• Non ci sono risultati.

Application of municipal biowaste derived products in Hibiscus cultivation: Effect on leaf gaseous exchange activity, and plant biomass accumulation and quality

N/A
N/A
Protected

Academic year: 2021

Condividi "Application of municipal biowaste derived products in Hibiscus cultivation: Effect on leaf gaseous exchange activity, and plant biomass accumulation and quality"

Copied!
11
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Scientia

Horticulturae

j o u r n a l ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / s c i h o r t i

Application

of

municipal

biowaste

derived

products

in

Hibiscus

cultivation:

Effect

on

leaf

gaseous

exchange

activity,

and

plant

biomass

accumulation

and

quality

Daniele

Massa

a,∗

,

Domenico

Prisa

a

,

Enzo

Montoneri

b

,

Daniele

Battaglini

a

,

Marco

Ginepro

c

,

Michele

Negre

d

,

Gianluca

Burchi

a

aCouncilforAgriculturalResearchandEconomics(CREA),Landscapingplantsandnurseryresearchunit,ViadeiFiori8,51012Pescia,PT,Italy bBiowasteProcessing,ViaXXIVMaggio25,37126Verona,Italy

cDipartimentodiChimica,UniversitàdiTorino,ViaP.Giuria7,10125Torino,Italy

dDipartimentodiScienzeAgrarieForestalieAlimentari,UniversitàdiTorino,LargoP.Braccini2,10095Grugliasco,TO,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received1October2015

Receivedinrevisedform11March2016 Accepted23March2016

Availableonline26April2016 Keywords: Biowaste Biostimulant Photosynthesis Substrateculture Hibiscuspalustris

a

b

s

t

r

a

c

t

Twourbanbiowastematerials,fermentedunderanaerobicandaerobicconditions,theirsolubleand insolublealkalinehydrolysates,andacommercialbiostimulantproduct,werecomparedfortheircapacity toboostHibiscuscropproductionandquality.Plantsweregrownin4-litrepots,containingpeatand pumiceassubstrate,underoptimalgrowingconditions.Arandomized-blockexperimentaldesignwas adopted.Twotypes(mainfactorsofvariability)oftreatmentswereapplied,i.e.byblendingtheabove productswiththesubstrateattransplant,andbyfertigationusingthesolublehydrolysatesonly.Plant biomasscharacteristicsandecophysiologicalparametersweremeasured.Meaneffectoffactorsand theirinteractionswereassessedbytwo-wayANOVA.Principalcomponentanalysiswasperformedby usingthedifferentdependentvariablestosummarizethemostrelevantdifferencesamongtreatments. Comparedwiththecontrol(untreatedplants),theappliedtreatmentsenhancedmostoftheinvestigated parameters.Themostvaluableeffectswereobservedfortotalbiomassaccumulation(+25%),plantheight (+10%),leafchlorophyllSPADindex(+15%)andnetphotosynthesis(+24%).Thehydrolysatesperformed betterthanthepristinematerials.Theformeroneswerecomparabletothecommercialbiostimulant. Theresultsconfirmedthehypothesisthatbiowastederivedproductsinducebiostimulantactivityon Hibiscus;theirapplicationcanimprovecultivationsustainability.

©2016ElsevierB.V.Allrightsreserved.

Abbreviations: D,digestateobtainedfromtheanaerobicfermentationofthe organichumidfractionofurbanwastes;DAT1,daysafterT1(day);DW,plantdry

weight(gm−2);E,evapotranspirationrate(mmolm−2s−1);−F,fertigation treat-ments;FERT,treatmentsappliedduringthecultivationthroughfertigation;GC, greencompostobtainedfromtheaerobicfermentationofurbangardeningwastes; Gs,stomatal conductance (mmolm−2s−1); ID, insoluble digestatehydrolysate

obtainedfromalkalinehydrolysisofD;IGC,insolublecomposthydrolysateobtained fromthealkalinehydrolysisofGC;LAI,leafareaindex(m2m−2);NO,untreated;

NOVA,commercialbiostimulant;OM,organicmatter(kgm−3);Pn,net photosyn-theticrate(␮molm−2s−1);SD,solubledigestatehydrolysateobtainedfromthe alkalinehydrolysisofD;SGC,solublecomposthydrolysateobtainedfromthe alka-linehydrolysisofGC;SUB,treatmentsappliedtothesubstrateasapowderblended withthesubstrate;T1,beginningoftheexperimentation(30daysaftertransplant)

(day).

∗ Correspondingauthor.

E-mailaddress:daniele.massa@crea.gov.it(D.Massa).

1. Introduction

Soluble biobased substances isolated from the alkaline hydrolysateoffermentedurbanbiowasteshavebeenproven to performasefficientecofriendlychemicalauxiliariesindiversified fieldsofthechemicalindustry(Montonerietal.,2011), agricul-ture(Sortinoetal.,2014),andanimalhusbandry(Montonerietal., 2013).The productsare mixtures of moleculeswith molecular weightfrom5toseveralhundredskDa,comprisingaliphaticand aromaticCatomsbondedtoavarietyofacidandbasicfunctional groups.Thisisthelikelyreasonoftheirmultipurposeperformance (Montonerietal.,2011).Particularlyrelevantforagriculturearethe resultspublishedbySortinoetal.(2014)andGomisetal.(2014). Sortino et al. (2013, 2014) have shown that theabove soluble biobasedsubstancesaddedtosoilincreasedtomatoandredpepper plantphotosyntheticactivity,growthandproductivity.Thesame substances enhanced thephotochemical degradationof organic pollutantsinindustrialeffluent(Gomisetal.,2014).Thesefindings

http://dx.doi.org/10.1016/j.scienta.2016.03.033

(2)

suggestedthattheymightpromoteeitherCfixationor mineral-ization,according tothedifferent operationalenvironments. In bothcases,itwassuggestedthat,bytheircapacitytocomplexFe ionsandkeeptheminsolutionatslightlyacidicoralkaline con-ditions,theabovesolublebiobasedsusbtancesmaycontributeto enhancephoto-Fentonprocesses.Onthisbasis,thedevelopmentof aself-sustainableecosystembasedoncyclingrenewableorganic Cbetweenwastesandaddedvalueproductsappearsa fascinat-ingreachablegoal,certainlyworthwhiletopursuit.Generally,the environmentalbenefitsofthesesubstanceslieinthefactthatthese productsarepotentiallyalternativetocommercialsynthetic chem-icals.Thus,bytheiruse,onemayexpectareductionoffossilsource depletionandofCO2emissions.

Therealizationoftheaboveperspectivesdoesnotdependonly ontheproductpropertiesandperformance,butalsoon sustainabil-ityoftheproductionprocess.Rossoetal.(2015)havereportedthe hydrolysisofseveralmaterialsrecoveredfromdifferentstreamsof atypicalmunicipalwastetreatmentplantlocatedinNorthWest Italy.Thesematerialswerethedigestateoftheplantbiogasreactor performingtheanaerobicdigestionoftheorganichumidfraction, andseveralcompostsobtainedfrommixturesofdigestate,private andpublicgardeningresidues,and/orsewagesludge.The hydrol-ysisofthesematerialswascarriedoutinwateratpH13and60◦C. Inallcases,thesolublehydrolysatewasobtainedtogetherwith equalorhigheramountsofinsolublehydrolysate.Thepublished datashowedthatboththesolubleandinsolublehydrolysates con-tainorganicandmineralmatter,buttheorganic/mineralratiois higherintheformer.Thesolublehydrolysatescontainthelowest relativeamountoftotalmineralmatter,comparedwiththe insolu-blehydrolysatesandthepristinesourcingmaterials.Althoughthis process,performedat low temperatureand withcomplete sol-ventandreagentsrecycling,appearsecofriendly,a criticalpoint remainstheproductionoftheinsolublehydrolysate.Intheabsence ofdemonstrationofapromisinguseofthisproduct,itsdisposalis aneconomicburdenforthesolublehydrolysateproduction pro-cess.Yet,by itscontentofmineralelements, alsotheinsoluble hydrolysateproductmightbeusefulforagriculture.

Thepossibilityofboostingyieldandqualityofcropsbyusing biostimulantshasbeenlargelyinvestigatedinthelastyears(e.g. Bulgariet al., 2015; Calvo et al., 2014; du Jardin,2015). Many relationshipsbetweentheapplicationofbiostimulantsandcrop performance havebeen assessed inseveral experimentaltrials. However,themechanismsactivatedatplantlevelbythese prod-uctsarelargelyunknownanddifficulttoidentify.Biostimulants havebeenfoundtoenhanceplantgrowthand/orproductionand quality(Calvoetal.,2014),nutrientuptake(Saaetal.,2015), photo-syntheticactivity(Castroetal.,2012),plantresponsetobioticand abioticstresses(duJardin,2015),andseveralmetabolicprocesses (Bulgarietal.,2015;Calvoetal.,2014).Mostliteratureon biostim-ulantsreportstheirusebyfoliarapplication(e.g.Saaetal.,2015). However,thepossibilityofsupplyingthesesubstancesdirectlyto therootzoneisvaluableduetoimprovedefficiencyofdistribution anddosage.Thisisespeciallytrueiffertigationisadoptedforcover fertilization;obviously,thispracticeisrestrictedonlytosoluble compounds.

Muchresearchactivityontheuseofbiostimulantsin agricul-turehasbeencarriedoutundersoilconditionsforextensivecrops (Calvoetal.,2014;duJardin,2015),whilescarceliteratureis avail-ableforsubstratecultures(e.g.Bulgarietal.,2015).Forthelatter, rootzoneconditionsaresignificantlydifferentfromsoilintermsof bio-organicprocess(e.g.microbialactivity),climate(e.g. temper-ature,humidity)andchemo-physicalcharacteristics.Inintensive agriculture,suchascontainer-grownplantsystems,therequired agrochemicals,water,andenergyinputsperunitareaare signif-icantlyhigher, compared withthose neededfor extensivecrop systems.Theformersystemsapplytoornamentalplants,forwhich

thehighaestheticqualityisacriticalmarketabilityparameter.In this scenario,using natural productstoboost plants highyield andqualitycouldsignificantlyimprovetheuseefficiencyof non-renewableresources(e.g.freshwaterandchemicalfertilizers),thus increasingenvironmentalandeconomicsustainability.Thisposes worthwhileresearchscopeonsuchproductsfor understanding bettertheiractiononplantthroughtherootzoneandoptimizing theirdirectadministrationtothesubstrate.

