• Non ci sono risultati.

Resting state EEG rhythms as network disease markers for drug discovery in alzheimer's disease

N/A
N/A
Protected

Academic year: 2021

Condividi "Resting state EEG rhythms as network disease markers for drug discovery in alzheimer's disease"

Copied!
6
0
0

Testo completo

(1)

THERAPEUTIC

STRATEGIES

DRUG DISCOVERY

TODAY

Resting

state

EEG

rhythms

as

network

disease

markers

for

drug

discovery

in

Alzheimer’s

disease

Claudio

Babiloni

1

,

2

,

*

,

Francesco

Infarinato

2

,

Antonio

I.

Triggiani

3

,

Roberta

Lizio

2

,

Claudio

Del

Percio

2

,

Nicola

Marzano

4

,

Jill

C.

Richardson

5

1

DepartmentofPhysiologyandPharmacology,UniversityofRome‘LaSapienza’,Rome,Italy

2

DepartmentofNeuroscience,IRCCSSANRAFFAELEPISANA,Rome,Italy

3

DepartmentofClinicalandExperimentalMedicine,UniversityofFoggia,Foggia,Italy

4

IRCCS‘SDN’,Naples,Italy

5

GlaxoSmithKlineR&DChinaGroup,GunnelsWoodRoad,Stevenage,Herts,UK

Alzheimer’sdisease(AD)inducesawidespread patho-logical extracellular accumulation of beta-amyloid (Ab)peptidesthataffectscorticalnetworks underpin-ning cognitive functions. This is related to abnormal functionalandeffectivebrainconnectivityas revealed bygraphmarkersofresting-stateeyes-closed electro-encephalographic (EEG) rhythms. Here we revised EEG studies in mild cognitive impairment and AD subjects showing that these markers are promising networkdiseaseendpointsforbasicresearch and AD drugdiscovery.

Sectioneditors:

JillRichardson– NeurosciencesTherapeuticArea, GlaxoSmithKlineR&D,Stevenage, UK

JackieHunter– Biotechnologyand BiologicalSciences ResearchCouncil, PolarisHouse,Swindon,UK

Introduction

Alzheimer’sdisease(AD)isthemostfrequent

neurodegener-ativedisorderandcauseofdementiaalongaging.Itis

char-acterized by a pathological accumulation of beta-amyloid

(Ab)andhyperphosphorylatedtaupeptidesthataffect

corti-calneuronalnetworksrelatedtocognitivefunctions[1].For

thisreason,anetworkdiseaseperspectivehasthepotentialto

provide novel markersof thepathology at preclinical and

prodromal AD stages [2], as well as instrumental targets

for drug discovery. In this line, resting-state eyes-closed

electroencephalographic(EEG)rhythmsprovideuseful

infor-mationonfunctionalandeffectivebrainconnectivityacross

long-rangeneuralnetworks[3,4].

The hypothesis of this review is that global topological

features of functional and effective brain connectivity as

revealed by the functional coupling of resting-state

eyes-closed EEG rhythms could build a platform of promising

network diseaseendpoints for basic researchand AD drug

discovery.

FunctionalandeffectivebrainconnectivityinMCIand ADsubjectsasrevealedbylinearandnon-linear couplingoftherestingstateEEGrhythms

Synchronousactivityofoscillatingnetworksarisesfromthe

interactionbetweentheintrinsicexcitabilityofneuronsand

theirinterconnectivity[5] andcorrelateswiththesubjects’

behavior andwith thestimulating conditions ofthe

envi-ronment[6].Inmoredetail,evensingleneuronsthemselves

can oscillate at multiple frequencies [7], a fortiori cortical

regionsdonotexhibitpure oscillationsbutacombination

Editors-in-Chief

RaymondBaker–formerlyUniversityofSouthampton,UKandMerckSharp&Dohme,UK EliotOhlstein–AltheRxPharmaceuticals,USA

