation of polymer based organically modified layered silicate (OMLS) nanocomposites demonstrated to be effective, if compared with unmodified resin,