Thepresentworkwasundertakentoaddressseveralquestions posedinpreviousexperimentsontheperformanceoftheabove soluble biowaste hydrolysates as promoter of plant photosyn-theticactivity,growthandproductivity,andonthesustainability oftheirproductionprocess.Tothispurpose,Hibiscuswaschosenas testplant.Thesolublehydrolysateswereobtained,togetherwith thecorrespondinginsolublehydrolysate,byalkalinehydrolysisof twodifferentfermentedmunicipalbiowastematerials.The solu-bleandinsolublehydrolysates,andtheirsourcingmaterials,were distributedattransplantaspowder blendedwiththesubstrate, and/orsolubilisedintotheirrigationwaterandsuppliedthrough fertigation.Acommercialproduct,claimedbythevendortohave biostimulantproperties,wasalsotestedbysubstrateapplication. Thisproduct,underthetradeofNOVA@®GR,isproducedand dis-tributedbyBiolchimSpa,Medicina(BO),Italy.Theappliedproducts wereevaluatedfortheireffectsonseveralplantperformance indi-catorsrelatedtoplantbiomassaccumulationandquality,andto leafgasexchange activity.Main goalsof theexperiment were: (i)evaluationofthedifferenturbanbiowastesourced materials and/ortheirmixtures;(ii)assessmentoftheproductapplication methodology;(iii)evaluationoftheaboveurbanbiowastesourced materialswithrespecttoacommercialbiostimulant.

2. Materialsandmethods

2.1. Location,plantmaterialandgrowingconditions

Theexperimentwascarriedoutinthespring-summerof2014, under typicalMediterranean climateconditions, in anopen-air experimentalnursery locatedin Pescia (Tuscany, Italy; latitude 43.54N,longitude10.42E)attheLandscapingPlantsandNursery ResearchUnitoftheItalianCouncilforAgriculturalResearchand Economics.

Hibiscusseedlings(HibiscusmoscheutosL.subsp.Hibiscus palus-tris)were transplanted on10th of April into four-litrepots (Ø 18cm)containingabasesubstrate(peat50%andpumice50%,V/V) adjustedtopH6.

Plantswereleft30daysundershadenet(40%ofshading)for acclimatisationtoexternal(outdoor)conditions.Thirtydaysafter transplant (T1), potsweremoved to theexperimental site and arrangedinarandomized-blockexperimentaldesign,withthree replicatesper treatment(eight plants per replicate).Pots were positionedat0.40×0.60meachother,obtainingacropdensity of 4.2plantsm−2. Twenty days after T1 (DAT1), allplants were trimmedabovethefourthtrueleaftostimulatetheemissionof lat-eralshootsasrecommendedbythestandardcultivationtechnique incommercialnurseryproductionofHibiscuspalustris.The exper-imentwasconcludedat110DAT1withthedestructiveanalysisof plantmaterialperformedroughlyonemonthbeforethebeginning ofplantsenescence(basingonlocalclimateconditions).

Irrigationwaterwassuppliedthroughdripirrigationsystem(2 emittersperpotwithatotalflowrateof7.5lh−1,onaverage),using atimerfortriggingirrigationfourtimesperday(onaverage,overall thecultivationperiod).Irrigationschedulingwasadjustedweekly accordingtoclimateconditionsand leaching fraction(theratio betweenwaterdrainageandwatersupply),whichwascalculated bymeasuringthevolumeofwaterdrainedoutfromalimited(three

(3)

perblock)numberofpots.Irrigationwasregulatedtokeepleaching fractiononatargetvalueofroughly10–15%.IrrigationwaterpH andelectricalconductivityranged6.2–6.6and0.42–0.60dSm−1, respectively.

Priortoaddingthebiobasedproductsunderinvestigation, stan-dardbasicfertilization wasappliedtothecultivationsubstrate, basedonplantnutrientuptake,andtakingintoaccountirrigation watercharacteristicsandpossiblefertilizerlossesduetoleaching. However,thefertilizationplanwasdisposedwiththeaimof pre-ventinganynutritionalstress.Macroandmicro-nutrientswerein partsuppliedatthetransplantdate,throughcontrolledrelease fer-tilizersblendedwiththesubstrate(3kgm−3ofOsmocotePro®3–4 months+3kgm−3ofOsmocotePro®5–6month).Anadditional fer-tigation,betweentheexponentialgrowthandincipientflowering phases,(from40to50DAT1)wasperformedwithwatersoluble saltsforatotalsupplyof0.21N,0.28P2O5and0.13K2Okgm−3of substrate.

Climate conditions were monitored continuously (5-minute basis) during the experiment by recording radiation, relative humidityandtemperature oftheairthrough theon-site mete-orological station (Dacagon Device, Pullman, WA 99163 USA). Minimum,meanandmaximumdailyaveragephotosynthetic pho-tonfluxdensityvalueswere109.2,568.3and750.5␮molm−2s−1, respectively.Meandailyglobalradiationaveraged21.7MJm−2d−1. Minimum,meanandmaximumdailyaverageofairtemperature valueswere11.6,20.5and22.3◦C,respectively.Meandailyrelative humidityofairaveraged64.5%.

2.2. Biobasedmaterialsunderinvestigation

Thesolubleandinsolublehydrolysateproductswereproduced andsuppliedbyStudioChionoedAssociatiinRivaroloCanavese, Torino,Italy.TheywereobtainedaspreviouslyreportedbySortino etal.(2014).Thepristinematerialswerethedigestaterecovered fromthe anaerobicfermentation of theorganichumid fraction ofmunicipalsolidwastefromseparatesourcecollection,andthe greencompostobtainedby180daysaerobicfermentationof pri-vategardeningandpublicparktrimmings.Thedigestateandthe compostmaterialswereprocessed ina pilotproduction facility comprisinga500lcapacityreactor.Thesolidmaterialwastreated under stirring with alkaline water at 4mlg−1 liquid/solid and 0.02w/wKOH/solidratiosat60◦Cfor4h.Thereactionmixwas allowedsettlingtoseparatethesupernatantliquidcontainingthe solublehydrolysatefractionfromthesolidinsolublehydrolysate residue.Thelatterresiduewaswashedoncewithfreshwaterat 4mlg−1 addedwater/insoluble hydrolysateratio. Thetotal col-lectedliquidphasewascentrifugedtoseparatefinesolidparticles, andrunthrougha5kDacutoffultrafitrationpolysulphone mem-brane.Themembraneretentatecontainingthesolublehydrolysate, andthesolidinsolublehydrolysateweredriedinventilatedoven at60◦C.Thefinaldriedproductswereanalyzedaccordingto pre-viously reportedmethods (Montoneri et al., 2011) and yielded theanalytical valuesreportedinTable1for thesourcing diges-tate(D)andgreencompost(GC)materials,andfortherespective hydrolysates, i.e. the soluble (SD) and insoluble (ID) digestate hydrolysates,andthesoluble(SGC)andinsoluble(IGC)compost hydrolysates.

2.3. Treatments

Treatments were arranged based on the following criteria and/orobjectives:(i)tosupplyamountsoftreatments’products per unit area or plant, which were negligible, compared with theapplieddoses of mostbiowaste sourcedmaterials(such as compost),whicharereportedinliterature(Dorais,2007);(ii)to supplyamountsofmacronutrientscontributedbythetreatments’

products, which were negligible, compared with the normally appliedamountsofchemicalfertilizers;(iii)toaccountforeffectsof treatments’productsasafunctionoftheirformulationand distri-butionmode;(iv)tostudypossibleinteractionsbetweenproducts obtainedbydifferentsourcingmaterials.

Twodifferenttypes(factorsofvariability)oftreatmentswere applied(Table2):(i)thesubstratetreatments(SUB)comprising 11 treatmentsandthecontrol,and thefertigation (FERT) treat-mentscomprising2treatmentsandthecontrol.Inthefirstcase, thesubstrateatseedlingstransplantwasblendedwiththe differ-entmaterials,whicharelistedinTable2.Thesearethecommercial NOVAbiostimulant,thegreencompost(GC),theinsoluble com-posthydrolysate(IGC),thesolublecomposthydrolysate(SGC),the compostmixedwithitssolublehydrolysate(GC/S),theinsoluble composthydrolysatemixedwiththecompostsolublehydrolysate (IGC/S),thedigestate(D),theinsolubledigestatehydrolysate(ID), thesolubledigestastehydrolysate(SD),thedigestatemixedwith the soluble digestate hydrolysate (D/S), the insolubledigestate hydrolysatemixedwiththedigestatesolublehydrolysate(ID/S).In thefertigationtreatments,onlythesolublecompost(SGC-F)and digestate(SD-F)hydrolysatesversustheuntreated controlwere tested.Inthiscase,thetotaldoseofeachsolublehydrolysate,which isreportedinTable2,wasdeliveredthroughtheirrigationsystem infourweeklyirrigations,startingat50DAT1.TheNOVAproduct wasnotincludedinthefertigationexperiments,asnoclaimforthis applicationmodewasreportedinthevendor’sproductdescription (Biolchim,2015).Thedaybeforetreatmentsirrigationwas inter-rupted,whichallowedalossofwateruptothesamequantityof easilyavailablewater (roughly400mlpot−1)inthepotvolume. Thisquantitywasthenrecoveredbysupplyingthesameamount ofwaterwiththedispensedsolubleproductsolution.This expedi-entallowedpreventingreductionoftheapplieddoseperplantper week,duetopossibleproducts’leaching.

Table2reportsalsodrymatter,andorganicmatter(OM)and carbon(C)applieddoses.Thesewerecalculatedbasingon previ-ousstudiescarriedoutwithsimilarproducts(Sortinoetal.,2013, 2014).Basedonthechemicalcompositionoftheappliedproducts (Table1), drymatterdoseswerearrangedinordertoapplythe sameamountofOMwitheachproduct.Theonlyexceptionwas thecommercialNOVAproduct,whichwasinevitablyappliedatthe dosesuggestedbytheproducer.Theproducts’mixturesfor treat-ment6,7,11and12(Table2)weremadeat4/1OMw/wratioof therespectiveingredients.

Theaboveexperimentalplan,containingthetwoSUBandFERT factors of variability (Table 2), allowedanalysing36 SUBxFERT combinations.Inthisfashion,threetypesofeffectscouldbe inves-tigated:i)effectsduetothenatureoftheappliedproduct;ii)effects relatedtotheproductapplicationmode;iii)effectsfromthe pos-sibleinteractionoftheproductnatureandapplicationmode.In additiontowhatreportedinTable2,sixmoretreatmentswere alsocarried out. In this case, the controlsubstrate and soluble hydrolysatesinfertigationtreatmentswerereplicatedbutwitha totalsupplyofnutrientsequaltoroughly1/3thedosereportedin Table2.Thesetreatmentswereexcludedfromstatisticalanalyses, exceptforthelinearregressionanalysisofphotosyntheticrateand leaftissuecharacteristics(i.e.leafNandchlorophyllcontent).To thispurpose,theadditionaltreatmentswerenecessarytohavea widerrangeofvalues,especiallybelowoptimalgrowingconditions (i.e.limitednutrientavailability).