Recent

advances

in

the

treatment

of

Alzheimers

(2)

ofdelta(<4Hz),theta (4–7Hz),alpha(8–12Hz),beta (13–

30),andgamma (>30Hz)rhythms,coexisting inthesame

areaorinteractingamongdifferentstructures,andgenerally

attributedtonetworkoperationsincortico-corticoand

cor-ticothalamic systems [8]. To this theoretical model, joint

EEG/functionalmagneticresonanceimaging(fMRI)analysis

showedthatlarge-scalefunctional-anatomicalnetworks–as

revealedbyauto-correlationofbloodoxygenation

level-de-pendent(BOLD)activity–oscillateinmultiple

electrophysi-ological frequency bands [9]. Neurodegenerative disorders

impairthesynapticintegrityunderlyingcooperationamong

neural networks; several studies demonstrated the role of

soluble Ab as a principal causative agent of synaptic and

cognitiveimpairmentinAD.Robustevidencedemonstrates

thatsolubleAbelicits a toxic signalingcascade by the

a7-nicotinicacetylcholinereceptor(a7nAChR),leadingto

syn-apticimpairments,intraneuronalAb42aggregates,and

cor-related cognitive deficits[10]. This compromisedsignaling

activateskinasesERK2andJNK1,leadingtotheformationof

neurofibrillary tangles (NFTs) namely aggregates of

hyper-phosphorylatedtauprotein.Cognitiveimpairmentand

mag-nitude ofsynapticdeficitin theADbrainare morehighly

correlated with soluble Ab than with the abundance of

amyloidplaques,reflectingthefactthatsolubleAbinflicts

synapticimpairment[11].

InthefieldoffMRIresearch,thereisawholelineofstudy

thatfocusesondifferentialbrainconnectivityinADpatients

whencomparedtohealthyelders.Inthisline,BOLDhasbeen

reportedto beapromising markerfortheidentificationof

disrupted functional connectivity patterns in AD patients

[12,13]. Moreover, it has been shownthat in ADpatients,

acetylcholinesterase inhibitor donepezil affects functional

connectivity of dorsolateral prefrontal cortex [14] and of

parahippocampal,temporal,parietalandprefrontalcortices

associatedtomedialcholinergicpathwaynetwork[15].

Fur-thermore,strongerrecoveryinthenetworkconnectivitywas

correlatedwithcognitiveimprovementasmeasuredby

Mini-MentalStateExamination(MMSE)andADAssessment

Scale-cognitivesubscalescores(ADASCog)[15].

In the framework of EEG techniques, functional brain

connectivity is reflected by statistical functional coupling

of EEG oscillatory activity in various frequency bands [3].

Moreover, effective brain connectivity is reflectedby how

EEGrhythmsrecordedatoneelectrodeaffectsthoserecorded

at another remote electrode, due to a causal hierarchical

interactionbetweenthetwocorrespondingcortical

genera-tors[3].Inthisframework,thefunctionalbrainconnectivity

is typically indexed by EEG spectral coherence (linear) or

synchronizationlikelihood(linear–nonlinear),whilethe

ef-fectivebrainconnectivityisindexedbymarkersderivedby

informationtheoryandgrangercausality[16].Theseindexes

docapturelinearandnonlinearrelationships amongbrain

regions[17].Thelinearindexesmodelthephaserelationship

betweentheEEGrhythmsrecordedatelectrodepairs,

where-asthenonlinearindexesdisclosecomplexrelationships

be-tweentheseEEGrhythms[17].

EEGspectralcoherence quantifiesthetemporal

synchro-nizationoftwoEEGtimeseriesbetweenpairsofelectrodesin

thefrequency domain,andcanbetypicallyderivedbyfast

Fouriertransform–FFT–[18].Atgrouplevel,spectral

coher-ence ofthe restingstate eyes-closed EEG rhythms differed

amongtheNold,MCI,andADsubjects[19–22].Themajority

ofpreviousEEGstudiesreportedaprominentdecreaseofthe

spectralcoherenceatalpharhythmsintheADthaninthe

Noldsubjects[19,20].Thiseffectwasfoundtobeassociated

with ApoE genetic risk of AD [19]. Other studies showed

decrease or increase of EEG coherence at delta and theta

rhythms in ADpatients [21]. A recent study averagedEEG

spectral coherence across all electrode pairs showing the

pathological increase of the ‘total coherence’ in the AD

patients in relation to cholinergic lesions [22]. Although

severalstudieshaveshownthatEEG coherencemightbea

diagnosticbiomarkersensitivetodiseaseseverity,itispoorly

knowntherelationshipbetweensuchEEGmarkersand

spe-cific abnormalities induced by Ab, partially recovered by

activecompoundsagainstAD(i.e.donepezil).Onlyonestudy

describednegligible differencesbetweenthepre-and

post-treatmentwithdonepezil5mgdailyfor1monthon

inter-hemispheric EEG coherence across homologous electrode

pairs[23].