2.4. Plantbiomassanalyses

Plantgrowthwasmonitoredmeasuringleafareaindex(LAI),by portableceptometer(AccuPARLP-80,DecagonDevicesInc, Pull-man WA 99163 USA),and plant height,twiceper month. Two destructive plant analyses, at 50 (just before the beginning of

(4)

Table1

pH,organicmatter(OM),carbonconcentration(C),C/Nratioandmineralelementsconcentrationofthetestedproducts.Concentrationvaluesreferredtodrymatter:averages andstandarddeviationcalculatedovertriplicatemeasurements.

Parameter Digestate(D) Insoluble digestate hydrolysate(ID) Solubledigestate hydrolysate(SD) Compost(GC) Insoluble compost hydrolysate(IGC) Solublecompost hydrolysate (SGC) Commercial product(NOVA) OM(g100g−1) 61.5±0.6 55.5±1.5 66.4±0.9 41.0±0.6 50.7±0.2 64.6±1.3 73.8±1.0 C(g100g−1) 34.0±0.8 30.0±0.5 40.0±0.4 22.7±0.4 28.4±1.2 39.0±0.5 23.6±0.5 N(g100g−1) 3.99±0.07 1.36±0.08 6.63±0.08 2.30±0.09 1.69±0.09 4.49±0.21 5.28±0.10 C/N 8.5 22.1 6.0 9.9 16.8 8.7 4.5 OM/(C+N) 1.6 1.8 1.4 1.6 1.7 1.5 2.6 P(g100g−1) 1.4±0.06 1.2±0.01 0.50±0.04 0.17±0.01 0.16±0.01 0.23±0.02 0.20±0.01 K(g100g−1) 0.72±0.03 2.43±0.05 1.59±0.06 1.43±0.08 1.11±0.02 2.12±0.21 0.27±0.02 Ca(g100g−1) 6.04±0.08 6.50±0.05 2.08±0.05 3.21±0.04 3.17±0.09 2.86±0.38 1.56±0.10 Mg(g100g−1) 0.82±0.02 0.99±0.02 0.27±0.01 0.56±0.01 0.58±0.01 0.38±0.06 0.57±0.02 Fe(g100g−1) 1.21±0.03 1.15±0.01 0.52±0.00 1.54±0.03 2.13±0.07 0.83±0.04 0.22±0.01 Si(g100g−1) 3.74±0.05 4.20±0.03 0.25±0.03 6.24±0.04 7.50±0.10 0.43±0.01 0.10±0.01 Al(g100g−1) 0.27±0.02 1.0±0.06 0.10±0.04 0.25±0.01 0.23±0.01 0.13±0.04 0.01±0.00 Na(g100g−1) 0.36±0.02 0.31±0.01 0.19±0.01 0.50±0.04 0.66±0.01 0.30±0.01 0.19±0.01 Se(mgkg−1) <1 <1 1.65±0.11 <1 <1 <1 1.45±0.09 Cu(mgkg−1) 101±2 66±4 262±1 87±1 54±3 264±4 5±0.1 Ni(mgkg−1) 47±0 50±1 24±1 81±3 102±3 91±1 13±1 Zn(mgkg−1) 291±6 144±4 361±4 196±13 140±3 303±1 24±1 Cr(mgkg−1) 50±1 48±1 15±0 49±1 104±3 32±1 13±0.5 Pb(mgkg−1) 81±2 71±1 46±2 45±2 45±1 65±1 0.9±0.03 Table2

Applied,drymatter,organicmatter(OM)andcarbon(C)dosesinthedifferentsubstrateandfertigationtreatments.DrymatterdoseswerenormalizedbytheOMcontent ofeachmaterial,inordertoapplythesameOMamountineachtreatment,exceptforNOVAappliedattheratesuggestedbytheproducer.

Treatment Drymatter

(kgm−3)

OM(kgm−3) C(kgm−3) Appliedproductdescription

Substrate(SUB) Productssuppliedaspowderblendedwiththesubstrateattransplant

1NO 0 0 0 Notreatment(control)

2NOVA 1.90 1.33 0.42 Commercialbiostimulant

3GC 1.68 0.65 0.36 Greencompost

4IGC 1.32 0.65 0.37 Insolublecomposthydrolysate

5SGC 1.04 0.65 0.39 Solublecomposthydrolysate

6GC/S 1.55 0.65 0.37 MixofGCandSGC,and

relativecomposition

GC 1.34 0.52 0.29

SGC 0.21 0.13 0.08

7IGC/S 1.27 0.65 0.38 MixofIGCandSGC,

andrelative composition

IGC 1.06 0.52 0.30

SGC 0.21 0.13 0.08

8D 1.14 0.65 0.36 Digestate

9ID 1.21 0.65 0.35 Insolubledigestatehydrolysate

10SD 0.99 0.65 0.39 Solubledigestatehydrolysate

11D/S 1.11 0.65 0.37 MixofDandSD,and

relativecomposition

D 0.91 0.52 0.29

SD 0.20 0.13 0.08

12ID/S 1.16 0.65 0.36 MixofIDandSD,and

relativecomposition

ID 0.96 0.52 0.28

SD 0.20 0.13 0.08

Fertigation(FERT) Productssuppliedinaqueoussolutionthroughfertigation

13NO-F 0 0 0 Notreatment(control)

14SGC-F 1.04 0.65 0.39 Solublecomposthydrolysate

15SD-F 0.99 0.65 0.39 Solubledigestatehydrolysate

fertigationtreatments)and 110DAT1 (attheend ofthe

exper-iment)wereperformedto quantifytheeffect of treatmentson

physiological and biometric parameters, biomass accumulation

andpartitioning,andtissuemineralcontentoftheplants.Before

destructiveanalysis,SPADindexwasmeasuredthroughaportable

SPAD-502(KonicaMinoltaOptics,2970Ishikawa-machi,Hachioji,

Tokyo,Japan)onsix healthyleavesper plant,fromthebottom

tothetop,and thenaveraging a totalof 18 measurementsper

replicate.Plantheight,meandiameter(ofthecanopyprojectedto

thesoil)andnumberofflowersandstemsweremeasured.Plan

height(cmpt−1)andmeandiameter(cmpt−1)wereusedto

cal-culateplantellipsoidvolume(cm3pt−1)andtheplantshapeindex

(astheplantheighttodiameterratio).Afterward,theplant

mate-rialwasseparatedintoflowers,stemsandleaves,andweightedto

assessbiomassfreshweight.Aportion(roughly150g)ofleaves

wasusedformeasuringunitleafareathroughaleafareameter

(WinDIASImageAnalysisSystem,Delta-TDevices,U.K.).Unitleaf

areawasusedtocalculateleafareaindex(LAI,m2m−2).Plantfresh

materialwasdriedinaforced-airoven(80◦Cfor72h)andweighed

forassessingplantdrymatteraccumulation.

Leaftissueswereanalysedfortheorganicnitrogencontent(N)

by Kjeldhal method.Leaf dry matter(0.5g) wasweighted, put

intopyrextubeswithaseleniumcatalyser(potassiumsulphate

4.63g,coppersulphate0.28gandselenium0.09g)anddigested

with12mlofphosphosulfuricacidat370◦Cfor40.Attheendof

thedigestion,thesamplesweredistilledusingtheVELP-UDK127

apparatus(VELPScientifica,UsmateMB,Italy)afteradding40ml

ofNaOH(40%w/V).Thedistillatewascollectedinaconicalflask

(5)

colourindicator.Finally,thecontentofNwasdeterminedby

titra-tionwith0.1NHCl.

2.5. Leafgasexchangemeasurements

Leafgasexchangemeasurementswereperformedintwo

differ-entperiods,duringtheexperiment,at45DAT1,justbeforethefirst

destructiveplantanalysis,or105DAT1.Aportablegasanalyzer

(Portable PhotosynthesisSystemCiras-2,PPSystems, Amesbury,

MA01913USA)wasusedtoperformonsitemeasurementsduring

the morning (between 9.00 and 12.00 am). During

measure-ments,tomaintaincomparableanalyticalconditions,thechamber

was set at a constant value of light saturating photosynthesis

(PPFD=1000␮molm−2s−1,primarilydeterminedthrough

photo-synthesislight-responsecurves),CO2(400gm−3),vapourpressure

deficit(VPD=1.0±0.2kPa)andtemperature(27.5±1◦C).The

tem-peraturevaluewastheaverageofclimatedatarecordedwitha

datalogger,inthesamedailyperiodofmeasurements,overthe

threedayspriortomeasurementstartup.Twomatureandhealthy

leaves(secondandfourthleaf,completelyunfoldedabovetheapex

of the main stem) were chosen for gas exchange analysis. For

thesemeasurements,twoplantsperreplicatewereused.Atotal

oftwelvemeasurementspertreatmentcombinationateachstage

wascarriedout.Thisprocedureprovidedacquisitionofvaluesfor

currentnetphotosynthetic(carbonassimilation) rate(Pn,␮mol

m−2s−1),transpirationrate(E,mmolm−2s−1)andstomatal

con-ductance(Gs,mmolm−2s−1).Theformer twoparameterswere

finallyusedforthecomputationofwateruseefficiency(PnE−1,

␮molCO2mmol−1H2O).

2.6. Statistics

Collected data were analysed by two-way ANOVA, in order

toassesssignificant(P≤0.05,0.01and0.001)differencesamong

treatments.MeanvalueswerethenseparatedbyDuncan’smultiple

rangetest(P=0.05).Dataanalysisincludedalsomultiple-variable

analysis(correlation analysis,n=36),variables’ relationshipsby

linearregressions(n=42forleafNandchlorophyllcontentorn=36

forall othervariables)and principalcomponentanalysis(PCA).

Statisticsandgraphicsweresupportedbytheprograms

Statgraph-icsCenturionXV(StatPoint,Inc.,Herndon,VA,USA)andPrism5

(GraphPadSoftware,Inc.,LaJolla,CaliforniaUSA).

3. Results

3.1. Chemicalcompositionofbiowasteandcommercialproducts.

Table 1 reports the chemical composition of the municipal biowasteandthecommercialproductstestedfortheireffectsin thecultivationofHibiscus.NOVAisclearlydistinguishedforthe highestcontentofOM,therelativelylowestorganicCandhighest Ncontents.Indeed,theNOVAOM,C/NandOM/(C+N)valuesare 73.8%,4.5and2.6,respectively,whilethevaluesforthebiowaste productsrangefrom50.7to66.4%OM,from6to22.1C/Nandfrom 1.4to1.8OM/(C+N).Thesefeatures reflectthedifferentnature oftheproducts’sources.Inessence,themunicipalbiowaste prod-uctsarederived frommixturesof unsortedkitchenwastes and gardeningresidues,pre-treatedbyanaerobicand/oraerobic fer-mentationfollowedbychemicalhydrolysis.ThecommercialNOVA product(Biolchim,2015)isdescribedbythevendorasaproprietary mixofplantextractrichinfulvicacids,humicacids,aminoacids andglycinebetaineasbiostimulants.Also,thebiowasteproducts presentdifferences,onefromtheother.Comparedwiththepristine digestate(D)andcompost(GC)materials,andwiththeinsoluble digestate(ID)andcompost(IGC)hydrolysates,thesoluble diges-tate(SD)andcompost(SGC)hydrolysateshavethehighestcontent

oforganicmatter,CandN.Comparedwiththesolubledigestate hydrolysate(SD),thesolublecomposthydrolysate(SGC)hashigher contentofallmineralelements,exceptforPandN,whicharehigher inthesolubledigestatehydrolysate(SD).Itisalsoworthwhileto observethat,comparedwithallotherproductsinTable1,the insol-ublecomposthydrolysate(IGC)hasthehigestcontentofSiandFe, followedbythepristinecompost(GC)intheorderofdecreasingSi andFe.

3.2. Biomassaccumulationandbiometricparameters

Datacollectedduringthefirstdestructiveanalysis,carriedoutin themiddleoftheexperimentalperiod,beforetheinitiationof fer-tigationtreatments(50DAT1),didnotshowanysignificanteffect onbiomassaccumulationandotherbiometricparametersbythe substratetreatments(datanotshown).Onthecontrary,thedata (Table3)collectedbydestructiveanalysis,performedattheendof theexperiment(110DAT1),demonstratedsignificanteffectsondry biomassaccumulationandleafareaindex(LAI).Table3showsthat allsubstratetreatments,excepttreatment7bythemixof insolu-bleandsolublecomposthydrolysates,increasedsignificantlythe leafdryweight(DW),comparedwiththecontrolnotreatment1. SignificantincreasesinleafDWwerealsoobservedbythe ferti-gationtreatments14(SGC-F)and15(SD-F),comparedwiththe controlplants.SimilarresultswerefoundforLAI(Table3).A sig-nificantpositive correlationbetweenLAI and leafDW(R=0.90, P<0.001,)wasfound.Inparticular,inthefertigationtreatments 14(SGC-F)and15(SD-F),thesolublecompostandsoluble diges-tatehydrolysates,respectively,caused30.2%higherLAI,compared withthecontrolplantsinthenotreatment13(NO-F).

Thestem and flowerDW,and thetotal shoot DW(Table 3) showedhigherselectivityinestablishingtherankingorderofthe treatments effects. Shoot DW correlated better with stem and flower DW(R=0.99, P<0.001) than withtheleaf DW(R=0.92, P<0.001). In the substrate treatments, the highest increase (25–26%)was caused bythesoluble digestate hydrolysate(SD) treatment10only,comparedwiththecontrolnotreatment1.For thestemandflowerDW,theothertreatmentsdidnotappearto causesignificantlydifferenteffects,comparedwiththecontrolno treatment1.ForthetotalshootDW,onlythecommercialNOVA, and the insoluble(ID) and soluble (SD) digestate hydrolysates causedsignificantincrease,comparedwiththecontrolno treat-ment 1.In thefertigation treatments14 (SGC-F) and 15(SD-F) bythesolublecompostandsolubledigestatehydrolysatescaused significant24.2%stemandflowerDW,and22.4%totalshootDW increase,comparedwiththecontrolnotreatment13(NO-F).

UnlikethesignificantdifferencesfoundinDWaccumulation, thedifferenttreatmentsdidnotaffectatallneitherbiomass parti-tioningnorthepercentageofDWinplanttissues(datanotshown). Thelatterwas17.2%forflowers,27.3%forleaves,and29.8%for stems,calculatedastheaverageofalltreatmentcombinations.

Neitherthesubstratenorthefertigationtreatmentsinfluenced significantlythemainbiometricparameters,whichweremeasured duringthefirst destructiveanalysis(50 DAT1).Inthesubstrate treatments,theonlystatisticallysignificantproveneffectwasthe plantvolumeincrease,whichwascausedbythecommercialNOVA productintreatment2attheendofthecultivationcycle(Table3). On the other hand, thesoluble compost and soluble digestate hydrolysates,whichweresuppliedthroughfertigationtreatments 14(SGC-F)and15(SD-F),increasedsignificantlyplantheightand volume(Table3),comparedwiththecontrolnotreatment13 (NO-F).

Table3showsalsothattheplantshapeindexwasreducedbythe fertigationtreatments14(SGC-F)and15(SD-F),performedwith thesolublecompostandsolubledigestatehydrolysates,compared withthecontrolnotreatment13(NO-F).Indeed,thecontrolplants

(6)

Table3

Dryweight(DW)ofleaves,stemsandflowers,andtotalshoot,andleafareaindex(LAI),pantheight,plantvolume,plantshapeindex(heighttodiameterratio)measuredat thefinaldestructiveanalysis(110DAT1).

Treatmenta LeafDW(gm−2) Stemandflower

DW (gm−2)

TotalshootDW

(gm−2) LAI(m

2m−2) Plantheight

(cmpt−1) Plant(cm3ptvolume−1) Plantshapeindex

Substrate(SUB)

1NO 99.57c 191.58bc 291.15cd 1.16c 44.44 66.58b 0.85 2NOVA 122.64a 225.46ab 348.10ab 1.48a 46.94 75.74a 0.88 3GC 109.58abc 215.09abc 324.67a-d 1.35abc 46.44 54.28bc 1.01 4IGC 107.71abc 198.85bc 306.56bcd 1.35abc 43.56 44.09c 1.01 5SGC 116.85ab 217.15abc 334.00abc 1.42ab 44.22 50.44bc 0.99 6GC/S 105.87bc 214.96abc 320.83a-d 1.35abc 48.00 58.33bc 1.02 7IGC/S 100.62c 178.10c 278.73d 1.19bc 44.89 52.91bc 0.97 8D 117.76ab 202.91abc 320.66a-d 1.41ab 45.11 60.90b 0.94 9ID 122.79a 221.91ab 344.70ab 1.50a 45.78 55.28bc 1.00 10SD 121.61a 241.49a 363.11a 1.54a 44.72 56.65bc 0.95 11D/S 116.80ab 225.35ab 342.15abc 1.48a 44.83 54.02bc 0.96 12ID/S 102.71bc 196.72bc 299.43bcd 1.33abc 45.22 54.00bc 0.99 Fertigation(FERT)

13NO-F 99.31b 181.54b 280.85b 1.16b 43.26c 38.48c 1.06a 14SGC-F 118.13a 226.44a 344.57a 1.47a 45.26b 59.56b 0.93b 15SD-F 118.69a 224.41a 343.10a 1.51a 47.51a 72.76a 0.91b Significanceb

SUB 0.001 0.043 0.011 0.008 n.s. 0.009 n.s.

FERT <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

SUBxFERT n.s. n.s. n.s. n.s. n.s. n.s. n.s.

aAbbreviationsandmaterialsdescriptionasinTable2.

b Statisticalanalysisperformedthroughtwo-wayANOVA;P-valueorn.s.arereportedforsignificantornonsignificantdifferences,respectively.Differentletterswithin

eachcolumnandeachfactorofvariability(SUBorFERT)indicatesignificantdifferencesaccordingtoDuncan’smultiple-rangetest(at95%ofprobability).

Table4

Leafchlorophyll(SPADindex)andnitrogen(N)concentrationmeasuredatthefinal destructiveanalysis.

Treatmenta SPAD N(g100g−1)

Substrate(SUB)

1NO 40.72c 2.45cd

2NOVA 43.52abc 2.80ab

3GC 43.80abc 2.70abc

4IGC 46.73a 2.85a

5SGC 45.16ab 2.54a-d 6GC/S 42.28bc 2.50bcd 7IGC/S 41.11c 2.36d 8D 43.77abc 2.75abc 9ID 43.44abc 2.55a-d 10SD 43.97abc 2.66a-d 11D/S 44.20abc 2.69a-d

12ID/S 45.78ab 2.81ab

Fertigation(FERT) 13NO-F 41.35c 2.58 14SGC-F 45.85a 2.73 15SD-F 43.92b 2.60 Significanceb SUB 0.013 0.018 FERT <0.001 n.s. SUBxFERT 0.002 n.s.

aAbbreviationsandmaterialsdescriptionasinTable2.

b Statisticalanalysisperformedthroughtwo-wayANOVA;P-valueorn.s.are

reportedforsignificantornonsignificantdifferences,respectively.Differentletters withineachcolumnandeachfactorofvariability(SUBorFERT)indicatesignificant differencesaccordingtoDuncan’smultiple-rangetest(at95%ofprobability).

showedlargerandshortervegetativehabitus,comparedwiththe plantstreatedbyfertigation.

3.3. Leafanalysisandgasexchangeactivity

The experimental data collected for leaf chlorophyll and N content, and for leaf gas exchange activity are reported in Tables4and5,respectively.Chlorophyll(representedinthiswork bytheSPADindex)andNcontentinleafsamples,didnotshow significantdifferencesamongalltreatmentsinthefirst

destruc-tiveplantanalysis at50 DAT1. However,significantdifferences wereobservedlaterduringthelastperiodofanalyses(Table4).In thesubstratetreatments,theinsolublecomposthydrolysate(IGC) treatment4,themixoftheinsolublesolublehydrolysate(ID/S),and thesolublecomposthydrolysate(SGC)treatments12and5, respec-tively,causedthehighestSPADvaluecomparedwiththecontrol notreatment1.ForleafN,onlytheinsolublecomposthydrolysate (IGC)treatment4,themixoftheinsolubleandsolubledigestate hydrolysates(ID/S),andthecommercialNOVAproducttreatments 12and2,respectively,weresignificantlyhigherthanthecontrol notreatment1.Inthefertigationtreatments,thesolublecompost hydrolysatetreatment14(SGC-F)gavethehighestSPADvalue.This was4.4%and10.8%higherthantherespectivevalues,whichwere recordedforthesolubledigestatehydrolysatetreatment15(SD-F) andthecontrolnotreatment13.ForleafN,nofertigationtreatment gavesignificantlydifferentvaluesfromthevaluethatwasrecorded forthecontrolnotreatment13(NO-F).ThedatainTable4alsoshow thataninteractionwasfoundbetweenthemainexperimental fac-torsforchlorophyllSPADindex; suchaninteractionwasdueto thesignificantlyhigherresponseofthesolublecompost(treatment SGC-F)andthesolubledigestate(treatment SD-F)hydrolysates, whencombinedwiththeinsolubledigestatehydrolysate(ID).A heterogeneousresponsewasobservedfortheothercombinations (datanotshown).