‘Synchronization likelihood’ (SL) is an index capturing

both linearand non-linear dimensions of EEG functional

coupling. It measures the dynamical interdependencies

between EEG signals recorded at electrode pairs [24]. SL

relies on the concept of ‘state’ of one dynamical system

expressed intermsofthelevel ofneuralsynchronization,

asindexedbyserialmeasurementsoftheEEGvoltage[24].

Compared to Nold subjects, MCI and AD patients were

characterized by lower global SLacross all electrodepairs

athigh-frequencyalphaandbetabands[25].Furthermore,

therewasafronto-parietalreductionofSL(deltatoalpha)

greaterinMCIthaninADpatients[26].Moreover,patients

with vascular dementia and mild AD showed poor SL at

bothfronto-parietal(deltatoalpha)and

inter-hemispheri-cal (delta to beta) electrode pairs [27]. And the

fronto-parietal reduction of SL at alpha rhythms was greater in

mildADthaninVaDpatients[27].SLwasalsosensitiveto

anotherformofdementiaduetoneurodegeneration.

Com-paredtoParkinson’sdisease(PD)patients,PDpatientswith

dementia(PDD)werecharacterizedbylowervaluesofSLin

thefollowingelectrodepairsandfrequencybands:

fronto-temporalalpharhythms;inter-hemisphericaltemporal

del-ta, theta and alpha rhythms; and centro-parietal gamma

rhythms [28].Incontrast, parieto-occipitalSL at

high-fre-quencyalphaandbetabandswashigherin thePDDthan

(3)

OthernonlinearindexesoftheEEGfunctionalcoupling

derive frominformation theory, which is based upon the

conceptofentropydefinedastheuncertaintyassociatedwith

arandomvariable.PreviousEEGstudiesusingmutual

infor-mation oftheinformation theory havedisclosed a loss of

functionalconnectivityinADpatientsindifferentfrequency

bandsoftheresting-state eyes-closedEEG rhythms, witha

special engagement ofthe alphafrequencies [29].

Further-more,thelocalcross-mutual information (CMI) quantified

the information transmitted from one the EEG rhythms

recordedat oneelectrode over another; CMIwas lowerin

theADpatientsthanthatinnormalcontrols,especiallyover

the EEG rhythms recorded in frontal andantero-temporal

regions[30].Furthermore,therewasaprominentdecreasein

informationtransmissionbetweendistantEEGelectrodesin

therighthemisphereandbetweencorresponding

inter-hemi-sphericelectrodes [30]. Inaddition, theauto-mutual

infor-mation(AMI)estimated howmuch onaveragethevoltage

value oftheEEGrhythms canbepredicted fromvalues of

those at preceding points. It decreased significantly more

slowlywithdelaythroughoutthescalpinADthaninNold

subjects[30].

Fig. 1(top)illustratestheprincipal modelsoffunctional

brain connectivity as indexed by the linear or nonlinear

functional coupling of the resting-state eyes-closed EEG

rhythms. The linear models reflect thephase relations

be-tween the EEG rhythms recorded at electrode pairs. The

nonlinearmodelsdenoteacomplexrelationbetweenthese

EEGrhythms.

BothlinearandnonlinearindexesoftheEEGfunctional

brain connectivity have an important limitation: they do

reflectneitherthecausalaspectsoftherelationshipsamong

brain regionsnor the directionof theinformation among

these regions. One can overcome this limitation by the

estimation of the directional information flow with the

EEGcoupling. Fruitful approachesrelyontheinformation

theoryandGrangercausality[31].