LeafNconcentrationwashighlycorrelatedwithSPAD(R=0.85, P<0.001)whileapoor,althoughsignificant,correlationwasfound withleaf DW (R=0.46, P=0.002) and total shootDW (R=0.59, P<0.001)ascanbealsodeducedbyFig.1.Therelationshipbetween SPADandNwassignificantly(P<0.001)representedbyalinear equation(SPAD=13.09N+0.72)withadeterminationcoefficient explaining73%oftheexperimentalvariability(Fig.1).

Gas exchange activity measured at 45 DAT1 did not show any significant difference among treatments for the measured photosyntheticrate(Pn),stomatal conductance (Gs), and evap-otranspiration (E). However, the measurements at 105 DAT1 (Table 5) showedsignificant treatmenteffects. Substrate treat-mentscausedsignificantincreasesofthephotosyntheticactivity,

(7)

Table5

Photosyntheticrate(Pn),stomatalconductance(Gs),evapotranspirationrate(E)andwateruseefficiencyasphotosynthetic/evapotranspirationratesratio(PnE−1),measured

atsaturatinglightbeforeexperimentending(105DAT1).

Treatmenta Pn(␮molm−2s−1) Gs(mmolm−2s−1) E(mmolm−2s−1) PnE−1(␮molmmol−1)

Substrate(SUB)

1NO 17.47d 283.64bcd 3.42cd 5.54bc

2NOVA 20.25ab 307.59bcd 3.90abc 5.55bc

3GC 21.70a 410.29a 3.93ab 6.14ab

4IGC 21.09ab 412.39a 4.48a 4.79c

5SGC 20.25ab 366.65ab 3.88abc 5.63bc

6GC/S 17.65cd 245.50d 3.49bcd 5.77bc

7IGC/S 18.34cd 260.65cd 3.98a 6.16ab

8D 20.70ab 320.64a-d 3.76a-d 5.68bc

9ID 21.21ab 349.28abc 3.88abc 5.71bc

10SD 19.43bc 304.56bcd 3.29d 6.21ab

11D/S 20.96ab 366.94ab 3.63a-d 6.63ab

12ID/S 21.39a 266.70cd 3.40d 7.04a

Fertigation(FERT)

13NO-F 17.40b 286.70b 3.15b 5.97b

14SGC-F 21.62a 382.62a 4.55a 4.77c

15SD-F 21.09a 304.38b 3.55b 6.98a

Significanceb

SUB <0.001 <0.001 <0.001 0.005

FERT <0.001 <0.001 <0.001 <0.001

SUBxFERT 0.046 n.s. n.s. n.s.

aAbbreviationsandmaterialsdescriptionasinTable2.

bStatisticalanalysisperformedthroughtwo-wayANOVA;P-valueorn.s.arereportedforsignificantornonsignificantdifferences,respectively.Differentletterswithin

eachcolumnandeachfactorofvariability(SUBorFERT)indicatesignificantdifferencesaccordingtoDuncan’smultiple-rangetest(at95%ofprobability).

Fig.1. Variableloadings(Fig.1a)anddatascores(Fig.1b)obtainedbyprincipal componentanalysis.Acronyms(Fig1a)representleafstomatalconductance(Gs), transpiration(E)andphotosynthesis(Pn),wateruseefficiency(Pn/E),leaf chloro-phyll(SPADindex)andnitrogen(N)content,plantvolume(V),height(H)andshape index(SI),andleaf(LeD),stem(StD)andtotalshoot(stems,leavesandflowers)dry weight(TD).Pointsandnumbers(Fig.1b)representtreatmentcombinations(see

Table2):(i)greennumbersshowcombinationswiththecontroltreatment1;(ii)red numbersshowcombinationswiththeNOVAtreatment2;(iii)bluenumbersshow combinationswiththenon-mixedhydrolysateproducts(treatment4,59,and10). Dashedlinesgroupallcombinationswiththedifferentfertigationtreatments:(i) dashedcircleforthecontroltreatment13;(ii)topdashedrectangleforthe solu-blegreencomposthydrolysatetreatment14;(iii)bottomdashedrectangleforthe solubledigestatehydrolysatetreatment15.(Forinterpretationofthereferencesto colorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle).

compared with the control no treatment 1. Photosynthetic rate of treated plant averaged 20.4␮molm−2s−1 compared to 17.4␮molm−2s−1foruntreatedplants.Thecompost(GC) treat-ment 3gave thehighest24.3% Pnincrease,compared withthe controlnotreatment1.Inthefertigationtreatments,thesoluble compostandsolubledigestatetreatments14(SGC-F)and15 (SD-F)gavesignificantlyhigheraverage22.7%Pnincrease,compared withthecontrolnotreatment13(NO-F).Aheterogeneousplant responsetothedifferenttreatmentcombinationswashighlighted byasignificantinteractionofthemainexperimentalfactors.Inthis case,thegeneraltendencyofsolublecompostandsoluble diges-tatefertigationtreatments14(SGC-F)and15(SD-F)toincreasePn wassignificantlymorepronouncedforthefollowingcombinations: treatments1×14,5×14,8×14,11×14and9×15(seeTable2for combinations)withrespecttountreatedplants(datanotshown). Theseresultsweregenerallydenotingthat:(i)solublecomposthad amajoreffectonPnwithrespecttosolubledigestate;(ii) combi-nationsofproducts(betweensubstrateandfertigationtreatments) derivedfromthesameorganicmatrixeshadmajoreffectsrespect totheirmixtures.Thecollecteddatashowedastrongcorrelation betweenPnandSPAD(R=0.87,P<0.001)asconfirmedbydata anal-ysisreportedinFig.1,andapooreralthoughsignificantcorrelation withtotalshootDWaccumulatedattheendofthecultivationcycle (R=0.65,P<0.001).

Stomatalconductance(Table5)wassignificantlyincreased,by 45%onaverage,onlybytheinsolublecomposthydrolysate(IGC) andtheGCtreatments4and3,respectively,comparedwiththe control notreatment1. In thefertigation treatments,the solu-ble compost hydrolysatetreatment14 (SGC-F) increased Gsby 25.7%and33.5%,comparedwiththesolubledigestatehydrolysate treatment15 (SD-F)andtothecontrolnotreatment13(NO-F), respectively.Aroughlysimilarplantresponsetothedifferent treat-mentswasobservedfortheevapotranspirationrate(E)reported in Table 5. In the fertigation treatments, the soluble compost hydrolysatetreatment14(SGC-F) increasedthe evapotranspira-tionrateby28.2and44.4%,comparedwiththesolubledigestate hydrolysate treatment15 (SD-F) and the control no treatment 13(NO-F),respectively.Theevapotranspirationrateandthe

(8)

sto-matalconductancewerefoundsignificantlycorrelated (R=0.61, P<0.001).

Finally,inthesubstratetreatments,thecropwateruseefficiency values(Table5)showednosignificantdifferenceamongmostof treatments.Theonlyexceptionwastreatment12bythemixofthe insolubleandsolubledigestatehydrolysates(ID/S),whichcaused a27.1%significantlyhigherwateruseefficiencyvalue,compared withthe controlno treatment1. In the fertigation treatments, thesolubledigestatehydrolysate(SD)treatment15(SD-F)caused 16.9%significantlyhigherwateruseefficiencyvaluecomparedwith thecontrolnotreatment13(NO-F).Onthecontrary,thesoluble composthydrolysatetreatment14(SGC-F)caused20.1% signifi-cantdecreaseofwateruseefficiency,comparedwiththecontrol notreatment13(NO-F).

3.4. Treatments’rankingorderandprincipalcomponentanalysis SummarizingthedatareportedinTables3–5,itmaybeobserved that,forsubstratetreatments,thebiowastesourcedproductsrank significantlyfirstinmostcases.Exceptionsaretheplantvolume, forwhichthecommercialNOVAbiostimulantranksfirst,andthe plantheightandshapeindex,whichshowednotreatmenteffects. Thesoluble(SD)and/orinsoluble(ID)digestatehydrolysatesrank significantlyfirstfortheireffectsonfourindicatorsconnectedto plantbiomassaccumulationandbiometricparameters(Table3). Thesearetheleaf,stemandflowers,andtotalshootDW,andLAI. Theinsolublecomposthydrolysate(IGC)and/orthecompost(GC) ranksignificantlyfirstfortheeffectsconnectedtothePn,leafN andSPADindex(Table4and5).Therankingorderofthefertigation treatmentssummarizestheresultsdescribedintheabove subsec-tions.Inessence,thesolubledigestateandcomposthydrolysates treatments14(SGC-F)and15(SD-F),comparedwiththecontrolno treatment13(NO-F),showedsignificanteffectsforallindicators. TheonlyexceptionwastheleafNcontent,forwhichno signifi-cantdifferenceoccurredamongtreatments14and15,andtheno treatment13(Table4).Treatment15wasbetterthantreatment14, fortheeffectonplantheightandvolume.Onthecontrary,forthe effectsonGs,EandSPADindex,thesolublecomposthydrolysatein treatment14(SGC-F)performedbetterthanthesolubledigestate hydrolysateintreatment15(SD-F).

The above-summarizedresults were used as a base for the interpretationofrelationshipsamongtreatments,between treat-mentsandnatureofthepristinematerials,andbetweentreatments andinvestigatedvariables.Tothisend,principalcomponent anal-ysis(PCA)wasperformedbyusingtheinvestigated parameters (Fig.1a) tosummarizemain differencesamong treatments and sourcingmaterials underinvestigation(Fig.1b).Asreported in Fig.1,thefirstprincipalcomponent1(PC1)separatestreatedand untreatedplants.Such a separationis moremarkedfor fertiga-tiontreatmentsthataregroupedinthreemainareasrelatedto: (i)notreatment13(100%ofitscombinations);(ii)solublegreen composthydrolysatetreatment14(92%ofitscombinations);(iii) solubledigestatehydrolysatetreatment15(83%ofits combina-tions).Thelattertwotreatmentswerethenseparatedbythesecond principalcomponent2(PC2).Accordingtotheloadings(Fig.1), treatmentcombinationswithsolublegreencomposthydrolysate (treatment14)weremorecorrelatedwithecophysiological(Pn,E andGs)parametersandtissuecharacteristics(leafNcontentand SPAD)thancombinationstreatmentsobtainedbysolubledigestate treatment15.However,byPC1itwasclearthatbothtreatments were,ingeneral,morecorrelatedwithbiomassaccumulation,plant heightandvolume,SPAD,leafNcontent,andphotosynthesisthan untreatedplants(notreatment13).Withinthethreemain clus-ters,treatmentcombinationswithNOVAandhydrolysateproducts weremorecorrelatedwiththeaboveparametersthanuntreated plants(controltreatment1),whichperformedatthelowestlevel.