Concerning theinformationtheory, transferentropy

in-dexes directed (time-asymmetric) information transfer

be-tween joint processes (i.e. the EEG rhythms recorded at

twoelectrodes) [32]. It isrobusteven withunknown

non-linear interactions [33]. On the other hand, the Granger

causalityrefersto thenotionthat,ifthepredictionofone

timeseriescould beimproved byincorporatingthe

knowl-edgeofpastvaluesofasecondone,thenthelatterissaidto

haveacausal influenceontheformer [34].A verypopular

procedurederivedfromtheGrangercausalityisthesocalled

directedtransferfunction(DTF),whichhasbeenproventobe

reliable for the modeling of directional information flux

within linear EEG functional coupling on the basis of a

multivariate autoregressive model (DTF) [31]. Concerning

itsclinicalapplications,ithasbeenreportedareductionof

the parietal-to-frontal directional information flow within

theEEGfunctionalcoupling inamnesic MCIandmild AD

subjectscomparedtoNoldsubjects[35].Thisfindingsuggests

acommonpathophysiologicalbackgroundlinking,on

aver-age, thegroups ofMCI andAD subjects. Noteworthy, the

fronto-parietalfunctionalcouplingisrelativelypreservedin

theamnesicMCIsubjectsinwhomthecognitivedeclineis

mainly explained by the extent of white-matter vascular

disease [36]. This finding supports the additive model of

thecognitiveimpairmentposingthatMCIstatusresultsfrom

Phase relation Complex relation time (s) time (s) [µV] [µV] Frontal Frontal Parietal Linear

EEG signals functional connectivity Funtional connectivity Non linear Parietal 3 0 3 0

Drug Discovery Today: Therapeutic Strategies

Figure1. Sketchofmainmodelsoffunctionalbrainconnectivityindexedbylinearandnonlinearfunctionalcouplingofresting-stateeyes-closed electroencephalographic(EEG)rhythms.

(4)

thecombinationofcerebrovascular andneurodegenerative

lesions [36]. In addition, other EEG studies used Granger

causality andstochastic eventsynchrony as models ofthe

directionalinformationflux[37,38].Resultsshowedalossof

EEG synchrony between electrode pairs in MCI and AD

patients with respect to age-matched control subjects

[37,38]. Furthermore, these markers provided a successful

leave-one-outindividualclassificationrateof83%and88%.

Fig.2plotsanexamplemodelofthedirectional

informa-tionflowbetweenelectrodepairsfromtheresting-state

eyes-closedEEGrhythms.

Itshouldbehoweverremarkedthatcomputational

mea-suresoffunctionalconnectivityarenotfreefrom

disadvan-tages. They do not directly estimate metastability and

typicallyuselinearmathematicalmodelsofthebrainsignals,

evenifbrainconnectivitymodelcannotberestricttoonly

linear phenomena[39]. Furthermore, interpretation ofthe

resultsmightbebiasedbytheuseofperiodsofnon-stationary

EEGsignals[40].

ThenetworkdiseaseinMCIandADsubjectsas revealedbygraph theory

HowtointegratethementionedEEGmarkersoffunctional

andeffectivebrainconnectivity(i.e.spectralcoherence,SL,

DTF,etc.)intoatopologicalmodelofthenetworkdisease?A

promisingtheoreticalframeworkisofferedbygraphtheory

[41]. In this theory, the graphs are simplified

representa-tionsofnetworksdenotedbyensemblesofnodes(vertices)

andconnections(edges).UsingEEGandMEGmarkersasan

input, graph theory studies showed that healthy subjects

werecharacterizedbyanefficientandrobustnetworkcalled

‘small-world’,withhighclusteringamong nearnodesand

relatively few ‘hubs’ connecting far nodes [41,42]. In AD

brains,‘small-world’networkpropertieswerereplacedbya

more ‘random’ overall network structure[41–43].Indeed,

AD patients were characterized by the mean clustering

coefficient decreased at the lower-frequency (EEG) alpha

andbetabands,andbythecharacteristicpath length(i.e.

globalconnectivity)decreasedatthelower-frequencyalpha

andgammabands[43].AparallelMEGstudyshowedthatin

theADpatientsthispathologicalchangewasbroughtabout

by a preferential decrease of connections between high

degreenodes (‘hubs’),ratherthan a non-specificdecrease

ofconnectionstrength[41].InanotherMEGstudy,network

analysiswasusedtoinvestigatetheroleoffunctional

sub-networks (modules) in the brainwith regard to cognitive

failureinAD[44].Itwasshownthattheparietalcortexwas

the most highlyconnected network area in both control

subjects andAD patients, but it was characterized by the

strongest intra-modular clustering losses in AD patients.

Furthermore, weakening of inter-modular and

long-dis-tance connectivity was even more outspoken, and more

strongly related to cognitive impairment [44,45]. These

results support the idea that the loss of communication

and relative less efficient information exchange among

differentfunctionalbrainregionsreflectsanabnormal

syn-aptic plasticity, neural loss, and cognitive decline in AD

[43,44].Noteworthy,lossofsmall-worldstructureinADwas

also demonstrated in recent MRI studies applying graph

theory[46,47].

Fig.3plotsamodeloftheaboveresultsofgraphtheory.

Normalcontrolsubjectsarecharacterizedbya‘small-world’

networkstructureofthefunctionalcouplingofthe

resting-stateEEGrhythms(left).Withrespecttothenormalcontrol

subjects, theAD patients manifest thedeviation of

‘small-world’networkpropertiestowardsamore‘random’ overall

networkstructure(right).

[µV]

0 3

Causal relation

0

time (s) 3

Directed Transfer Function (DTF) Effective connectivity

Parietal Frontal

Drug Discovery Today: Therapeutic Strategies

Figure2. Estimationofthedirectionalinformationflowbetween electrodepairsfortheresting-stateeyes-closedEEGrhythms.

Normal subject

Cluster Path AD patient ‘Small-world’ network

Drug Discovery Today: Therapeutic Strategies

Figure3. Sketchofthenodesandtopologicconnectionsof functionalbrainconnectivityinhealthysubjectsandinAlzheimer’s disease(AD)patientsasrevealedbyelectroencephalographic(EEG) ormagnetoencephalographic(MEG)rhythms.Thetopologyofthese nodesandconnectionsshowthedeviationoftheADpatients(i.e. reductionofthelocalclusteringandlong-rangeconnectivity)fromthe ‘small-world’networkpropertiesobservedinthecontrolsubjects.

(5)

Conclusions

Inconclusion,thedeepcomprehensionofnormalEEG

dy-namicsof functional andeffectiveconnectivity in healthy

withrespectofnon-healthysubjectsandthe

pharmacologi-calwayofrestorationofanormalpatternisausefulapproach

forbasic,applied,anddrugdiscoveryresearch.EEGmarkers

offunctionalandeffectiveconnectivitycanbeusedasinputs

forananalysistoproducecandidatenetworkdiseasemarkers

tobeusedasdependentvariablesforbasicresearch,aswellas

surrogateendpointsfordrugdiscoveryofnewsymptomatic

and disease-modifying compounds against the AD. Future

studies should demonstrate how EEG functional coupling

couldallowidentifying noveltargetsofAD

neurodegenera-tion;howitreflectssynapticplasticityandneuronalnetwork

activity;andhowitwillimpactnetworkbasedstrategiesfor

drug discovery. These issues will have to be addressed by

simultaneousrecordingofEEGandspikepotentialsat

differ-entscalesinthebrainofrodentmodelsofAD(e.g.TASTPM),

togetherwithdosingAbin thebrainandpharmacological

manipulationswithAbloweringdrugs.

Conflictofinterest

Theauthorshavenoconflictofinteresttodeclare.

Acknowledgments

WeareindebtedwithProf.PaoloM.RossiniandDr.Fabrizio

Vecchiofortheirinvaluablecriticalcontributiontothe

dis-cussion of thetopic of this review. Theresearch was

sup-portedinpartbytheSanRaffaeleS.p.A.Theactivityofsome

co-Authorsleading tothepresentreview wasdevelopedin

the framework of the PRIN2010-2011 project ‘CONNAGE’

andoftheGRIDCOREprojectofItalianMinistryofHealth.

References

1. PievaniM,deHaanW,WuT,SeeleyWW,FrisoniGB.Functionalnetwork

disruptioninthedegenerativedementias.LancetNeurol2011;10:829–43.