Moreindetails,hydrolysatesproducts(treatment4,5,9and10) were, on average, more correlated with the above parameters thanpristinematerials(treatment3and8)and/ormixed treat-ments(treatment6,7,11and12)thatinsteadgaveheterogeneous responses.

4. Discussion

Toavoidanynutritionalplantstress,thecropreceivedan opti-malamountof nutrientsby standardchemical fertilization(see Section2.1.Theappliedproductsunderinvestigationcontaineda quantityofpotentialplantnutrients(forinstanceroughly2–6%N ondrymatterbasis)thatvaried,asafunctionofproduct chem-ical nature (Table 1).As well known, any increase in nutrient supply,aboveanoptimalthreshold,doesnotproduceany signif-icanteffectonplantyieldanddrybiomassaccumulation(Massa et al., 2009;Reid 2002;Silberbush et al.,2005).Therefore, the amountsofpotentialadditionalnutrients,whichwerecontributed bytheaddedexperimentalbiowasteandcommercialNOVA prod-ucts(Tables1and2),weredeemednegligible(2–5%)compared withtheamountsofnutrients,whichwereavailabletothecrop bythestandardchemicalfertilization.Thisconsiderationappears highlyrelevantforthefollowingdiscussion.

ThedatareportedinTables3–5showthattheplantresponse totheappliedtreatmentswasgenerallypositive,showinghigher accumulation of fresh (data not shown) and dry biomass and photosynthesis,comparedwithuntreatedplants.Consideringthe relativelylowamount(Table2)ofproductsblendedwiththe sub-strate(inthesubstratetreatments),and/ordeliveredthroughthe fertigationsystem(inthefertigationtreatments),theincreasein mostofthemeasuredplantparameters(Tables3–5)was remark-able.Infact,thetotalquantityofproductsusedwasintheorderof 5–15%oftheminimumdoseforcommonorganicfertilizersand/or genericamendments,whichare normallyappliedinagriculture (Dorais,2007).

In recent on-field red pepper and tomato cultivation trials, Sortinoetal.(2013,2014)foundthattheapplicationof700kgha−1 ofurbanbiowastes’hydrolysatesdidnotaltersignificantlythesoil chemicalcomposition.Yet,plantphotosyntethicactivity,growth, andproductivitywereenhancedsignificantlybytheadded solu-blehydrolysates.Theauthorsconcludedthatthetestedproducts enhancedtheplantphotosyntethicactivityandthat,inturn,the increaseofphotosyntheticactivitywasthemainfactor increas-ingplantgrowthandproductivity.Morerecently(Fascellaetal., 2015),thishypothesiswasconfirmedbyapplyingthesamesoluble hydrolysatesforthecultivationofEuphorbiainpots.Thedata col-lectedonHibiscusseemtosupporttheroleofthetestedproductsas promotersoftheplantphotosyntheticactivity(Table5).Inrelation tothesepreviousworks,andtothepresentwork,therearetwokey issuesdeservingfurtherdiscussion.Theseare(i)therelationship betweenleafchemicalfeatures,gasexchangeactivity,andbiomass accumulation,and(ii)therelationshipoftheobservedeffectswith theappliedproductschemicalnatureand/orcomposition.

Several authors (Bulgari et al., 2015; Calvo et al., 2014; du Jardin,2015;Ertanietal.,2013a)haveassociatedtheincreasein drybiomassofagriculturalcrops,treatedwithproductsderived fromorganicmatrixes,tothepresenceoforganicmoleculesthat stimulate plants. More generally, biostimulant substances aug-mentbiomassaccumulationandyield,improve nutrientuptake andenhancemetabolicfunctions.Also,manybiostimulantorganic substances,suchasalgaeand/orseaweedextract,soilandwater humicandfulvicacid,havebeenfoundtoimprovephotosynthetic capacityinseveraldifferentplantspecies,whicharegrowneither underoptimalconditions(Castroetal.,2012;Janninetal.,2012)or inpresenceofabioticstress(Anjumetal.,2011;Ertanietal.,2013b).

(9)

Humic-likesubstances,obtainedfromdifferentorganicwastes,fall inthiscategory,eitherfortheirchemicalnatureorfortheir bios-timulantactivity(Eyheraguibeletal.,2008;Morardetal.,2011). Thebiowastederivedproductstestedinthisworkbelongtothe categoryof“complexorganicmaterial”(duJardin,2015)andbear structuralsimilaritieswithnaturalhumicsubstances(Montoneri etal.,2011).Theyarerichinmolecules,whicharetypicallyfound inproductsclaimedtohavebiostimulantactivity(e.g.Biolchim, 2015).

FortheindicatorsconnectedtoHibiscusbiomassaccumulation inthesubstratetreatments,theproducts’rankingdependsonthe plantparameterandorgan(Table3).Bycomparison,inthe fertiga-tiontreatments,thesolubleproducts(SGC-FandSD-F)improved most of theabove indicators, compared with thecontrol (NO-F).However,itshouldbehighlightedthatfertigationtreatments practicallyreceivedaquantityofproductshigherthansubstrate treatments(Table2),whichcouldraisethehypothesisofan addi-tiveand/ordoseresponseeffectofthetestedproductsasobserved forexamplebySortinoetal.(2013)withsolublehydrolysates.As matteroffact,plantresponsetofertigationtreatmentswasmore pronouncedanddefinedthanforsubstratetreatments(Tables3–5 andFig.1).

Attemptstocorrelatetheobservedeffectrankingorderwiththe products’chemicalcharacteristics(Table1)didnotallowassessing definiteclearproduct-propertiesrelationships.Itistruethatthe investigatedproductsdifferfortheconcentrationofmacro-and micro-nutrients.However,whentheproductsaresuppliedtothe plantsatthedosesreportedinTable2,themineralcomposition dif-ferencesarelikelytobelevelledoutbythehigherrelativelyamount ofnutrientssuppliedbytheconventionalchemicalfertilizers.Itwas worthtodeterminetheamountofbeneficialelementssuchasSe andSiamongtheoligoelementsinthetextedproducts.Selenium canhaveagrowth-promotingeffectformanyplantspecies (Pilon-Smitsetal.,2009),forexamplebyincreasingNreductaseactivity (Nowaketal.,2004).Itnaturallyoccursastraceelementinmost soils,attypicallevelsbelow1mgkg−1(Pilon-Smitsetal.,2009). Seleniumin theinvestigated products(Table 1)hasbeenfound slightlyabovethislevel,onlyinthesolubledigestatehydrolysate (SD)andthecommercialproduct(NOVA).However,neitherany significantvariationofSenorcorrelationwithNcontentwasfound inleaftissues (datanot shown).Thesefindings didnothelpto explaintheproducts’performancerankingorderandwerein agree-mentwithpreviousworks(Hawrylak-Nowaketal.,2015;Riosetal., 2013).

LeafNcorrelated(Fig.1)wellwithSPAD,butlesswellwithPn, andbiomassaccumulationparameters.Weakcorrelationsbetween PnandleafNwereobservedbyotherauthors(e.g.Kenzoetal., 2015).Inthepresentexperiment,itislikelythattheoptimal nutri-entavailability intherootallowedplantstakinguptheneeded quantityofnutrientstosupportthehighergrowthrateinduced intreatedplants,withoutaffectingleafNcontent(Table4).The highcorrelationbetweenPnandSPAD,asobservedinthepresent work(Fig.1),isusual.Veryoften,theincreaseinPn,in biostimu-latedplants,iscoupledtohigherchlorophyllandnutrientcontent inplanttissues(Bulgarietal.,2015;Calvoetal.,2014).Tothis pur-pose,mostofliteratureisbasedonthestudyofextensivecrops, cultivatedonsoilandtreatedthroughfoliarapplication(e.g.Anjum etal.,2011;Janninetal.,2012).Bycomparison,verylittleisknown onpottedornamentalplantscultivated insubstrateandtreated directlyintherootzone.

Thepositiveinfluenceoftestedproductsonchlorophyllcontent andPn(Tables4and5)isinagreementwithpreviousworks con-ductedonplantbiostimulationobtainedwithvarioussubstances andproducts(e.g.Amandaetal.,2009;Anjumetal.,2011;Ertani etal.,2013b; Fascellaetal.,2015; Janninet al.,2012). Further-more,therelationshipbetweenSPADindexandleafcolour(e.g.

Papasavvasetal.,2008;Shibayamaetal.,2012)helpstoassessa relevantcommercialparameterforornamentalplantssuchasleaf greenness.Tothispurpose,Lohetal.(2002)proposedSPADmeter aseffectivetoolfortheevaluationofplantqualityinornamental crops.

The data collected on tissue characteristics and leaf gas exchanges (Tables 4 and 5) support the intriguing role of the biowastederivedproductsasphotosensitizers(BiancoPrevotetal., 2011;andGomisetal.,2014),promotersofphotosynthetic activ-ity,inagreementwithSortinoetal.(2013,2014)andFascellaetal. (2015).Thishypothesis is consistentlywithsimilar findingsfor humicacids(Bulgarietal.,2015;Calvoetal.,2014),bearing struc-turalsimilaritieswiththeabovebiowasteproduct(Montonerietal., 2011).

Thecompost(GC)andtheinsolublecomposthydrolysate(IGC) rankfirstfortheeffectsonPninthesubstratetreatments(Table5). ThesedatawereconsistentwiththePCAshowninFig.1.Table1 showsthattheseproductscontainthehighestamountsofFeand Si,comparedwithallothertestedproducts.Thecontributionof thecompost(GC)andinsolublecomposthydrolysate(IGC)tothe totalamountofFeandSiwasroughly64%and177%,respectively, higherthan theaveragevaluecontributed bytheotherapplied productslistedin Table1.BothSi(Houbenetal., 2014)and Fe (Milleretal.,1995)areknowntohaveimportantrolein photo-synthesis.Gomisetal.(2014)haveproposedthatFeinthesoluble composthydrolysateisresponsibleofthephotosensitizing proper-tiesofthismaterial,whichweredemonstratedfortheremediation ofchemicalindustrialwastewaterscontainingorganicpollutants. Otherworks(duJardin,2015;Liet al.,2015;Pilon-Smitsetal., 2009)reportthatSiisabeneficialelementforplants,inasmuch asitplaysakeyroleagainstseveralbioticandabioticstress,and promotesplantgrowthanddevelopment,chlorophyll concentra-tionandphotosyntheticactivity.Thedatacollectedinthepresent workseemconsistentwiththeaboveliteraturefindings.However, consideringalltreatments,adefinitecorrelationofphotosynthetic activityand/orSPADindexvs.theamountsofappliedSiand Fe amountscouldnotbeestablished.Verylikely,theeffects ofthe abovemineralelementsdonotrelytotheappliedamounts,but dependalsoonthenatureandsolubilityoftheorganicmatterto whichtheyarebonded.