2. PalopJJ,MuckeL.Amyloid-beta-inducedneuronaldysfunctionin

Alzheimer’sdisease:fromsynapsestowardneuralnetworks.NatNeurosci

2010;13:812–8.

3.BabiloniC,FrisoniGB,PievaniM,VecchioF,LizioR,ButtiglioneM,etal.

HippocampalvolumeandcorticalsourcesofEEGalpharhythmsinmild

cognitiveimpairmentandAlzheimerdisease.Neuroimage2009;44:123–35.

4. D’AmelioM,RossiniPM.Brainexcitabilityandconnectivityofneuronal

assembliesinAlzheimer’sdisease:fromanimalmodelstohumanfindings.

ProgNeurobiol2012;99:42–60.

5. Buzsa´kiD,DraguhnA.Neuronaloscillationsincorticalnetworks.Science

2004;304:1926–9.

6. HasselmoME,Bodelo´nC,WybleBP.Aproposedfunctionforhippocampal

thetarhythm:separatephasesofencodingandretrievalenhancereversal

ofpriorlearning.NeuralComput2002;14:793–817.

7. Llina´sRR.Theintrinsicelectrophysiologicalpropertiesofmammalian

neurons:insightsintocentralnervoussystemfunction.Science

1988;242:1654–64.

8. SteriadeM.Groupingofbrainrhythmsincorticothalamicsystems.

Neuroscience2006;137:1087–106.

9. MantiniD,PerrucciMG,DelGrattaC,RomaniGL,CorbettaM.

Electrophysiologicalsignaturesofrestingstatenetworksinthehuman

brain.ProcNatlAcadSciUSA2007;104:13170–75.

10.DziewczapolskiG,GlogowskiCM,MasliahE,HeinemannSF.Deletionof

thealpha7nicotinicacetylcholinereceptorgeneimprovescognitive

deficitsandsynapticpathologyinamousemodelofAlzheimer’sdisease.J

Neurosci2009;29:8805–15.

11.Na¨slundJ,HaroutunianV,MohsR,DavisKL,DaviesP,GreengardP,etal.

Correlationbetweenelevatedlevelsofamyloidbeta-peptideinthebrain

andcognitivedecline.JAMA2000;283:1571–7.

12.BaiF,ZhangZ,WatsonDR,YuH,ShiY,YuanY,etal.Abnormalfunctional

connectivityofhippocampusduringepisodicmemoryretrievalprocessing

networkinamnesticmildcognitiveimpairment.BiolPsychiatry

2009;65:951–8.

13.HahnK,MyersN,PrigarinS,RodenackerK,KurzA,Fo¨rstlH,etal.

Selectivelyandprogressivelydisruptedstructuralconnectivityof

functionalbrainnetworksinAlzheimer’sdisease–revealedbyanovel

frameworktoanalyzeedgedistributionsofnetworksdetectingdisruptions

withstrongstatisticalevidence.Neuroimage2013;1:96–109.

14.ZaidelL,AllenG,CullumCM,BriggsRW,HynanLS,WeinerMF,etal.

Donepezileffectsonhippocampalandprefrontalfunctionalconnectivity

inAlzheimer’sdisease:preliminaryreport.JAlzheimersDis2012;31(Suppl

3):S221–6.

15.LiX,LiTQ,AndreasenN,WibergMK,WestmanE,WahlundLO.Ratioof

Ab42/P-tau181pinCSFisassociatedwithaberrantdefaultmodenetwork

inAD.SciRep2013;3:1339.

16.RossiniPM,RossiS,BabiloniC,PolichJ.Clinicalneurophysiologyofaging

brain:fromnormalagingtoneurodegeneration.ProgNeurobiol

2007;83:375–400.

17.StamCJ,HillebrandA,WangH,VanMieghemP.Emergenceofmodular

structureinalarge-scalebrainnetworkwithinteractionsbetween

dynamicsandconnectivity.FrontComputNeurosci2010;4:133.

18.PfurtschellerG,AndrewC.Event-relatedchangesofbandpowerand

coherence:methodologyandinterpretation.JClinNeurophysiol

1999;16:512–9.

19.JelicV,JulinP,ShigetaM,NordbergA,LannfeltL,WinbladB,etal.