Theconfirmation that thebiowaste-derived products, which weretested inthepresentwork,promote plantphotosynthetic activity is certainly relevant. Nevertheless, under the adopted experimentalconditions,manyotherfactorscouldcontributeto theobservedplantgrowthanddevelopment.Theweak,although significant,correlationfoundbetweenPnandthetotalshootDW (R=0.65,P<0.001;seealsoFig.1)leadstosupposethatnot all appliedproductsinthepresentworkwereabletoinduceareal improvedefficiencyintheconversionofcarbonassimilatesinplant biomass.Asmatteroffact,onlythesoluble(SD)andinsoluble(ID) digestatehydrolysates, andthecommercialNOVAbiostimulant, inthesubstratetreatments,andthesolublecompost(SGC)and solubledigestate(SD),infertigationtreatments,causeda signifi-canthigheraccumulationintotalshootDW(Table3).Thiscould alsoimplylikelyfurtherpositiveeffectsbytheabovementioned treatmentsondifferentaspectsofplantprimary andsecondary metabolism,otherthanphotosynthesis.Forexample,other com-plexorganicmaterialshavebeenfoundimprovingnutrientuptake (e.g.Ertanietal.,2013b;Morardetal.,2011)andothermetabolic processes(duJardin,2015;Ertanietal.,2013a).Ontheotherhand, a highcarbon intakedoesnot necessarily resultsin high long-termcarbonstorage.Indeed,notallassimilatedCO2isconverted instructuralbiomassduetodifferentrespirationefficiency dur-ingdarkhoursandcarbonallocationtothesecondarymetabolism, as for example related to volatile organic compounds (Herms and Mattson 1992). However, the use of products stimulating

(10)

photosyntheticactivityappearsofgreatinteresttoornamental cul-tivationforboostinghighproductionandquality,andforimproving theefficiencyofthecultivationprocess.Photosynthesisisa pro-cessverysensitivetobioticandabioticstresses(AshrafandHarris, 2013).Theapplicationofthetestedproductscouldbeapractice forovercomingand/orcontainingmoderatestressfulconditions, which affect photosynthesis (e.g. Flexas et al., 2004; Lieth and Pasian1991;Yamorietal.,2005),withpositiveeffectson produc-tionsustainabilityandmarketcompetition(e.g.shortercultivation cycle).

Inthepresentwork,togetherwiththehighestenhancementof Pn,thecompost-derivedproductscausedthehighestEandGs val-uescomparedtountreatedplants,thusdecreasingcropwateruse efficiency(Table5).Generallyspeaking,thesupplyofwatercan notbea limitingfactorincontainer-grownplants.Thisis espe-ciallythecase of ornamentalswhere theaestheticvalueofthe plantisthefundamentalmarketparameter.However,wateruse efficiencymustbehighlyconsideredinagricultureforits environ-mentalimplications.

Thecollecteddataallowdrawingsomeconclusionsonsome importantissues,whichhavebotheconomicandenvironmental relevance.Thesearerelated notonly toagriculture,butalsoto urbanbiowasteprocesses and product development.One main issueisthevalue ofthebiowastehydrolysates, comparedwith their sourcing materials. The data reported in Tables 3–5 and Fig.1indicatethatthesolubleand/orinsolublehydrolysatesappear more efficient than the sourcing digestate or compost materi-als.Undoubtedly,themostremarkableanddefinedeffectswere obtainedwithsolublehydrolysatesappliedbyfertigation(Fig.1); sucheffectswerealsoduetoalikelyhigherbioavailabilityof bios-timulantsubstancesfortheaboveproducts.Asmatteroffact,the PCA(Fig.1)highlightedthepresenceofthreemainclusters,related tofertigationtreatments;treatedplantsweremorecorrelatedwith biomassaccumulation,plantheightandvolume,SPADindex,leaf Ncontent,andphotosynthesisthancontroltreatment13.Within thesemacro-clusters,hydrolysateproductsweremorecorrelated withtheabove parametersthanuntreated plants and/orplants treatedonlywiththepristine materials.Theevidencethat both thesolubleandinsolublehydrolysatesarevaluableproducts,more thantheirsourcingbiowastematerials,offerspositiveperspectives fortheirproductionprocess.

A furtherissueaddressed by thepresent work is how gen-eraltheeffectsofthebiowaste-derivedproductsarefordifferent plant species (ornamentals), considering previous experiments reportedonotherplantspecieswiththesameorsimilarfermented biowastes and hydrolysates. Fascella et al. (2015) compared the same soluble digestate hydrolysates (SD) with the soluble hydrolysateobtainedfromacompostedmixoftheabove diges-tate,andurbangardeningwastesandsewagesludge.Theyshowed that,inthecaseofEuphorbiacultivation,thesolublehydrolysate obtainedfromthecompostwasmoreefficientthanthesoluble digestatehydrolysate(SD).Sortinoetal.(2013,2014)compared thesameabovesolubledigestate(SD)andsolublecompost(SGC) hydrolysatesforgreenhousetomatocultivation.Theyfoundthat thesolublecomposthydrolysate(SGC)aswellorbetterthanthe solubledigestatehydrolysate(SD).Roveroetal.(2015)compared thecomposted mix of the above digestate, and urban garden-ing wastes and sewage sludge, and its soluble and insoluble hydrolysates,inmaizecultivationtrialsperformedinopenfield. Noaddedbenefitswereshown fromtheuseofthesoluble and insolublecomposthydrolysates,comparedwiththesource com-post.Theresultsoftheabovereportedstudies,andtheresultsof thepresentwork,demonstratethatproductperformancedepends muchonthecultivatedplantandontheboundary (environmen-tal)conditions.However,differentproductsmaybeobtainedfrom avarietyofdifferentmunicipalbiowastessourcedfromdifferent

locationsandpre-treatedbyanaerobicandaerobicfermentation (Rossoetal.,2015).Thisofferstheprospecttoobtainawide vari-etyofproducts,whichcanbeusedadhocfordifferentcultivations. Itseemsthereforethattheresultsandconclusionsofthepresent workofferworthwhilescopeforfurtherresearchaimingtodevelop biowaste-sourcedproductstailoredforspecificplants’studiesand cultivation.Tothis purpose, it shouldbeunderlinedthat many commercialbiostimulantproductsofferscarceandoften insuffi-cientandorvagueinformationonproductdosageanddistribution. OneofthereasonsforselectingtheNOVAproduct,asreference commercialproductinthepresentwork,wasthedetailed infor-mationreportedbytheproduceraboutthedosageforsubstrate cultivations.Thecomparativedatareportedinthiswork,forthe biowaste-sourcedproductsand for thecommercialNOVA bios-timulant,prove that thebiowaste-derived productshave great potentialinintensiveagriculture.

5. Conclusions

Theresultsobtainedinthepresent workassesstheeffectof biowaste-sourcedproductsoncontainer-grownHibiscus.All treat-mentshavebeenfoundtoenhancemostoftheinvestigatedplant parameters, atdifferent degreeand dependingontheir nature, compared to untreated plants. The most valuable effects were observedonbiomassaccumulation,relativegrowthrate,net assim-ilationrate,SPADindexandgasexchangeactivity.Thecomparison of the above biowaste-sourced products with the commercial NOVAbiostimulantdemonstratesthatthebiowaste-sourced prod-uctshave acommerciallyexploitablepotential.Thecomparison oftheresultsobtainedinthepresentwork,withthosepreviously reportedontheperformanceofsimilarproductsinthecultivation ofotherornamentalandfoodplants,showsthat awidevariety ofbiowaste-sourcedproductsispotentiallyobtainable,whichmay betargetedtothecultivationofdifferentplantspecies.Thiswork offersscopeforfurtherworthwhileinvestigationonotherplant species,usingotherdifferentbiowastes,inordertoassessthefull potentialofmunicipalbiowasteassourceofaddedvalueproducts foruseinagriculture.Thiswouldalsoinvolveabetter understand-ingof thebiomolecular mechanisms rulingthe effects ofthese products.

Acknowledgements

ThisworkwascarriedoutpartlywithfundsfromtheItalian Min-istryofAgricultureaspartofthe“Agrienergia”project.Theauthors aregratefultoDr.A.DiNardo,Dr.L.IncrocciandDr.B.Nesifortheir manuscriptrevisionandcomments.

References

Amanda,A.,Ferrante,A.,Valagussa,M.,Piaggesi,A.,2009.Effectofbiostimulants onqualityofbabyleaflettucegrownunderplastictunnel.ActaHortic.807, 407–412.

Anjum,S.A.,Wang,L.,Farooq,M.,Xue,L.,Ali,S.,2011.Fulvicacidapplication improvesthemaizeperformanceunderwell-wateredanddroughtconditions. J.Agron.CropSci.197,409–417,http://dx.doi.org/10.1111/j.1439-037X.2011. 00483.x.

Ashraf,M.,Harris,P.J.C.,2013.Photosynthesisunderstressfulenvironments:an overview.Photosynthetica51,163–190, http://dx.doi.org/10.1007/s11099-013-0021-6.

BiancoPrevot,A.,Avetta,P.,Fabbri,D.,Laurenti,E.,Marchis,T.,Perrone,D.G., Montoneri,E.,Boffa,V.,2011.Waste-derivedbioorganicsubstancesfor light-inducedgenerationofreactiveoxygenatedspecies.ChemSusChem4, 85–90,http://dx.doi.org/10.1002/cssc.201000237.

Biolchim,2015.NOVA@®GRGranularbiostimulantbasedonplantextracts,http://

www.biolchim.it/index.php?lang=en&page=products/biostimulants/novagr granularbiostimulantbasedonplantextracts.html(accessed01.09.15.). Bulgari,R.,Cocetta,G.,Trivellini,A.,Vernieri,P.,Ferrante,A.,2015.Biostimulants

andcropresponses:areview.Biol.Agric.Hortic.31,1–17,http://dx.doi.org/10. 1080/01448765.2014.964649.

(11)

Calvo,P.,Nelson,L.,Kloepper,J.W.,2014.Agriculturalusesofplantbiostimulants. PlantSoil383,3–41.

Castro,J.,Vera,J.,González,A.,Moenne,A.,2012.Oligo-carrageenansstimulate growthbyenhancingphotosynthesis,basalmetabolism,andcellcyclein tobaccoplants(varBurley).JPlantGrowth.Regul.31,173–185,http://dx.doi. org/10.1007/s00344-011-9229-5.

Dorais,M.,2007.Organicproductionofvegetables:stateoftheartandchallenges. Can.J.PlantSci.87,1055–1066.

Ertani,A.,Nardi,S.,Altissimo,A.,2013a.Review:long-termresearchactivityonthe biostimulantpropertiesofnaturalorigincompounds.ActaHortic.1009, 181–188.