ApolipoproteinEe4alleledecreasesfunctionalconnectivityinAlzheimer’s

diseaseasmeasuredbyEEGcoherence.JNeurolNeurosurgPsychiatry

1997;63:59–65.

20.JelicV,JohanssonSE,AlmkvistO,ShigetaM,JulinP,NordbergA,etal.

Quantitativeelectroencephalographyinmildcognitiveimpairment:

longitudinalchangesandpossiblepredictionofAlzheimer’sdisease.

NeurobiolAging2000;21:533–40.

21.BrunovskyM,MatousekM,EdmanA,CervenaK,KrajcaV.Objective

assessmentofthedegreeofdementiabymeansofEEG.

Neuropsychobiology2003;48:19–26.

22.BabiloniC,FrisoniGB,VecchioF,PievaniM,GeroldiC,DeCarliC,etal.

GlobalfunctionalcouplingofrestingEEGrhythmsisrelatedto

white-matterlesionsalongthecholinergictractsinsubjectswithamnesicmild

cognitiveimpairment.JAlzheimersDis2010;19:859–71.

23.ReevesRR,StruveFA,PatrickG.Theeffectsofdonepezilonquantitative

EEGinpatientswithAlzheimer’sdisease.ClinElectroencephalogr

2002;33:93–6.

24.StamCJ,vanDijkBW.Synchronizationlikelihood:anun-biasedmeasure

ofgeneralizedsynchronizationinmultivariatedatasets.PhysicaD

2002;163:236–51.

25.PijnenburgYA,vdMadeY,vanCappellenvanWalsumAM,KnolDL,

ScheltensP,etal.EEGsynchronizationlikelihoodinmildcognitive

impairmentandAlzheimer’sdiseaseduringaworkingmemorytask.Clin

Neurophysiol2004;115:1332–9.

26.BabiloniC,FerriR,BinettiG,CassarinoA,FornoGD,ErcolaniM,etal.

Fronto-parietalcouplingofbrainrhythmsinmildcognitiveimpairment:a

multicentricEEGstudy.BrainResBull2006;69:63–73.

27.BabiloniC,FerriR,MorettiDV,StrambiA,BinettiG,DalFornoG,etal.

Abnormalfronto-parietalcouplingofbrainrhythmsinmildAlzheimer’s

disease:amulticentricEEGstudy.EurJNeurosci2004;19:2583–90.

28.BosboomJL,StoffersD,WoltersECh,StamCJ,BerendseHW.MEGresting

statefunctionalconnectivityinParkinson’sdiseaserelateddementia.J

NeuralTransm2009;116:193–202.

29.JeongJ.EEGdynamicsinpatientswithAlzheimer’sdisease.Clin

(6)

30.JeongJ,ChaeJH,KimSY,HanSH.NonlineardynamicanalysisoftheEEG

inpatientswithAlzheimer’sdiseaseandvasculardementia.JClin

Neurophysiol2001;18:58–67.

31.KaminskiMJ,BlinowskaKJ.Anewmethodofthedescriptionofthe

informationflowinthebrainstructures.BiolCyber1991;65:203–10.

32.SchreiberT.Measuringinformationtransfer.PhysRevLett2000;85:

461–4.

33.VicenteR,WibralM,LindnerM,PipaG.Transferentropy–amodel-free

measureofeffectiveconnectivityfortheneurosciences.JComput

Neurosci2011;30:45–67.

34.GrangerCWJ.Investigatingcausalrelationsbyeconometricmodelsand

cross-spectralmethods.Econometrica1969;37:424–38.

35.BabiloniC,FrisoniG,VecchioF,LizioR,PievaniM,GeroldiC,etal.Global

functionalcouplingofrestingEEGrhythmsisabnormalinmildcognitive

impairmentandAlzheimer’sDisease.AmulticenterEEGstudy.J

Psychophysiol2009;23:224–34.

36.BabiloniC,FrisoniGB,PievaniM,VecchioF,InfarinatoF,GeroldiC,etal.

Whitemattervascularlesionsarerelatedtoparietal-to-frontalcouplingof

EEGrhythmsinmildcognitiveimpairment.HumBrainMapp

2008;29:1355–67.

37.DauwelsJ,VialatteF,LatchoumaneC,JeongJ,CichockiA.EEGsynchrony

analysisforearlydiagnosisofAlzheimer’sdisease:astudywithseveral

synchronymeasuresandEEGdatasets.ConfProcIEEEEngMedBiolSoc

2009;2009:2224–7.

38.DauwelsJ,VialatteF,MushaT,CichockiA.Acomparativestudyof

synchronymeasuresfortheearlydiagnosisofAlzheimer’sdiseasebasedon

EEG.Neuroimage2010;49:668–93.

39.LandaP,GribkovD,KaplanA.Oscillatoryprocessesinbiologicalsystems.

In:MalikSK,ChandrashekaranMK,PradhanN,editors.Nonlinear

PhenomenainBiologicalandPhysicalSciences.IndianNatl.Sci.Acad.;

2000.p.123–52.

40.FingelkurtsAA,FingelkurtsAA,Ka¨hko¨nenS.Newperspectivesin

pharmaco-electroencephalography.ProgNeuropsychopharmacolBiol

Psychiatry2005;29:193–9.

41.StamCJ,deHaanW,DaffertshoferA,JonesBF,ManshandenI,van

CappellenvanWalsumAM,etal.Graphtheoreticalanalysisof

magnetoencephalographicfunctionalconnectivityinAlzheimer’sdisease.

Brain2009;132:213–24.

42.StamCJ,JonesBF,NolteG,BreakspearM,ScheltensPh.Small-world

networksandfunctionalconnectivityinAlzheimer’sdisease.CerebCortex

2007;17:92–9.

43.deHaanW,PijnenburgYA,StrijersRL,vanderMadeY,vanderFlierWM,

ScheltensP,etal.Functionalneuralnetworkanalysisinfrontotemporal

dementiaandAlzheimer’sdiseaseusingEEGandgraphtheory.BMC

Neurosci2009;10:101.

44.deHaanW,vanderFlierWM,KoeneT,SmitsLL,ScheltensP,StamCJ.

Disruptedmodularbraindynamicsreflectcognitivedysfunctionin

Alzheimer’sdisease.Neuroimage2012;59:3085–93.

45.Sanz-ArigitaEJ,SchoonheimMM,DamoiseauxJS,RomboutsSA,MarisE,

BarkhofF,etal.Lossof‘small-world’networksinAlzheimer’sdisease:

graphanalysisofFMRIresting-statefunctionalconnectivity.PLoSOne

2010;5:e13788.

46.HeY,ChenZ,EvansA.Structuralinsightsintoaberranttopological

patternsoflarge-scalecorticalnetworksinAlzheimer’sdisease.JNeurosci

2008;28:4756–66.

47.SupekarK,MenonV,RubinD,MusenM,GreiciusMD.Networkanalysisof

intrinsicfunctionalbrainconnectivityinAlzheimer’sdisease.PLoS

Riferimenti

Documenti correlati

The aim of this PhD thesis was to study electronic properties and transport mechanisms of graphene and carbon nanotubes through an extensive electrical characterization of

Alla raccolta in settembre, in ciascuna parcella di entrambi i noccioleti sono stati prelevati 5 campioni di 50 frutti ognuno; le nocciole sono state poi trasferite in laboratorio

Quando un bambino viene proposto ad una famiglia, questa può rifiutare l’adozione prima di conoscerlo; se invece la famiglia a cui il bambino è proposto lo ha conosciuto e dopo

pyramidalis extracts and identified phytocompounds on enzymes involved in type 2 diabetes, a docking study was conducted in order to investigate the putative interactions

Authors Dia gnosis N (M/F) Study N e/c Inter v ention Outcome parameters P eriod of fol- lo w-up PEDr o Scor e F errara et al (2017) 22 CSP 217 (55M/ 162F) RS 110/107 Mesotherap y

Il laboratorio deve trovarsi all’interno di una Struttura Complessa di Cardiologia con le seguenti caratteristiche: - possibilità di ricoverare in tempi rapidi i pazienti su letti.

Crack the crab reserving the juices and tomalley. Make the tomalley sauce by pushing the tomalley through a sieve with a wooden spoon into a small pot. Add the chili flakes,