Ertani,A.,Schiavon,M.,Muscolo,A.,Nardi,S.,2013b.Alfalfaplant-derived biostimulantstimulateshort-termgrowthofsaltstressedZeamaysL.plants. PlantSoil364,145–158,http://dx.doi.org/10.1007/s11104-012-1335-z. Eyheraguibel,B.,Silvestre,J.,Morard,P.,2008.Effectsofhumicsubstancesderived

fromorganicwasteenhancementonthegrowthandmineralnutritionof maize.Bioresour.Technol.99,4206–4212,http://dx.doi.org/10.1016/j. biortech.2007.08.082.

Fascella,G.,Montoneri,E.,Ginepro,M.,Francavilla,M.,2015.Effectofurban biowastederivedsolublesubstancesongrowth,photosynthesisand ornamentalvalueofEuphorbia×lomi.Sci.Hortic.197,90–98,http://dx.doi.org/ 10.1016/j.scienta.2015.10.042.

Flexas,J.,Bota,J.,Loreto,F.,Cornic,G.,Sharkey,T.D.,2004.Diffusiveandmetabolic limitationstophotosynthesisunderdroughtandsalinityinC3plants.Plant Biol.6,269–279,http://dx.doi.org/10.1055/s-2004-820867.

Gomis,J.,BiancoPrevot,A.,Montoneri,E.,González,M.C.,Amat,A.M.,Mártire, D.O.,Arques,A.,Carlos,L.,2014.Wastesourcedbio-basedsubstancesfor solar-drivenwastewaterremediation:photodegradationofemerging pollutants.Chem.Eng.J.235,236–243,http://dx.doi.org/10.1016/j.cej.2013.09. 009.

Hawrylak-Nowak,B.,Matraszek,R.,Pogorzelec,M.,2015.Thedualeffectsoftwo inorganicseleniumformsonthegrowth,selectedphysiologicalparameters andmacronutrientsaccumulationincucumberplants.ActaPhysiol.Plant.37,

http://dx.doi.org/10.1007/s11738-015-1788-9.

Herms,D.A.,Mattson,W.J.,1992.Thedilemmaofplants:togrowordefend.Q.Rev. Biol.67,283–335,http://dx.doi.org/10.2307/2830650.

Houben,D.,Sonnet,P.,Cornelis,J.T.,2014.BiocharfromMiscanthus:apotential siliconfertilizer.PlantSoil374,871–882, http://dx.doi.org/10.1007/s11104-013-1885-8.

Jannin,L.,Arkoun,M.,Ourry,A.,Laîné,P.,Goux,D.,Garnica,M.,Fuentes,M., Francisco,S.S.,Baigorri,R.,Cruz,F.,Houdusse,F.,Garcia-Mina,J.M.,Yvin,J.C., Etienne,P.,2012.MicroarrayanalysisofhumicacideffectsonBrassicanapus growth:involvementofN,CandSmetabolisms.PlantSoil359,297–319.

Kenzo,T.,Inoue,Y.,Yoshimura,M.,Yamashita,M.,Tanaka-Oda,A.,Ichie,T.,2015. Height-relatedchangesinleafphotosynthetictraitsindiverseBornean tropicalrainforesttrees.Oecologia177,191–202,http://dx.doi.org/10.1007/ s00442-014-3126-0.

Li,P.,Song,A.,Li,Z.,Fan,F.,Liang,Y.,2015.Siliconamelioratesmanganesetoxicity byregulatingbothphysiologicalprocessesandexpressionofgenesassociated withphotosynthesisinrice(OryzasativaL.).PlantSoil,http://dx.doi.org/10. 1007/s11104-015-2626-y.

Lieth,J.H.,Pasian,C.C.,1991.Asimulationmodelforthegrowthanddevelopment offloweringroseshoots.Sci.Hortic.46,109–128.

Loh,F.C.W.,Grabosky,J.C.,Bassuk,N.L.,2002.UsingtheSPAD502metertoassess chlorophyllandnitrogencontentofbenjaminfigandcottonwoodleaves. Horttechnology12,682–686.

Massa,D.,Mattson,N.S.,Lieth,H.J.,2009.Effectsofsalinerootenvironment(NaCl) onnitrateandpotassiumuptakekineticsforroseplants:aMichaelis–Menten modellingapproach.PlantSoil318,101–115,http://dx.doi.org/10.1007/ s11104-008-9821-z.

Miller,G.W.,Huang,I.J.,Welkie,G.W.,Pusnik,J.C.,1995.Functionofironinplants withspecialemphasisonchloroplastandphotosyntheticactivity.In:Abadia,J. (Ed.),IronNutritioninSoilsandPlants.KluwerAcademicPublishers,Dordecht, pp.19–28.

Montoneri,E.,Mainero,D.,Boffa,V.,Perrone,D.G.,Montoneri,C.,2011. Biochemenergy:aprojecttoturnanurbanwastestreatmentplantinto biorefineryfortheproductionofenergy,chemicalsandconsumer’sproducts withfriendlyenvironmentalimpact.Int.J.GlobalEnviron.(11),170–196,

http://dx.doi.org/10.1504/ijgenvi.2011.043528.

Montoneri,C.,Montoneri,E.,Tomasso,L.,Piva,A.,2013.Compostderived substancesdecreasefeedproteinNmineralizationinswinececal fermentation.J.Agric.Sci.13,31–44,http://dx.doi.org/10.5539/jas.v5n3p. Morard,P.,Eyheraguibel,B.,Morard,M.,Silvestre,J.,2011.Directeffectsof

Humic-Likesubstanceongrowth,water,andmineralnutritionofvarious species.J.PlantNutr.34,46–59,http://dx.doi.org/10.1080/01904167.2011. 531358.

Nowak,J.,Kaklewski,K.,Ligocki,M.,2004.Influenceofseleniumonoxidoreductive enzymesactivityinsoilandinplants.SoilBiol.Biochem.36,1553–1558,

http://dx.doi.org/10.1016/j.soilbio.2004.07.002.

Papasavvas,A.,Triantafyllidis,V.,Zervoudakis,G.,Kapotis,G.,Samaras,Y.,Salahas, G.,2008.CorrelationofSPAD-502meterreadingswithphysiological parametersandleafnitratecontentinBetavulgaris.J.Environ.Prot.Ecol.9, 351–356.

Pilon-Smits,E.A.,Quinn,C.F.,Tapken,W.,Malagoli,M.,Schiavon,M.,2009. Physiologicalfunctionsofbeneficialelements.Curr.Opin.PlantBiol.12, 267–274,http://dx.doi.org/10.1016/j.pbi.2009.04.009.

Reid,J.B.,2002.Yieldresponsetonutrientsupplyacrossawiderangeof conditions.1.Modelderivation.FieldCrop.Res.77,161–171.

Rios,J.J.,Blasco,B.,Leyva,R.,Sanchez-Rodriguez,E.,Rubio-Wilhelmi,M.M., Romero,L.,Ruiz,J.M.,2013.Nutritionalbalancechangesinlettuceplantgrown underdifferentdosesandformsofselenium.J.PlantNutr.36,1344–1354,

http://dx.doi.org/10.1080/01904167.2013.790427.

Rosso,D.,Fan,J.,Montoneri,E.,Negre,M.,Clark,J.,Mainero,D.,2015.Conventional andmicrowaveassistedhydrolysisofurbanbiowastestoaddedvalue lignin-likeproducts.GreenChem.17,3424–3435,http://dx.doi.org/10.1039/ c5gc00357a.

Rovero,A.,Vitali,M.,Rosso,D.,Montoneri,E.,Chitarra,W.,Tabasso,S.,Ginepro,M., Lovisolo,C.,2015.Sustainablemaizeproductionbyurbanbiowasteproducts. Int.J.Agron.Agric.Res.6,75–91.

Saa,S.,Olivos-DelRio,A.,Castro,S.,Brown,P.H.,2015.Foliarapplicationof microbialandplantbasedbiostimulantsincreasesgrowthandpotassium uptakeinalmond(Prunusdulcis[Mill.]D.AWebb).Front.PlantSci.6,87,

http://dx.doi.org/10.3389/fpls.2015.00087.

Shibayama,M.,Sakamoto,T.,Takada,E.,Inoue,A.,Morita,K.,Yamaguchi,T., Takahashi,W.,Kimura,A.,2012.Estimatingriceleafgreenness(SPAD)using fixed-pointcontinuousobservationsofvisibleredandnearinfrared narrow-banddigitalimages.PlantProd.Sci.15,293–309,http://dx.doi.org/10. 1626/pps.15.293.

Silberbush,M.,Ben-Asher,J.,Ephrath,J.E.,2005.Amodelfornutrientandwater flowandtheiruptakebyplantsgrowninasoillessculture.PlantSoil271, 309–319.

Sortino,O.,Dipasquale,M.,Montoneri,E.,Tomasso,L.,Avetta,P.,BiancoPrevot,A., 2013.90%yieldincreaseofredpepperwithunexpectedlylowdosesof compostsolublesubstances.Agron.SustainableDev.33,433–441.

Sortino,O.,Montoneri,E.,Patanè,C.,Rosato,R.,Tabasso,S.,Ginepro,M.,2014. Benefitsforagricultureandtheenvironmentfromurbanwaste.Sci.Total Environ.487,443–451,http://dx.doi.org/10.1016/j.scitotenv.2014.04.027. Yamori,W.,Noguchi,K.,Terashima,I.,2005.Temperatureacclimationof

photosynthesisinspinachleaves:analysesofphotosyntheticcomponentsand temperaturedependenciesofphotosyntheticpartialreactions.PlantCell Environ.28,536–547.

duJardin,P.,2015.Plantbiostimulants:definition,concept,maincategoriesand regulation.Sci.Hortic.196,3–14,http://dx.doi.org/10.1016/j.scienta.2015.09. 021.

Riferimenti

Documenti correlati

See also Dunson, Pillai and Park [12], who define a Dirichlet mixture of regression models; Dunson, Xue and Carin [13], who propose a matrix-valued stick-breaking prior; Duan,

efficiency in the trailing edge. On pressure side the external temperature profile increases according to the external heat transfer. External wall temperature. Film

Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable

Elementi di architettura popolare italiana nelle case di Mario Paolini per Kos p.. 809 Oliver Sutton, James Douet - CEA Global

On the other hand, the issue of the role of semantic transparency bears some interest on its own, as there is still a possibility that, although located higher above the level

In questo senso, la Responsabilità sociale d'impresa è un elemento che dovrebbe far parte dell'orientamento strategico globale dell'impresa, interagendo con tutti gli ambiti

Perché, dopo un “inizio” incisivo e politicamente impegnato, tra gli anni Cinquanta e Settanta del secolo scorso, impersonato soprattutto (ma, non solo)

Keywords: cyber risk; cyber-attack; cybersecurity; computer security; COVID-19; coronavirus; information technology risk; risk management; risk assessment; health facilities;